xref: /openbmc/linux/fs/ntfs/attrib.c (revision 2dd6532e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * attrib.c - NTFS attribute operations.  Part of the Linux-NTFS project.
4  *
5  * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
6  * Copyright (c) 2002 Richard Russon
7  */
8 
9 #include <linux/buffer_head.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 
15 #include "attrib.h"
16 #include "debug.h"
17 #include "layout.h"
18 #include "lcnalloc.h"
19 #include "malloc.h"
20 #include "mft.h"
21 #include "ntfs.h"
22 #include "types.h"
23 
24 /**
25  * ntfs_map_runlist_nolock - map (a part of) a runlist of an ntfs inode
26  * @ni:		ntfs inode for which to map (part of) a runlist
27  * @vcn:	map runlist part containing this vcn
28  * @ctx:	active attribute search context if present or NULL if not
29  *
30  * Map the part of a runlist containing the @vcn of the ntfs inode @ni.
31  *
32  * If @ctx is specified, it is an active search context of @ni and its base mft
33  * record.  This is needed when ntfs_map_runlist_nolock() encounters unmapped
34  * runlist fragments and allows their mapping.  If you do not have the mft
35  * record mapped, you can specify @ctx as NULL and ntfs_map_runlist_nolock()
36  * will perform the necessary mapping and unmapping.
37  *
38  * Note, ntfs_map_runlist_nolock() saves the state of @ctx on entry and
39  * restores it before returning.  Thus, @ctx will be left pointing to the same
40  * attribute on return as on entry.  However, the actual pointers in @ctx may
41  * point to different memory locations on return, so you must remember to reset
42  * any cached pointers from the @ctx, i.e. after the call to
43  * ntfs_map_runlist_nolock(), you will probably want to do:
44  *	m = ctx->mrec;
45  *	a = ctx->attr;
46  * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that
47  * you cache ctx->mrec in a variable @m of type MFT_RECORD *.
48  *
49  * Return 0 on success and -errno on error.  There is one special error code
50  * which is not an error as such.  This is -ENOENT.  It means that @vcn is out
51  * of bounds of the runlist.
52  *
53  * Note the runlist can be NULL after this function returns if @vcn is zero and
54  * the attribute has zero allocated size, i.e. there simply is no runlist.
55  *
56  * WARNING: If @ctx is supplied, regardless of whether success or failure is
57  *	    returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx
58  *	    is no longer valid, i.e. you need to either call
59  *	    ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it.
60  *	    In that case PTR_ERR(@ctx->mrec) will give you the error code for
61  *	    why the mapping of the old inode failed.
62  *
63  * Locking: - The runlist described by @ni must be locked for writing on entry
64  *	      and is locked on return.  Note the runlist will be modified.
65  *	    - If @ctx is NULL, the base mft record of @ni must not be mapped on
66  *	      entry and it will be left unmapped on return.
67  *	    - If @ctx is not NULL, the base mft record must be mapped on entry
68  *	      and it will be left mapped on return.
69  */
70 int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn, ntfs_attr_search_ctx *ctx)
71 {
72 	VCN end_vcn;
73 	unsigned long flags;
74 	ntfs_inode *base_ni;
75 	MFT_RECORD *m;
76 	ATTR_RECORD *a;
77 	runlist_element *rl;
78 	struct page *put_this_page = NULL;
79 	int err = 0;
80 	bool ctx_is_temporary, ctx_needs_reset;
81 	ntfs_attr_search_ctx old_ctx = { NULL, };
82 
83 	ntfs_debug("Mapping runlist part containing vcn 0x%llx.",
84 			(unsigned long long)vcn);
85 	if (!NInoAttr(ni))
86 		base_ni = ni;
87 	else
88 		base_ni = ni->ext.base_ntfs_ino;
89 	if (!ctx) {
90 		ctx_is_temporary = ctx_needs_reset = true;
91 		m = map_mft_record(base_ni);
92 		if (IS_ERR(m))
93 			return PTR_ERR(m);
94 		ctx = ntfs_attr_get_search_ctx(base_ni, m);
95 		if (unlikely(!ctx)) {
96 			err = -ENOMEM;
97 			goto err_out;
98 		}
99 	} else {
100 		VCN allocated_size_vcn;
101 
102 		BUG_ON(IS_ERR(ctx->mrec));
103 		a = ctx->attr;
104 		BUG_ON(!a->non_resident);
105 		ctx_is_temporary = false;
106 		end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
107 		read_lock_irqsave(&ni->size_lock, flags);
108 		allocated_size_vcn = ni->allocated_size >>
109 				ni->vol->cluster_size_bits;
110 		read_unlock_irqrestore(&ni->size_lock, flags);
111 		if (!a->data.non_resident.lowest_vcn && end_vcn <= 0)
112 			end_vcn = allocated_size_vcn - 1;
113 		/*
114 		 * If we already have the attribute extent containing @vcn in
115 		 * @ctx, no need to look it up again.  We slightly cheat in
116 		 * that if vcn exceeds the allocated size, we will refuse to
117 		 * map the runlist below, so there is definitely no need to get
118 		 * the right attribute extent.
119 		 */
120 		if (vcn >= allocated_size_vcn || (a->type == ni->type &&
121 				a->name_length == ni->name_len &&
122 				!memcmp((u8*)a + le16_to_cpu(a->name_offset),
123 				ni->name, ni->name_len) &&
124 				sle64_to_cpu(a->data.non_resident.lowest_vcn)
125 				<= vcn && end_vcn >= vcn))
126 			ctx_needs_reset = false;
127 		else {
128 			/* Save the old search context. */
129 			old_ctx = *ctx;
130 			/*
131 			 * If the currently mapped (extent) inode is not the
132 			 * base inode we will unmap it when we reinitialize the
133 			 * search context which means we need to get a
134 			 * reference to the page containing the mapped mft
135 			 * record so we do not accidentally drop changes to the
136 			 * mft record when it has not been marked dirty yet.
137 			 */
138 			if (old_ctx.base_ntfs_ino && old_ctx.ntfs_ino !=
139 					old_ctx.base_ntfs_ino) {
140 				put_this_page = old_ctx.ntfs_ino->page;
141 				get_page(put_this_page);
142 			}
143 			/*
144 			 * Reinitialize the search context so we can lookup the
145 			 * needed attribute extent.
146 			 */
147 			ntfs_attr_reinit_search_ctx(ctx);
148 			ctx_needs_reset = true;
149 		}
150 	}
151 	if (ctx_needs_reset) {
152 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
153 				CASE_SENSITIVE, vcn, NULL, 0, ctx);
154 		if (unlikely(err)) {
155 			if (err == -ENOENT)
156 				err = -EIO;
157 			goto err_out;
158 		}
159 		BUG_ON(!ctx->attr->non_resident);
160 	}
161 	a = ctx->attr;
162 	/*
163 	 * Only decompress the mapping pairs if @vcn is inside it.  Otherwise
164 	 * we get into problems when we try to map an out of bounds vcn because
165 	 * we then try to map the already mapped runlist fragment and
166 	 * ntfs_mapping_pairs_decompress() fails.
167 	 */
168 	end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn) + 1;
169 	if (unlikely(vcn && vcn >= end_vcn)) {
170 		err = -ENOENT;
171 		goto err_out;
172 	}
173 	rl = ntfs_mapping_pairs_decompress(ni->vol, a, ni->runlist.rl);
174 	if (IS_ERR(rl))
175 		err = PTR_ERR(rl);
176 	else
177 		ni->runlist.rl = rl;
178 err_out:
179 	if (ctx_is_temporary) {
180 		if (likely(ctx))
181 			ntfs_attr_put_search_ctx(ctx);
182 		unmap_mft_record(base_ni);
183 	} else if (ctx_needs_reset) {
184 		/*
185 		 * If there is no attribute list, restoring the search context
186 		 * is accomplished simply by copying the saved context back over
187 		 * the caller supplied context.  If there is an attribute list,
188 		 * things are more complicated as we need to deal with mapping
189 		 * of mft records and resulting potential changes in pointers.
190 		 */
191 		if (NInoAttrList(base_ni)) {
192 			/*
193 			 * If the currently mapped (extent) inode is not the
194 			 * one we had before, we need to unmap it and map the
195 			 * old one.
196 			 */
197 			if (ctx->ntfs_ino != old_ctx.ntfs_ino) {
198 				/*
199 				 * If the currently mapped inode is not the
200 				 * base inode, unmap it.
201 				 */
202 				if (ctx->base_ntfs_ino && ctx->ntfs_ino !=
203 						ctx->base_ntfs_ino) {
204 					unmap_extent_mft_record(ctx->ntfs_ino);
205 					ctx->mrec = ctx->base_mrec;
206 					BUG_ON(!ctx->mrec);
207 				}
208 				/*
209 				 * If the old mapped inode is not the base
210 				 * inode, map it.
211 				 */
212 				if (old_ctx.base_ntfs_ino &&
213 						old_ctx.ntfs_ino !=
214 						old_ctx.base_ntfs_ino) {
215 retry_map:
216 					ctx->mrec = map_mft_record(
217 							old_ctx.ntfs_ino);
218 					/*
219 					 * Something bad has happened.  If out
220 					 * of memory retry till it succeeds.
221 					 * Any other errors are fatal and we
222 					 * return the error code in ctx->mrec.
223 					 * Let the caller deal with it...  We
224 					 * just need to fudge things so the
225 					 * caller can reinit and/or put the
226 					 * search context safely.
227 					 */
228 					if (IS_ERR(ctx->mrec)) {
229 						if (PTR_ERR(ctx->mrec) ==
230 								-ENOMEM) {
231 							schedule();
232 							goto retry_map;
233 						} else
234 							old_ctx.ntfs_ino =
235 								old_ctx.
236 								base_ntfs_ino;
237 					}
238 				}
239 			}
240 			/* Update the changed pointers in the saved context. */
241 			if (ctx->mrec != old_ctx.mrec) {
242 				if (!IS_ERR(ctx->mrec))
243 					old_ctx.attr = (ATTR_RECORD*)(
244 							(u8*)ctx->mrec +
245 							((u8*)old_ctx.attr -
246 							(u8*)old_ctx.mrec));
247 				old_ctx.mrec = ctx->mrec;
248 			}
249 		}
250 		/* Restore the search context to the saved one. */
251 		*ctx = old_ctx;
252 		/*
253 		 * We drop the reference on the page we took earlier.  In the
254 		 * case that IS_ERR(ctx->mrec) is true this means we might lose
255 		 * some changes to the mft record that had been made between
256 		 * the last time it was marked dirty/written out and now.  This
257 		 * at this stage is not a problem as the mapping error is fatal
258 		 * enough that the mft record cannot be written out anyway and
259 		 * the caller is very likely to shutdown the whole inode
260 		 * immediately and mark the volume dirty for chkdsk to pick up
261 		 * the pieces anyway.
262 		 */
263 		if (put_this_page)
264 			put_page(put_this_page);
265 	}
266 	return err;
267 }
268 
269 /**
270  * ntfs_map_runlist - map (a part of) a runlist of an ntfs inode
271  * @ni:		ntfs inode for which to map (part of) a runlist
272  * @vcn:	map runlist part containing this vcn
273  *
274  * Map the part of a runlist containing the @vcn of the ntfs inode @ni.
275  *
276  * Return 0 on success and -errno on error.  There is one special error code
277  * which is not an error as such.  This is -ENOENT.  It means that @vcn is out
278  * of bounds of the runlist.
279  *
280  * Locking: - The runlist must be unlocked on entry and is unlocked on return.
281  *	    - This function takes the runlist lock for writing and may modify
282  *	      the runlist.
283  */
284 int ntfs_map_runlist(ntfs_inode *ni, VCN vcn)
285 {
286 	int err = 0;
287 
288 	down_write(&ni->runlist.lock);
289 	/* Make sure someone else didn't do the work while we were sleeping. */
290 	if (likely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) <=
291 			LCN_RL_NOT_MAPPED))
292 		err = ntfs_map_runlist_nolock(ni, vcn, NULL);
293 	up_write(&ni->runlist.lock);
294 	return err;
295 }
296 
297 /**
298  * ntfs_attr_vcn_to_lcn_nolock - convert a vcn into a lcn given an ntfs inode
299  * @ni:			ntfs inode of the attribute whose runlist to search
300  * @vcn:		vcn to convert
301  * @write_locked:	true if the runlist is locked for writing
302  *
303  * Find the virtual cluster number @vcn in the runlist of the ntfs attribute
304  * described by the ntfs inode @ni and return the corresponding logical cluster
305  * number (lcn).
306  *
307  * If the @vcn is not mapped yet, the attempt is made to map the attribute
308  * extent containing the @vcn and the vcn to lcn conversion is retried.
309  *
310  * If @write_locked is true the caller has locked the runlist for writing and
311  * if false for reading.
312  *
313  * Since lcns must be >= 0, we use negative return codes with special meaning:
314  *
315  * Return code	Meaning / Description
316  * ==========================================
317  *  LCN_HOLE	Hole / not allocated on disk.
318  *  LCN_ENOENT	There is no such vcn in the runlist, i.e. @vcn is out of bounds.
319  *  LCN_ENOMEM	Not enough memory to map runlist.
320  *  LCN_EIO	Critical error (runlist/file is corrupt, i/o error, etc).
321  *
322  * Locking: - The runlist must be locked on entry and is left locked on return.
323  *	    - If @write_locked is 'false', i.e. the runlist is locked for reading,
324  *	      the lock may be dropped inside the function so you cannot rely on
325  *	      the runlist still being the same when this function returns.
326  */
327 LCN ntfs_attr_vcn_to_lcn_nolock(ntfs_inode *ni, const VCN vcn,
328 		const bool write_locked)
329 {
330 	LCN lcn;
331 	unsigned long flags;
332 	bool is_retry = false;
333 
334 	BUG_ON(!ni);
335 	ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, %s_locked.",
336 			ni->mft_no, (unsigned long long)vcn,
337 			write_locked ? "write" : "read");
338 	BUG_ON(!NInoNonResident(ni));
339 	BUG_ON(vcn < 0);
340 	if (!ni->runlist.rl) {
341 		read_lock_irqsave(&ni->size_lock, flags);
342 		if (!ni->allocated_size) {
343 			read_unlock_irqrestore(&ni->size_lock, flags);
344 			return LCN_ENOENT;
345 		}
346 		read_unlock_irqrestore(&ni->size_lock, flags);
347 	}
348 retry_remap:
349 	/* Convert vcn to lcn.  If that fails map the runlist and retry once. */
350 	lcn = ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn);
351 	if (likely(lcn >= LCN_HOLE)) {
352 		ntfs_debug("Done, lcn 0x%llx.", (long long)lcn);
353 		return lcn;
354 	}
355 	if (lcn != LCN_RL_NOT_MAPPED) {
356 		if (lcn != LCN_ENOENT)
357 			lcn = LCN_EIO;
358 	} else if (!is_retry) {
359 		int err;
360 
361 		if (!write_locked) {
362 			up_read(&ni->runlist.lock);
363 			down_write(&ni->runlist.lock);
364 			if (unlikely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) !=
365 					LCN_RL_NOT_MAPPED)) {
366 				up_write(&ni->runlist.lock);
367 				down_read(&ni->runlist.lock);
368 				goto retry_remap;
369 			}
370 		}
371 		err = ntfs_map_runlist_nolock(ni, vcn, NULL);
372 		if (!write_locked) {
373 			up_write(&ni->runlist.lock);
374 			down_read(&ni->runlist.lock);
375 		}
376 		if (likely(!err)) {
377 			is_retry = true;
378 			goto retry_remap;
379 		}
380 		if (err == -ENOENT)
381 			lcn = LCN_ENOENT;
382 		else if (err == -ENOMEM)
383 			lcn = LCN_ENOMEM;
384 		else
385 			lcn = LCN_EIO;
386 	}
387 	if (lcn != LCN_ENOENT)
388 		ntfs_error(ni->vol->sb, "Failed with error code %lli.",
389 				(long long)lcn);
390 	return lcn;
391 }
392 
393 /**
394  * ntfs_attr_find_vcn_nolock - find a vcn in the runlist of an ntfs inode
395  * @ni:		ntfs inode describing the runlist to search
396  * @vcn:	vcn to find
397  * @ctx:	active attribute search context if present or NULL if not
398  *
399  * Find the virtual cluster number @vcn in the runlist described by the ntfs
400  * inode @ni and return the address of the runlist element containing the @vcn.
401  *
402  * If the @vcn is not mapped yet, the attempt is made to map the attribute
403  * extent containing the @vcn and the vcn to lcn conversion is retried.
404  *
405  * If @ctx is specified, it is an active search context of @ni and its base mft
406  * record.  This is needed when ntfs_attr_find_vcn_nolock() encounters unmapped
407  * runlist fragments and allows their mapping.  If you do not have the mft
408  * record mapped, you can specify @ctx as NULL and ntfs_attr_find_vcn_nolock()
409  * will perform the necessary mapping and unmapping.
410  *
411  * Note, ntfs_attr_find_vcn_nolock() saves the state of @ctx on entry and
412  * restores it before returning.  Thus, @ctx will be left pointing to the same
413  * attribute on return as on entry.  However, the actual pointers in @ctx may
414  * point to different memory locations on return, so you must remember to reset
415  * any cached pointers from the @ctx, i.e. after the call to
416  * ntfs_attr_find_vcn_nolock(), you will probably want to do:
417  *	m = ctx->mrec;
418  *	a = ctx->attr;
419  * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that
420  * you cache ctx->mrec in a variable @m of type MFT_RECORD *.
421  * Note you need to distinguish between the lcn of the returned runlist element
422  * being >= 0 and LCN_HOLE.  In the later case you have to return zeroes on
423  * read and allocate clusters on write.
424  *
425  * Return the runlist element containing the @vcn on success and
426  * ERR_PTR(-errno) on error.  You need to test the return value with IS_ERR()
427  * to decide if the return is success or failure and PTR_ERR() to get to the
428  * error code if IS_ERR() is true.
429  *
430  * The possible error return codes are:
431  *	-ENOENT - No such vcn in the runlist, i.e. @vcn is out of bounds.
432  *	-ENOMEM - Not enough memory to map runlist.
433  *	-EIO	- Critical error (runlist/file is corrupt, i/o error, etc).
434  *
435  * WARNING: If @ctx is supplied, regardless of whether success or failure is
436  *	    returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx
437  *	    is no longer valid, i.e. you need to either call
438  *	    ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it.
439  *	    In that case PTR_ERR(@ctx->mrec) will give you the error code for
440  *	    why the mapping of the old inode failed.
441  *
442  * Locking: - The runlist described by @ni must be locked for writing on entry
443  *	      and is locked on return.  Note the runlist may be modified when
444  *	      needed runlist fragments need to be mapped.
445  *	    - If @ctx is NULL, the base mft record of @ni must not be mapped on
446  *	      entry and it will be left unmapped on return.
447  *	    - If @ctx is not NULL, the base mft record must be mapped on entry
448  *	      and it will be left mapped on return.
449  */
450 runlist_element *ntfs_attr_find_vcn_nolock(ntfs_inode *ni, const VCN vcn,
451 		ntfs_attr_search_ctx *ctx)
452 {
453 	unsigned long flags;
454 	runlist_element *rl;
455 	int err = 0;
456 	bool is_retry = false;
457 
458 	BUG_ON(!ni);
459 	ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, with%s ctx.",
460 			ni->mft_no, (unsigned long long)vcn, ctx ? "" : "out");
461 	BUG_ON(!NInoNonResident(ni));
462 	BUG_ON(vcn < 0);
463 	if (!ni->runlist.rl) {
464 		read_lock_irqsave(&ni->size_lock, flags);
465 		if (!ni->allocated_size) {
466 			read_unlock_irqrestore(&ni->size_lock, flags);
467 			return ERR_PTR(-ENOENT);
468 		}
469 		read_unlock_irqrestore(&ni->size_lock, flags);
470 	}
471 retry_remap:
472 	rl = ni->runlist.rl;
473 	if (likely(rl && vcn >= rl[0].vcn)) {
474 		while (likely(rl->length)) {
475 			if (unlikely(vcn < rl[1].vcn)) {
476 				if (likely(rl->lcn >= LCN_HOLE)) {
477 					ntfs_debug("Done.");
478 					return rl;
479 				}
480 				break;
481 			}
482 			rl++;
483 		}
484 		if (likely(rl->lcn != LCN_RL_NOT_MAPPED)) {
485 			if (likely(rl->lcn == LCN_ENOENT))
486 				err = -ENOENT;
487 			else
488 				err = -EIO;
489 		}
490 	}
491 	if (!err && !is_retry) {
492 		/*
493 		 * If the search context is invalid we cannot map the unmapped
494 		 * region.
495 		 */
496 		if (IS_ERR(ctx->mrec))
497 			err = PTR_ERR(ctx->mrec);
498 		else {
499 			/*
500 			 * The @vcn is in an unmapped region, map the runlist
501 			 * and retry.
502 			 */
503 			err = ntfs_map_runlist_nolock(ni, vcn, ctx);
504 			if (likely(!err)) {
505 				is_retry = true;
506 				goto retry_remap;
507 			}
508 		}
509 		if (err == -EINVAL)
510 			err = -EIO;
511 	} else if (!err)
512 		err = -EIO;
513 	if (err != -ENOENT)
514 		ntfs_error(ni->vol->sb, "Failed with error code %i.", err);
515 	return ERR_PTR(err);
516 }
517 
518 /**
519  * ntfs_attr_find - find (next) attribute in mft record
520  * @type:	attribute type to find
521  * @name:	attribute name to find (optional, i.e. NULL means don't care)
522  * @name_len:	attribute name length (only needed if @name present)
523  * @ic:		IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present)
524  * @val:	attribute value to find (optional, resident attributes only)
525  * @val_len:	attribute value length
526  * @ctx:	search context with mft record and attribute to search from
527  *
528  * You should not need to call this function directly.  Use ntfs_attr_lookup()
529  * instead.
530  *
531  * ntfs_attr_find() takes a search context @ctx as parameter and searches the
532  * mft record specified by @ctx->mrec, beginning at @ctx->attr, for an
533  * attribute of @type, optionally @name and @val.
534  *
535  * If the attribute is found, ntfs_attr_find() returns 0 and @ctx->attr will
536  * point to the found attribute.
537  *
538  * If the attribute is not found, ntfs_attr_find() returns -ENOENT and
539  * @ctx->attr will point to the attribute before which the attribute being
540  * searched for would need to be inserted if such an action were to be desired.
541  *
542  * On actual error, ntfs_attr_find() returns -EIO.  In this case @ctx->attr is
543  * undefined and in particular do not rely on it not changing.
544  *
545  * If @ctx->is_first is 'true', the search begins with @ctx->attr itself.  If it
546  * is 'false', the search begins after @ctx->attr.
547  *
548  * If @ic is IGNORE_CASE, the @name comparisson is not case sensitive and
549  * @ctx->ntfs_ino must be set to the ntfs inode to which the mft record
550  * @ctx->mrec belongs.  This is so we can get at the ntfs volume and hence at
551  * the upcase table.  If @ic is CASE_SENSITIVE, the comparison is case
552  * sensitive.  When @name is present, @name_len is the @name length in Unicode
553  * characters.
554  *
555  * If @name is not present (NULL), we assume that the unnamed attribute is
556  * being searched for.
557  *
558  * Finally, the resident attribute value @val is looked for, if present.  If
559  * @val is not present (NULL), @val_len is ignored.
560  *
561  * ntfs_attr_find() only searches the specified mft record and it ignores the
562  * presence of an attribute list attribute (unless it is the one being searched
563  * for, obviously).  If you need to take attribute lists into consideration,
564  * use ntfs_attr_lookup() instead (see below).  This also means that you cannot
565  * use ntfs_attr_find() to search for extent records of non-resident
566  * attributes, as extents with lowest_vcn != 0 are usually described by the
567  * attribute list attribute only. - Note that it is possible that the first
568  * extent is only in the attribute list while the last extent is in the base
569  * mft record, so do not rely on being able to find the first extent in the
570  * base mft record.
571  *
572  * Warning: Never use @val when looking for attribute types which can be
573  *	    non-resident as this most likely will result in a crash!
574  */
575 static int ntfs_attr_find(const ATTR_TYPE type, const ntfschar *name,
576 		const u32 name_len, const IGNORE_CASE_BOOL ic,
577 		const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx)
578 {
579 	ATTR_RECORD *a;
580 	ntfs_volume *vol = ctx->ntfs_ino->vol;
581 	ntfschar *upcase = vol->upcase;
582 	u32 upcase_len = vol->upcase_len;
583 
584 	/*
585 	 * Iterate over attributes in mft record starting at @ctx->attr, or the
586 	 * attribute following that, if @ctx->is_first is 'true'.
587 	 */
588 	if (ctx->is_first) {
589 		a = ctx->attr;
590 		ctx->is_first = false;
591 	} else
592 		a = (ATTR_RECORD*)((u8*)ctx->attr +
593 				le32_to_cpu(ctx->attr->length));
594 	for (;;	a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length))) {
595 		if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec +
596 				le32_to_cpu(ctx->mrec->bytes_allocated))
597 			break;
598 		ctx->attr = a;
599 		if (unlikely(le32_to_cpu(a->type) > le32_to_cpu(type) ||
600 				a->type == AT_END))
601 			return -ENOENT;
602 		if (unlikely(!a->length))
603 			break;
604 		if (a->type != type)
605 			continue;
606 		/*
607 		 * If @name is present, compare the two names.  If @name is
608 		 * missing, assume we want an unnamed attribute.
609 		 */
610 		if (!name) {
611 			/* The search failed if the found attribute is named. */
612 			if (a->name_length)
613 				return -ENOENT;
614 		} else if (!ntfs_are_names_equal(name, name_len,
615 			    (ntfschar*)((u8*)a + le16_to_cpu(a->name_offset)),
616 			    a->name_length, ic, upcase, upcase_len)) {
617 			register int rc;
618 
619 			rc = ntfs_collate_names(name, name_len,
620 					(ntfschar*)((u8*)a +
621 					le16_to_cpu(a->name_offset)),
622 					a->name_length, 1, IGNORE_CASE,
623 					upcase, upcase_len);
624 			/*
625 			 * If @name collates before a->name, there is no
626 			 * matching attribute.
627 			 */
628 			if (rc == -1)
629 				return -ENOENT;
630 			/* If the strings are not equal, continue search. */
631 			if (rc)
632 				continue;
633 			rc = ntfs_collate_names(name, name_len,
634 					(ntfschar*)((u8*)a +
635 					le16_to_cpu(a->name_offset)),
636 					a->name_length, 1, CASE_SENSITIVE,
637 					upcase, upcase_len);
638 			if (rc == -1)
639 				return -ENOENT;
640 			if (rc)
641 				continue;
642 		}
643 		/*
644 		 * The names match or @name not present and attribute is
645 		 * unnamed.  If no @val specified, we have found the attribute
646 		 * and are done.
647 		 */
648 		if (!val)
649 			return 0;
650 		/* @val is present; compare values. */
651 		else {
652 			register int rc;
653 
654 			rc = memcmp(val, (u8*)a + le16_to_cpu(
655 					a->data.resident.value_offset),
656 					min_t(u32, val_len, le32_to_cpu(
657 					a->data.resident.value_length)));
658 			/*
659 			 * If @val collates before the current attribute's
660 			 * value, there is no matching attribute.
661 			 */
662 			if (!rc) {
663 				register u32 avl;
664 
665 				avl = le32_to_cpu(
666 						a->data.resident.value_length);
667 				if (val_len == avl)
668 					return 0;
669 				if (val_len < avl)
670 					return -ENOENT;
671 			} else if (rc < 0)
672 				return -ENOENT;
673 		}
674 	}
675 	ntfs_error(vol->sb, "Inode is corrupt.  Run chkdsk.");
676 	NVolSetErrors(vol);
677 	return -EIO;
678 }
679 
680 /**
681  * load_attribute_list - load an attribute list into memory
682  * @vol:		ntfs volume from which to read
683  * @runlist:		runlist of the attribute list
684  * @al_start:		destination buffer
685  * @size:		size of the destination buffer in bytes
686  * @initialized_size:	initialized size of the attribute list
687  *
688  * Walk the runlist @runlist and load all clusters from it copying them into
689  * the linear buffer @al. The maximum number of bytes copied to @al is @size
690  * bytes. Note, @size does not need to be a multiple of the cluster size. If
691  * @initialized_size is less than @size, the region in @al between
692  * @initialized_size and @size will be zeroed and not read from disk.
693  *
694  * Return 0 on success or -errno on error.
695  */
696 int load_attribute_list(ntfs_volume *vol, runlist *runlist, u8 *al_start,
697 		const s64 size, const s64 initialized_size)
698 {
699 	LCN lcn;
700 	u8 *al = al_start;
701 	u8 *al_end = al + initialized_size;
702 	runlist_element *rl;
703 	struct buffer_head *bh;
704 	struct super_block *sb;
705 	unsigned long block_size;
706 	unsigned long block, max_block;
707 	int err = 0;
708 	unsigned char block_size_bits;
709 
710 	ntfs_debug("Entering.");
711 	if (!vol || !runlist || !al || size <= 0 || initialized_size < 0 ||
712 			initialized_size > size)
713 		return -EINVAL;
714 	if (!initialized_size) {
715 		memset(al, 0, size);
716 		return 0;
717 	}
718 	sb = vol->sb;
719 	block_size = sb->s_blocksize;
720 	block_size_bits = sb->s_blocksize_bits;
721 	down_read(&runlist->lock);
722 	rl = runlist->rl;
723 	if (!rl) {
724 		ntfs_error(sb, "Cannot read attribute list since runlist is "
725 				"missing.");
726 		goto err_out;
727 	}
728 	/* Read all clusters specified by the runlist one run at a time. */
729 	while (rl->length) {
730 		lcn = ntfs_rl_vcn_to_lcn(rl, rl->vcn);
731 		ntfs_debug("Reading vcn = 0x%llx, lcn = 0x%llx.",
732 				(unsigned long long)rl->vcn,
733 				(unsigned long long)lcn);
734 		/* The attribute list cannot be sparse. */
735 		if (lcn < 0) {
736 			ntfs_error(sb, "ntfs_rl_vcn_to_lcn() failed.  Cannot "
737 					"read attribute list.");
738 			goto err_out;
739 		}
740 		block = lcn << vol->cluster_size_bits >> block_size_bits;
741 		/* Read the run from device in chunks of block_size bytes. */
742 		max_block = block + (rl->length << vol->cluster_size_bits >>
743 				block_size_bits);
744 		ntfs_debug("max_block = 0x%lx.", max_block);
745 		do {
746 			ntfs_debug("Reading block = 0x%lx.", block);
747 			bh = sb_bread(sb, block);
748 			if (!bh) {
749 				ntfs_error(sb, "sb_bread() failed. Cannot "
750 						"read attribute list.");
751 				goto err_out;
752 			}
753 			if (al + block_size >= al_end)
754 				goto do_final;
755 			memcpy(al, bh->b_data, block_size);
756 			brelse(bh);
757 			al += block_size;
758 		} while (++block < max_block);
759 		rl++;
760 	}
761 	if (initialized_size < size) {
762 initialize:
763 		memset(al_start + initialized_size, 0, size - initialized_size);
764 	}
765 done:
766 	up_read(&runlist->lock);
767 	return err;
768 do_final:
769 	if (al < al_end) {
770 		/*
771 		 * Partial block.
772 		 *
773 		 * Note: The attribute list can be smaller than its allocation
774 		 * by multiple clusters.  This has been encountered by at least
775 		 * two people running Windows XP, thus we cannot do any
776 		 * truncation sanity checking here. (AIA)
777 		 */
778 		memcpy(al, bh->b_data, al_end - al);
779 		brelse(bh);
780 		if (initialized_size < size)
781 			goto initialize;
782 		goto done;
783 	}
784 	brelse(bh);
785 	/* Real overflow! */
786 	ntfs_error(sb, "Attribute list buffer overflow. Read attribute list "
787 			"is truncated.");
788 err_out:
789 	err = -EIO;
790 	goto done;
791 }
792 
793 /**
794  * ntfs_external_attr_find - find an attribute in the attribute list of an inode
795  * @type:	attribute type to find
796  * @name:	attribute name to find (optional, i.e. NULL means don't care)
797  * @name_len:	attribute name length (only needed if @name present)
798  * @ic:		IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present)
799  * @lowest_vcn:	lowest vcn to find (optional, non-resident attributes only)
800  * @val:	attribute value to find (optional, resident attributes only)
801  * @val_len:	attribute value length
802  * @ctx:	search context with mft record and attribute to search from
803  *
804  * You should not need to call this function directly.  Use ntfs_attr_lookup()
805  * instead.
806  *
807  * Find an attribute by searching the attribute list for the corresponding
808  * attribute list entry.  Having found the entry, map the mft record if the
809  * attribute is in a different mft record/inode, ntfs_attr_find() the attribute
810  * in there and return it.
811  *
812  * On first search @ctx->ntfs_ino must be the base mft record and @ctx must
813  * have been obtained from a call to ntfs_attr_get_search_ctx().  On subsequent
814  * calls @ctx->ntfs_ino can be any extent inode, too (@ctx->base_ntfs_ino is
815  * then the base inode).
816  *
817  * After finishing with the attribute/mft record you need to call
818  * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any
819  * mapped inodes, etc).
820  *
821  * If the attribute is found, ntfs_external_attr_find() returns 0 and
822  * @ctx->attr will point to the found attribute.  @ctx->mrec will point to the
823  * mft record in which @ctx->attr is located and @ctx->al_entry will point to
824  * the attribute list entry for the attribute.
825  *
826  * If the attribute is not found, ntfs_external_attr_find() returns -ENOENT and
827  * @ctx->attr will point to the attribute in the base mft record before which
828  * the attribute being searched for would need to be inserted if such an action
829  * were to be desired.  @ctx->mrec will point to the mft record in which
830  * @ctx->attr is located and @ctx->al_entry will point to the attribute list
831  * entry of the attribute before which the attribute being searched for would
832  * need to be inserted if such an action were to be desired.
833  *
834  * Thus to insert the not found attribute, one wants to add the attribute to
835  * @ctx->mrec (the base mft record) and if there is not enough space, the
836  * attribute should be placed in a newly allocated extent mft record.  The
837  * attribute list entry for the inserted attribute should be inserted in the
838  * attribute list attribute at @ctx->al_entry.
839  *
840  * On actual error, ntfs_external_attr_find() returns -EIO.  In this case
841  * @ctx->attr is undefined and in particular do not rely on it not changing.
842  */
843 static int ntfs_external_attr_find(const ATTR_TYPE type,
844 		const ntfschar *name, const u32 name_len,
845 		const IGNORE_CASE_BOOL ic, const VCN lowest_vcn,
846 		const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx)
847 {
848 	ntfs_inode *base_ni, *ni;
849 	ntfs_volume *vol;
850 	ATTR_LIST_ENTRY *al_entry, *next_al_entry;
851 	u8 *al_start, *al_end;
852 	ATTR_RECORD *a;
853 	ntfschar *al_name;
854 	u32 al_name_len;
855 	int err = 0;
856 	static const char *es = " Unmount and run chkdsk.";
857 
858 	ni = ctx->ntfs_ino;
859 	base_ni = ctx->base_ntfs_ino;
860 	ntfs_debug("Entering for inode 0x%lx, type 0x%x.", ni->mft_no, type);
861 	if (!base_ni) {
862 		/* First call happens with the base mft record. */
863 		base_ni = ctx->base_ntfs_ino = ctx->ntfs_ino;
864 		ctx->base_mrec = ctx->mrec;
865 	}
866 	if (ni == base_ni)
867 		ctx->base_attr = ctx->attr;
868 	if (type == AT_END)
869 		goto not_found;
870 	vol = base_ni->vol;
871 	al_start = base_ni->attr_list;
872 	al_end = al_start + base_ni->attr_list_size;
873 	if (!ctx->al_entry)
874 		ctx->al_entry = (ATTR_LIST_ENTRY*)al_start;
875 	/*
876 	 * Iterate over entries in attribute list starting at @ctx->al_entry,
877 	 * or the entry following that, if @ctx->is_first is 'true'.
878 	 */
879 	if (ctx->is_first) {
880 		al_entry = ctx->al_entry;
881 		ctx->is_first = false;
882 	} else
883 		al_entry = (ATTR_LIST_ENTRY*)((u8*)ctx->al_entry +
884 				le16_to_cpu(ctx->al_entry->length));
885 	for (;; al_entry = next_al_entry) {
886 		/* Out of bounds check. */
887 		if ((u8*)al_entry < base_ni->attr_list ||
888 				(u8*)al_entry > al_end)
889 			break;	/* Inode is corrupt. */
890 		ctx->al_entry = al_entry;
891 		/* Catch the end of the attribute list. */
892 		if ((u8*)al_entry == al_end)
893 			goto not_found;
894 		if (!al_entry->length)
895 			break;
896 		if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
897 				le16_to_cpu(al_entry->length) > al_end)
898 			break;
899 		next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
900 				le16_to_cpu(al_entry->length));
901 		if (le32_to_cpu(al_entry->type) > le32_to_cpu(type))
902 			goto not_found;
903 		if (type != al_entry->type)
904 			continue;
905 		/*
906 		 * If @name is present, compare the two names.  If @name is
907 		 * missing, assume we want an unnamed attribute.
908 		 */
909 		al_name_len = al_entry->name_length;
910 		al_name = (ntfschar*)((u8*)al_entry + al_entry->name_offset);
911 		if (!name) {
912 			if (al_name_len)
913 				goto not_found;
914 		} else if (!ntfs_are_names_equal(al_name, al_name_len, name,
915 				name_len, ic, vol->upcase, vol->upcase_len)) {
916 			register int rc;
917 
918 			rc = ntfs_collate_names(name, name_len, al_name,
919 					al_name_len, 1, IGNORE_CASE,
920 					vol->upcase, vol->upcase_len);
921 			/*
922 			 * If @name collates before al_name, there is no
923 			 * matching attribute.
924 			 */
925 			if (rc == -1)
926 				goto not_found;
927 			/* If the strings are not equal, continue search. */
928 			if (rc)
929 				continue;
930 			/*
931 			 * FIXME: Reverse engineering showed 0, IGNORE_CASE but
932 			 * that is inconsistent with ntfs_attr_find().  The
933 			 * subsequent rc checks were also different.  Perhaps I
934 			 * made a mistake in one of the two.  Need to recheck
935 			 * which is correct or at least see what is going on...
936 			 * (AIA)
937 			 */
938 			rc = ntfs_collate_names(name, name_len, al_name,
939 					al_name_len, 1, CASE_SENSITIVE,
940 					vol->upcase, vol->upcase_len);
941 			if (rc == -1)
942 				goto not_found;
943 			if (rc)
944 				continue;
945 		}
946 		/*
947 		 * The names match or @name not present and attribute is
948 		 * unnamed.  Now check @lowest_vcn.  Continue search if the
949 		 * next attribute list entry still fits @lowest_vcn.  Otherwise
950 		 * we have reached the right one or the search has failed.
951 		 */
952 		if (lowest_vcn && (u8*)next_al_entry >= al_start	    &&
953 				(u8*)next_al_entry + 6 < al_end		    &&
954 				(u8*)next_al_entry + le16_to_cpu(
955 					next_al_entry->length) <= al_end    &&
956 				sle64_to_cpu(next_al_entry->lowest_vcn) <=
957 					lowest_vcn			    &&
958 				next_al_entry->type == al_entry->type	    &&
959 				next_al_entry->name_length == al_name_len   &&
960 				ntfs_are_names_equal((ntfschar*)((u8*)
961 					next_al_entry +
962 					next_al_entry->name_offset),
963 					next_al_entry->name_length,
964 					al_name, al_name_len, CASE_SENSITIVE,
965 					vol->upcase, vol->upcase_len))
966 			continue;
967 		if (MREF_LE(al_entry->mft_reference) == ni->mft_no) {
968 			if (MSEQNO_LE(al_entry->mft_reference) != ni->seq_no) {
969 				ntfs_error(vol->sb, "Found stale mft "
970 						"reference in attribute list "
971 						"of base inode 0x%lx.%s",
972 						base_ni->mft_no, es);
973 				err = -EIO;
974 				break;
975 			}
976 		} else { /* Mft references do not match. */
977 			/* If there is a mapped record unmap it first. */
978 			if (ni != base_ni)
979 				unmap_extent_mft_record(ni);
980 			/* Do we want the base record back? */
981 			if (MREF_LE(al_entry->mft_reference) ==
982 					base_ni->mft_no) {
983 				ni = ctx->ntfs_ino = base_ni;
984 				ctx->mrec = ctx->base_mrec;
985 			} else {
986 				/* We want an extent record. */
987 				ctx->mrec = map_extent_mft_record(base_ni,
988 						le64_to_cpu(
989 						al_entry->mft_reference), &ni);
990 				if (IS_ERR(ctx->mrec)) {
991 					ntfs_error(vol->sb, "Failed to map "
992 							"extent mft record "
993 							"0x%lx of base inode "
994 							"0x%lx.%s",
995 							MREF_LE(al_entry->
996 							mft_reference),
997 							base_ni->mft_no, es);
998 					err = PTR_ERR(ctx->mrec);
999 					if (err == -ENOENT)
1000 						err = -EIO;
1001 					/* Cause @ctx to be sanitized below. */
1002 					ni = NULL;
1003 					break;
1004 				}
1005 				ctx->ntfs_ino = ni;
1006 			}
1007 			ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec +
1008 					le16_to_cpu(ctx->mrec->attrs_offset));
1009 		}
1010 		/*
1011 		 * ctx->vfs_ino, ctx->mrec, and ctx->attr now point to the
1012 		 * mft record containing the attribute represented by the
1013 		 * current al_entry.
1014 		 */
1015 		/*
1016 		 * We could call into ntfs_attr_find() to find the right
1017 		 * attribute in this mft record but this would be less
1018 		 * efficient and not quite accurate as ntfs_attr_find() ignores
1019 		 * the attribute instance numbers for example which become
1020 		 * important when one plays with attribute lists.  Also,
1021 		 * because a proper match has been found in the attribute list
1022 		 * entry above, the comparison can now be optimized.  So it is
1023 		 * worth re-implementing a simplified ntfs_attr_find() here.
1024 		 */
1025 		a = ctx->attr;
1026 		/*
1027 		 * Use a manual loop so we can still use break and continue
1028 		 * with the same meanings as above.
1029 		 */
1030 do_next_attr_loop:
1031 		if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec +
1032 				le32_to_cpu(ctx->mrec->bytes_allocated))
1033 			break;
1034 		if (a->type == AT_END)
1035 			break;
1036 		if (!a->length)
1037 			break;
1038 		if (al_entry->instance != a->instance)
1039 			goto do_next_attr;
1040 		/*
1041 		 * If the type and/or the name are mismatched between the
1042 		 * attribute list entry and the attribute record, there is
1043 		 * corruption so we break and return error EIO.
1044 		 */
1045 		if (al_entry->type != a->type)
1046 			break;
1047 		if (!ntfs_are_names_equal((ntfschar*)((u8*)a +
1048 				le16_to_cpu(a->name_offset)), a->name_length,
1049 				al_name, al_name_len, CASE_SENSITIVE,
1050 				vol->upcase, vol->upcase_len))
1051 			break;
1052 		ctx->attr = a;
1053 		/*
1054 		 * If no @val specified or @val specified and it matches, we
1055 		 * have found it!
1056 		 */
1057 		if (!val || (!a->non_resident && le32_to_cpu(
1058 				a->data.resident.value_length) == val_len &&
1059 				!memcmp((u8*)a +
1060 				le16_to_cpu(a->data.resident.value_offset),
1061 				val, val_len))) {
1062 			ntfs_debug("Done, found.");
1063 			return 0;
1064 		}
1065 do_next_attr:
1066 		/* Proceed to the next attribute in the current mft record. */
1067 		a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length));
1068 		goto do_next_attr_loop;
1069 	}
1070 	if (!err) {
1071 		ntfs_error(vol->sb, "Base inode 0x%lx contains corrupt "
1072 				"attribute list attribute.%s", base_ni->mft_no,
1073 				es);
1074 		err = -EIO;
1075 	}
1076 	if (ni != base_ni) {
1077 		if (ni)
1078 			unmap_extent_mft_record(ni);
1079 		ctx->ntfs_ino = base_ni;
1080 		ctx->mrec = ctx->base_mrec;
1081 		ctx->attr = ctx->base_attr;
1082 	}
1083 	if (err != -ENOMEM)
1084 		NVolSetErrors(vol);
1085 	return err;
1086 not_found:
1087 	/*
1088 	 * If we were looking for AT_END, we reset the search context @ctx and
1089 	 * use ntfs_attr_find() to seek to the end of the base mft record.
1090 	 */
1091 	if (type == AT_END) {
1092 		ntfs_attr_reinit_search_ctx(ctx);
1093 		return ntfs_attr_find(AT_END, name, name_len, ic, val, val_len,
1094 				ctx);
1095 	}
1096 	/*
1097 	 * The attribute was not found.  Before we return, we want to ensure
1098 	 * @ctx->mrec and @ctx->attr indicate the position at which the
1099 	 * attribute should be inserted in the base mft record.  Since we also
1100 	 * want to preserve @ctx->al_entry we cannot reinitialize the search
1101 	 * context using ntfs_attr_reinit_search_ctx() as this would set
1102 	 * @ctx->al_entry to NULL.  Thus we do the necessary bits manually (see
1103 	 * ntfs_attr_init_search_ctx() below).  Note, we _only_ preserve
1104 	 * @ctx->al_entry as the remaining fields (base_*) are identical to
1105 	 * their non base_ counterparts and we cannot set @ctx->base_attr
1106 	 * correctly yet as we do not know what @ctx->attr will be set to by
1107 	 * the call to ntfs_attr_find() below.
1108 	 */
1109 	if (ni != base_ni)
1110 		unmap_extent_mft_record(ni);
1111 	ctx->mrec = ctx->base_mrec;
1112 	ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec +
1113 			le16_to_cpu(ctx->mrec->attrs_offset));
1114 	ctx->is_first = true;
1115 	ctx->ntfs_ino = base_ni;
1116 	ctx->base_ntfs_ino = NULL;
1117 	ctx->base_mrec = NULL;
1118 	ctx->base_attr = NULL;
1119 	/*
1120 	 * In case there are multiple matches in the base mft record, need to
1121 	 * keep enumerating until we get an attribute not found response (or
1122 	 * another error), otherwise we would keep returning the same attribute
1123 	 * over and over again and all programs using us for enumeration would
1124 	 * lock up in a tight loop.
1125 	 */
1126 	do {
1127 		err = ntfs_attr_find(type, name, name_len, ic, val, val_len,
1128 				ctx);
1129 	} while (!err);
1130 	ntfs_debug("Done, not found.");
1131 	return err;
1132 }
1133 
1134 /**
1135  * ntfs_attr_lookup - find an attribute in an ntfs inode
1136  * @type:	attribute type to find
1137  * @name:	attribute name to find (optional, i.e. NULL means don't care)
1138  * @name_len:	attribute name length (only needed if @name present)
1139  * @ic:		IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present)
1140  * @lowest_vcn:	lowest vcn to find (optional, non-resident attributes only)
1141  * @val:	attribute value to find (optional, resident attributes only)
1142  * @val_len:	attribute value length
1143  * @ctx:	search context with mft record and attribute to search from
1144  *
1145  * Find an attribute in an ntfs inode.  On first search @ctx->ntfs_ino must
1146  * be the base mft record and @ctx must have been obtained from a call to
1147  * ntfs_attr_get_search_ctx().
1148  *
1149  * This function transparently handles attribute lists and @ctx is used to
1150  * continue searches where they were left off at.
1151  *
1152  * After finishing with the attribute/mft record you need to call
1153  * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any
1154  * mapped inodes, etc).
1155  *
1156  * Return 0 if the search was successful and -errno if not.
1157  *
1158  * When 0, @ctx->attr is the found attribute and it is in mft record
1159  * @ctx->mrec.  If an attribute list attribute is present, @ctx->al_entry is
1160  * the attribute list entry of the found attribute.
1161  *
1162  * When -ENOENT, @ctx->attr is the attribute which collates just after the
1163  * attribute being searched for, i.e. if one wants to add the attribute to the
1164  * mft record this is the correct place to insert it into.  If an attribute
1165  * list attribute is present, @ctx->al_entry is the attribute list entry which
1166  * collates just after the attribute list entry of the attribute being searched
1167  * for, i.e. if one wants to add the attribute to the mft record this is the
1168  * correct place to insert its attribute list entry into.
1169  *
1170  * When -errno != -ENOENT, an error occurred during the lookup.  @ctx->attr is
1171  * then undefined and in particular you should not rely on it not changing.
1172  */
1173 int ntfs_attr_lookup(const ATTR_TYPE type, const ntfschar *name,
1174 		const u32 name_len, const IGNORE_CASE_BOOL ic,
1175 		const VCN lowest_vcn, const u8 *val, const u32 val_len,
1176 		ntfs_attr_search_ctx *ctx)
1177 {
1178 	ntfs_inode *base_ni;
1179 
1180 	ntfs_debug("Entering.");
1181 	BUG_ON(IS_ERR(ctx->mrec));
1182 	if (ctx->base_ntfs_ino)
1183 		base_ni = ctx->base_ntfs_ino;
1184 	else
1185 		base_ni = ctx->ntfs_ino;
1186 	/* Sanity check, just for debugging really. */
1187 	BUG_ON(!base_ni);
1188 	if (!NInoAttrList(base_ni) || type == AT_ATTRIBUTE_LIST)
1189 		return ntfs_attr_find(type, name, name_len, ic, val, val_len,
1190 				ctx);
1191 	return ntfs_external_attr_find(type, name, name_len, ic, lowest_vcn,
1192 			val, val_len, ctx);
1193 }
1194 
1195 /**
1196  * ntfs_attr_init_search_ctx - initialize an attribute search context
1197  * @ctx:	attribute search context to initialize
1198  * @ni:		ntfs inode with which to initialize the search context
1199  * @mrec:	mft record with which to initialize the search context
1200  *
1201  * Initialize the attribute search context @ctx with @ni and @mrec.
1202  */
1203 static inline void ntfs_attr_init_search_ctx(ntfs_attr_search_ctx *ctx,
1204 		ntfs_inode *ni, MFT_RECORD *mrec)
1205 {
1206 	*ctx = (ntfs_attr_search_ctx) {
1207 		.mrec = mrec,
1208 		/* Sanity checks are performed elsewhere. */
1209 		.attr = (ATTR_RECORD*)((u8*)mrec +
1210 				le16_to_cpu(mrec->attrs_offset)),
1211 		.is_first = true,
1212 		.ntfs_ino = ni,
1213 	};
1214 }
1215 
1216 /**
1217  * ntfs_attr_reinit_search_ctx - reinitialize an attribute search context
1218  * @ctx:	attribute search context to reinitialize
1219  *
1220  * Reinitialize the attribute search context @ctx, unmapping an associated
1221  * extent mft record if present, and initialize the search context again.
1222  *
1223  * This is used when a search for a new attribute is being started to reset
1224  * the search context to the beginning.
1225  */
1226 void ntfs_attr_reinit_search_ctx(ntfs_attr_search_ctx *ctx)
1227 {
1228 	if (likely(!ctx->base_ntfs_ino)) {
1229 		/* No attribute list. */
1230 		ctx->is_first = true;
1231 		/* Sanity checks are performed elsewhere. */
1232 		ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec +
1233 				le16_to_cpu(ctx->mrec->attrs_offset));
1234 		/*
1235 		 * This needs resetting due to ntfs_external_attr_find() which
1236 		 * can leave it set despite having zeroed ctx->base_ntfs_ino.
1237 		 */
1238 		ctx->al_entry = NULL;
1239 		return;
1240 	} /* Attribute list. */
1241 	if (ctx->ntfs_ino != ctx->base_ntfs_ino)
1242 		unmap_extent_mft_record(ctx->ntfs_ino);
1243 	ntfs_attr_init_search_ctx(ctx, ctx->base_ntfs_ino, ctx->base_mrec);
1244 	return;
1245 }
1246 
1247 /**
1248  * ntfs_attr_get_search_ctx - allocate/initialize a new attribute search context
1249  * @ni:		ntfs inode with which to initialize the search context
1250  * @mrec:	mft record with which to initialize the search context
1251  *
1252  * Allocate a new attribute search context, initialize it with @ni and @mrec,
1253  * and return it. Return NULL if allocation failed.
1254  */
1255 ntfs_attr_search_ctx *ntfs_attr_get_search_ctx(ntfs_inode *ni, MFT_RECORD *mrec)
1256 {
1257 	ntfs_attr_search_ctx *ctx;
1258 
1259 	ctx = kmem_cache_alloc(ntfs_attr_ctx_cache, GFP_NOFS);
1260 	if (ctx)
1261 		ntfs_attr_init_search_ctx(ctx, ni, mrec);
1262 	return ctx;
1263 }
1264 
1265 /**
1266  * ntfs_attr_put_search_ctx - release an attribute search context
1267  * @ctx:	attribute search context to free
1268  *
1269  * Release the attribute search context @ctx, unmapping an associated extent
1270  * mft record if present.
1271  */
1272 void ntfs_attr_put_search_ctx(ntfs_attr_search_ctx *ctx)
1273 {
1274 	if (ctx->base_ntfs_ino && ctx->ntfs_ino != ctx->base_ntfs_ino)
1275 		unmap_extent_mft_record(ctx->ntfs_ino);
1276 	kmem_cache_free(ntfs_attr_ctx_cache, ctx);
1277 	return;
1278 }
1279 
1280 #ifdef NTFS_RW
1281 
1282 /**
1283  * ntfs_attr_find_in_attrdef - find an attribute in the $AttrDef system file
1284  * @vol:	ntfs volume to which the attribute belongs
1285  * @type:	attribute type which to find
1286  *
1287  * Search for the attribute definition record corresponding to the attribute
1288  * @type in the $AttrDef system file.
1289  *
1290  * Return the attribute type definition record if found and NULL if not found.
1291  */
1292 static ATTR_DEF *ntfs_attr_find_in_attrdef(const ntfs_volume *vol,
1293 		const ATTR_TYPE type)
1294 {
1295 	ATTR_DEF *ad;
1296 
1297 	BUG_ON(!vol->attrdef);
1298 	BUG_ON(!type);
1299 	for (ad = vol->attrdef; (u8*)ad - (u8*)vol->attrdef <
1300 			vol->attrdef_size && ad->type; ++ad) {
1301 		/* We have not found it yet, carry on searching. */
1302 		if (likely(le32_to_cpu(ad->type) < le32_to_cpu(type)))
1303 			continue;
1304 		/* We found the attribute; return it. */
1305 		if (likely(ad->type == type))
1306 			return ad;
1307 		/* We have gone too far already.  No point in continuing. */
1308 		break;
1309 	}
1310 	/* Attribute not found. */
1311 	ntfs_debug("Attribute type 0x%x not found in $AttrDef.",
1312 			le32_to_cpu(type));
1313 	return NULL;
1314 }
1315 
1316 /**
1317  * ntfs_attr_size_bounds_check - check a size of an attribute type for validity
1318  * @vol:	ntfs volume to which the attribute belongs
1319  * @type:	attribute type which to check
1320  * @size:	size which to check
1321  *
1322  * Check whether the @size in bytes is valid for an attribute of @type on the
1323  * ntfs volume @vol.  This information is obtained from $AttrDef system file.
1324  *
1325  * Return 0 if valid, -ERANGE if not valid, or -ENOENT if the attribute is not
1326  * listed in $AttrDef.
1327  */
1328 int ntfs_attr_size_bounds_check(const ntfs_volume *vol, const ATTR_TYPE type,
1329 		const s64 size)
1330 {
1331 	ATTR_DEF *ad;
1332 
1333 	BUG_ON(size < 0);
1334 	/*
1335 	 * $ATTRIBUTE_LIST has a maximum size of 256kiB, but this is not
1336 	 * listed in $AttrDef.
1337 	 */
1338 	if (unlikely(type == AT_ATTRIBUTE_LIST && size > 256 * 1024))
1339 		return -ERANGE;
1340 	/* Get the $AttrDef entry for the attribute @type. */
1341 	ad = ntfs_attr_find_in_attrdef(vol, type);
1342 	if (unlikely(!ad))
1343 		return -ENOENT;
1344 	/* Do the bounds check. */
1345 	if (((sle64_to_cpu(ad->min_size) > 0) &&
1346 			size < sle64_to_cpu(ad->min_size)) ||
1347 			((sle64_to_cpu(ad->max_size) > 0) && size >
1348 			sle64_to_cpu(ad->max_size)))
1349 		return -ERANGE;
1350 	return 0;
1351 }
1352 
1353 /**
1354  * ntfs_attr_can_be_non_resident - check if an attribute can be non-resident
1355  * @vol:	ntfs volume to which the attribute belongs
1356  * @type:	attribute type which to check
1357  *
1358  * Check whether the attribute of @type on the ntfs volume @vol is allowed to
1359  * be non-resident.  This information is obtained from $AttrDef system file.
1360  *
1361  * Return 0 if the attribute is allowed to be non-resident, -EPERM if not, and
1362  * -ENOENT if the attribute is not listed in $AttrDef.
1363  */
1364 int ntfs_attr_can_be_non_resident(const ntfs_volume *vol, const ATTR_TYPE type)
1365 {
1366 	ATTR_DEF *ad;
1367 
1368 	/* Find the attribute definition record in $AttrDef. */
1369 	ad = ntfs_attr_find_in_attrdef(vol, type);
1370 	if (unlikely(!ad))
1371 		return -ENOENT;
1372 	/* Check the flags and return the result. */
1373 	if (ad->flags & ATTR_DEF_RESIDENT)
1374 		return -EPERM;
1375 	return 0;
1376 }
1377 
1378 /**
1379  * ntfs_attr_can_be_resident - check if an attribute can be resident
1380  * @vol:	ntfs volume to which the attribute belongs
1381  * @type:	attribute type which to check
1382  *
1383  * Check whether the attribute of @type on the ntfs volume @vol is allowed to
1384  * be resident.  This information is derived from our ntfs knowledge and may
1385  * not be completely accurate, especially when user defined attributes are
1386  * present.  Basically we allow everything to be resident except for index
1387  * allocation and $EA attributes.
1388  *
1389  * Return 0 if the attribute is allowed to be non-resident and -EPERM if not.
1390  *
1391  * Warning: In the system file $MFT the attribute $Bitmap must be non-resident
1392  *	    otherwise windows will not boot (blue screen of death)!  We cannot
1393  *	    check for this here as we do not know which inode's $Bitmap is
1394  *	    being asked about so the caller needs to special case this.
1395  */
1396 int ntfs_attr_can_be_resident(const ntfs_volume *vol, const ATTR_TYPE type)
1397 {
1398 	if (type == AT_INDEX_ALLOCATION)
1399 		return -EPERM;
1400 	return 0;
1401 }
1402 
1403 /**
1404  * ntfs_attr_record_resize - resize an attribute record
1405  * @m:		mft record containing attribute record
1406  * @a:		attribute record to resize
1407  * @new_size:	new size in bytes to which to resize the attribute record @a
1408  *
1409  * Resize the attribute record @a, i.e. the resident part of the attribute, in
1410  * the mft record @m to @new_size bytes.
1411  *
1412  * Return 0 on success and -errno on error.  The following error codes are
1413  * defined:
1414  *	-ENOSPC	- Not enough space in the mft record @m to perform the resize.
1415  *
1416  * Note: On error, no modifications have been performed whatsoever.
1417  *
1418  * Warning: If you make a record smaller without having copied all the data you
1419  *	    are interested in the data may be overwritten.
1420  */
1421 int ntfs_attr_record_resize(MFT_RECORD *m, ATTR_RECORD *a, u32 new_size)
1422 {
1423 	ntfs_debug("Entering for new_size %u.", new_size);
1424 	/* Align to 8 bytes if it is not already done. */
1425 	if (new_size & 7)
1426 		new_size = (new_size + 7) & ~7;
1427 	/* If the actual attribute length has changed, move things around. */
1428 	if (new_size != le32_to_cpu(a->length)) {
1429 		u32 new_muse = le32_to_cpu(m->bytes_in_use) -
1430 				le32_to_cpu(a->length) + new_size;
1431 		/* Not enough space in this mft record. */
1432 		if (new_muse > le32_to_cpu(m->bytes_allocated))
1433 			return -ENOSPC;
1434 		/* Move attributes following @a to their new location. */
1435 		memmove((u8*)a + new_size, (u8*)a + le32_to_cpu(a->length),
1436 				le32_to_cpu(m->bytes_in_use) - ((u8*)a -
1437 				(u8*)m) - le32_to_cpu(a->length));
1438 		/* Adjust @m to reflect the change in used space. */
1439 		m->bytes_in_use = cpu_to_le32(new_muse);
1440 		/* Adjust @a to reflect the new size. */
1441 		if (new_size >= offsetof(ATTR_REC, length) + sizeof(a->length))
1442 			a->length = cpu_to_le32(new_size);
1443 	}
1444 	return 0;
1445 }
1446 
1447 /**
1448  * ntfs_resident_attr_value_resize - resize the value of a resident attribute
1449  * @m:		mft record containing attribute record
1450  * @a:		attribute record whose value to resize
1451  * @new_size:	new size in bytes to which to resize the attribute value of @a
1452  *
1453  * Resize the value of the attribute @a in the mft record @m to @new_size bytes.
1454  * If the value is made bigger, the newly allocated space is cleared.
1455  *
1456  * Return 0 on success and -errno on error.  The following error codes are
1457  * defined:
1458  *	-ENOSPC	- Not enough space in the mft record @m to perform the resize.
1459  *
1460  * Note: On error, no modifications have been performed whatsoever.
1461  *
1462  * Warning: If you make a record smaller without having copied all the data you
1463  *	    are interested in the data may be overwritten.
1464  */
1465 int ntfs_resident_attr_value_resize(MFT_RECORD *m, ATTR_RECORD *a,
1466 		const u32 new_size)
1467 {
1468 	u32 old_size;
1469 
1470 	/* Resize the resident part of the attribute record. */
1471 	if (ntfs_attr_record_resize(m, a,
1472 			le16_to_cpu(a->data.resident.value_offset) + new_size))
1473 		return -ENOSPC;
1474 	/*
1475 	 * The resize succeeded!  If we made the attribute value bigger, clear
1476 	 * the area between the old size and @new_size.
1477 	 */
1478 	old_size = le32_to_cpu(a->data.resident.value_length);
1479 	if (new_size > old_size)
1480 		memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) +
1481 				old_size, 0, new_size - old_size);
1482 	/* Finally update the length of the attribute value. */
1483 	a->data.resident.value_length = cpu_to_le32(new_size);
1484 	return 0;
1485 }
1486 
1487 /**
1488  * ntfs_attr_make_non_resident - convert a resident to a non-resident attribute
1489  * @ni:		ntfs inode describing the attribute to convert
1490  * @data_size:	size of the resident data to copy to the non-resident attribute
1491  *
1492  * Convert the resident ntfs attribute described by the ntfs inode @ni to a
1493  * non-resident one.
1494  *
1495  * @data_size must be equal to the attribute value size.  This is needed since
1496  * we need to know the size before we can map the mft record and our callers
1497  * always know it.  The reason we cannot simply read the size from the vfs
1498  * inode i_size is that this is not necessarily uptodate.  This happens when
1499  * ntfs_attr_make_non_resident() is called in the ->truncate call path(s).
1500  *
1501  * Return 0 on success and -errno on error.  The following error return codes
1502  * are defined:
1503  *	-EPERM	- The attribute is not allowed to be non-resident.
1504  *	-ENOMEM	- Not enough memory.
1505  *	-ENOSPC	- Not enough disk space.
1506  *	-EINVAL	- Attribute not defined on the volume.
1507  *	-EIO	- I/o error or other error.
1508  * Note that -ENOSPC is also returned in the case that there is not enough
1509  * space in the mft record to do the conversion.  This can happen when the mft
1510  * record is already very full.  The caller is responsible for trying to make
1511  * space in the mft record and trying again.  FIXME: Do we need a separate
1512  * error return code for this kind of -ENOSPC or is it always worth trying
1513  * again in case the attribute may then fit in a resident state so no need to
1514  * make it non-resident at all?  Ho-hum...  (AIA)
1515  *
1516  * NOTE to self: No changes in the attribute list are required to move from
1517  *		 a resident to a non-resident attribute.
1518  *
1519  * Locking: - The caller must hold i_mutex on the inode.
1520  */
1521 int ntfs_attr_make_non_resident(ntfs_inode *ni, const u32 data_size)
1522 {
1523 	s64 new_size;
1524 	struct inode *vi = VFS_I(ni);
1525 	ntfs_volume *vol = ni->vol;
1526 	ntfs_inode *base_ni;
1527 	MFT_RECORD *m;
1528 	ATTR_RECORD *a;
1529 	ntfs_attr_search_ctx *ctx;
1530 	struct page *page;
1531 	runlist_element *rl;
1532 	u8 *kaddr;
1533 	unsigned long flags;
1534 	int mp_size, mp_ofs, name_ofs, arec_size, err, err2;
1535 	u32 attr_size;
1536 	u8 old_res_attr_flags;
1537 
1538 	/* Check that the attribute is allowed to be non-resident. */
1539 	err = ntfs_attr_can_be_non_resident(vol, ni->type);
1540 	if (unlikely(err)) {
1541 		if (err == -EPERM)
1542 			ntfs_debug("Attribute is not allowed to be "
1543 					"non-resident.");
1544 		else
1545 			ntfs_debug("Attribute not defined on the NTFS "
1546 					"volume!");
1547 		return err;
1548 	}
1549 	/*
1550 	 * FIXME: Compressed and encrypted attributes are not supported when
1551 	 * writing and we should never have gotten here for them.
1552 	 */
1553 	BUG_ON(NInoCompressed(ni));
1554 	BUG_ON(NInoEncrypted(ni));
1555 	/*
1556 	 * The size needs to be aligned to a cluster boundary for allocation
1557 	 * purposes.
1558 	 */
1559 	new_size = (data_size + vol->cluster_size - 1) &
1560 			~(vol->cluster_size - 1);
1561 	if (new_size > 0) {
1562 		/*
1563 		 * Will need the page later and since the page lock nests
1564 		 * outside all ntfs locks, we need to get the page now.
1565 		 */
1566 		page = find_or_create_page(vi->i_mapping, 0,
1567 				mapping_gfp_mask(vi->i_mapping));
1568 		if (unlikely(!page))
1569 			return -ENOMEM;
1570 		/* Start by allocating clusters to hold the attribute value. */
1571 		rl = ntfs_cluster_alloc(vol, 0, new_size >>
1572 				vol->cluster_size_bits, -1, DATA_ZONE, true);
1573 		if (IS_ERR(rl)) {
1574 			err = PTR_ERR(rl);
1575 			ntfs_debug("Failed to allocate cluster%s, error code "
1576 					"%i.", (new_size >>
1577 					vol->cluster_size_bits) > 1 ? "s" : "",
1578 					err);
1579 			goto page_err_out;
1580 		}
1581 	} else {
1582 		rl = NULL;
1583 		page = NULL;
1584 	}
1585 	/* Determine the size of the mapping pairs array. */
1586 	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl, 0, -1);
1587 	if (unlikely(mp_size < 0)) {
1588 		err = mp_size;
1589 		ntfs_debug("Failed to get size for mapping pairs array, error "
1590 				"code %i.", err);
1591 		goto rl_err_out;
1592 	}
1593 	down_write(&ni->runlist.lock);
1594 	if (!NInoAttr(ni))
1595 		base_ni = ni;
1596 	else
1597 		base_ni = ni->ext.base_ntfs_ino;
1598 	m = map_mft_record(base_ni);
1599 	if (IS_ERR(m)) {
1600 		err = PTR_ERR(m);
1601 		m = NULL;
1602 		ctx = NULL;
1603 		goto err_out;
1604 	}
1605 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1606 	if (unlikely(!ctx)) {
1607 		err = -ENOMEM;
1608 		goto err_out;
1609 	}
1610 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1611 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1612 	if (unlikely(err)) {
1613 		if (err == -ENOENT)
1614 			err = -EIO;
1615 		goto err_out;
1616 	}
1617 	m = ctx->mrec;
1618 	a = ctx->attr;
1619 	BUG_ON(NInoNonResident(ni));
1620 	BUG_ON(a->non_resident);
1621 	/*
1622 	 * Calculate new offsets for the name and the mapping pairs array.
1623 	 */
1624 	if (NInoSparse(ni) || NInoCompressed(ni))
1625 		name_ofs = (offsetof(ATTR_REC,
1626 				data.non_resident.compressed_size) +
1627 				sizeof(a->data.non_resident.compressed_size) +
1628 				7) & ~7;
1629 	else
1630 		name_ofs = (offsetof(ATTR_REC,
1631 				data.non_resident.compressed_size) + 7) & ~7;
1632 	mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7;
1633 	/*
1634 	 * Determine the size of the resident part of the now non-resident
1635 	 * attribute record.
1636 	 */
1637 	arec_size = (mp_ofs + mp_size + 7) & ~7;
1638 	/*
1639 	 * If the page is not uptodate bring it uptodate by copying from the
1640 	 * attribute value.
1641 	 */
1642 	attr_size = le32_to_cpu(a->data.resident.value_length);
1643 	BUG_ON(attr_size != data_size);
1644 	if (page && !PageUptodate(page)) {
1645 		kaddr = kmap_atomic(page);
1646 		memcpy(kaddr, (u8*)a +
1647 				le16_to_cpu(a->data.resident.value_offset),
1648 				attr_size);
1649 		memset(kaddr + attr_size, 0, PAGE_SIZE - attr_size);
1650 		kunmap_atomic(kaddr);
1651 		flush_dcache_page(page);
1652 		SetPageUptodate(page);
1653 	}
1654 	/* Backup the attribute flag. */
1655 	old_res_attr_flags = a->data.resident.flags;
1656 	/* Resize the resident part of the attribute record. */
1657 	err = ntfs_attr_record_resize(m, a, arec_size);
1658 	if (unlikely(err))
1659 		goto err_out;
1660 	/*
1661 	 * Convert the resident part of the attribute record to describe a
1662 	 * non-resident attribute.
1663 	 */
1664 	a->non_resident = 1;
1665 	/* Move the attribute name if it exists and update the offset. */
1666 	if (a->name_length)
1667 		memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset),
1668 				a->name_length * sizeof(ntfschar));
1669 	a->name_offset = cpu_to_le16(name_ofs);
1670 	/* Setup the fields specific to non-resident attributes. */
1671 	a->data.non_resident.lowest_vcn = 0;
1672 	a->data.non_resident.highest_vcn = cpu_to_sle64((new_size - 1) >>
1673 			vol->cluster_size_bits);
1674 	a->data.non_resident.mapping_pairs_offset = cpu_to_le16(mp_ofs);
1675 	memset(&a->data.non_resident.reserved, 0,
1676 			sizeof(a->data.non_resident.reserved));
1677 	a->data.non_resident.allocated_size = cpu_to_sle64(new_size);
1678 	a->data.non_resident.data_size =
1679 			a->data.non_resident.initialized_size =
1680 			cpu_to_sle64(attr_size);
1681 	if (NInoSparse(ni) || NInoCompressed(ni)) {
1682 		a->data.non_resident.compression_unit = 0;
1683 		if (NInoCompressed(ni) || vol->major_ver < 3)
1684 			a->data.non_resident.compression_unit = 4;
1685 		a->data.non_resident.compressed_size =
1686 				a->data.non_resident.allocated_size;
1687 	} else
1688 		a->data.non_resident.compression_unit = 0;
1689 	/* Generate the mapping pairs array into the attribute record. */
1690 	err = ntfs_mapping_pairs_build(vol, (u8*)a + mp_ofs,
1691 			arec_size - mp_ofs, rl, 0, -1, NULL);
1692 	if (unlikely(err)) {
1693 		ntfs_debug("Failed to build mapping pairs, error code %i.",
1694 				err);
1695 		goto undo_err_out;
1696 	}
1697 	/* Setup the in-memory attribute structure to be non-resident. */
1698 	ni->runlist.rl = rl;
1699 	write_lock_irqsave(&ni->size_lock, flags);
1700 	ni->allocated_size = new_size;
1701 	if (NInoSparse(ni) || NInoCompressed(ni)) {
1702 		ni->itype.compressed.size = ni->allocated_size;
1703 		if (a->data.non_resident.compression_unit) {
1704 			ni->itype.compressed.block_size = 1U << (a->data.
1705 					non_resident.compression_unit +
1706 					vol->cluster_size_bits);
1707 			ni->itype.compressed.block_size_bits =
1708 					ffs(ni->itype.compressed.block_size) -
1709 					1;
1710 			ni->itype.compressed.block_clusters = 1U <<
1711 					a->data.non_resident.compression_unit;
1712 		} else {
1713 			ni->itype.compressed.block_size = 0;
1714 			ni->itype.compressed.block_size_bits = 0;
1715 			ni->itype.compressed.block_clusters = 0;
1716 		}
1717 		vi->i_blocks = ni->itype.compressed.size >> 9;
1718 	} else
1719 		vi->i_blocks = ni->allocated_size >> 9;
1720 	write_unlock_irqrestore(&ni->size_lock, flags);
1721 	/*
1722 	 * This needs to be last since the address space operations ->read_folio
1723 	 * and ->writepage can run concurrently with us as they are not
1724 	 * serialized on i_mutex.  Note, we are not allowed to fail once we flip
1725 	 * this switch, which is another reason to do this last.
1726 	 */
1727 	NInoSetNonResident(ni);
1728 	/* Mark the mft record dirty, so it gets written back. */
1729 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1730 	mark_mft_record_dirty(ctx->ntfs_ino);
1731 	ntfs_attr_put_search_ctx(ctx);
1732 	unmap_mft_record(base_ni);
1733 	up_write(&ni->runlist.lock);
1734 	if (page) {
1735 		set_page_dirty(page);
1736 		unlock_page(page);
1737 		put_page(page);
1738 	}
1739 	ntfs_debug("Done.");
1740 	return 0;
1741 undo_err_out:
1742 	/* Convert the attribute back into a resident attribute. */
1743 	a->non_resident = 0;
1744 	/* Move the attribute name if it exists and update the offset. */
1745 	name_ofs = (offsetof(ATTR_RECORD, data.resident.reserved) +
1746 			sizeof(a->data.resident.reserved) + 7) & ~7;
1747 	if (a->name_length)
1748 		memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset),
1749 				a->name_length * sizeof(ntfschar));
1750 	mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7;
1751 	a->name_offset = cpu_to_le16(name_ofs);
1752 	arec_size = (mp_ofs + attr_size + 7) & ~7;
1753 	/* Resize the resident part of the attribute record. */
1754 	err2 = ntfs_attr_record_resize(m, a, arec_size);
1755 	if (unlikely(err2)) {
1756 		/*
1757 		 * This cannot happen (well if memory corruption is at work it
1758 		 * could happen in theory), but deal with it as well as we can.
1759 		 * If the old size is too small, truncate the attribute,
1760 		 * otherwise simply give it a larger allocated size.
1761 		 * FIXME: Should check whether chkdsk complains when the
1762 		 * allocated size is much bigger than the resident value size.
1763 		 */
1764 		arec_size = le32_to_cpu(a->length);
1765 		if ((mp_ofs + attr_size) > arec_size) {
1766 			err2 = attr_size;
1767 			attr_size = arec_size - mp_ofs;
1768 			ntfs_error(vol->sb, "Failed to undo partial resident "
1769 					"to non-resident attribute "
1770 					"conversion.  Truncating inode 0x%lx, "
1771 					"attribute type 0x%x from %i bytes to "
1772 					"%i bytes to maintain metadata "
1773 					"consistency.  THIS MEANS YOU ARE "
1774 					"LOSING %i BYTES DATA FROM THIS %s.",
1775 					vi->i_ino,
1776 					(unsigned)le32_to_cpu(ni->type),
1777 					err2, attr_size, err2 - attr_size,
1778 					((ni->type == AT_DATA) &&
1779 					!ni->name_len) ? "FILE": "ATTRIBUTE");
1780 			write_lock_irqsave(&ni->size_lock, flags);
1781 			ni->initialized_size = attr_size;
1782 			i_size_write(vi, attr_size);
1783 			write_unlock_irqrestore(&ni->size_lock, flags);
1784 		}
1785 	}
1786 	/* Setup the fields specific to resident attributes. */
1787 	a->data.resident.value_length = cpu_to_le32(attr_size);
1788 	a->data.resident.value_offset = cpu_to_le16(mp_ofs);
1789 	a->data.resident.flags = old_res_attr_flags;
1790 	memset(&a->data.resident.reserved, 0,
1791 			sizeof(a->data.resident.reserved));
1792 	/* Copy the data from the page back to the attribute value. */
1793 	if (page) {
1794 		kaddr = kmap_atomic(page);
1795 		memcpy((u8*)a + mp_ofs, kaddr, attr_size);
1796 		kunmap_atomic(kaddr);
1797 	}
1798 	/* Setup the allocated size in the ntfs inode in case it changed. */
1799 	write_lock_irqsave(&ni->size_lock, flags);
1800 	ni->allocated_size = arec_size - mp_ofs;
1801 	write_unlock_irqrestore(&ni->size_lock, flags);
1802 	/* Mark the mft record dirty, so it gets written back. */
1803 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1804 	mark_mft_record_dirty(ctx->ntfs_ino);
1805 err_out:
1806 	if (ctx)
1807 		ntfs_attr_put_search_ctx(ctx);
1808 	if (m)
1809 		unmap_mft_record(base_ni);
1810 	ni->runlist.rl = NULL;
1811 	up_write(&ni->runlist.lock);
1812 rl_err_out:
1813 	if (rl) {
1814 		if (ntfs_cluster_free_from_rl(vol, rl) < 0) {
1815 			ntfs_error(vol->sb, "Failed to release allocated "
1816 					"cluster(s) in error code path.  Run "
1817 					"chkdsk to recover the lost "
1818 					"cluster(s).");
1819 			NVolSetErrors(vol);
1820 		}
1821 		ntfs_free(rl);
1822 page_err_out:
1823 		unlock_page(page);
1824 		put_page(page);
1825 	}
1826 	if (err == -EINVAL)
1827 		err = -EIO;
1828 	return err;
1829 }
1830 
1831 /**
1832  * ntfs_attr_extend_allocation - extend the allocated space of an attribute
1833  * @ni:			ntfs inode of the attribute whose allocation to extend
1834  * @new_alloc_size:	new size in bytes to which to extend the allocation to
1835  * @new_data_size:	new size in bytes to which to extend the data to
1836  * @data_start:		beginning of region which is required to be non-sparse
1837  *
1838  * Extend the allocated space of an attribute described by the ntfs inode @ni
1839  * to @new_alloc_size bytes.  If @data_start is -1, the whole extension may be
1840  * implemented as a hole in the file (as long as both the volume and the ntfs
1841  * inode @ni have sparse support enabled).  If @data_start is >= 0, then the
1842  * region between the old allocated size and @data_start - 1 may be made sparse
1843  * but the regions between @data_start and @new_alloc_size must be backed by
1844  * actual clusters.
1845  *
1846  * If @new_data_size is -1, it is ignored.  If it is >= 0, then the data size
1847  * of the attribute is extended to @new_data_size.  Note that the i_size of the
1848  * vfs inode is not updated.  Only the data size in the base attribute record
1849  * is updated.  The caller has to update i_size separately if this is required.
1850  * WARNING: It is a BUG() for @new_data_size to be smaller than the old data
1851  * size as well as for @new_data_size to be greater than @new_alloc_size.
1852  *
1853  * For resident attributes this involves resizing the attribute record and if
1854  * necessary moving it and/or other attributes into extent mft records and/or
1855  * converting the attribute to a non-resident attribute which in turn involves
1856  * extending the allocation of a non-resident attribute as described below.
1857  *
1858  * For non-resident attributes this involves allocating clusters in the data
1859  * zone on the volume (except for regions that are being made sparse) and
1860  * extending the run list to describe the allocated clusters as well as
1861  * updating the mapping pairs array of the attribute.  This in turn involves
1862  * resizing the attribute record and if necessary moving it and/or other
1863  * attributes into extent mft records and/or splitting the attribute record
1864  * into multiple extent attribute records.
1865  *
1866  * Also, the attribute list attribute is updated if present and in some of the
1867  * above cases (the ones where extent mft records/attributes come into play),
1868  * an attribute list attribute is created if not already present.
1869  *
1870  * Return the new allocated size on success and -errno on error.  In the case
1871  * that an error is encountered but a partial extension at least up to
1872  * @data_start (if present) is possible, the allocation is partially extended
1873  * and this is returned.  This means the caller must check the returned size to
1874  * determine if the extension was partial.  If @data_start is -1 then partial
1875  * allocations are not performed.
1876  *
1877  * WARNING: Do not call ntfs_attr_extend_allocation() for $MFT/$DATA.
1878  *
1879  * Locking: This function takes the runlist lock of @ni for writing as well as
1880  * locking the mft record of the base ntfs inode.  These locks are maintained
1881  * throughout execution of the function.  These locks are required so that the
1882  * attribute can be resized safely and so that it can for example be converted
1883  * from resident to non-resident safely.
1884  *
1885  * TODO: At present attribute list attribute handling is not implemented.
1886  *
1887  * TODO: At present it is not safe to call this function for anything other
1888  * than the $DATA attribute(s) of an uncompressed and unencrypted file.
1889  */
1890 s64 ntfs_attr_extend_allocation(ntfs_inode *ni, s64 new_alloc_size,
1891 		const s64 new_data_size, const s64 data_start)
1892 {
1893 	VCN vcn;
1894 	s64 ll, allocated_size, start = data_start;
1895 	struct inode *vi = VFS_I(ni);
1896 	ntfs_volume *vol = ni->vol;
1897 	ntfs_inode *base_ni;
1898 	MFT_RECORD *m;
1899 	ATTR_RECORD *a;
1900 	ntfs_attr_search_ctx *ctx;
1901 	runlist_element *rl, *rl2;
1902 	unsigned long flags;
1903 	int err, mp_size;
1904 	u32 attr_len = 0; /* Silence stupid gcc warning. */
1905 	bool mp_rebuilt;
1906 
1907 #ifdef DEBUG
1908 	read_lock_irqsave(&ni->size_lock, flags);
1909 	allocated_size = ni->allocated_size;
1910 	read_unlock_irqrestore(&ni->size_lock, flags);
1911 	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1912 			"old_allocated_size 0x%llx, "
1913 			"new_allocated_size 0x%llx, new_data_size 0x%llx, "
1914 			"data_start 0x%llx.", vi->i_ino,
1915 			(unsigned)le32_to_cpu(ni->type),
1916 			(unsigned long long)allocated_size,
1917 			(unsigned long long)new_alloc_size,
1918 			(unsigned long long)new_data_size,
1919 			(unsigned long long)start);
1920 #endif
1921 retry_extend:
1922 	/*
1923 	 * For non-resident attributes, @start and @new_size need to be aligned
1924 	 * to cluster boundaries for allocation purposes.
1925 	 */
1926 	if (NInoNonResident(ni)) {
1927 		if (start > 0)
1928 			start &= ~(s64)vol->cluster_size_mask;
1929 		new_alloc_size = (new_alloc_size + vol->cluster_size - 1) &
1930 				~(s64)vol->cluster_size_mask;
1931 	}
1932 	BUG_ON(new_data_size >= 0 && new_data_size > new_alloc_size);
1933 	/* Check if new size is allowed in $AttrDef. */
1934 	err = ntfs_attr_size_bounds_check(vol, ni->type, new_alloc_size);
1935 	if (unlikely(err)) {
1936 		/* Only emit errors when the write will fail completely. */
1937 		read_lock_irqsave(&ni->size_lock, flags);
1938 		allocated_size = ni->allocated_size;
1939 		read_unlock_irqrestore(&ni->size_lock, flags);
1940 		if (start < 0 || start >= allocated_size) {
1941 			if (err == -ERANGE) {
1942 				ntfs_error(vol->sb, "Cannot extend allocation "
1943 						"of inode 0x%lx, attribute "
1944 						"type 0x%x, because the new "
1945 						"allocation would exceed the "
1946 						"maximum allowed size for "
1947 						"this attribute type.",
1948 						vi->i_ino, (unsigned)
1949 						le32_to_cpu(ni->type));
1950 			} else {
1951 				ntfs_error(vol->sb, "Cannot extend allocation "
1952 						"of inode 0x%lx, attribute "
1953 						"type 0x%x, because this "
1954 						"attribute type is not "
1955 						"defined on the NTFS volume.  "
1956 						"Possible corruption!  You "
1957 						"should run chkdsk!",
1958 						vi->i_ino, (unsigned)
1959 						le32_to_cpu(ni->type));
1960 			}
1961 		}
1962 		/* Translate error code to be POSIX conformant for write(2). */
1963 		if (err == -ERANGE)
1964 			err = -EFBIG;
1965 		else
1966 			err = -EIO;
1967 		return err;
1968 	}
1969 	if (!NInoAttr(ni))
1970 		base_ni = ni;
1971 	else
1972 		base_ni = ni->ext.base_ntfs_ino;
1973 	/*
1974 	 * We will be modifying both the runlist (if non-resident) and the mft
1975 	 * record so lock them both down.
1976 	 */
1977 	down_write(&ni->runlist.lock);
1978 	m = map_mft_record(base_ni);
1979 	if (IS_ERR(m)) {
1980 		err = PTR_ERR(m);
1981 		m = NULL;
1982 		ctx = NULL;
1983 		goto err_out;
1984 	}
1985 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1986 	if (unlikely(!ctx)) {
1987 		err = -ENOMEM;
1988 		goto err_out;
1989 	}
1990 	read_lock_irqsave(&ni->size_lock, flags);
1991 	allocated_size = ni->allocated_size;
1992 	read_unlock_irqrestore(&ni->size_lock, flags);
1993 	/*
1994 	 * If non-resident, seek to the last extent.  If resident, there is
1995 	 * only one extent, so seek to that.
1996 	 */
1997 	vcn = NInoNonResident(ni) ? allocated_size >> vol->cluster_size_bits :
1998 			0;
1999 	/*
2000 	 * Abort if someone did the work whilst we waited for the locks.  If we
2001 	 * just converted the attribute from resident to non-resident it is
2002 	 * likely that exactly this has happened already.  We cannot quite
2003 	 * abort if we need to update the data size.
2004 	 */
2005 	if (unlikely(new_alloc_size <= allocated_size)) {
2006 		ntfs_debug("Allocated size already exceeds requested size.");
2007 		new_alloc_size = allocated_size;
2008 		if (new_data_size < 0)
2009 			goto done;
2010 		/*
2011 		 * We want the first attribute extent so that we can update the
2012 		 * data size.
2013 		 */
2014 		vcn = 0;
2015 	}
2016 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2017 			CASE_SENSITIVE, vcn, NULL, 0, ctx);
2018 	if (unlikely(err)) {
2019 		if (err == -ENOENT)
2020 			err = -EIO;
2021 		goto err_out;
2022 	}
2023 	m = ctx->mrec;
2024 	a = ctx->attr;
2025 	/* Use goto to reduce indentation. */
2026 	if (a->non_resident)
2027 		goto do_non_resident_extend;
2028 	BUG_ON(NInoNonResident(ni));
2029 	/* The total length of the attribute value. */
2030 	attr_len = le32_to_cpu(a->data.resident.value_length);
2031 	/*
2032 	 * Extend the attribute record to be able to store the new attribute
2033 	 * size.  ntfs_attr_record_resize() will not do anything if the size is
2034 	 * not changing.
2035 	 */
2036 	if (new_alloc_size < vol->mft_record_size &&
2037 			!ntfs_attr_record_resize(m, a,
2038 			le16_to_cpu(a->data.resident.value_offset) +
2039 			new_alloc_size)) {
2040 		/* The resize succeeded! */
2041 		write_lock_irqsave(&ni->size_lock, flags);
2042 		ni->allocated_size = le32_to_cpu(a->length) -
2043 				le16_to_cpu(a->data.resident.value_offset);
2044 		write_unlock_irqrestore(&ni->size_lock, flags);
2045 		if (new_data_size >= 0) {
2046 			BUG_ON(new_data_size < attr_len);
2047 			a->data.resident.value_length =
2048 					cpu_to_le32((u32)new_data_size);
2049 		}
2050 		goto flush_done;
2051 	}
2052 	/*
2053 	 * We have to drop all the locks so we can call
2054 	 * ntfs_attr_make_non_resident().  This could be optimised by try-
2055 	 * locking the first page cache page and only if that fails dropping
2056 	 * the locks, locking the page, and redoing all the locking and
2057 	 * lookups.  While this would be a huge optimisation, it is not worth
2058 	 * it as this is definitely a slow code path.
2059 	 */
2060 	ntfs_attr_put_search_ctx(ctx);
2061 	unmap_mft_record(base_ni);
2062 	up_write(&ni->runlist.lock);
2063 	/*
2064 	 * Not enough space in the mft record, try to make the attribute
2065 	 * non-resident and if successful restart the extension process.
2066 	 */
2067 	err = ntfs_attr_make_non_resident(ni, attr_len);
2068 	if (likely(!err))
2069 		goto retry_extend;
2070 	/*
2071 	 * Could not make non-resident.  If this is due to this not being
2072 	 * permitted for this attribute type or there not being enough space,
2073 	 * try to make other attributes non-resident.  Otherwise fail.
2074 	 */
2075 	if (unlikely(err != -EPERM && err != -ENOSPC)) {
2076 		/* Only emit errors when the write will fail completely. */
2077 		read_lock_irqsave(&ni->size_lock, flags);
2078 		allocated_size = ni->allocated_size;
2079 		read_unlock_irqrestore(&ni->size_lock, flags);
2080 		if (start < 0 || start >= allocated_size)
2081 			ntfs_error(vol->sb, "Cannot extend allocation of "
2082 					"inode 0x%lx, attribute type 0x%x, "
2083 					"because the conversion from resident "
2084 					"to non-resident attribute failed "
2085 					"with error code %i.", vi->i_ino,
2086 					(unsigned)le32_to_cpu(ni->type), err);
2087 		if (err != -ENOMEM)
2088 			err = -EIO;
2089 		goto conv_err_out;
2090 	}
2091 	/* TODO: Not implemented from here, abort. */
2092 	read_lock_irqsave(&ni->size_lock, flags);
2093 	allocated_size = ni->allocated_size;
2094 	read_unlock_irqrestore(&ni->size_lock, flags);
2095 	if (start < 0 || start >= allocated_size) {
2096 		if (err == -ENOSPC)
2097 			ntfs_error(vol->sb, "Not enough space in the mft "
2098 					"record/on disk for the non-resident "
2099 					"attribute value.  This case is not "
2100 					"implemented yet.");
2101 		else /* if (err == -EPERM) */
2102 			ntfs_error(vol->sb, "This attribute type may not be "
2103 					"non-resident.  This case is not "
2104 					"implemented yet.");
2105 	}
2106 	err = -EOPNOTSUPP;
2107 	goto conv_err_out;
2108 #if 0
2109 	// TODO: Attempt to make other attributes non-resident.
2110 	if (!err)
2111 		goto do_resident_extend;
2112 	/*
2113 	 * Both the attribute list attribute and the standard information
2114 	 * attribute must remain in the base inode.  Thus, if this is one of
2115 	 * these attributes, we have to try to move other attributes out into
2116 	 * extent mft records instead.
2117 	 */
2118 	if (ni->type == AT_ATTRIBUTE_LIST ||
2119 			ni->type == AT_STANDARD_INFORMATION) {
2120 		// TODO: Attempt to move other attributes into extent mft
2121 		// records.
2122 		err = -EOPNOTSUPP;
2123 		if (!err)
2124 			goto do_resident_extend;
2125 		goto err_out;
2126 	}
2127 	// TODO: Attempt to move this attribute to an extent mft record, but
2128 	// only if it is not already the only attribute in an mft record in
2129 	// which case there would be nothing to gain.
2130 	err = -EOPNOTSUPP;
2131 	if (!err)
2132 		goto do_resident_extend;
2133 	/* There is nothing we can do to make enough space. )-: */
2134 	goto err_out;
2135 #endif
2136 do_non_resident_extend:
2137 	BUG_ON(!NInoNonResident(ni));
2138 	if (new_alloc_size == allocated_size) {
2139 		BUG_ON(vcn);
2140 		goto alloc_done;
2141 	}
2142 	/*
2143 	 * If the data starts after the end of the old allocation, this is a
2144 	 * $DATA attribute and sparse attributes are enabled on the volume and
2145 	 * for this inode, then create a sparse region between the old
2146 	 * allocated size and the start of the data.  Otherwise simply proceed
2147 	 * with filling the whole space between the old allocated size and the
2148 	 * new allocated size with clusters.
2149 	 */
2150 	if ((start >= 0 && start <= allocated_size) || ni->type != AT_DATA ||
2151 			!NVolSparseEnabled(vol) || NInoSparseDisabled(ni))
2152 		goto skip_sparse;
2153 	// TODO: This is not implemented yet.  We just fill in with real
2154 	// clusters for now...
2155 	ntfs_debug("Inserting holes is not-implemented yet.  Falling back to "
2156 			"allocating real clusters instead.");
2157 skip_sparse:
2158 	rl = ni->runlist.rl;
2159 	if (likely(rl)) {
2160 		/* Seek to the end of the runlist. */
2161 		while (rl->length)
2162 			rl++;
2163 	}
2164 	/* If this attribute extent is not mapped, map it now. */
2165 	if (unlikely(!rl || rl->lcn == LCN_RL_NOT_MAPPED ||
2166 			(rl->lcn == LCN_ENOENT && rl > ni->runlist.rl &&
2167 			(rl-1)->lcn == LCN_RL_NOT_MAPPED))) {
2168 		if (!rl && !allocated_size)
2169 			goto first_alloc;
2170 		rl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2171 		if (IS_ERR(rl)) {
2172 			err = PTR_ERR(rl);
2173 			if (start < 0 || start >= allocated_size)
2174 				ntfs_error(vol->sb, "Cannot extend allocation "
2175 						"of inode 0x%lx, attribute "
2176 						"type 0x%x, because the "
2177 						"mapping of a runlist "
2178 						"fragment failed with error "
2179 						"code %i.", vi->i_ino,
2180 						(unsigned)le32_to_cpu(ni->type),
2181 						err);
2182 			if (err != -ENOMEM)
2183 				err = -EIO;
2184 			goto err_out;
2185 		}
2186 		ni->runlist.rl = rl;
2187 		/* Seek to the end of the runlist. */
2188 		while (rl->length)
2189 			rl++;
2190 	}
2191 	/*
2192 	 * We now know the runlist of the last extent is mapped and @rl is at
2193 	 * the end of the runlist.  We want to begin allocating clusters
2194 	 * starting at the last allocated cluster to reduce fragmentation.  If
2195 	 * there are no valid LCNs in the attribute we let the cluster
2196 	 * allocator choose the starting cluster.
2197 	 */
2198 	/* If the last LCN is a hole or simillar seek back to last real LCN. */
2199 	while (rl->lcn < 0 && rl > ni->runlist.rl)
2200 		rl--;
2201 first_alloc:
2202 	// FIXME: Need to implement partial allocations so at least part of the
2203 	// write can be performed when start >= 0.  (Needed for POSIX write(2)
2204 	// conformance.)
2205 	rl2 = ntfs_cluster_alloc(vol, allocated_size >> vol->cluster_size_bits,
2206 			(new_alloc_size - allocated_size) >>
2207 			vol->cluster_size_bits, (rl && (rl->lcn >= 0)) ?
2208 			rl->lcn + rl->length : -1, DATA_ZONE, true);
2209 	if (IS_ERR(rl2)) {
2210 		err = PTR_ERR(rl2);
2211 		if (start < 0 || start >= allocated_size)
2212 			ntfs_error(vol->sb, "Cannot extend allocation of "
2213 					"inode 0x%lx, attribute type 0x%x, "
2214 					"because the allocation of clusters "
2215 					"failed with error code %i.", vi->i_ino,
2216 					(unsigned)le32_to_cpu(ni->type), err);
2217 		if (err != -ENOMEM && err != -ENOSPC)
2218 			err = -EIO;
2219 		goto err_out;
2220 	}
2221 	rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
2222 	if (IS_ERR(rl)) {
2223 		err = PTR_ERR(rl);
2224 		if (start < 0 || start >= allocated_size)
2225 			ntfs_error(vol->sb, "Cannot extend allocation of "
2226 					"inode 0x%lx, attribute type 0x%x, "
2227 					"because the runlist merge failed "
2228 					"with error code %i.", vi->i_ino,
2229 					(unsigned)le32_to_cpu(ni->type), err);
2230 		if (err != -ENOMEM)
2231 			err = -EIO;
2232 		if (ntfs_cluster_free_from_rl(vol, rl2)) {
2233 			ntfs_error(vol->sb, "Failed to release allocated "
2234 					"cluster(s) in error code path.  Run "
2235 					"chkdsk to recover the lost "
2236 					"cluster(s).");
2237 			NVolSetErrors(vol);
2238 		}
2239 		ntfs_free(rl2);
2240 		goto err_out;
2241 	}
2242 	ni->runlist.rl = rl;
2243 	ntfs_debug("Allocated 0x%llx clusters.", (long long)(new_alloc_size -
2244 			allocated_size) >> vol->cluster_size_bits);
2245 	/* Find the runlist element with which the attribute extent starts. */
2246 	ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
2247 	rl2 = ntfs_rl_find_vcn_nolock(rl, ll);
2248 	BUG_ON(!rl2);
2249 	BUG_ON(!rl2->length);
2250 	BUG_ON(rl2->lcn < LCN_HOLE);
2251 	mp_rebuilt = false;
2252 	/* Get the size for the new mapping pairs array for this extent. */
2253 	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
2254 	if (unlikely(mp_size <= 0)) {
2255 		err = mp_size;
2256 		if (start < 0 || start >= allocated_size)
2257 			ntfs_error(vol->sb, "Cannot extend allocation of "
2258 					"inode 0x%lx, attribute type 0x%x, "
2259 					"because determining the size for the "
2260 					"mapping pairs failed with error code "
2261 					"%i.", vi->i_ino,
2262 					(unsigned)le32_to_cpu(ni->type), err);
2263 		err = -EIO;
2264 		goto undo_alloc;
2265 	}
2266 	/* Extend the attribute record to fit the bigger mapping pairs array. */
2267 	attr_len = le32_to_cpu(a->length);
2268 	err = ntfs_attr_record_resize(m, a, mp_size +
2269 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2270 	if (unlikely(err)) {
2271 		BUG_ON(err != -ENOSPC);
2272 		// TODO: Deal with this by moving this extent to a new mft
2273 		// record or by starting a new extent in a new mft record,
2274 		// possibly by extending this extent partially and filling it
2275 		// and creating a new extent for the remainder, or by making
2276 		// other attributes non-resident and/or by moving other
2277 		// attributes out of this mft record.
2278 		if (start < 0 || start >= allocated_size)
2279 			ntfs_error(vol->sb, "Not enough space in the mft "
2280 					"record for the extended attribute "
2281 					"record.  This case is not "
2282 					"implemented yet.");
2283 		err = -EOPNOTSUPP;
2284 		goto undo_alloc;
2285 	}
2286 	mp_rebuilt = true;
2287 	/* Generate the mapping pairs array directly into the attr record. */
2288 	err = ntfs_mapping_pairs_build(vol, (u8*)a +
2289 			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2290 			mp_size, rl2, ll, -1, NULL);
2291 	if (unlikely(err)) {
2292 		if (start < 0 || start >= allocated_size)
2293 			ntfs_error(vol->sb, "Cannot extend allocation of "
2294 					"inode 0x%lx, attribute type 0x%x, "
2295 					"because building the mapping pairs "
2296 					"failed with error code %i.", vi->i_ino,
2297 					(unsigned)le32_to_cpu(ni->type), err);
2298 		err = -EIO;
2299 		goto undo_alloc;
2300 	}
2301 	/* Update the highest_vcn. */
2302 	a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2303 			vol->cluster_size_bits) - 1);
2304 	/*
2305 	 * We now have extended the allocated size of the attribute.  Reflect
2306 	 * this in the ntfs_inode structure and the attribute record.
2307 	 */
2308 	if (a->data.non_resident.lowest_vcn) {
2309 		/*
2310 		 * We are not in the first attribute extent, switch to it, but
2311 		 * first ensure the changes will make it to disk later.
2312 		 */
2313 		flush_dcache_mft_record_page(ctx->ntfs_ino);
2314 		mark_mft_record_dirty(ctx->ntfs_ino);
2315 		ntfs_attr_reinit_search_ctx(ctx);
2316 		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2317 				CASE_SENSITIVE, 0, NULL, 0, ctx);
2318 		if (unlikely(err))
2319 			goto restore_undo_alloc;
2320 		/* @m is not used any more so no need to set it. */
2321 		a = ctx->attr;
2322 	}
2323 	write_lock_irqsave(&ni->size_lock, flags);
2324 	ni->allocated_size = new_alloc_size;
2325 	a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2326 	/*
2327 	 * FIXME: This would fail if @ni is a directory, $MFT, or an index,
2328 	 * since those can have sparse/compressed set.  For example can be
2329 	 * set compressed even though it is not compressed itself and in that
2330 	 * case the bit means that files are to be created compressed in the
2331 	 * directory...  At present this is ok as this code is only called for
2332 	 * regular files, and only for their $DATA attribute(s).
2333 	 * FIXME: The calculation is wrong if we created a hole above.  For now
2334 	 * it does not matter as we never create holes.
2335 	 */
2336 	if (NInoSparse(ni) || NInoCompressed(ni)) {
2337 		ni->itype.compressed.size += new_alloc_size - allocated_size;
2338 		a->data.non_resident.compressed_size =
2339 				cpu_to_sle64(ni->itype.compressed.size);
2340 		vi->i_blocks = ni->itype.compressed.size >> 9;
2341 	} else
2342 		vi->i_blocks = new_alloc_size >> 9;
2343 	write_unlock_irqrestore(&ni->size_lock, flags);
2344 alloc_done:
2345 	if (new_data_size >= 0) {
2346 		BUG_ON(new_data_size <
2347 				sle64_to_cpu(a->data.non_resident.data_size));
2348 		a->data.non_resident.data_size = cpu_to_sle64(new_data_size);
2349 	}
2350 flush_done:
2351 	/* Ensure the changes make it to disk. */
2352 	flush_dcache_mft_record_page(ctx->ntfs_ino);
2353 	mark_mft_record_dirty(ctx->ntfs_ino);
2354 done:
2355 	ntfs_attr_put_search_ctx(ctx);
2356 	unmap_mft_record(base_ni);
2357 	up_write(&ni->runlist.lock);
2358 	ntfs_debug("Done, new_allocated_size 0x%llx.",
2359 			(unsigned long long)new_alloc_size);
2360 	return new_alloc_size;
2361 restore_undo_alloc:
2362 	if (start < 0 || start >= allocated_size)
2363 		ntfs_error(vol->sb, "Cannot complete extension of allocation "
2364 				"of inode 0x%lx, attribute type 0x%x, because "
2365 				"lookup of first attribute extent failed with "
2366 				"error code %i.", vi->i_ino,
2367 				(unsigned)le32_to_cpu(ni->type), err);
2368 	if (err == -ENOENT)
2369 		err = -EIO;
2370 	ntfs_attr_reinit_search_ctx(ctx);
2371 	if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE,
2372 			allocated_size >> vol->cluster_size_bits, NULL, 0,
2373 			ctx)) {
2374 		ntfs_error(vol->sb, "Failed to find last attribute extent of "
2375 				"attribute in error code path.  Run chkdsk to "
2376 				"recover.");
2377 		write_lock_irqsave(&ni->size_lock, flags);
2378 		ni->allocated_size = new_alloc_size;
2379 		/*
2380 		 * FIXME: This would fail if @ni is a directory...  See above.
2381 		 * FIXME: The calculation is wrong if we created a hole above.
2382 		 * For now it does not matter as we never create holes.
2383 		 */
2384 		if (NInoSparse(ni) || NInoCompressed(ni)) {
2385 			ni->itype.compressed.size += new_alloc_size -
2386 					allocated_size;
2387 			vi->i_blocks = ni->itype.compressed.size >> 9;
2388 		} else
2389 			vi->i_blocks = new_alloc_size >> 9;
2390 		write_unlock_irqrestore(&ni->size_lock, flags);
2391 		ntfs_attr_put_search_ctx(ctx);
2392 		unmap_mft_record(base_ni);
2393 		up_write(&ni->runlist.lock);
2394 		/*
2395 		 * The only thing that is now wrong is the allocated size of the
2396 		 * base attribute extent which chkdsk should be able to fix.
2397 		 */
2398 		NVolSetErrors(vol);
2399 		return err;
2400 	}
2401 	ctx->attr->data.non_resident.highest_vcn = cpu_to_sle64(
2402 			(allocated_size >> vol->cluster_size_bits) - 1);
2403 undo_alloc:
2404 	ll = allocated_size >> vol->cluster_size_bits;
2405 	if (ntfs_cluster_free(ni, ll, -1, ctx) < 0) {
2406 		ntfs_error(vol->sb, "Failed to release allocated cluster(s) "
2407 				"in error code path.  Run chkdsk to recover "
2408 				"the lost cluster(s).");
2409 		NVolSetErrors(vol);
2410 	}
2411 	m = ctx->mrec;
2412 	a = ctx->attr;
2413 	/*
2414 	 * If the runlist truncation fails and/or the search context is no
2415 	 * longer valid, we cannot resize the attribute record or build the
2416 	 * mapping pairs array thus we mark the inode bad so that no access to
2417 	 * the freed clusters can happen.
2418 	 */
2419 	if (ntfs_rl_truncate_nolock(vol, &ni->runlist, ll) || IS_ERR(m)) {
2420 		ntfs_error(vol->sb, "Failed to %s in error code path.  Run "
2421 				"chkdsk to recover.", IS_ERR(m) ?
2422 				"restore attribute search context" :
2423 				"truncate attribute runlist");
2424 		NVolSetErrors(vol);
2425 	} else if (mp_rebuilt) {
2426 		if (ntfs_attr_record_resize(m, a, attr_len)) {
2427 			ntfs_error(vol->sb, "Failed to restore attribute "
2428 					"record in error code path.  Run "
2429 					"chkdsk to recover.");
2430 			NVolSetErrors(vol);
2431 		} else /* if (success) */ {
2432 			if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
2433 					a->data.non_resident.
2434 					mapping_pairs_offset), attr_len -
2435 					le16_to_cpu(a->data.non_resident.
2436 					mapping_pairs_offset), rl2, ll, -1,
2437 					NULL)) {
2438 				ntfs_error(vol->sb, "Failed to restore "
2439 						"mapping pairs array in error "
2440 						"code path.  Run chkdsk to "
2441 						"recover.");
2442 				NVolSetErrors(vol);
2443 			}
2444 			flush_dcache_mft_record_page(ctx->ntfs_ino);
2445 			mark_mft_record_dirty(ctx->ntfs_ino);
2446 		}
2447 	}
2448 err_out:
2449 	if (ctx)
2450 		ntfs_attr_put_search_ctx(ctx);
2451 	if (m)
2452 		unmap_mft_record(base_ni);
2453 	up_write(&ni->runlist.lock);
2454 conv_err_out:
2455 	ntfs_debug("Failed.  Returning error code %i.", err);
2456 	return err;
2457 }
2458 
2459 /**
2460  * ntfs_attr_set - fill (a part of) an attribute with a byte
2461  * @ni:		ntfs inode describing the attribute to fill
2462  * @ofs:	offset inside the attribute at which to start to fill
2463  * @cnt:	number of bytes to fill
2464  * @val:	the unsigned 8-bit value with which to fill the attribute
2465  *
2466  * Fill @cnt bytes of the attribute described by the ntfs inode @ni starting at
2467  * byte offset @ofs inside the attribute with the constant byte @val.
2468  *
2469  * This function is effectively like memset() applied to an ntfs attribute.
2470  * Note thie function actually only operates on the page cache pages belonging
2471  * to the ntfs attribute and it marks them dirty after doing the memset().
2472  * Thus it relies on the vm dirty page write code paths to cause the modified
2473  * pages to be written to the mft record/disk.
2474  *
2475  * Return 0 on success and -errno on error.  An error code of -ESPIPE means
2476  * that @ofs + @cnt were outside the end of the attribute and no write was
2477  * performed.
2478  */
2479 int ntfs_attr_set(ntfs_inode *ni, const s64 ofs, const s64 cnt, const u8 val)
2480 {
2481 	ntfs_volume *vol = ni->vol;
2482 	struct address_space *mapping;
2483 	struct page *page;
2484 	u8 *kaddr;
2485 	pgoff_t idx, end;
2486 	unsigned start_ofs, end_ofs, size;
2487 
2488 	ntfs_debug("Entering for ofs 0x%llx, cnt 0x%llx, val 0x%hx.",
2489 			(long long)ofs, (long long)cnt, val);
2490 	BUG_ON(ofs < 0);
2491 	BUG_ON(cnt < 0);
2492 	if (!cnt)
2493 		goto done;
2494 	/*
2495 	 * FIXME: Compressed and encrypted attributes are not supported when
2496 	 * writing and we should never have gotten here for them.
2497 	 */
2498 	BUG_ON(NInoCompressed(ni));
2499 	BUG_ON(NInoEncrypted(ni));
2500 	mapping = VFS_I(ni)->i_mapping;
2501 	/* Work out the starting index and page offset. */
2502 	idx = ofs >> PAGE_SHIFT;
2503 	start_ofs = ofs & ~PAGE_MASK;
2504 	/* Work out the ending index and page offset. */
2505 	end = ofs + cnt;
2506 	end_ofs = end & ~PAGE_MASK;
2507 	/* If the end is outside the inode size return -ESPIPE. */
2508 	if (unlikely(end > i_size_read(VFS_I(ni)))) {
2509 		ntfs_error(vol->sb, "Request exceeds end of attribute.");
2510 		return -ESPIPE;
2511 	}
2512 	end >>= PAGE_SHIFT;
2513 	/* If there is a first partial page, need to do it the slow way. */
2514 	if (start_ofs) {
2515 		page = read_mapping_page(mapping, idx, NULL);
2516 		if (IS_ERR(page)) {
2517 			ntfs_error(vol->sb, "Failed to read first partial "
2518 					"page (error, index 0x%lx).", idx);
2519 			return PTR_ERR(page);
2520 		}
2521 		/*
2522 		 * If the last page is the same as the first page, need to
2523 		 * limit the write to the end offset.
2524 		 */
2525 		size = PAGE_SIZE;
2526 		if (idx == end)
2527 			size = end_ofs;
2528 		kaddr = kmap_atomic(page);
2529 		memset(kaddr + start_ofs, val, size - start_ofs);
2530 		flush_dcache_page(page);
2531 		kunmap_atomic(kaddr);
2532 		set_page_dirty(page);
2533 		put_page(page);
2534 		balance_dirty_pages_ratelimited(mapping);
2535 		cond_resched();
2536 		if (idx == end)
2537 			goto done;
2538 		idx++;
2539 	}
2540 	/* Do the whole pages the fast way. */
2541 	for (; idx < end; idx++) {
2542 		/* Find or create the current page.  (The page is locked.) */
2543 		page = grab_cache_page(mapping, idx);
2544 		if (unlikely(!page)) {
2545 			ntfs_error(vol->sb, "Insufficient memory to grab "
2546 					"page (index 0x%lx).", idx);
2547 			return -ENOMEM;
2548 		}
2549 		kaddr = kmap_atomic(page);
2550 		memset(kaddr, val, PAGE_SIZE);
2551 		flush_dcache_page(page);
2552 		kunmap_atomic(kaddr);
2553 		/*
2554 		 * If the page has buffers, mark them uptodate since buffer
2555 		 * state and not page state is definitive in 2.6 kernels.
2556 		 */
2557 		if (page_has_buffers(page)) {
2558 			struct buffer_head *bh, *head;
2559 
2560 			bh = head = page_buffers(page);
2561 			do {
2562 				set_buffer_uptodate(bh);
2563 			} while ((bh = bh->b_this_page) != head);
2564 		}
2565 		/* Now that buffers are uptodate, set the page uptodate, too. */
2566 		SetPageUptodate(page);
2567 		/*
2568 		 * Set the page and all its buffers dirty and mark the inode
2569 		 * dirty, too.  The VM will write the page later on.
2570 		 */
2571 		set_page_dirty(page);
2572 		/* Finally unlock and release the page. */
2573 		unlock_page(page);
2574 		put_page(page);
2575 		balance_dirty_pages_ratelimited(mapping);
2576 		cond_resched();
2577 	}
2578 	/* If there is a last partial page, need to do it the slow way. */
2579 	if (end_ofs) {
2580 		page = read_mapping_page(mapping, idx, NULL);
2581 		if (IS_ERR(page)) {
2582 			ntfs_error(vol->sb, "Failed to read last partial page "
2583 					"(error, index 0x%lx).", idx);
2584 			return PTR_ERR(page);
2585 		}
2586 		kaddr = kmap_atomic(page);
2587 		memset(kaddr, val, end_ofs);
2588 		flush_dcache_page(page);
2589 		kunmap_atomic(kaddr);
2590 		set_page_dirty(page);
2591 		put_page(page);
2592 		balance_dirty_pages_ratelimited(mapping);
2593 		cond_resched();
2594 	}
2595 done:
2596 	ntfs_debug("Done.");
2597 	return 0;
2598 }
2599 
2600 #endif /* NTFS_RW */
2601