1 /** 2 * attrib.c - NTFS attribute operations. Part of the Linux-NTFS project. 3 * 4 * Copyright (c) 2001-2007 Anton Altaparmakov 5 * Copyright (c) 2002 Richard Russon 6 * 7 * This program/include file is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as published 9 * by the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program/include file is distributed in the hope that it will be 13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program (in the main directory of the Linux-NTFS 19 * distribution in the file COPYING); if not, write to the Free Software 20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 */ 22 23 #include <linux/buffer_head.h> 24 #include <linux/sched.h> 25 #include <linux/swap.h> 26 #include <linux/writeback.h> 27 28 #include "attrib.h" 29 #include "debug.h" 30 #include "layout.h" 31 #include "lcnalloc.h" 32 #include "malloc.h" 33 #include "mft.h" 34 #include "ntfs.h" 35 #include "types.h" 36 37 /** 38 * ntfs_map_runlist_nolock - map (a part of) a runlist of an ntfs inode 39 * @ni: ntfs inode for which to map (part of) a runlist 40 * @vcn: map runlist part containing this vcn 41 * @ctx: active attribute search context if present or NULL if not 42 * 43 * Map the part of a runlist containing the @vcn of the ntfs inode @ni. 44 * 45 * If @ctx is specified, it is an active search context of @ni and its base mft 46 * record. This is needed when ntfs_map_runlist_nolock() encounters unmapped 47 * runlist fragments and allows their mapping. If you do not have the mft 48 * record mapped, you can specify @ctx as NULL and ntfs_map_runlist_nolock() 49 * will perform the necessary mapping and unmapping. 50 * 51 * Note, ntfs_map_runlist_nolock() saves the state of @ctx on entry and 52 * restores it before returning. Thus, @ctx will be left pointing to the same 53 * attribute on return as on entry. However, the actual pointers in @ctx may 54 * point to different memory locations on return, so you must remember to reset 55 * any cached pointers from the @ctx, i.e. after the call to 56 * ntfs_map_runlist_nolock(), you will probably want to do: 57 * m = ctx->mrec; 58 * a = ctx->attr; 59 * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that 60 * you cache ctx->mrec in a variable @m of type MFT_RECORD *. 61 * 62 * Return 0 on success and -errno on error. There is one special error code 63 * which is not an error as such. This is -ENOENT. It means that @vcn is out 64 * of bounds of the runlist. 65 * 66 * Note the runlist can be NULL after this function returns if @vcn is zero and 67 * the attribute has zero allocated size, i.e. there simply is no runlist. 68 * 69 * WARNING: If @ctx is supplied, regardless of whether success or failure is 70 * returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx 71 * is no longer valid, i.e. you need to either call 72 * ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it. 73 * In that case PTR_ERR(@ctx->mrec) will give you the error code for 74 * why the mapping of the old inode failed. 75 * 76 * Locking: - The runlist described by @ni must be locked for writing on entry 77 * and is locked on return. Note the runlist will be modified. 78 * - If @ctx is NULL, the base mft record of @ni must not be mapped on 79 * entry and it will be left unmapped on return. 80 * - If @ctx is not NULL, the base mft record must be mapped on entry 81 * and it will be left mapped on return. 82 */ 83 int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn, ntfs_attr_search_ctx *ctx) 84 { 85 VCN end_vcn; 86 unsigned long flags; 87 ntfs_inode *base_ni; 88 MFT_RECORD *m; 89 ATTR_RECORD *a; 90 runlist_element *rl; 91 struct page *put_this_page = NULL; 92 int err = 0; 93 bool ctx_is_temporary, ctx_needs_reset; 94 ntfs_attr_search_ctx old_ctx = { NULL, }; 95 96 ntfs_debug("Mapping runlist part containing vcn 0x%llx.", 97 (unsigned long long)vcn); 98 if (!NInoAttr(ni)) 99 base_ni = ni; 100 else 101 base_ni = ni->ext.base_ntfs_ino; 102 if (!ctx) { 103 ctx_is_temporary = ctx_needs_reset = true; 104 m = map_mft_record(base_ni); 105 if (IS_ERR(m)) 106 return PTR_ERR(m); 107 ctx = ntfs_attr_get_search_ctx(base_ni, m); 108 if (unlikely(!ctx)) { 109 err = -ENOMEM; 110 goto err_out; 111 } 112 } else { 113 VCN allocated_size_vcn; 114 115 BUG_ON(IS_ERR(ctx->mrec)); 116 a = ctx->attr; 117 BUG_ON(!a->non_resident); 118 ctx_is_temporary = false; 119 end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); 120 read_lock_irqsave(&ni->size_lock, flags); 121 allocated_size_vcn = ni->allocated_size >> 122 ni->vol->cluster_size_bits; 123 read_unlock_irqrestore(&ni->size_lock, flags); 124 if (!a->data.non_resident.lowest_vcn && end_vcn <= 0) 125 end_vcn = allocated_size_vcn - 1; 126 /* 127 * If we already have the attribute extent containing @vcn in 128 * @ctx, no need to look it up again. We slightly cheat in 129 * that if vcn exceeds the allocated size, we will refuse to 130 * map the runlist below, so there is definitely no need to get 131 * the right attribute extent. 132 */ 133 if (vcn >= allocated_size_vcn || (a->type == ni->type && 134 a->name_length == ni->name_len && 135 !memcmp((u8*)a + le16_to_cpu(a->name_offset), 136 ni->name, ni->name_len) && 137 sle64_to_cpu(a->data.non_resident.lowest_vcn) 138 <= vcn && end_vcn >= vcn)) 139 ctx_needs_reset = false; 140 else { 141 /* Save the old search context. */ 142 old_ctx = *ctx; 143 /* 144 * If the currently mapped (extent) inode is not the 145 * base inode we will unmap it when we reinitialize the 146 * search context which means we need to get a 147 * reference to the page containing the mapped mft 148 * record so we do not accidentally drop changes to the 149 * mft record when it has not been marked dirty yet. 150 */ 151 if (old_ctx.base_ntfs_ino && old_ctx.ntfs_ino != 152 old_ctx.base_ntfs_ino) { 153 put_this_page = old_ctx.ntfs_ino->page; 154 page_cache_get(put_this_page); 155 } 156 /* 157 * Reinitialize the search context so we can lookup the 158 * needed attribute extent. 159 */ 160 ntfs_attr_reinit_search_ctx(ctx); 161 ctx_needs_reset = true; 162 } 163 } 164 if (ctx_needs_reset) { 165 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 166 CASE_SENSITIVE, vcn, NULL, 0, ctx); 167 if (unlikely(err)) { 168 if (err == -ENOENT) 169 err = -EIO; 170 goto err_out; 171 } 172 BUG_ON(!ctx->attr->non_resident); 173 } 174 a = ctx->attr; 175 /* 176 * Only decompress the mapping pairs if @vcn is inside it. Otherwise 177 * we get into problems when we try to map an out of bounds vcn because 178 * we then try to map the already mapped runlist fragment and 179 * ntfs_mapping_pairs_decompress() fails. 180 */ 181 end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn) + 1; 182 if (unlikely(vcn && vcn >= end_vcn)) { 183 err = -ENOENT; 184 goto err_out; 185 } 186 rl = ntfs_mapping_pairs_decompress(ni->vol, a, ni->runlist.rl); 187 if (IS_ERR(rl)) 188 err = PTR_ERR(rl); 189 else 190 ni->runlist.rl = rl; 191 err_out: 192 if (ctx_is_temporary) { 193 if (likely(ctx)) 194 ntfs_attr_put_search_ctx(ctx); 195 unmap_mft_record(base_ni); 196 } else if (ctx_needs_reset) { 197 /* 198 * If there is no attribute list, restoring the search context 199 * is acomplished simply by copying the saved context back over 200 * the caller supplied context. If there is an attribute list, 201 * things are more complicated as we need to deal with mapping 202 * of mft records and resulting potential changes in pointers. 203 */ 204 if (NInoAttrList(base_ni)) { 205 /* 206 * If the currently mapped (extent) inode is not the 207 * one we had before, we need to unmap it and map the 208 * old one. 209 */ 210 if (ctx->ntfs_ino != old_ctx.ntfs_ino) { 211 /* 212 * If the currently mapped inode is not the 213 * base inode, unmap it. 214 */ 215 if (ctx->base_ntfs_ino && ctx->ntfs_ino != 216 ctx->base_ntfs_ino) { 217 unmap_extent_mft_record(ctx->ntfs_ino); 218 ctx->mrec = ctx->base_mrec; 219 BUG_ON(!ctx->mrec); 220 } 221 /* 222 * If the old mapped inode is not the base 223 * inode, map it. 224 */ 225 if (old_ctx.base_ntfs_ino && 226 old_ctx.ntfs_ino != 227 old_ctx.base_ntfs_ino) { 228 retry_map: 229 ctx->mrec = map_mft_record( 230 old_ctx.ntfs_ino); 231 /* 232 * Something bad has happened. If out 233 * of memory retry till it succeeds. 234 * Any other errors are fatal and we 235 * return the error code in ctx->mrec. 236 * Let the caller deal with it... We 237 * just need to fudge things so the 238 * caller can reinit and/or put the 239 * search context safely. 240 */ 241 if (IS_ERR(ctx->mrec)) { 242 if (PTR_ERR(ctx->mrec) == 243 -ENOMEM) { 244 schedule(); 245 goto retry_map; 246 } else 247 old_ctx.ntfs_ino = 248 old_ctx. 249 base_ntfs_ino; 250 } 251 } 252 } 253 /* Update the changed pointers in the saved context. */ 254 if (ctx->mrec != old_ctx.mrec) { 255 if (!IS_ERR(ctx->mrec)) 256 old_ctx.attr = (ATTR_RECORD*)( 257 (u8*)ctx->mrec + 258 ((u8*)old_ctx.attr - 259 (u8*)old_ctx.mrec)); 260 old_ctx.mrec = ctx->mrec; 261 } 262 } 263 /* Restore the search context to the saved one. */ 264 *ctx = old_ctx; 265 /* 266 * We drop the reference on the page we took earlier. In the 267 * case that IS_ERR(ctx->mrec) is true this means we might lose 268 * some changes to the mft record that had been made between 269 * the last time it was marked dirty/written out and now. This 270 * at this stage is not a problem as the mapping error is fatal 271 * enough that the mft record cannot be written out anyway and 272 * the caller is very likely to shutdown the whole inode 273 * immediately and mark the volume dirty for chkdsk to pick up 274 * the pieces anyway. 275 */ 276 if (put_this_page) 277 page_cache_release(put_this_page); 278 } 279 return err; 280 } 281 282 /** 283 * ntfs_map_runlist - map (a part of) a runlist of an ntfs inode 284 * @ni: ntfs inode for which to map (part of) a runlist 285 * @vcn: map runlist part containing this vcn 286 * 287 * Map the part of a runlist containing the @vcn of the ntfs inode @ni. 288 * 289 * Return 0 on success and -errno on error. There is one special error code 290 * which is not an error as such. This is -ENOENT. It means that @vcn is out 291 * of bounds of the runlist. 292 * 293 * Locking: - The runlist must be unlocked on entry and is unlocked on return. 294 * - This function takes the runlist lock for writing and may modify 295 * the runlist. 296 */ 297 int ntfs_map_runlist(ntfs_inode *ni, VCN vcn) 298 { 299 int err = 0; 300 301 down_write(&ni->runlist.lock); 302 /* Make sure someone else didn't do the work while we were sleeping. */ 303 if (likely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) <= 304 LCN_RL_NOT_MAPPED)) 305 err = ntfs_map_runlist_nolock(ni, vcn, NULL); 306 up_write(&ni->runlist.lock); 307 return err; 308 } 309 310 /** 311 * ntfs_attr_vcn_to_lcn_nolock - convert a vcn into a lcn given an ntfs inode 312 * @ni: ntfs inode of the attribute whose runlist to search 313 * @vcn: vcn to convert 314 * @write_locked: true if the runlist is locked for writing 315 * 316 * Find the virtual cluster number @vcn in the runlist of the ntfs attribute 317 * described by the ntfs inode @ni and return the corresponding logical cluster 318 * number (lcn). 319 * 320 * If the @vcn is not mapped yet, the attempt is made to map the attribute 321 * extent containing the @vcn and the vcn to lcn conversion is retried. 322 * 323 * If @write_locked is true the caller has locked the runlist for writing and 324 * if false for reading. 325 * 326 * Since lcns must be >= 0, we use negative return codes with special meaning: 327 * 328 * Return code Meaning / Description 329 * ========================================== 330 * LCN_HOLE Hole / not allocated on disk. 331 * LCN_ENOENT There is no such vcn in the runlist, i.e. @vcn is out of bounds. 332 * LCN_ENOMEM Not enough memory to map runlist. 333 * LCN_EIO Critical error (runlist/file is corrupt, i/o error, etc). 334 * 335 * Locking: - The runlist must be locked on entry and is left locked on return. 336 * - If @write_locked is 'false', i.e. the runlist is locked for reading, 337 * the lock may be dropped inside the function so you cannot rely on 338 * the runlist still being the same when this function returns. 339 */ 340 LCN ntfs_attr_vcn_to_lcn_nolock(ntfs_inode *ni, const VCN vcn, 341 const bool write_locked) 342 { 343 LCN lcn; 344 unsigned long flags; 345 bool is_retry = false; 346 347 ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, %s_locked.", 348 ni->mft_no, (unsigned long long)vcn, 349 write_locked ? "write" : "read"); 350 BUG_ON(!ni); 351 BUG_ON(!NInoNonResident(ni)); 352 BUG_ON(vcn < 0); 353 if (!ni->runlist.rl) { 354 read_lock_irqsave(&ni->size_lock, flags); 355 if (!ni->allocated_size) { 356 read_unlock_irqrestore(&ni->size_lock, flags); 357 return LCN_ENOENT; 358 } 359 read_unlock_irqrestore(&ni->size_lock, flags); 360 } 361 retry_remap: 362 /* Convert vcn to lcn. If that fails map the runlist and retry once. */ 363 lcn = ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn); 364 if (likely(lcn >= LCN_HOLE)) { 365 ntfs_debug("Done, lcn 0x%llx.", (long long)lcn); 366 return lcn; 367 } 368 if (lcn != LCN_RL_NOT_MAPPED) { 369 if (lcn != LCN_ENOENT) 370 lcn = LCN_EIO; 371 } else if (!is_retry) { 372 int err; 373 374 if (!write_locked) { 375 up_read(&ni->runlist.lock); 376 down_write(&ni->runlist.lock); 377 if (unlikely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) != 378 LCN_RL_NOT_MAPPED)) { 379 up_write(&ni->runlist.lock); 380 down_read(&ni->runlist.lock); 381 goto retry_remap; 382 } 383 } 384 err = ntfs_map_runlist_nolock(ni, vcn, NULL); 385 if (!write_locked) { 386 up_write(&ni->runlist.lock); 387 down_read(&ni->runlist.lock); 388 } 389 if (likely(!err)) { 390 is_retry = true; 391 goto retry_remap; 392 } 393 if (err == -ENOENT) 394 lcn = LCN_ENOENT; 395 else if (err == -ENOMEM) 396 lcn = LCN_ENOMEM; 397 else 398 lcn = LCN_EIO; 399 } 400 if (lcn != LCN_ENOENT) 401 ntfs_error(ni->vol->sb, "Failed with error code %lli.", 402 (long long)lcn); 403 return lcn; 404 } 405 406 /** 407 * ntfs_attr_find_vcn_nolock - find a vcn in the runlist of an ntfs inode 408 * @ni: ntfs inode describing the runlist to search 409 * @vcn: vcn to find 410 * @ctx: active attribute search context if present or NULL if not 411 * 412 * Find the virtual cluster number @vcn in the runlist described by the ntfs 413 * inode @ni and return the address of the runlist element containing the @vcn. 414 * 415 * If the @vcn is not mapped yet, the attempt is made to map the attribute 416 * extent containing the @vcn and the vcn to lcn conversion is retried. 417 * 418 * If @ctx is specified, it is an active search context of @ni and its base mft 419 * record. This is needed when ntfs_attr_find_vcn_nolock() encounters unmapped 420 * runlist fragments and allows their mapping. If you do not have the mft 421 * record mapped, you can specify @ctx as NULL and ntfs_attr_find_vcn_nolock() 422 * will perform the necessary mapping and unmapping. 423 * 424 * Note, ntfs_attr_find_vcn_nolock() saves the state of @ctx on entry and 425 * restores it before returning. Thus, @ctx will be left pointing to the same 426 * attribute on return as on entry. However, the actual pointers in @ctx may 427 * point to different memory locations on return, so you must remember to reset 428 * any cached pointers from the @ctx, i.e. after the call to 429 * ntfs_attr_find_vcn_nolock(), you will probably want to do: 430 * m = ctx->mrec; 431 * a = ctx->attr; 432 * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that 433 * you cache ctx->mrec in a variable @m of type MFT_RECORD *. 434 * Note you need to distinguish between the lcn of the returned runlist element 435 * being >= 0 and LCN_HOLE. In the later case you have to return zeroes on 436 * read and allocate clusters on write. 437 * 438 * Return the runlist element containing the @vcn on success and 439 * ERR_PTR(-errno) on error. You need to test the return value with IS_ERR() 440 * to decide if the return is success or failure and PTR_ERR() to get to the 441 * error code if IS_ERR() is true. 442 * 443 * The possible error return codes are: 444 * -ENOENT - No such vcn in the runlist, i.e. @vcn is out of bounds. 445 * -ENOMEM - Not enough memory to map runlist. 446 * -EIO - Critical error (runlist/file is corrupt, i/o error, etc). 447 * 448 * WARNING: If @ctx is supplied, regardless of whether success or failure is 449 * returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx 450 * is no longer valid, i.e. you need to either call 451 * ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it. 452 * In that case PTR_ERR(@ctx->mrec) will give you the error code for 453 * why the mapping of the old inode failed. 454 * 455 * Locking: - The runlist described by @ni must be locked for writing on entry 456 * and is locked on return. Note the runlist may be modified when 457 * needed runlist fragments need to be mapped. 458 * - If @ctx is NULL, the base mft record of @ni must not be mapped on 459 * entry and it will be left unmapped on return. 460 * - If @ctx is not NULL, the base mft record must be mapped on entry 461 * and it will be left mapped on return. 462 */ 463 runlist_element *ntfs_attr_find_vcn_nolock(ntfs_inode *ni, const VCN vcn, 464 ntfs_attr_search_ctx *ctx) 465 { 466 unsigned long flags; 467 runlist_element *rl; 468 int err = 0; 469 bool is_retry = false; 470 471 ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, with%s ctx.", 472 ni->mft_no, (unsigned long long)vcn, ctx ? "" : "out"); 473 BUG_ON(!ni); 474 BUG_ON(!NInoNonResident(ni)); 475 BUG_ON(vcn < 0); 476 if (!ni->runlist.rl) { 477 read_lock_irqsave(&ni->size_lock, flags); 478 if (!ni->allocated_size) { 479 read_unlock_irqrestore(&ni->size_lock, flags); 480 return ERR_PTR(-ENOENT); 481 } 482 read_unlock_irqrestore(&ni->size_lock, flags); 483 } 484 retry_remap: 485 rl = ni->runlist.rl; 486 if (likely(rl && vcn >= rl[0].vcn)) { 487 while (likely(rl->length)) { 488 if (unlikely(vcn < rl[1].vcn)) { 489 if (likely(rl->lcn >= LCN_HOLE)) { 490 ntfs_debug("Done."); 491 return rl; 492 } 493 break; 494 } 495 rl++; 496 } 497 if (likely(rl->lcn != LCN_RL_NOT_MAPPED)) { 498 if (likely(rl->lcn == LCN_ENOENT)) 499 err = -ENOENT; 500 else 501 err = -EIO; 502 } 503 } 504 if (!err && !is_retry) { 505 /* 506 * If the search context is invalid we cannot map the unmapped 507 * region. 508 */ 509 if (IS_ERR(ctx->mrec)) 510 err = PTR_ERR(ctx->mrec); 511 else { 512 /* 513 * The @vcn is in an unmapped region, map the runlist 514 * and retry. 515 */ 516 err = ntfs_map_runlist_nolock(ni, vcn, ctx); 517 if (likely(!err)) { 518 is_retry = true; 519 goto retry_remap; 520 } 521 } 522 if (err == -EINVAL) 523 err = -EIO; 524 } else if (!err) 525 err = -EIO; 526 if (err != -ENOENT) 527 ntfs_error(ni->vol->sb, "Failed with error code %i.", err); 528 return ERR_PTR(err); 529 } 530 531 /** 532 * ntfs_attr_find - find (next) attribute in mft record 533 * @type: attribute type to find 534 * @name: attribute name to find (optional, i.e. NULL means don't care) 535 * @name_len: attribute name length (only needed if @name present) 536 * @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) 537 * @val: attribute value to find (optional, resident attributes only) 538 * @val_len: attribute value length 539 * @ctx: search context with mft record and attribute to search from 540 * 541 * You should not need to call this function directly. Use ntfs_attr_lookup() 542 * instead. 543 * 544 * ntfs_attr_find() takes a search context @ctx as parameter and searches the 545 * mft record specified by @ctx->mrec, beginning at @ctx->attr, for an 546 * attribute of @type, optionally @name and @val. 547 * 548 * If the attribute is found, ntfs_attr_find() returns 0 and @ctx->attr will 549 * point to the found attribute. 550 * 551 * If the attribute is not found, ntfs_attr_find() returns -ENOENT and 552 * @ctx->attr will point to the attribute before which the attribute being 553 * searched for would need to be inserted if such an action were to be desired. 554 * 555 * On actual error, ntfs_attr_find() returns -EIO. In this case @ctx->attr is 556 * undefined and in particular do not rely on it not changing. 557 * 558 * If @ctx->is_first is 'true', the search begins with @ctx->attr itself. If it 559 * is 'false', the search begins after @ctx->attr. 560 * 561 * If @ic is IGNORE_CASE, the @name comparisson is not case sensitive and 562 * @ctx->ntfs_ino must be set to the ntfs inode to which the mft record 563 * @ctx->mrec belongs. This is so we can get at the ntfs volume and hence at 564 * the upcase table. If @ic is CASE_SENSITIVE, the comparison is case 565 * sensitive. When @name is present, @name_len is the @name length in Unicode 566 * characters. 567 * 568 * If @name is not present (NULL), we assume that the unnamed attribute is 569 * being searched for. 570 * 571 * Finally, the resident attribute value @val is looked for, if present. If 572 * @val is not present (NULL), @val_len is ignored. 573 * 574 * ntfs_attr_find() only searches the specified mft record and it ignores the 575 * presence of an attribute list attribute (unless it is the one being searched 576 * for, obviously). If you need to take attribute lists into consideration, 577 * use ntfs_attr_lookup() instead (see below). This also means that you cannot 578 * use ntfs_attr_find() to search for extent records of non-resident 579 * attributes, as extents with lowest_vcn != 0 are usually described by the 580 * attribute list attribute only. - Note that it is possible that the first 581 * extent is only in the attribute list while the last extent is in the base 582 * mft record, so do not rely on being able to find the first extent in the 583 * base mft record. 584 * 585 * Warning: Never use @val when looking for attribute types which can be 586 * non-resident as this most likely will result in a crash! 587 */ 588 static int ntfs_attr_find(const ATTR_TYPE type, const ntfschar *name, 589 const u32 name_len, const IGNORE_CASE_BOOL ic, 590 const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx) 591 { 592 ATTR_RECORD *a; 593 ntfs_volume *vol = ctx->ntfs_ino->vol; 594 ntfschar *upcase = vol->upcase; 595 u32 upcase_len = vol->upcase_len; 596 597 /* 598 * Iterate over attributes in mft record starting at @ctx->attr, or the 599 * attribute following that, if @ctx->is_first is 'true'. 600 */ 601 if (ctx->is_first) { 602 a = ctx->attr; 603 ctx->is_first = false; 604 } else 605 a = (ATTR_RECORD*)((u8*)ctx->attr + 606 le32_to_cpu(ctx->attr->length)); 607 for (;; a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length))) { 608 if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec + 609 le32_to_cpu(ctx->mrec->bytes_allocated)) 610 break; 611 ctx->attr = a; 612 if (unlikely(le32_to_cpu(a->type) > le32_to_cpu(type) || 613 a->type == AT_END)) 614 return -ENOENT; 615 if (unlikely(!a->length)) 616 break; 617 if (a->type != type) 618 continue; 619 /* 620 * If @name is present, compare the two names. If @name is 621 * missing, assume we want an unnamed attribute. 622 */ 623 if (!name) { 624 /* The search failed if the found attribute is named. */ 625 if (a->name_length) 626 return -ENOENT; 627 } else if (!ntfs_are_names_equal(name, name_len, 628 (ntfschar*)((u8*)a + le16_to_cpu(a->name_offset)), 629 a->name_length, ic, upcase, upcase_len)) { 630 register int rc; 631 632 rc = ntfs_collate_names(name, name_len, 633 (ntfschar*)((u8*)a + 634 le16_to_cpu(a->name_offset)), 635 a->name_length, 1, IGNORE_CASE, 636 upcase, upcase_len); 637 /* 638 * If @name collates before a->name, there is no 639 * matching attribute. 640 */ 641 if (rc == -1) 642 return -ENOENT; 643 /* If the strings are not equal, continue search. */ 644 if (rc) 645 continue; 646 rc = ntfs_collate_names(name, name_len, 647 (ntfschar*)((u8*)a + 648 le16_to_cpu(a->name_offset)), 649 a->name_length, 1, CASE_SENSITIVE, 650 upcase, upcase_len); 651 if (rc == -1) 652 return -ENOENT; 653 if (rc) 654 continue; 655 } 656 /* 657 * The names match or @name not present and attribute is 658 * unnamed. If no @val specified, we have found the attribute 659 * and are done. 660 */ 661 if (!val) 662 return 0; 663 /* @val is present; compare values. */ 664 else { 665 register int rc; 666 667 rc = memcmp(val, (u8*)a + le16_to_cpu( 668 a->data.resident.value_offset), 669 min_t(u32, val_len, le32_to_cpu( 670 a->data.resident.value_length))); 671 /* 672 * If @val collates before the current attribute's 673 * value, there is no matching attribute. 674 */ 675 if (!rc) { 676 register u32 avl; 677 678 avl = le32_to_cpu( 679 a->data.resident.value_length); 680 if (val_len == avl) 681 return 0; 682 if (val_len < avl) 683 return -ENOENT; 684 } else if (rc < 0) 685 return -ENOENT; 686 } 687 } 688 ntfs_error(vol->sb, "Inode is corrupt. Run chkdsk."); 689 NVolSetErrors(vol); 690 return -EIO; 691 } 692 693 /** 694 * load_attribute_list - load an attribute list into memory 695 * @vol: ntfs volume from which to read 696 * @runlist: runlist of the attribute list 697 * @al_start: destination buffer 698 * @size: size of the destination buffer in bytes 699 * @initialized_size: initialized size of the attribute list 700 * 701 * Walk the runlist @runlist and load all clusters from it copying them into 702 * the linear buffer @al. The maximum number of bytes copied to @al is @size 703 * bytes. Note, @size does not need to be a multiple of the cluster size. If 704 * @initialized_size is less than @size, the region in @al between 705 * @initialized_size and @size will be zeroed and not read from disk. 706 * 707 * Return 0 on success or -errno on error. 708 */ 709 int load_attribute_list(ntfs_volume *vol, runlist *runlist, u8 *al_start, 710 const s64 size, const s64 initialized_size) 711 { 712 LCN lcn; 713 u8 *al = al_start; 714 u8 *al_end = al + initialized_size; 715 runlist_element *rl; 716 struct buffer_head *bh; 717 struct super_block *sb; 718 unsigned long block_size; 719 unsigned long block, max_block; 720 int err = 0; 721 unsigned char block_size_bits; 722 723 ntfs_debug("Entering."); 724 if (!vol || !runlist || !al || size <= 0 || initialized_size < 0 || 725 initialized_size > size) 726 return -EINVAL; 727 if (!initialized_size) { 728 memset(al, 0, size); 729 return 0; 730 } 731 sb = vol->sb; 732 block_size = sb->s_blocksize; 733 block_size_bits = sb->s_blocksize_bits; 734 down_read(&runlist->lock); 735 rl = runlist->rl; 736 if (!rl) { 737 ntfs_error(sb, "Cannot read attribute list since runlist is " 738 "missing."); 739 goto err_out; 740 } 741 /* Read all clusters specified by the runlist one run at a time. */ 742 while (rl->length) { 743 lcn = ntfs_rl_vcn_to_lcn(rl, rl->vcn); 744 ntfs_debug("Reading vcn = 0x%llx, lcn = 0x%llx.", 745 (unsigned long long)rl->vcn, 746 (unsigned long long)lcn); 747 /* The attribute list cannot be sparse. */ 748 if (lcn < 0) { 749 ntfs_error(sb, "ntfs_rl_vcn_to_lcn() failed. Cannot " 750 "read attribute list."); 751 goto err_out; 752 } 753 block = lcn << vol->cluster_size_bits >> block_size_bits; 754 /* Read the run from device in chunks of block_size bytes. */ 755 max_block = block + (rl->length << vol->cluster_size_bits >> 756 block_size_bits); 757 ntfs_debug("max_block = 0x%lx.", max_block); 758 do { 759 ntfs_debug("Reading block = 0x%lx.", block); 760 bh = sb_bread(sb, block); 761 if (!bh) { 762 ntfs_error(sb, "sb_bread() failed. Cannot " 763 "read attribute list."); 764 goto err_out; 765 } 766 if (al + block_size >= al_end) 767 goto do_final; 768 memcpy(al, bh->b_data, block_size); 769 brelse(bh); 770 al += block_size; 771 } while (++block < max_block); 772 rl++; 773 } 774 if (initialized_size < size) { 775 initialize: 776 memset(al_start + initialized_size, 0, size - initialized_size); 777 } 778 done: 779 up_read(&runlist->lock); 780 return err; 781 do_final: 782 if (al < al_end) { 783 /* 784 * Partial block. 785 * 786 * Note: The attribute list can be smaller than its allocation 787 * by multiple clusters. This has been encountered by at least 788 * two people running Windows XP, thus we cannot do any 789 * truncation sanity checking here. (AIA) 790 */ 791 memcpy(al, bh->b_data, al_end - al); 792 brelse(bh); 793 if (initialized_size < size) 794 goto initialize; 795 goto done; 796 } 797 brelse(bh); 798 /* Real overflow! */ 799 ntfs_error(sb, "Attribute list buffer overflow. Read attribute list " 800 "is truncated."); 801 err_out: 802 err = -EIO; 803 goto done; 804 } 805 806 /** 807 * ntfs_external_attr_find - find an attribute in the attribute list of an inode 808 * @type: attribute type to find 809 * @name: attribute name to find (optional, i.e. NULL means don't care) 810 * @name_len: attribute name length (only needed if @name present) 811 * @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) 812 * @lowest_vcn: lowest vcn to find (optional, non-resident attributes only) 813 * @val: attribute value to find (optional, resident attributes only) 814 * @val_len: attribute value length 815 * @ctx: search context with mft record and attribute to search from 816 * 817 * You should not need to call this function directly. Use ntfs_attr_lookup() 818 * instead. 819 * 820 * Find an attribute by searching the attribute list for the corresponding 821 * attribute list entry. Having found the entry, map the mft record if the 822 * attribute is in a different mft record/inode, ntfs_attr_find() the attribute 823 * in there and return it. 824 * 825 * On first search @ctx->ntfs_ino must be the base mft record and @ctx must 826 * have been obtained from a call to ntfs_attr_get_search_ctx(). On subsequent 827 * calls @ctx->ntfs_ino can be any extent inode, too (@ctx->base_ntfs_ino is 828 * then the base inode). 829 * 830 * After finishing with the attribute/mft record you need to call 831 * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any 832 * mapped inodes, etc). 833 * 834 * If the attribute is found, ntfs_external_attr_find() returns 0 and 835 * @ctx->attr will point to the found attribute. @ctx->mrec will point to the 836 * mft record in which @ctx->attr is located and @ctx->al_entry will point to 837 * the attribute list entry for the attribute. 838 * 839 * If the attribute is not found, ntfs_external_attr_find() returns -ENOENT and 840 * @ctx->attr will point to the attribute in the base mft record before which 841 * the attribute being searched for would need to be inserted if such an action 842 * were to be desired. @ctx->mrec will point to the mft record in which 843 * @ctx->attr is located and @ctx->al_entry will point to the attribute list 844 * entry of the attribute before which the attribute being searched for would 845 * need to be inserted if such an action were to be desired. 846 * 847 * Thus to insert the not found attribute, one wants to add the attribute to 848 * @ctx->mrec (the base mft record) and if there is not enough space, the 849 * attribute should be placed in a newly allocated extent mft record. The 850 * attribute list entry for the inserted attribute should be inserted in the 851 * attribute list attribute at @ctx->al_entry. 852 * 853 * On actual error, ntfs_external_attr_find() returns -EIO. In this case 854 * @ctx->attr is undefined and in particular do not rely on it not changing. 855 */ 856 static int ntfs_external_attr_find(const ATTR_TYPE type, 857 const ntfschar *name, const u32 name_len, 858 const IGNORE_CASE_BOOL ic, const VCN lowest_vcn, 859 const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx) 860 { 861 ntfs_inode *base_ni, *ni; 862 ntfs_volume *vol; 863 ATTR_LIST_ENTRY *al_entry, *next_al_entry; 864 u8 *al_start, *al_end; 865 ATTR_RECORD *a; 866 ntfschar *al_name; 867 u32 al_name_len; 868 int err = 0; 869 static const char *es = " Unmount and run chkdsk."; 870 871 ni = ctx->ntfs_ino; 872 base_ni = ctx->base_ntfs_ino; 873 ntfs_debug("Entering for inode 0x%lx, type 0x%x.", ni->mft_no, type); 874 if (!base_ni) { 875 /* First call happens with the base mft record. */ 876 base_ni = ctx->base_ntfs_ino = ctx->ntfs_ino; 877 ctx->base_mrec = ctx->mrec; 878 } 879 if (ni == base_ni) 880 ctx->base_attr = ctx->attr; 881 if (type == AT_END) 882 goto not_found; 883 vol = base_ni->vol; 884 al_start = base_ni->attr_list; 885 al_end = al_start + base_ni->attr_list_size; 886 if (!ctx->al_entry) 887 ctx->al_entry = (ATTR_LIST_ENTRY*)al_start; 888 /* 889 * Iterate over entries in attribute list starting at @ctx->al_entry, 890 * or the entry following that, if @ctx->is_first is 'true'. 891 */ 892 if (ctx->is_first) { 893 al_entry = ctx->al_entry; 894 ctx->is_first = false; 895 } else 896 al_entry = (ATTR_LIST_ENTRY*)((u8*)ctx->al_entry + 897 le16_to_cpu(ctx->al_entry->length)); 898 for (;; al_entry = next_al_entry) { 899 /* Out of bounds check. */ 900 if ((u8*)al_entry < base_ni->attr_list || 901 (u8*)al_entry > al_end) 902 break; /* Inode is corrupt. */ 903 ctx->al_entry = al_entry; 904 /* Catch the end of the attribute list. */ 905 if ((u8*)al_entry == al_end) 906 goto not_found; 907 if (!al_entry->length) 908 break; 909 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + 910 le16_to_cpu(al_entry->length) > al_end) 911 break; 912 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + 913 le16_to_cpu(al_entry->length)); 914 if (le32_to_cpu(al_entry->type) > le32_to_cpu(type)) 915 goto not_found; 916 if (type != al_entry->type) 917 continue; 918 /* 919 * If @name is present, compare the two names. If @name is 920 * missing, assume we want an unnamed attribute. 921 */ 922 al_name_len = al_entry->name_length; 923 al_name = (ntfschar*)((u8*)al_entry + al_entry->name_offset); 924 if (!name) { 925 if (al_name_len) 926 goto not_found; 927 } else if (!ntfs_are_names_equal(al_name, al_name_len, name, 928 name_len, ic, vol->upcase, vol->upcase_len)) { 929 register int rc; 930 931 rc = ntfs_collate_names(name, name_len, al_name, 932 al_name_len, 1, IGNORE_CASE, 933 vol->upcase, vol->upcase_len); 934 /* 935 * If @name collates before al_name, there is no 936 * matching attribute. 937 */ 938 if (rc == -1) 939 goto not_found; 940 /* If the strings are not equal, continue search. */ 941 if (rc) 942 continue; 943 /* 944 * FIXME: Reverse engineering showed 0, IGNORE_CASE but 945 * that is inconsistent with ntfs_attr_find(). The 946 * subsequent rc checks were also different. Perhaps I 947 * made a mistake in one of the two. Need to recheck 948 * which is correct or at least see what is going on... 949 * (AIA) 950 */ 951 rc = ntfs_collate_names(name, name_len, al_name, 952 al_name_len, 1, CASE_SENSITIVE, 953 vol->upcase, vol->upcase_len); 954 if (rc == -1) 955 goto not_found; 956 if (rc) 957 continue; 958 } 959 /* 960 * The names match or @name not present and attribute is 961 * unnamed. Now check @lowest_vcn. Continue search if the 962 * next attribute list entry still fits @lowest_vcn. Otherwise 963 * we have reached the right one or the search has failed. 964 */ 965 if (lowest_vcn && (u8*)next_al_entry >= al_start && 966 (u8*)next_al_entry + 6 < al_end && 967 (u8*)next_al_entry + le16_to_cpu( 968 next_al_entry->length) <= al_end && 969 sle64_to_cpu(next_al_entry->lowest_vcn) <= 970 lowest_vcn && 971 next_al_entry->type == al_entry->type && 972 next_al_entry->name_length == al_name_len && 973 ntfs_are_names_equal((ntfschar*)((u8*) 974 next_al_entry + 975 next_al_entry->name_offset), 976 next_al_entry->name_length, 977 al_name, al_name_len, CASE_SENSITIVE, 978 vol->upcase, vol->upcase_len)) 979 continue; 980 if (MREF_LE(al_entry->mft_reference) == ni->mft_no) { 981 if (MSEQNO_LE(al_entry->mft_reference) != ni->seq_no) { 982 ntfs_error(vol->sb, "Found stale mft " 983 "reference in attribute list " 984 "of base inode 0x%lx.%s", 985 base_ni->mft_no, es); 986 err = -EIO; 987 break; 988 } 989 } else { /* Mft references do not match. */ 990 /* If there is a mapped record unmap it first. */ 991 if (ni != base_ni) 992 unmap_extent_mft_record(ni); 993 /* Do we want the base record back? */ 994 if (MREF_LE(al_entry->mft_reference) == 995 base_ni->mft_no) { 996 ni = ctx->ntfs_ino = base_ni; 997 ctx->mrec = ctx->base_mrec; 998 } else { 999 /* We want an extent record. */ 1000 ctx->mrec = map_extent_mft_record(base_ni, 1001 le64_to_cpu( 1002 al_entry->mft_reference), &ni); 1003 if (IS_ERR(ctx->mrec)) { 1004 ntfs_error(vol->sb, "Failed to map " 1005 "extent mft record " 1006 "0x%lx of base inode " 1007 "0x%lx.%s", 1008 MREF_LE(al_entry-> 1009 mft_reference), 1010 base_ni->mft_no, es); 1011 err = PTR_ERR(ctx->mrec); 1012 if (err == -ENOENT) 1013 err = -EIO; 1014 /* Cause @ctx to be sanitized below. */ 1015 ni = NULL; 1016 break; 1017 } 1018 ctx->ntfs_ino = ni; 1019 } 1020 ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + 1021 le16_to_cpu(ctx->mrec->attrs_offset)); 1022 } 1023 /* 1024 * ctx->vfs_ino, ctx->mrec, and ctx->attr now point to the 1025 * mft record containing the attribute represented by the 1026 * current al_entry. 1027 */ 1028 /* 1029 * We could call into ntfs_attr_find() to find the right 1030 * attribute in this mft record but this would be less 1031 * efficient and not quite accurate as ntfs_attr_find() ignores 1032 * the attribute instance numbers for example which become 1033 * important when one plays with attribute lists. Also, 1034 * because a proper match has been found in the attribute list 1035 * entry above, the comparison can now be optimized. So it is 1036 * worth re-implementing a simplified ntfs_attr_find() here. 1037 */ 1038 a = ctx->attr; 1039 /* 1040 * Use a manual loop so we can still use break and continue 1041 * with the same meanings as above. 1042 */ 1043 do_next_attr_loop: 1044 if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec + 1045 le32_to_cpu(ctx->mrec->bytes_allocated)) 1046 break; 1047 if (a->type == AT_END) 1048 break; 1049 if (!a->length) 1050 break; 1051 if (al_entry->instance != a->instance) 1052 goto do_next_attr; 1053 /* 1054 * If the type and/or the name are mismatched between the 1055 * attribute list entry and the attribute record, there is 1056 * corruption so we break and return error EIO. 1057 */ 1058 if (al_entry->type != a->type) 1059 break; 1060 if (!ntfs_are_names_equal((ntfschar*)((u8*)a + 1061 le16_to_cpu(a->name_offset)), a->name_length, 1062 al_name, al_name_len, CASE_SENSITIVE, 1063 vol->upcase, vol->upcase_len)) 1064 break; 1065 ctx->attr = a; 1066 /* 1067 * If no @val specified or @val specified and it matches, we 1068 * have found it! 1069 */ 1070 if (!val || (!a->non_resident && le32_to_cpu( 1071 a->data.resident.value_length) == val_len && 1072 !memcmp((u8*)a + 1073 le16_to_cpu(a->data.resident.value_offset), 1074 val, val_len))) { 1075 ntfs_debug("Done, found."); 1076 return 0; 1077 } 1078 do_next_attr: 1079 /* Proceed to the next attribute in the current mft record. */ 1080 a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length)); 1081 goto do_next_attr_loop; 1082 } 1083 if (!err) { 1084 ntfs_error(vol->sb, "Base inode 0x%lx contains corrupt " 1085 "attribute list attribute.%s", base_ni->mft_no, 1086 es); 1087 err = -EIO; 1088 } 1089 if (ni != base_ni) { 1090 if (ni) 1091 unmap_extent_mft_record(ni); 1092 ctx->ntfs_ino = base_ni; 1093 ctx->mrec = ctx->base_mrec; 1094 ctx->attr = ctx->base_attr; 1095 } 1096 if (err != -ENOMEM) 1097 NVolSetErrors(vol); 1098 return err; 1099 not_found: 1100 /* 1101 * If we were looking for AT_END, we reset the search context @ctx and 1102 * use ntfs_attr_find() to seek to the end of the base mft record. 1103 */ 1104 if (type == AT_END) { 1105 ntfs_attr_reinit_search_ctx(ctx); 1106 return ntfs_attr_find(AT_END, name, name_len, ic, val, val_len, 1107 ctx); 1108 } 1109 /* 1110 * The attribute was not found. Before we return, we want to ensure 1111 * @ctx->mrec and @ctx->attr indicate the position at which the 1112 * attribute should be inserted in the base mft record. Since we also 1113 * want to preserve @ctx->al_entry we cannot reinitialize the search 1114 * context using ntfs_attr_reinit_search_ctx() as this would set 1115 * @ctx->al_entry to NULL. Thus we do the necessary bits manually (see 1116 * ntfs_attr_init_search_ctx() below). Note, we _only_ preserve 1117 * @ctx->al_entry as the remaining fields (base_*) are identical to 1118 * their non base_ counterparts and we cannot set @ctx->base_attr 1119 * correctly yet as we do not know what @ctx->attr will be set to by 1120 * the call to ntfs_attr_find() below. 1121 */ 1122 if (ni != base_ni) 1123 unmap_extent_mft_record(ni); 1124 ctx->mrec = ctx->base_mrec; 1125 ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + 1126 le16_to_cpu(ctx->mrec->attrs_offset)); 1127 ctx->is_first = true; 1128 ctx->ntfs_ino = base_ni; 1129 ctx->base_ntfs_ino = NULL; 1130 ctx->base_mrec = NULL; 1131 ctx->base_attr = NULL; 1132 /* 1133 * In case there are multiple matches in the base mft record, need to 1134 * keep enumerating until we get an attribute not found response (or 1135 * another error), otherwise we would keep returning the same attribute 1136 * over and over again and all programs using us for enumeration would 1137 * lock up in a tight loop. 1138 */ 1139 do { 1140 err = ntfs_attr_find(type, name, name_len, ic, val, val_len, 1141 ctx); 1142 } while (!err); 1143 ntfs_debug("Done, not found."); 1144 return err; 1145 } 1146 1147 /** 1148 * ntfs_attr_lookup - find an attribute in an ntfs inode 1149 * @type: attribute type to find 1150 * @name: attribute name to find (optional, i.e. NULL means don't care) 1151 * @name_len: attribute name length (only needed if @name present) 1152 * @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) 1153 * @lowest_vcn: lowest vcn to find (optional, non-resident attributes only) 1154 * @val: attribute value to find (optional, resident attributes only) 1155 * @val_len: attribute value length 1156 * @ctx: search context with mft record and attribute to search from 1157 * 1158 * Find an attribute in an ntfs inode. On first search @ctx->ntfs_ino must 1159 * be the base mft record and @ctx must have been obtained from a call to 1160 * ntfs_attr_get_search_ctx(). 1161 * 1162 * This function transparently handles attribute lists and @ctx is used to 1163 * continue searches where they were left off at. 1164 * 1165 * After finishing with the attribute/mft record you need to call 1166 * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any 1167 * mapped inodes, etc). 1168 * 1169 * Return 0 if the search was successful and -errno if not. 1170 * 1171 * When 0, @ctx->attr is the found attribute and it is in mft record 1172 * @ctx->mrec. If an attribute list attribute is present, @ctx->al_entry is 1173 * the attribute list entry of the found attribute. 1174 * 1175 * When -ENOENT, @ctx->attr is the attribute which collates just after the 1176 * attribute being searched for, i.e. if one wants to add the attribute to the 1177 * mft record this is the correct place to insert it into. If an attribute 1178 * list attribute is present, @ctx->al_entry is the attribute list entry which 1179 * collates just after the attribute list entry of the attribute being searched 1180 * for, i.e. if one wants to add the attribute to the mft record this is the 1181 * correct place to insert its attribute list entry into. 1182 * 1183 * When -errno != -ENOENT, an error occured during the lookup. @ctx->attr is 1184 * then undefined and in particular you should not rely on it not changing. 1185 */ 1186 int ntfs_attr_lookup(const ATTR_TYPE type, const ntfschar *name, 1187 const u32 name_len, const IGNORE_CASE_BOOL ic, 1188 const VCN lowest_vcn, const u8 *val, const u32 val_len, 1189 ntfs_attr_search_ctx *ctx) 1190 { 1191 ntfs_inode *base_ni; 1192 1193 ntfs_debug("Entering."); 1194 BUG_ON(IS_ERR(ctx->mrec)); 1195 if (ctx->base_ntfs_ino) 1196 base_ni = ctx->base_ntfs_ino; 1197 else 1198 base_ni = ctx->ntfs_ino; 1199 /* Sanity check, just for debugging really. */ 1200 BUG_ON(!base_ni); 1201 if (!NInoAttrList(base_ni) || type == AT_ATTRIBUTE_LIST) 1202 return ntfs_attr_find(type, name, name_len, ic, val, val_len, 1203 ctx); 1204 return ntfs_external_attr_find(type, name, name_len, ic, lowest_vcn, 1205 val, val_len, ctx); 1206 } 1207 1208 /** 1209 * ntfs_attr_init_search_ctx - initialize an attribute search context 1210 * @ctx: attribute search context to initialize 1211 * @ni: ntfs inode with which to initialize the search context 1212 * @mrec: mft record with which to initialize the search context 1213 * 1214 * Initialize the attribute search context @ctx with @ni and @mrec. 1215 */ 1216 static inline void ntfs_attr_init_search_ctx(ntfs_attr_search_ctx *ctx, 1217 ntfs_inode *ni, MFT_RECORD *mrec) 1218 { 1219 *ctx = (ntfs_attr_search_ctx) { 1220 .mrec = mrec, 1221 /* Sanity checks are performed elsewhere. */ 1222 .attr = (ATTR_RECORD*)((u8*)mrec + 1223 le16_to_cpu(mrec->attrs_offset)), 1224 .is_first = true, 1225 .ntfs_ino = ni, 1226 }; 1227 } 1228 1229 /** 1230 * ntfs_attr_reinit_search_ctx - reinitialize an attribute search context 1231 * @ctx: attribute search context to reinitialize 1232 * 1233 * Reinitialize the attribute search context @ctx, unmapping an associated 1234 * extent mft record if present, and initialize the search context again. 1235 * 1236 * This is used when a search for a new attribute is being started to reset 1237 * the search context to the beginning. 1238 */ 1239 void ntfs_attr_reinit_search_ctx(ntfs_attr_search_ctx *ctx) 1240 { 1241 if (likely(!ctx->base_ntfs_ino)) { 1242 /* No attribute list. */ 1243 ctx->is_first = true; 1244 /* Sanity checks are performed elsewhere. */ 1245 ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + 1246 le16_to_cpu(ctx->mrec->attrs_offset)); 1247 /* 1248 * This needs resetting due to ntfs_external_attr_find() which 1249 * can leave it set despite having zeroed ctx->base_ntfs_ino. 1250 */ 1251 ctx->al_entry = NULL; 1252 return; 1253 } /* Attribute list. */ 1254 if (ctx->ntfs_ino != ctx->base_ntfs_ino) 1255 unmap_extent_mft_record(ctx->ntfs_ino); 1256 ntfs_attr_init_search_ctx(ctx, ctx->base_ntfs_ino, ctx->base_mrec); 1257 return; 1258 } 1259 1260 /** 1261 * ntfs_attr_get_search_ctx - allocate/initialize a new attribute search context 1262 * @ni: ntfs inode with which to initialize the search context 1263 * @mrec: mft record with which to initialize the search context 1264 * 1265 * Allocate a new attribute search context, initialize it with @ni and @mrec, 1266 * and return it. Return NULL if allocation failed. 1267 */ 1268 ntfs_attr_search_ctx *ntfs_attr_get_search_ctx(ntfs_inode *ni, MFT_RECORD *mrec) 1269 { 1270 ntfs_attr_search_ctx *ctx; 1271 1272 ctx = kmem_cache_alloc(ntfs_attr_ctx_cache, GFP_NOFS); 1273 if (ctx) 1274 ntfs_attr_init_search_ctx(ctx, ni, mrec); 1275 return ctx; 1276 } 1277 1278 /** 1279 * ntfs_attr_put_search_ctx - release an attribute search context 1280 * @ctx: attribute search context to free 1281 * 1282 * Release the attribute search context @ctx, unmapping an associated extent 1283 * mft record if present. 1284 */ 1285 void ntfs_attr_put_search_ctx(ntfs_attr_search_ctx *ctx) 1286 { 1287 if (ctx->base_ntfs_ino && ctx->ntfs_ino != ctx->base_ntfs_ino) 1288 unmap_extent_mft_record(ctx->ntfs_ino); 1289 kmem_cache_free(ntfs_attr_ctx_cache, ctx); 1290 return; 1291 } 1292 1293 #ifdef NTFS_RW 1294 1295 /** 1296 * ntfs_attr_find_in_attrdef - find an attribute in the $AttrDef system file 1297 * @vol: ntfs volume to which the attribute belongs 1298 * @type: attribute type which to find 1299 * 1300 * Search for the attribute definition record corresponding to the attribute 1301 * @type in the $AttrDef system file. 1302 * 1303 * Return the attribute type definition record if found and NULL if not found. 1304 */ 1305 static ATTR_DEF *ntfs_attr_find_in_attrdef(const ntfs_volume *vol, 1306 const ATTR_TYPE type) 1307 { 1308 ATTR_DEF *ad; 1309 1310 BUG_ON(!vol->attrdef); 1311 BUG_ON(!type); 1312 for (ad = vol->attrdef; (u8*)ad - (u8*)vol->attrdef < 1313 vol->attrdef_size && ad->type; ++ad) { 1314 /* We have not found it yet, carry on searching. */ 1315 if (likely(le32_to_cpu(ad->type) < le32_to_cpu(type))) 1316 continue; 1317 /* We found the attribute; return it. */ 1318 if (likely(ad->type == type)) 1319 return ad; 1320 /* We have gone too far already. No point in continuing. */ 1321 break; 1322 } 1323 /* Attribute not found. */ 1324 ntfs_debug("Attribute type 0x%x not found in $AttrDef.", 1325 le32_to_cpu(type)); 1326 return NULL; 1327 } 1328 1329 /** 1330 * ntfs_attr_size_bounds_check - check a size of an attribute type for validity 1331 * @vol: ntfs volume to which the attribute belongs 1332 * @type: attribute type which to check 1333 * @size: size which to check 1334 * 1335 * Check whether the @size in bytes is valid for an attribute of @type on the 1336 * ntfs volume @vol. This information is obtained from $AttrDef system file. 1337 * 1338 * Return 0 if valid, -ERANGE if not valid, or -ENOENT if the attribute is not 1339 * listed in $AttrDef. 1340 */ 1341 int ntfs_attr_size_bounds_check(const ntfs_volume *vol, const ATTR_TYPE type, 1342 const s64 size) 1343 { 1344 ATTR_DEF *ad; 1345 1346 BUG_ON(size < 0); 1347 /* 1348 * $ATTRIBUTE_LIST has a maximum size of 256kiB, but this is not 1349 * listed in $AttrDef. 1350 */ 1351 if (unlikely(type == AT_ATTRIBUTE_LIST && size > 256 * 1024)) 1352 return -ERANGE; 1353 /* Get the $AttrDef entry for the attribute @type. */ 1354 ad = ntfs_attr_find_in_attrdef(vol, type); 1355 if (unlikely(!ad)) 1356 return -ENOENT; 1357 /* Do the bounds check. */ 1358 if (((sle64_to_cpu(ad->min_size) > 0) && 1359 size < sle64_to_cpu(ad->min_size)) || 1360 ((sle64_to_cpu(ad->max_size) > 0) && size > 1361 sle64_to_cpu(ad->max_size))) 1362 return -ERANGE; 1363 return 0; 1364 } 1365 1366 /** 1367 * ntfs_attr_can_be_non_resident - check if an attribute can be non-resident 1368 * @vol: ntfs volume to which the attribute belongs 1369 * @type: attribute type which to check 1370 * 1371 * Check whether the attribute of @type on the ntfs volume @vol is allowed to 1372 * be non-resident. This information is obtained from $AttrDef system file. 1373 * 1374 * Return 0 if the attribute is allowed to be non-resident, -EPERM if not, and 1375 * -ENOENT if the attribute is not listed in $AttrDef. 1376 */ 1377 int ntfs_attr_can_be_non_resident(const ntfs_volume *vol, const ATTR_TYPE type) 1378 { 1379 ATTR_DEF *ad; 1380 1381 /* Find the attribute definition record in $AttrDef. */ 1382 ad = ntfs_attr_find_in_attrdef(vol, type); 1383 if (unlikely(!ad)) 1384 return -ENOENT; 1385 /* Check the flags and return the result. */ 1386 if (ad->flags & ATTR_DEF_RESIDENT) 1387 return -EPERM; 1388 return 0; 1389 } 1390 1391 /** 1392 * ntfs_attr_can_be_resident - check if an attribute can be resident 1393 * @vol: ntfs volume to which the attribute belongs 1394 * @type: attribute type which to check 1395 * 1396 * Check whether the attribute of @type on the ntfs volume @vol is allowed to 1397 * be resident. This information is derived from our ntfs knowledge and may 1398 * not be completely accurate, especially when user defined attributes are 1399 * present. Basically we allow everything to be resident except for index 1400 * allocation and $EA attributes. 1401 * 1402 * Return 0 if the attribute is allowed to be non-resident and -EPERM if not. 1403 * 1404 * Warning: In the system file $MFT the attribute $Bitmap must be non-resident 1405 * otherwise windows will not boot (blue screen of death)! We cannot 1406 * check for this here as we do not know which inode's $Bitmap is 1407 * being asked about so the caller needs to special case this. 1408 */ 1409 int ntfs_attr_can_be_resident(const ntfs_volume *vol, const ATTR_TYPE type) 1410 { 1411 if (type == AT_INDEX_ALLOCATION) 1412 return -EPERM; 1413 return 0; 1414 } 1415 1416 /** 1417 * ntfs_attr_record_resize - resize an attribute record 1418 * @m: mft record containing attribute record 1419 * @a: attribute record to resize 1420 * @new_size: new size in bytes to which to resize the attribute record @a 1421 * 1422 * Resize the attribute record @a, i.e. the resident part of the attribute, in 1423 * the mft record @m to @new_size bytes. 1424 * 1425 * Return 0 on success and -errno on error. The following error codes are 1426 * defined: 1427 * -ENOSPC - Not enough space in the mft record @m to perform the resize. 1428 * 1429 * Note: On error, no modifications have been performed whatsoever. 1430 * 1431 * Warning: If you make a record smaller without having copied all the data you 1432 * are interested in the data may be overwritten. 1433 */ 1434 int ntfs_attr_record_resize(MFT_RECORD *m, ATTR_RECORD *a, u32 new_size) 1435 { 1436 ntfs_debug("Entering for new_size %u.", new_size); 1437 /* Align to 8 bytes if it is not already done. */ 1438 if (new_size & 7) 1439 new_size = (new_size + 7) & ~7; 1440 /* If the actual attribute length has changed, move things around. */ 1441 if (new_size != le32_to_cpu(a->length)) { 1442 u32 new_muse = le32_to_cpu(m->bytes_in_use) - 1443 le32_to_cpu(a->length) + new_size; 1444 /* Not enough space in this mft record. */ 1445 if (new_muse > le32_to_cpu(m->bytes_allocated)) 1446 return -ENOSPC; 1447 /* Move attributes following @a to their new location. */ 1448 memmove((u8*)a + new_size, (u8*)a + le32_to_cpu(a->length), 1449 le32_to_cpu(m->bytes_in_use) - ((u8*)a - 1450 (u8*)m) - le32_to_cpu(a->length)); 1451 /* Adjust @m to reflect the change in used space. */ 1452 m->bytes_in_use = cpu_to_le32(new_muse); 1453 /* Adjust @a to reflect the new size. */ 1454 if (new_size >= offsetof(ATTR_REC, length) + sizeof(a->length)) 1455 a->length = cpu_to_le32(new_size); 1456 } 1457 return 0; 1458 } 1459 1460 /** 1461 * ntfs_resident_attr_value_resize - resize the value of a resident attribute 1462 * @m: mft record containing attribute record 1463 * @a: attribute record whose value to resize 1464 * @new_size: new size in bytes to which to resize the attribute value of @a 1465 * 1466 * Resize the value of the attribute @a in the mft record @m to @new_size bytes. 1467 * If the value is made bigger, the newly allocated space is cleared. 1468 * 1469 * Return 0 on success and -errno on error. The following error codes are 1470 * defined: 1471 * -ENOSPC - Not enough space in the mft record @m to perform the resize. 1472 * 1473 * Note: On error, no modifications have been performed whatsoever. 1474 * 1475 * Warning: If you make a record smaller without having copied all the data you 1476 * are interested in the data may be overwritten. 1477 */ 1478 int ntfs_resident_attr_value_resize(MFT_RECORD *m, ATTR_RECORD *a, 1479 const u32 new_size) 1480 { 1481 u32 old_size; 1482 1483 /* Resize the resident part of the attribute record. */ 1484 if (ntfs_attr_record_resize(m, a, 1485 le16_to_cpu(a->data.resident.value_offset) + new_size)) 1486 return -ENOSPC; 1487 /* 1488 * The resize succeeded! If we made the attribute value bigger, clear 1489 * the area between the old size and @new_size. 1490 */ 1491 old_size = le32_to_cpu(a->data.resident.value_length); 1492 if (new_size > old_size) 1493 memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) + 1494 old_size, 0, new_size - old_size); 1495 /* Finally update the length of the attribute value. */ 1496 a->data.resident.value_length = cpu_to_le32(new_size); 1497 return 0; 1498 } 1499 1500 /** 1501 * ntfs_attr_make_non_resident - convert a resident to a non-resident attribute 1502 * @ni: ntfs inode describing the attribute to convert 1503 * @data_size: size of the resident data to copy to the non-resident attribute 1504 * 1505 * Convert the resident ntfs attribute described by the ntfs inode @ni to a 1506 * non-resident one. 1507 * 1508 * @data_size must be equal to the attribute value size. This is needed since 1509 * we need to know the size before we can map the mft record and our callers 1510 * always know it. The reason we cannot simply read the size from the vfs 1511 * inode i_size is that this is not necessarily uptodate. This happens when 1512 * ntfs_attr_make_non_resident() is called in the ->truncate call path(s). 1513 * 1514 * Return 0 on success and -errno on error. The following error return codes 1515 * are defined: 1516 * -EPERM - The attribute is not allowed to be non-resident. 1517 * -ENOMEM - Not enough memory. 1518 * -ENOSPC - Not enough disk space. 1519 * -EINVAL - Attribute not defined on the volume. 1520 * -EIO - I/o error or other error. 1521 * Note that -ENOSPC is also returned in the case that there is not enough 1522 * space in the mft record to do the conversion. This can happen when the mft 1523 * record is already very full. The caller is responsible for trying to make 1524 * space in the mft record and trying again. FIXME: Do we need a separate 1525 * error return code for this kind of -ENOSPC or is it always worth trying 1526 * again in case the attribute may then fit in a resident state so no need to 1527 * make it non-resident at all? Ho-hum... (AIA) 1528 * 1529 * NOTE to self: No changes in the attribute list are required to move from 1530 * a resident to a non-resident attribute. 1531 * 1532 * Locking: - The caller must hold i_mutex on the inode. 1533 */ 1534 int ntfs_attr_make_non_resident(ntfs_inode *ni, const u32 data_size) 1535 { 1536 s64 new_size; 1537 struct inode *vi = VFS_I(ni); 1538 ntfs_volume *vol = ni->vol; 1539 ntfs_inode *base_ni; 1540 MFT_RECORD *m; 1541 ATTR_RECORD *a; 1542 ntfs_attr_search_ctx *ctx; 1543 struct page *page; 1544 runlist_element *rl; 1545 u8 *kaddr; 1546 unsigned long flags; 1547 int mp_size, mp_ofs, name_ofs, arec_size, err, err2; 1548 u32 attr_size; 1549 u8 old_res_attr_flags; 1550 1551 /* Check that the attribute is allowed to be non-resident. */ 1552 err = ntfs_attr_can_be_non_resident(vol, ni->type); 1553 if (unlikely(err)) { 1554 if (err == -EPERM) 1555 ntfs_debug("Attribute is not allowed to be " 1556 "non-resident."); 1557 else 1558 ntfs_debug("Attribute not defined on the NTFS " 1559 "volume!"); 1560 return err; 1561 } 1562 /* 1563 * FIXME: Compressed and encrypted attributes are not supported when 1564 * writing and we should never have gotten here for them. 1565 */ 1566 BUG_ON(NInoCompressed(ni)); 1567 BUG_ON(NInoEncrypted(ni)); 1568 /* 1569 * The size needs to be aligned to a cluster boundary for allocation 1570 * purposes. 1571 */ 1572 new_size = (data_size + vol->cluster_size - 1) & 1573 ~(vol->cluster_size - 1); 1574 if (new_size > 0) { 1575 /* 1576 * Will need the page later and since the page lock nests 1577 * outside all ntfs locks, we need to get the page now. 1578 */ 1579 page = find_or_create_page(vi->i_mapping, 0, 1580 mapping_gfp_mask(vi->i_mapping)); 1581 if (unlikely(!page)) 1582 return -ENOMEM; 1583 /* Start by allocating clusters to hold the attribute value. */ 1584 rl = ntfs_cluster_alloc(vol, 0, new_size >> 1585 vol->cluster_size_bits, -1, DATA_ZONE, true); 1586 if (IS_ERR(rl)) { 1587 err = PTR_ERR(rl); 1588 ntfs_debug("Failed to allocate cluster%s, error code " 1589 "%i.", (new_size >> 1590 vol->cluster_size_bits) > 1 ? "s" : "", 1591 err); 1592 goto page_err_out; 1593 } 1594 } else { 1595 rl = NULL; 1596 page = NULL; 1597 } 1598 /* Determine the size of the mapping pairs array. */ 1599 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl, 0, -1); 1600 if (unlikely(mp_size < 0)) { 1601 err = mp_size; 1602 ntfs_debug("Failed to get size for mapping pairs array, error " 1603 "code %i.", err); 1604 goto rl_err_out; 1605 } 1606 down_write(&ni->runlist.lock); 1607 if (!NInoAttr(ni)) 1608 base_ni = ni; 1609 else 1610 base_ni = ni->ext.base_ntfs_ino; 1611 m = map_mft_record(base_ni); 1612 if (IS_ERR(m)) { 1613 err = PTR_ERR(m); 1614 m = NULL; 1615 ctx = NULL; 1616 goto err_out; 1617 } 1618 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1619 if (unlikely(!ctx)) { 1620 err = -ENOMEM; 1621 goto err_out; 1622 } 1623 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1624 CASE_SENSITIVE, 0, NULL, 0, ctx); 1625 if (unlikely(err)) { 1626 if (err == -ENOENT) 1627 err = -EIO; 1628 goto err_out; 1629 } 1630 m = ctx->mrec; 1631 a = ctx->attr; 1632 BUG_ON(NInoNonResident(ni)); 1633 BUG_ON(a->non_resident); 1634 /* 1635 * Calculate new offsets for the name and the mapping pairs array. 1636 */ 1637 if (NInoSparse(ni) || NInoCompressed(ni)) 1638 name_ofs = (offsetof(ATTR_REC, 1639 data.non_resident.compressed_size) + 1640 sizeof(a->data.non_resident.compressed_size) + 1641 7) & ~7; 1642 else 1643 name_ofs = (offsetof(ATTR_REC, 1644 data.non_resident.compressed_size) + 7) & ~7; 1645 mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7; 1646 /* 1647 * Determine the size of the resident part of the now non-resident 1648 * attribute record. 1649 */ 1650 arec_size = (mp_ofs + mp_size + 7) & ~7; 1651 /* 1652 * If the page is not uptodate bring it uptodate by copying from the 1653 * attribute value. 1654 */ 1655 attr_size = le32_to_cpu(a->data.resident.value_length); 1656 BUG_ON(attr_size != data_size); 1657 if (page && !PageUptodate(page)) { 1658 kaddr = kmap_atomic(page, KM_USER0); 1659 memcpy(kaddr, (u8*)a + 1660 le16_to_cpu(a->data.resident.value_offset), 1661 attr_size); 1662 memset(kaddr + attr_size, 0, PAGE_CACHE_SIZE - attr_size); 1663 kunmap_atomic(kaddr, KM_USER0); 1664 flush_dcache_page(page); 1665 SetPageUptodate(page); 1666 } 1667 /* Backup the attribute flag. */ 1668 old_res_attr_flags = a->data.resident.flags; 1669 /* Resize the resident part of the attribute record. */ 1670 err = ntfs_attr_record_resize(m, a, arec_size); 1671 if (unlikely(err)) 1672 goto err_out; 1673 /* 1674 * Convert the resident part of the attribute record to describe a 1675 * non-resident attribute. 1676 */ 1677 a->non_resident = 1; 1678 /* Move the attribute name if it exists and update the offset. */ 1679 if (a->name_length) 1680 memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset), 1681 a->name_length * sizeof(ntfschar)); 1682 a->name_offset = cpu_to_le16(name_ofs); 1683 /* Setup the fields specific to non-resident attributes. */ 1684 a->data.non_resident.lowest_vcn = 0; 1685 a->data.non_resident.highest_vcn = cpu_to_sle64((new_size - 1) >> 1686 vol->cluster_size_bits); 1687 a->data.non_resident.mapping_pairs_offset = cpu_to_le16(mp_ofs); 1688 memset(&a->data.non_resident.reserved, 0, 1689 sizeof(a->data.non_resident.reserved)); 1690 a->data.non_resident.allocated_size = cpu_to_sle64(new_size); 1691 a->data.non_resident.data_size = 1692 a->data.non_resident.initialized_size = 1693 cpu_to_sle64(attr_size); 1694 if (NInoSparse(ni) || NInoCompressed(ni)) { 1695 a->data.non_resident.compression_unit = 0; 1696 if (NInoCompressed(ni) || vol->major_ver < 3) 1697 a->data.non_resident.compression_unit = 4; 1698 a->data.non_resident.compressed_size = 1699 a->data.non_resident.allocated_size; 1700 } else 1701 a->data.non_resident.compression_unit = 0; 1702 /* Generate the mapping pairs array into the attribute record. */ 1703 err = ntfs_mapping_pairs_build(vol, (u8*)a + mp_ofs, 1704 arec_size - mp_ofs, rl, 0, -1, NULL); 1705 if (unlikely(err)) { 1706 ntfs_debug("Failed to build mapping pairs, error code %i.", 1707 err); 1708 goto undo_err_out; 1709 } 1710 /* Setup the in-memory attribute structure to be non-resident. */ 1711 ni->runlist.rl = rl; 1712 write_lock_irqsave(&ni->size_lock, flags); 1713 ni->allocated_size = new_size; 1714 if (NInoSparse(ni) || NInoCompressed(ni)) { 1715 ni->itype.compressed.size = ni->allocated_size; 1716 if (a->data.non_resident.compression_unit) { 1717 ni->itype.compressed.block_size = 1U << (a->data. 1718 non_resident.compression_unit + 1719 vol->cluster_size_bits); 1720 ni->itype.compressed.block_size_bits = 1721 ffs(ni->itype.compressed.block_size) - 1722 1; 1723 ni->itype.compressed.block_clusters = 1U << 1724 a->data.non_resident.compression_unit; 1725 } else { 1726 ni->itype.compressed.block_size = 0; 1727 ni->itype.compressed.block_size_bits = 0; 1728 ni->itype.compressed.block_clusters = 0; 1729 } 1730 vi->i_blocks = ni->itype.compressed.size >> 9; 1731 } else 1732 vi->i_blocks = ni->allocated_size >> 9; 1733 write_unlock_irqrestore(&ni->size_lock, flags); 1734 /* 1735 * This needs to be last since the address space operations ->readpage 1736 * and ->writepage can run concurrently with us as they are not 1737 * serialized on i_mutex. Note, we are not allowed to fail once we flip 1738 * this switch, which is another reason to do this last. 1739 */ 1740 NInoSetNonResident(ni); 1741 /* Mark the mft record dirty, so it gets written back. */ 1742 flush_dcache_mft_record_page(ctx->ntfs_ino); 1743 mark_mft_record_dirty(ctx->ntfs_ino); 1744 ntfs_attr_put_search_ctx(ctx); 1745 unmap_mft_record(base_ni); 1746 up_write(&ni->runlist.lock); 1747 if (page) { 1748 set_page_dirty(page); 1749 unlock_page(page); 1750 mark_page_accessed(page); 1751 page_cache_release(page); 1752 } 1753 ntfs_debug("Done."); 1754 return 0; 1755 undo_err_out: 1756 /* Convert the attribute back into a resident attribute. */ 1757 a->non_resident = 0; 1758 /* Move the attribute name if it exists and update the offset. */ 1759 name_ofs = (offsetof(ATTR_RECORD, data.resident.reserved) + 1760 sizeof(a->data.resident.reserved) + 7) & ~7; 1761 if (a->name_length) 1762 memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset), 1763 a->name_length * sizeof(ntfschar)); 1764 mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7; 1765 a->name_offset = cpu_to_le16(name_ofs); 1766 arec_size = (mp_ofs + attr_size + 7) & ~7; 1767 /* Resize the resident part of the attribute record. */ 1768 err2 = ntfs_attr_record_resize(m, a, arec_size); 1769 if (unlikely(err2)) { 1770 /* 1771 * This cannot happen (well if memory corruption is at work it 1772 * could happen in theory), but deal with it as well as we can. 1773 * If the old size is too small, truncate the attribute, 1774 * otherwise simply give it a larger allocated size. 1775 * FIXME: Should check whether chkdsk complains when the 1776 * allocated size is much bigger than the resident value size. 1777 */ 1778 arec_size = le32_to_cpu(a->length); 1779 if ((mp_ofs + attr_size) > arec_size) { 1780 err2 = attr_size; 1781 attr_size = arec_size - mp_ofs; 1782 ntfs_error(vol->sb, "Failed to undo partial resident " 1783 "to non-resident attribute " 1784 "conversion. Truncating inode 0x%lx, " 1785 "attribute type 0x%x from %i bytes to " 1786 "%i bytes to maintain metadata " 1787 "consistency. THIS MEANS YOU ARE " 1788 "LOSING %i BYTES DATA FROM THIS %s.", 1789 vi->i_ino, 1790 (unsigned)le32_to_cpu(ni->type), 1791 err2, attr_size, err2 - attr_size, 1792 ((ni->type == AT_DATA) && 1793 !ni->name_len) ? "FILE": "ATTRIBUTE"); 1794 write_lock_irqsave(&ni->size_lock, flags); 1795 ni->initialized_size = attr_size; 1796 i_size_write(vi, attr_size); 1797 write_unlock_irqrestore(&ni->size_lock, flags); 1798 } 1799 } 1800 /* Setup the fields specific to resident attributes. */ 1801 a->data.resident.value_length = cpu_to_le32(attr_size); 1802 a->data.resident.value_offset = cpu_to_le16(mp_ofs); 1803 a->data.resident.flags = old_res_attr_flags; 1804 memset(&a->data.resident.reserved, 0, 1805 sizeof(a->data.resident.reserved)); 1806 /* Copy the data from the page back to the attribute value. */ 1807 if (page) { 1808 kaddr = kmap_atomic(page, KM_USER0); 1809 memcpy((u8*)a + mp_ofs, kaddr, attr_size); 1810 kunmap_atomic(kaddr, KM_USER0); 1811 } 1812 /* Setup the allocated size in the ntfs inode in case it changed. */ 1813 write_lock_irqsave(&ni->size_lock, flags); 1814 ni->allocated_size = arec_size - mp_ofs; 1815 write_unlock_irqrestore(&ni->size_lock, flags); 1816 /* Mark the mft record dirty, so it gets written back. */ 1817 flush_dcache_mft_record_page(ctx->ntfs_ino); 1818 mark_mft_record_dirty(ctx->ntfs_ino); 1819 err_out: 1820 if (ctx) 1821 ntfs_attr_put_search_ctx(ctx); 1822 if (m) 1823 unmap_mft_record(base_ni); 1824 ni->runlist.rl = NULL; 1825 up_write(&ni->runlist.lock); 1826 rl_err_out: 1827 if (rl) { 1828 if (ntfs_cluster_free_from_rl(vol, rl) < 0) { 1829 ntfs_error(vol->sb, "Failed to release allocated " 1830 "cluster(s) in error code path. Run " 1831 "chkdsk to recover the lost " 1832 "cluster(s)."); 1833 NVolSetErrors(vol); 1834 } 1835 ntfs_free(rl); 1836 page_err_out: 1837 unlock_page(page); 1838 page_cache_release(page); 1839 } 1840 if (err == -EINVAL) 1841 err = -EIO; 1842 return err; 1843 } 1844 1845 /** 1846 * ntfs_attr_extend_allocation - extend the allocated space of an attribute 1847 * @ni: ntfs inode of the attribute whose allocation to extend 1848 * @new_alloc_size: new size in bytes to which to extend the allocation to 1849 * @new_data_size: new size in bytes to which to extend the data to 1850 * @data_start: beginning of region which is required to be non-sparse 1851 * 1852 * Extend the allocated space of an attribute described by the ntfs inode @ni 1853 * to @new_alloc_size bytes. If @data_start is -1, the whole extension may be 1854 * implemented as a hole in the file (as long as both the volume and the ntfs 1855 * inode @ni have sparse support enabled). If @data_start is >= 0, then the 1856 * region between the old allocated size and @data_start - 1 may be made sparse 1857 * but the regions between @data_start and @new_alloc_size must be backed by 1858 * actual clusters. 1859 * 1860 * If @new_data_size is -1, it is ignored. If it is >= 0, then the data size 1861 * of the attribute is extended to @new_data_size. Note that the i_size of the 1862 * vfs inode is not updated. Only the data size in the base attribute record 1863 * is updated. The caller has to update i_size separately if this is required. 1864 * WARNING: It is a BUG() for @new_data_size to be smaller than the old data 1865 * size as well as for @new_data_size to be greater than @new_alloc_size. 1866 * 1867 * For resident attributes this involves resizing the attribute record and if 1868 * necessary moving it and/or other attributes into extent mft records and/or 1869 * converting the attribute to a non-resident attribute which in turn involves 1870 * extending the allocation of a non-resident attribute as described below. 1871 * 1872 * For non-resident attributes this involves allocating clusters in the data 1873 * zone on the volume (except for regions that are being made sparse) and 1874 * extending the run list to describe the allocated clusters as well as 1875 * updating the mapping pairs array of the attribute. This in turn involves 1876 * resizing the attribute record and if necessary moving it and/or other 1877 * attributes into extent mft records and/or splitting the attribute record 1878 * into multiple extent attribute records. 1879 * 1880 * Also, the attribute list attribute is updated if present and in some of the 1881 * above cases (the ones where extent mft records/attributes come into play), 1882 * an attribute list attribute is created if not already present. 1883 * 1884 * Return the new allocated size on success and -errno on error. In the case 1885 * that an error is encountered but a partial extension at least up to 1886 * @data_start (if present) is possible, the allocation is partially extended 1887 * and this is returned. This means the caller must check the returned size to 1888 * determine if the extension was partial. If @data_start is -1 then partial 1889 * allocations are not performed. 1890 * 1891 * WARNING: Do not call ntfs_attr_extend_allocation() for $MFT/$DATA. 1892 * 1893 * Locking: This function takes the runlist lock of @ni for writing as well as 1894 * locking the mft record of the base ntfs inode. These locks are maintained 1895 * throughout execution of the function. These locks are required so that the 1896 * attribute can be resized safely and so that it can for example be converted 1897 * from resident to non-resident safely. 1898 * 1899 * TODO: At present attribute list attribute handling is not implemented. 1900 * 1901 * TODO: At present it is not safe to call this function for anything other 1902 * than the $DATA attribute(s) of an uncompressed and unencrypted file. 1903 */ 1904 s64 ntfs_attr_extend_allocation(ntfs_inode *ni, s64 new_alloc_size, 1905 const s64 new_data_size, const s64 data_start) 1906 { 1907 VCN vcn; 1908 s64 ll, allocated_size, start = data_start; 1909 struct inode *vi = VFS_I(ni); 1910 ntfs_volume *vol = ni->vol; 1911 ntfs_inode *base_ni; 1912 MFT_RECORD *m; 1913 ATTR_RECORD *a; 1914 ntfs_attr_search_ctx *ctx; 1915 runlist_element *rl, *rl2; 1916 unsigned long flags; 1917 int err, mp_size; 1918 u32 attr_len = 0; /* Silence stupid gcc warning. */ 1919 bool mp_rebuilt; 1920 1921 #ifdef DEBUG 1922 read_lock_irqsave(&ni->size_lock, flags); 1923 allocated_size = ni->allocated_size; 1924 read_unlock_irqrestore(&ni->size_lock, flags); 1925 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " 1926 "old_allocated_size 0x%llx, " 1927 "new_allocated_size 0x%llx, new_data_size 0x%llx, " 1928 "data_start 0x%llx.", vi->i_ino, 1929 (unsigned)le32_to_cpu(ni->type), 1930 (unsigned long long)allocated_size, 1931 (unsigned long long)new_alloc_size, 1932 (unsigned long long)new_data_size, 1933 (unsigned long long)start); 1934 #endif 1935 retry_extend: 1936 /* 1937 * For non-resident attributes, @start and @new_size need to be aligned 1938 * to cluster boundaries for allocation purposes. 1939 */ 1940 if (NInoNonResident(ni)) { 1941 if (start > 0) 1942 start &= ~(s64)vol->cluster_size_mask; 1943 new_alloc_size = (new_alloc_size + vol->cluster_size - 1) & 1944 ~(s64)vol->cluster_size_mask; 1945 } 1946 BUG_ON(new_data_size >= 0 && new_data_size > new_alloc_size); 1947 /* Check if new size is allowed in $AttrDef. */ 1948 err = ntfs_attr_size_bounds_check(vol, ni->type, new_alloc_size); 1949 if (unlikely(err)) { 1950 /* Only emit errors when the write will fail completely. */ 1951 read_lock_irqsave(&ni->size_lock, flags); 1952 allocated_size = ni->allocated_size; 1953 read_unlock_irqrestore(&ni->size_lock, flags); 1954 if (start < 0 || start >= allocated_size) { 1955 if (err == -ERANGE) { 1956 ntfs_error(vol->sb, "Cannot extend allocation " 1957 "of inode 0x%lx, attribute " 1958 "type 0x%x, because the new " 1959 "allocation would exceed the " 1960 "maximum allowed size for " 1961 "this attribute type.", 1962 vi->i_ino, (unsigned) 1963 le32_to_cpu(ni->type)); 1964 } else { 1965 ntfs_error(vol->sb, "Cannot extend allocation " 1966 "of inode 0x%lx, attribute " 1967 "type 0x%x, because this " 1968 "attribute type is not " 1969 "defined on the NTFS volume. " 1970 "Possible corruption! You " 1971 "should run chkdsk!", 1972 vi->i_ino, (unsigned) 1973 le32_to_cpu(ni->type)); 1974 } 1975 } 1976 /* Translate error code to be POSIX conformant for write(2). */ 1977 if (err == -ERANGE) 1978 err = -EFBIG; 1979 else 1980 err = -EIO; 1981 return err; 1982 } 1983 if (!NInoAttr(ni)) 1984 base_ni = ni; 1985 else 1986 base_ni = ni->ext.base_ntfs_ino; 1987 /* 1988 * We will be modifying both the runlist (if non-resident) and the mft 1989 * record so lock them both down. 1990 */ 1991 down_write(&ni->runlist.lock); 1992 m = map_mft_record(base_ni); 1993 if (IS_ERR(m)) { 1994 err = PTR_ERR(m); 1995 m = NULL; 1996 ctx = NULL; 1997 goto err_out; 1998 } 1999 ctx = ntfs_attr_get_search_ctx(base_ni, m); 2000 if (unlikely(!ctx)) { 2001 err = -ENOMEM; 2002 goto err_out; 2003 } 2004 read_lock_irqsave(&ni->size_lock, flags); 2005 allocated_size = ni->allocated_size; 2006 read_unlock_irqrestore(&ni->size_lock, flags); 2007 /* 2008 * If non-resident, seek to the last extent. If resident, there is 2009 * only one extent, so seek to that. 2010 */ 2011 vcn = NInoNonResident(ni) ? allocated_size >> vol->cluster_size_bits : 2012 0; 2013 /* 2014 * Abort if someone did the work whilst we waited for the locks. If we 2015 * just converted the attribute from resident to non-resident it is 2016 * likely that exactly this has happened already. We cannot quite 2017 * abort if we need to update the data size. 2018 */ 2019 if (unlikely(new_alloc_size <= allocated_size)) { 2020 ntfs_debug("Allocated size already exceeds requested size."); 2021 new_alloc_size = allocated_size; 2022 if (new_data_size < 0) 2023 goto done; 2024 /* 2025 * We want the first attribute extent so that we can update the 2026 * data size. 2027 */ 2028 vcn = 0; 2029 } 2030 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 2031 CASE_SENSITIVE, vcn, NULL, 0, ctx); 2032 if (unlikely(err)) { 2033 if (err == -ENOENT) 2034 err = -EIO; 2035 goto err_out; 2036 } 2037 m = ctx->mrec; 2038 a = ctx->attr; 2039 /* Use goto to reduce indentation. */ 2040 if (a->non_resident) 2041 goto do_non_resident_extend; 2042 BUG_ON(NInoNonResident(ni)); 2043 /* The total length of the attribute value. */ 2044 attr_len = le32_to_cpu(a->data.resident.value_length); 2045 /* 2046 * Extend the attribute record to be able to store the new attribute 2047 * size. ntfs_attr_record_resize() will not do anything if the size is 2048 * not changing. 2049 */ 2050 if (new_alloc_size < vol->mft_record_size && 2051 !ntfs_attr_record_resize(m, a, 2052 le16_to_cpu(a->data.resident.value_offset) + 2053 new_alloc_size)) { 2054 /* The resize succeeded! */ 2055 write_lock_irqsave(&ni->size_lock, flags); 2056 ni->allocated_size = le32_to_cpu(a->length) - 2057 le16_to_cpu(a->data.resident.value_offset); 2058 write_unlock_irqrestore(&ni->size_lock, flags); 2059 if (new_data_size >= 0) { 2060 BUG_ON(new_data_size < attr_len); 2061 a->data.resident.value_length = 2062 cpu_to_le32((u32)new_data_size); 2063 } 2064 goto flush_done; 2065 } 2066 /* 2067 * We have to drop all the locks so we can call 2068 * ntfs_attr_make_non_resident(). This could be optimised by try- 2069 * locking the first page cache page and only if that fails dropping 2070 * the locks, locking the page, and redoing all the locking and 2071 * lookups. While this would be a huge optimisation, it is not worth 2072 * it as this is definitely a slow code path. 2073 */ 2074 ntfs_attr_put_search_ctx(ctx); 2075 unmap_mft_record(base_ni); 2076 up_write(&ni->runlist.lock); 2077 /* 2078 * Not enough space in the mft record, try to make the attribute 2079 * non-resident and if successful restart the extension process. 2080 */ 2081 err = ntfs_attr_make_non_resident(ni, attr_len); 2082 if (likely(!err)) 2083 goto retry_extend; 2084 /* 2085 * Could not make non-resident. If this is due to this not being 2086 * permitted for this attribute type or there not being enough space, 2087 * try to make other attributes non-resident. Otherwise fail. 2088 */ 2089 if (unlikely(err != -EPERM && err != -ENOSPC)) { 2090 /* Only emit errors when the write will fail completely. */ 2091 read_lock_irqsave(&ni->size_lock, flags); 2092 allocated_size = ni->allocated_size; 2093 read_unlock_irqrestore(&ni->size_lock, flags); 2094 if (start < 0 || start >= allocated_size) 2095 ntfs_error(vol->sb, "Cannot extend allocation of " 2096 "inode 0x%lx, attribute type 0x%x, " 2097 "because the conversion from resident " 2098 "to non-resident attribute failed " 2099 "with error code %i.", vi->i_ino, 2100 (unsigned)le32_to_cpu(ni->type), err); 2101 if (err != -ENOMEM) 2102 err = -EIO; 2103 goto conv_err_out; 2104 } 2105 /* TODO: Not implemented from here, abort. */ 2106 read_lock_irqsave(&ni->size_lock, flags); 2107 allocated_size = ni->allocated_size; 2108 read_unlock_irqrestore(&ni->size_lock, flags); 2109 if (start < 0 || start >= allocated_size) { 2110 if (err == -ENOSPC) 2111 ntfs_error(vol->sb, "Not enough space in the mft " 2112 "record/on disk for the non-resident " 2113 "attribute value. This case is not " 2114 "implemented yet."); 2115 else /* if (err == -EPERM) */ 2116 ntfs_error(vol->sb, "This attribute type may not be " 2117 "non-resident. This case is not " 2118 "implemented yet."); 2119 } 2120 err = -EOPNOTSUPP; 2121 goto conv_err_out; 2122 #if 0 2123 // TODO: Attempt to make other attributes non-resident. 2124 if (!err) 2125 goto do_resident_extend; 2126 /* 2127 * Both the attribute list attribute and the standard information 2128 * attribute must remain in the base inode. Thus, if this is one of 2129 * these attributes, we have to try to move other attributes out into 2130 * extent mft records instead. 2131 */ 2132 if (ni->type == AT_ATTRIBUTE_LIST || 2133 ni->type == AT_STANDARD_INFORMATION) { 2134 // TODO: Attempt to move other attributes into extent mft 2135 // records. 2136 err = -EOPNOTSUPP; 2137 if (!err) 2138 goto do_resident_extend; 2139 goto err_out; 2140 } 2141 // TODO: Attempt to move this attribute to an extent mft record, but 2142 // only if it is not already the only attribute in an mft record in 2143 // which case there would be nothing to gain. 2144 err = -EOPNOTSUPP; 2145 if (!err) 2146 goto do_resident_extend; 2147 /* There is nothing we can do to make enough space. )-: */ 2148 goto err_out; 2149 #endif 2150 do_non_resident_extend: 2151 BUG_ON(!NInoNonResident(ni)); 2152 if (new_alloc_size == allocated_size) { 2153 BUG_ON(vcn); 2154 goto alloc_done; 2155 } 2156 /* 2157 * If the data starts after the end of the old allocation, this is a 2158 * $DATA attribute and sparse attributes are enabled on the volume and 2159 * for this inode, then create a sparse region between the old 2160 * allocated size and the start of the data. Otherwise simply proceed 2161 * with filling the whole space between the old allocated size and the 2162 * new allocated size with clusters. 2163 */ 2164 if ((start >= 0 && start <= allocated_size) || ni->type != AT_DATA || 2165 !NVolSparseEnabled(vol) || NInoSparseDisabled(ni)) 2166 goto skip_sparse; 2167 // TODO: This is not implemented yet. We just fill in with real 2168 // clusters for now... 2169 ntfs_debug("Inserting holes is not-implemented yet. Falling back to " 2170 "allocating real clusters instead."); 2171 skip_sparse: 2172 rl = ni->runlist.rl; 2173 if (likely(rl)) { 2174 /* Seek to the end of the runlist. */ 2175 while (rl->length) 2176 rl++; 2177 } 2178 /* If this attribute extent is not mapped, map it now. */ 2179 if (unlikely(!rl || rl->lcn == LCN_RL_NOT_MAPPED || 2180 (rl->lcn == LCN_ENOENT && rl > ni->runlist.rl && 2181 (rl-1)->lcn == LCN_RL_NOT_MAPPED))) { 2182 if (!rl && !allocated_size) 2183 goto first_alloc; 2184 rl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); 2185 if (IS_ERR(rl)) { 2186 err = PTR_ERR(rl); 2187 if (start < 0 || start >= allocated_size) 2188 ntfs_error(vol->sb, "Cannot extend allocation " 2189 "of inode 0x%lx, attribute " 2190 "type 0x%x, because the " 2191 "mapping of a runlist " 2192 "fragment failed with error " 2193 "code %i.", vi->i_ino, 2194 (unsigned)le32_to_cpu(ni->type), 2195 err); 2196 if (err != -ENOMEM) 2197 err = -EIO; 2198 goto err_out; 2199 } 2200 ni->runlist.rl = rl; 2201 /* Seek to the end of the runlist. */ 2202 while (rl->length) 2203 rl++; 2204 } 2205 /* 2206 * We now know the runlist of the last extent is mapped and @rl is at 2207 * the end of the runlist. We want to begin allocating clusters 2208 * starting at the last allocated cluster to reduce fragmentation. If 2209 * there are no valid LCNs in the attribute we let the cluster 2210 * allocator choose the starting cluster. 2211 */ 2212 /* If the last LCN is a hole or simillar seek back to last real LCN. */ 2213 while (rl->lcn < 0 && rl > ni->runlist.rl) 2214 rl--; 2215 first_alloc: 2216 // FIXME: Need to implement partial allocations so at least part of the 2217 // write can be performed when start >= 0. (Needed for POSIX write(2) 2218 // conformance.) 2219 rl2 = ntfs_cluster_alloc(vol, allocated_size >> vol->cluster_size_bits, 2220 (new_alloc_size - allocated_size) >> 2221 vol->cluster_size_bits, (rl && (rl->lcn >= 0)) ? 2222 rl->lcn + rl->length : -1, DATA_ZONE, true); 2223 if (IS_ERR(rl2)) { 2224 err = PTR_ERR(rl2); 2225 if (start < 0 || start >= allocated_size) 2226 ntfs_error(vol->sb, "Cannot extend allocation of " 2227 "inode 0x%lx, attribute type 0x%x, " 2228 "because the allocation of clusters " 2229 "failed with error code %i.", vi->i_ino, 2230 (unsigned)le32_to_cpu(ni->type), err); 2231 if (err != -ENOMEM && err != -ENOSPC) 2232 err = -EIO; 2233 goto err_out; 2234 } 2235 rl = ntfs_runlists_merge(ni->runlist.rl, rl2); 2236 if (IS_ERR(rl)) { 2237 err = PTR_ERR(rl); 2238 if (start < 0 || start >= allocated_size) 2239 ntfs_error(vol->sb, "Cannot extend allocation of " 2240 "inode 0x%lx, attribute type 0x%x, " 2241 "because the runlist merge failed " 2242 "with error code %i.", vi->i_ino, 2243 (unsigned)le32_to_cpu(ni->type), err); 2244 if (err != -ENOMEM) 2245 err = -EIO; 2246 if (ntfs_cluster_free_from_rl(vol, rl2)) { 2247 ntfs_error(vol->sb, "Failed to release allocated " 2248 "cluster(s) in error code path. Run " 2249 "chkdsk to recover the lost " 2250 "cluster(s)."); 2251 NVolSetErrors(vol); 2252 } 2253 ntfs_free(rl2); 2254 goto err_out; 2255 } 2256 ni->runlist.rl = rl; 2257 ntfs_debug("Allocated 0x%llx clusters.", (long long)(new_alloc_size - 2258 allocated_size) >> vol->cluster_size_bits); 2259 /* Find the runlist element with which the attribute extent starts. */ 2260 ll = sle64_to_cpu(a->data.non_resident.lowest_vcn); 2261 rl2 = ntfs_rl_find_vcn_nolock(rl, ll); 2262 BUG_ON(!rl2); 2263 BUG_ON(!rl2->length); 2264 BUG_ON(rl2->lcn < LCN_HOLE); 2265 mp_rebuilt = false; 2266 /* Get the size for the new mapping pairs array for this extent. */ 2267 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1); 2268 if (unlikely(mp_size <= 0)) { 2269 err = mp_size; 2270 if (start < 0 || start >= allocated_size) 2271 ntfs_error(vol->sb, "Cannot extend allocation of " 2272 "inode 0x%lx, attribute type 0x%x, " 2273 "because determining the size for the " 2274 "mapping pairs failed with error code " 2275 "%i.", vi->i_ino, 2276 (unsigned)le32_to_cpu(ni->type), err); 2277 err = -EIO; 2278 goto undo_alloc; 2279 } 2280 /* Extend the attribute record to fit the bigger mapping pairs array. */ 2281 attr_len = le32_to_cpu(a->length); 2282 err = ntfs_attr_record_resize(m, a, mp_size + 2283 le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); 2284 if (unlikely(err)) { 2285 BUG_ON(err != -ENOSPC); 2286 // TODO: Deal with this by moving this extent to a new mft 2287 // record or by starting a new extent in a new mft record, 2288 // possibly by extending this extent partially and filling it 2289 // and creating a new extent for the remainder, or by making 2290 // other attributes non-resident and/or by moving other 2291 // attributes out of this mft record. 2292 if (start < 0 || start >= allocated_size) 2293 ntfs_error(vol->sb, "Not enough space in the mft " 2294 "record for the extended attribute " 2295 "record. This case is not " 2296 "implemented yet."); 2297 err = -EOPNOTSUPP; 2298 goto undo_alloc; 2299 } 2300 mp_rebuilt = true; 2301 /* Generate the mapping pairs array directly into the attr record. */ 2302 err = ntfs_mapping_pairs_build(vol, (u8*)a + 2303 le16_to_cpu(a->data.non_resident.mapping_pairs_offset), 2304 mp_size, rl2, ll, -1, NULL); 2305 if (unlikely(err)) { 2306 if (start < 0 || start >= allocated_size) 2307 ntfs_error(vol->sb, "Cannot extend allocation of " 2308 "inode 0x%lx, attribute type 0x%x, " 2309 "because building the mapping pairs " 2310 "failed with error code %i.", vi->i_ino, 2311 (unsigned)le32_to_cpu(ni->type), err); 2312 err = -EIO; 2313 goto undo_alloc; 2314 } 2315 /* Update the highest_vcn. */ 2316 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> 2317 vol->cluster_size_bits) - 1); 2318 /* 2319 * We now have extended the allocated size of the attribute. Reflect 2320 * this in the ntfs_inode structure and the attribute record. 2321 */ 2322 if (a->data.non_resident.lowest_vcn) { 2323 /* 2324 * We are not in the first attribute extent, switch to it, but 2325 * first ensure the changes will make it to disk later. 2326 */ 2327 flush_dcache_mft_record_page(ctx->ntfs_ino); 2328 mark_mft_record_dirty(ctx->ntfs_ino); 2329 ntfs_attr_reinit_search_ctx(ctx); 2330 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 2331 CASE_SENSITIVE, 0, NULL, 0, ctx); 2332 if (unlikely(err)) 2333 goto restore_undo_alloc; 2334 /* @m is not used any more so no need to set it. */ 2335 a = ctx->attr; 2336 } 2337 write_lock_irqsave(&ni->size_lock, flags); 2338 ni->allocated_size = new_alloc_size; 2339 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); 2340 /* 2341 * FIXME: This would fail if @ni is a directory, $MFT, or an index, 2342 * since those can have sparse/compressed set. For example can be 2343 * set compressed even though it is not compressed itself and in that 2344 * case the bit means that files are to be created compressed in the 2345 * directory... At present this is ok as this code is only called for 2346 * regular files, and only for their $DATA attribute(s). 2347 * FIXME: The calculation is wrong if we created a hole above. For now 2348 * it does not matter as we never create holes. 2349 */ 2350 if (NInoSparse(ni) || NInoCompressed(ni)) { 2351 ni->itype.compressed.size += new_alloc_size - allocated_size; 2352 a->data.non_resident.compressed_size = 2353 cpu_to_sle64(ni->itype.compressed.size); 2354 vi->i_blocks = ni->itype.compressed.size >> 9; 2355 } else 2356 vi->i_blocks = new_alloc_size >> 9; 2357 write_unlock_irqrestore(&ni->size_lock, flags); 2358 alloc_done: 2359 if (new_data_size >= 0) { 2360 BUG_ON(new_data_size < 2361 sle64_to_cpu(a->data.non_resident.data_size)); 2362 a->data.non_resident.data_size = cpu_to_sle64(new_data_size); 2363 } 2364 flush_done: 2365 /* Ensure the changes make it to disk. */ 2366 flush_dcache_mft_record_page(ctx->ntfs_ino); 2367 mark_mft_record_dirty(ctx->ntfs_ino); 2368 done: 2369 ntfs_attr_put_search_ctx(ctx); 2370 unmap_mft_record(base_ni); 2371 up_write(&ni->runlist.lock); 2372 ntfs_debug("Done, new_allocated_size 0x%llx.", 2373 (unsigned long long)new_alloc_size); 2374 return new_alloc_size; 2375 restore_undo_alloc: 2376 if (start < 0 || start >= allocated_size) 2377 ntfs_error(vol->sb, "Cannot complete extension of allocation " 2378 "of inode 0x%lx, attribute type 0x%x, because " 2379 "lookup of first attribute extent failed with " 2380 "error code %i.", vi->i_ino, 2381 (unsigned)le32_to_cpu(ni->type), err); 2382 if (err == -ENOENT) 2383 err = -EIO; 2384 ntfs_attr_reinit_search_ctx(ctx); 2385 if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE, 2386 allocated_size >> vol->cluster_size_bits, NULL, 0, 2387 ctx)) { 2388 ntfs_error(vol->sb, "Failed to find last attribute extent of " 2389 "attribute in error code path. Run chkdsk to " 2390 "recover."); 2391 write_lock_irqsave(&ni->size_lock, flags); 2392 ni->allocated_size = new_alloc_size; 2393 /* 2394 * FIXME: This would fail if @ni is a directory... See above. 2395 * FIXME: The calculation is wrong if we created a hole above. 2396 * For now it does not matter as we never create holes. 2397 */ 2398 if (NInoSparse(ni) || NInoCompressed(ni)) { 2399 ni->itype.compressed.size += new_alloc_size - 2400 allocated_size; 2401 vi->i_blocks = ni->itype.compressed.size >> 9; 2402 } else 2403 vi->i_blocks = new_alloc_size >> 9; 2404 write_unlock_irqrestore(&ni->size_lock, flags); 2405 ntfs_attr_put_search_ctx(ctx); 2406 unmap_mft_record(base_ni); 2407 up_write(&ni->runlist.lock); 2408 /* 2409 * The only thing that is now wrong is the allocated size of the 2410 * base attribute extent which chkdsk should be able to fix. 2411 */ 2412 NVolSetErrors(vol); 2413 return err; 2414 } 2415 ctx->attr->data.non_resident.highest_vcn = cpu_to_sle64( 2416 (allocated_size >> vol->cluster_size_bits) - 1); 2417 undo_alloc: 2418 ll = allocated_size >> vol->cluster_size_bits; 2419 if (ntfs_cluster_free(ni, ll, -1, ctx) < 0) { 2420 ntfs_error(vol->sb, "Failed to release allocated cluster(s) " 2421 "in error code path. Run chkdsk to recover " 2422 "the lost cluster(s)."); 2423 NVolSetErrors(vol); 2424 } 2425 m = ctx->mrec; 2426 a = ctx->attr; 2427 /* 2428 * If the runlist truncation fails and/or the search context is no 2429 * longer valid, we cannot resize the attribute record or build the 2430 * mapping pairs array thus we mark the inode bad so that no access to 2431 * the freed clusters can happen. 2432 */ 2433 if (ntfs_rl_truncate_nolock(vol, &ni->runlist, ll) || IS_ERR(m)) { 2434 ntfs_error(vol->sb, "Failed to %s in error code path. Run " 2435 "chkdsk to recover.", IS_ERR(m) ? 2436 "restore attribute search context" : 2437 "truncate attribute runlist"); 2438 NVolSetErrors(vol); 2439 } else if (mp_rebuilt) { 2440 if (ntfs_attr_record_resize(m, a, attr_len)) { 2441 ntfs_error(vol->sb, "Failed to restore attribute " 2442 "record in error code path. Run " 2443 "chkdsk to recover."); 2444 NVolSetErrors(vol); 2445 } else /* if (success) */ { 2446 if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( 2447 a->data.non_resident. 2448 mapping_pairs_offset), attr_len - 2449 le16_to_cpu(a->data.non_resident. 2450 mapping_pairs_offset), rl2, ll, -1, 2451 NULL)) { 2452 ntfs_error(vol->sb, "Failed to restore " 2453 "mapping pairs array in error " 2454 "code path. Run chkdsk to " 2455 "recover."); 2456 NVolSetErrors(vol); 2457 } 2458 flush_dcache_mft_record_page(ctx->ntfs_ino); 2459 mark_mft_record_dirty(ctx->ntfs_ino); 2460 } 2461 } 2462 err_out: 2463 if (ctx) 2464 ntfs_attr_put_search_ctx(ctx); 2465 if (m) 2466 unmap_mft_record(base_ni); 2467 up_write(&ni->runlist.lock); 2468 conv_err_out: 2469 ntfs_debug("Failed. Returning error code %i.", err); 2470 return err; 2471 } 2472 2473 /** 2474 * ntfs_attr_set - fill (a part of) an attribute with a byte 2475 * @ni: ntfs inode describing the attribute to fill 2476 * @ofs: offset inside the attribute at which to start to fill 2477 * @cnt: number of bytes to fill 2478 * @val: the unsigned 8-bit value with which to fill the attribute 2479 * 2480 * Fill @cnt bytes of the attribute described by the ntfs inode @ni starting at 2481 * byte offset @ofs inside the attribute with the constant byte @val. 2482 * 2483 * This function is effectively like memset() applied to an ntfs attribute. 2484 * Note thie function actually only operates on the page cache pages belonging 2485 * to the ntfs attribute and it marks them dirty after doing the memset(). 2486 * Thus it relies on the vm dirty page write code paths to cause the modified 2487 * pages to be written to the mft record/disk. 2488 * 2489 * Return 0 on success and -errno on error. An error code of -ESPIPE means 2490 * that @ofs + @cnt were outside the end of the attribute and no write was 2491 * performed. 2492 */ 2493 int ntfs_attr_set(ntfs_inode *ni, const s64 ofs, const s64 cnt, const u8 val) 2494 { 2495 ntfs_volume *vol = ni->vol; 2496 struct address_space *mapping; 2497 struct page *page; 2498 u8 *kaddr; 2499 pgoff_t idx, end; 2500 unsigned start_ofs, end_ofs, size; 2501 2502 ntfs_debug("Entering for ofs 0x%llx, cnt 0x%llx, val 0x%hx.", 2503 (long long)ofs, (long long)cnt, val); 2504 BUG_ON(ofs < 0); 2505 BUG_ON(cnt < 0); 2506 if (!cnt) 2507 goto done; 2508 /* 2509 * FIXME: Compressed and encrypted attributes are not supported when 2510 * writing and we should never have gotten here for them. 2511 */ 2512 BUG_ON(NInoCompressed(ni)); 2513 BUG_ON(NInoEncrypted(ni)); 2514 mapping = VFS_I(ni)->i_mapping; 2515 /* Work out the starting index and page offset. */ 2516 idx = ofs >> PAGE_CACHE_SHIFT; 2517 start_ofs = ofs & ~PAGE_CACHE_MASK; 2518 /* Work out the ending index and page offset. */ 2519 end = ofs + cnt; 2520 end_ofs = end & ~PAGE_CACHE_MASK; 2521 /* If the end is outside the inode size return -ESPIPE. */ 2522 if (unlikely(end > i_size_read(VFS_I(ni)))) { 2523 ntfs_error(vol->sb, "Request exceeds end of attribute."); 2524 return -ESPIPE; 2525 } 2526 end >>= PAGE_CACHE_SHIFT; 2527 /* If there is a first partial page, need to do it the slow way. */ 2528 if (start_ofs) { 2529 page = read_mapping_page(mapping, idx, NULL); 2530 if (IS_ERR(page)) { 2531 ntfs_error(vol->sb, "Failed to read first partial " 2532 "page (error, index 0x%lx).", idx); 2533 return PTR_ERR(page); 2534 } 2535 /* 2536 * If the last page is the same as the first page, need to 2537 * limit the write to the end offset. 2538 */ 2539 size = PAGE_CACHE_SIZE; 2540 if (idx == end) 2541 size = end_ofs; 2542 kaddr = kmap_atomic(page, KM_USER0); 2543 memset(kaddr + start_ofs, val, size - start_ofs); 2544 flush_dcache_page(page); 2545 kunmap_atomic(kaddr, KM_USER0); 2546 set_page_dirty(page); 2547 page_cache_release(page); 2548 balance_dirty_pages_ratelimited(mapping); 2549 cond_resched(); 2550 if (idx == end) 2551 goto done; 2552 idx++; 2553 } 2554 /* Do the whole pages the fast way. */ 2555 for (; idx < end; idx++) { 2556 /* Find or create the current page. (The page is locked.) */ 2557 page = grab_cache_page(mapping, idx); 2558 if (unlikely(!page)) { 2559 ntfs_error(vol->sb, "Insufficient memory to grab " 2560 "page (index 0x%lx).", idx); 2561 return -ENOMEM; 2562 } 2563 kaddr = kmap_atomic(page, KM_USER0); 2564 memset(kaddr, val, PAGE_CACHE_SIZE); 2565 flush_dcache_page(page); 2566 kunmap_atomic(kaddr, KM_USER0); 2567 /* 2568 * If the page has buffers, mark them uptodate since buffer 2569 * state and not page state is definitive in 2.6 kernels. 2570 */ 2571 if (page_has_buffers(page)) { 2572 struct buffer_head *bh, *head; 2573 2574 bh = head = page_buffers(page); 2575 do { 2576 set_buffer_uptodate(bh); 2577 } while ((bh = bh->b_this_page) != head); 2578 } 2579 /* Now that buffers are uptodate, set the page uptodate, too. */ 2580 SetPageUptodate(page); 2581 /* 2582 * Set the page and all its buffers dirty and mark the inode 2583 * dirty, too. The VM will write the page later on. 2584 */ 2585 set_page_dirty(page); 2586 /* Finally unlock and release the page. */ 2587 unlock_page(page); 2588 page_cache_release(page); 2589 balance_dirty_pages_ratelimited(mapping); 2590 cond_resched(); 2591 } 2592 /* If there is a last partial page, need to do it the slow way. */ 2593 if (end_ofs) { 2594 page = read_mapping_page(mapping, idx, NULL); 2595 if (IS_ERR(page)) { 2596 ntfs_error(vol->sb, "Failed to read last partial page " 2597 "(error, index 0x%lx).", idx); 2598 return PTR_ERR(page); 2599 } 2600 kaddr = kmap_atomic(page, KM_USER0); 2601 memset(kaddr, val, end_ofs); 2602 flush_dcache_page(page); 2603 kunmap_atomic(kaddr, KM_USER0); 2604 set_page_dirty(page); 2605 page_cache_release(page); 2606 balance_dirty_pages_ratelimited(mapping); 2607 cond_resched(); 2608 } 2609 done: 2610 ntfs_debug("Done."); 2611 return 0; 2612 } 2613 2614 #endif /* NTFS_RW */ 2615