xref: /openbmc/linux/fs/ntfs/aops.c (revision fd589a8f)
1 /**
2  * aops.c - NTFS kernel address space operations and page cache handling.
3  *	    Part of the Linux-NTFS project.
4  *
5  * Copyright (c) 2001-2007 Anton Altaparmakov
6  * Copyright (c) 2002 Richard Russon
7  *
8  * This program/include file is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as published
10  * by the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program/include file is distributed in the hope that it will be
14  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program (in the main directory of the Linux-NTFS
20  * distribution in the file COPYING); if not, write to the Free Software
21  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23 
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/pagemap.h>
28 #include <linux/swap.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/bit_spinlock.h>
32 
33 #include "aops.h"
34 #include "attrib.h"
35 #include "debug.h"
36 #include "inode.h"
37 #include "mft.h"
38 #include "runlist.h"
39 #include "types.h"
40 #include "ntfs.h"
41 
42 /**
43  * ntfs_end_buffer_async_read - async io completion for reading attributes
44  * @bh:		buffer head on which io is completed
45  * @uptodate:	whether @bh is now uptodate or not
46  *
47  * Asynchronous I/O completion handler for reading pages belonging to the
48  * attribute address space of an inode.  The inodes can either be files or
49  * directories or they can be fake inodes describing some attribute.
50  *
51  * If NInoMstProtected(), perform the post read mst fixups when all IO on the
52  * page has been completed and mark the page uptodate or set the error bit on
53  * the page.  To determine the size of the records that need fixing up, we
54  * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
55  * record size, and index_block_size_bits, to the log(base 2) of the ntfs
56  * record size.
57  */
58 static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
59 {
60 	unsigned long flags;
61 	struct buffer_head *first, *tmp;
62 	struct page *page;
63 	struct inode *vi;
64 	ntfs_inode *ni;
65 	int page_uptodate = 1;
66 
67 	page = bh->b_page;
68 	vi = page->mapping->host;
69 	ni = NTFS_I(vi);
70 
71 	if (likely(uptodate)) {
72 		loff_t i_size;
73 		s64 file_ofs, init_size;
74 
75 		set_buffer_uptodate(bh);
76 
77 		file_ofs = ((s64)page->index << PAGE_CACHE_SHIFT) +
78 				bh_offset(bh);
79 		read_lock_irqsave(&ni->size_lock, flags);
80 		init_size = ni->initialized_size;
81 		i_size = i_size_read(vi);
82 		read_unlock_irqrestore(&ni->size_lock, flags);
83 		if (unlikely(init_size > i_size)) {
84 			/* Race with shrinking truncate. */
85 			init_size = i_size;
86 		}
87 		/* Check for the current buffer head overflowing. */
88 		if (unlikely(file_ofs + bh->b_size > init_size)) {
89 			int ofs;
90 			void *kaddr;
91 
92 			ofs = 0;
93 			if (file_ofs < init_size)
94 				ofs = init_size - file_ofs;
95 			local_irq_save(flags);
96 			kaddr = kmap_atomic(page, KM_BIO_SRC_IRQ);
97 			memset(kaddr + bh_offset(bh) + ofs, 0,
98 					bh->b_size - ofs);
99 			flush_dcache_page(page);
100 			kunmap_atomic(kaddr, KM_BIO_SRC_IRQ);
101 			local_irq_restore(flags);
102 		}
103 	} else {
104 		clear_buffer_uptodate(bh);
105 		SetPageError(page);
106 		ntfs_error(ni->vol->sb, "Buffer I/O error, logical block "
107 				"0x%llx.", (unsigned long long)bh->b_blocknr);
108 	}
109 	first = page_buffers(page);
110 	local_irq_save(flags);
111 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
112 	clear_buffer_async_read(bh);
113 	unlock_buffer(bh);
114 	tmp = bh;
115 	do {
116 		if (!buffer_uptodate(tmp))
117 			page_uptodate = 0;
118 		if (buffer_async_read(tmp)) {
119 			if (likely(buffer_locked(tmp)))
120 				goto still_busy;
121 			/* Async buffers must be locked. */
122 			BUG();
123 		}
124 		tmp = tmp->b_this_page;
125 	} while (tmp != bh);
126 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
127 	local_irq_restore(flags);
128 	/*
129 	 * If none of the buffers had errors then we can set the page uptodate,
130 	 * but we first have to perform the post read mst fixups, if the
131 	 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
132 	 * Note we ignore fixup errors as those are detected when
133 	 * map_mft_record() is called which gives us per record granularity
134 	 * rather than per page granularity.
135 	 */
136 	if (!NInoMstProtected(ni)) {
137 		if (likely(page_uptodate && !PageError(page)))
138 			SetPageUptodate(page);
139 	} else {
140 		u8 *kaddr;
141 		unsigned int i, recs;
142 		u32 rec_size;
143 
144 		rec_size = ni->itype.index.block_size;
145 		recs = PAGE_CACHE_SIZE / rec_size;
146 		/* Should have been verified before we got here... */
147 		BUG_ON(!recs);
148 		local_irq_save(flags);
149 		kaddr = kmap_atomic(page, KM_BIO_SRC_IRQ);
150 		for (i = 0; i < recs; i++)
151 			post_read_mst_fixup((NTFS_RECORD*)(kaddr +
152 					i * rec_size), rec_size);
153 		kunmap_atomic(kaddr, KM_BIO_SRC_IRQ);
154 		local_irq_restore(flags);
155 		flush_dcache_page(page);
156 		if (likely(page_uptodate && !PageError(page)))
157 			SetPageUptodate(page);
158 	}
159 	unlock_page(page);
160 	return;
161 still_busy:
162 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
163 	local_irq_restore(flags);
164 	return;
165 }
166 
167 /**
168  * ntfs_read_block - fill a @page of an address space with data
169  * @page:	page cache page to fill with data
170  *
171  * Fill the page @page of the address space belonging to the @page->host inode.
172  * We read each buffer asynchronously and when all buffers are read in, our io
173  * completion handler ntfs_end_buffer_read_async(), if required, automatically
174  * applies the mst fixups to the page before finally marking it uptodate and
175  * unlocking it.
176  *
177  * We only enforce allocated_size limit because i_size is checked for in
178  * generic_file_read().
179  *
180  * Return 0 on success and -errno on error.
181  *
182  * Contains an adapted version of fs/buffer.c::block_read_full_page().
183  */
184 static int ntfs_read_block(struct page *page)
185 {
186 	loff_t i_size;
187 	VCN vcn;
188 	LCN lcn;
189 	s64 init_size;
190 	struct inode *vi;
191 	ntfs_inode *ni;
192 	ntfs_volume *vol;
193 	runlist_element *rl;
194 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
195 	sector_t iblock, lblock, zblock;
196 	unsigned long flags;
197 	unsigned int blocksize, vcn_ofs;
198 	int i, nr;
199 	unsigned char blocksize_bits;
200 
201 	vi = page->mapping->host;
202 	ni = NTFS_I(vi);
203 	vol = ni->vol;
204 
205 	/* $MFT/$DATA must have its complete runlist in memory at all times. */
206 	BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
207 
208 	blocksize = vol->sb->s_blocksize;
209 	blocksize_bits = vol->sb->s_blocksize_bits;
210 
211 	if (!page_has_buffers(page)) {
212 		create_empty_buffers(page, blocksize, 0);
213 		if (unlikely(!page_has_buffers(page))) {
214 			unlock_page(page);
215 			return -ENOMEM;
216 		}
217 	}
218 	bh = head = page_buffers(page);
219 	BUG_ON(!bh);
220 
221 	/*
222 	 * We may be racing with truncate.  To avoid some of the problems we
223 	 * now take a snapshot of the various sizes and use those for the whole
224 	 * of the function.  In case of an extending truncate it just means we
225 	 * may leave some buffers unmapped which are now allocated.  This is
226 	 * not a problem since these buffers will just get mapped when a write
227 	 * occurs.  In case of a shrinking truncate, we will detect this later
228 	 * on due to the runlist being incomplete and if the page is being
229 	 * fully truncated, truncate will throw it away as soon as we unlock
230 	 * it so no need to worry what we do with it.
231 	 */
232 	iblock = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
233 	read_lock_irqsave(&ni->size_lock, flags);
234 	lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
235 	init_size = ni->initialized_size;
236 	i_size = i_size_read(vi);
237 	read_unlock_irqrestore(&ni->size_lock, flags);
238 	if (unlikely(init_size > i_size)) {
239 		/* Race with shrinking truncate. */
240 		init_size = i_size;
241 	}
242 	zblock = (init_size + blocksize - 1) >> blocksize_bits;
243 
244 	/* Loop through all the buffers in the page. */
245 	rl = NULL;
246 	nr = i = 0;
247 	do {
248 		int err = 0;
249 
250 		if (unlikely(buffer_uptodate(bh)))
251 			continue;
252 		if (unlikely(buffer_mapped(bh))) {
253 			arr[nr++] = bh;
254 			continue;
255 		}
256 		bh->b_bdev = vol->sb->s_bdev;
257 		/* Is the block within the allowed limits? */
258 		if (iblock < lblock) {
259 			bool is_retry = false;
260 
261 			/* Convert iblock into corresponding vcn and offset. */
262 			vcn = (VCN)iblock << blocksize_bits >>
263 					vol->cluster_size_bits;
264 			vcn_ofs = ((VCN)iblock << blocksize_bits) &
265 					vol->cluster_size_mask;
266 			if (!rl) {
267 lock_retry_remap:
268 				down_read(&ni->runlist.lock);
269 				rl = ni->runlist.rl;
270 			}
271 			if (likely(rl != NULL)) {
272 				/* Seek to element containing target vcn. */
273 				while (rl->length && rl[1].vcn <= vcn)
274 					rl++;
275 				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
276 			} else
277 				lcn = LCN_RL_NOT_MAPPED;
278 			/* Successful remap. */
279 			if (lcn >= 0) {
280 				/* Setup buffer head to correct block. */
281 				bh->b_blocknr = ((lcn << vol->cluster_size_bits)
282 						+ vcn_ofs) >> blocksize_bits;
283 				set_buffer_mapped(bh);
284 				/* Only read initialized data blocks. */
285 				if (iblock < zblock) {
286 					arr[nr++] = bh;
287 					continue;
288 				}
289 				/* Fully non-initialized data block, zero it. */
290 				goto handle_zblock;
291 			}
292 			/* It is a hole, need to zero it. */
293 			if (lcn == LCN_HOLE)
294 				goto handle_hole;
295 			/* If first try and runlist unmapped, map and retry. */
296 			if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
297 				is_retry = true;
298 				/*
299 				 * Attempt to map runlist, dropping lock for
300 				 * the duration.
301 				 */
302 				up_read(&ni->runlist.lock);
303 				err = ntfs_map_runlist(ni, vcn);
304 				if (likely(!err))
305 					goto lock_retry_remap;
306 				rl = NULL;
307 			} else if (!rl)
308 				up_read(&ni->runlist.lock);
309 			/*
310 			 * If buffer is outside the runlist, treat it as a
311 			 * hole.  This can happen due to concurrent truncate
312 			 * for example.
313 			 */
314 			if (err == -ENOENT || lcn == LCN_ENOENT) {
315 				err = 0;
316 				goto handle_hole;
317 			}
318 			/* Hard error, zero out region. */
319 			if (!err)
320 				err = -EIO;
321 			bh->b_blocknr = -1;
322 			SetPageError(page);
323 			ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
324 					"attribute type 0x%x, vcn 0x%llx, "
325 					"offset 0x%x because its location on "
326 					"disk could not be determined%s "
327 					"(error code %i).", ni->mft_no,
328 					ni->type, (unsigned long long)vcn,
329 					vcn_ofs, is_retry ? " even after "
330 					"retrying" : "", err);
331 		}
332 		/*
333 		 * Either iblock was outside lblock limits or
334 		 * ntfs_rl_vcn_to_lcn() returned error.  Just zero that portion
335 		 * of the page and set the buffer uptodate.
336 		 */
337 handle_hole:
338 		bh->b_blocknr = -1UL;
339 		clear_buffer_mapped(bh);
340 handle_zblock:
341 		zero_user(page, i * blocksize, blocksize);
342 		if (likely(!err))
343 			set_buffer_uptodate(bh);
344 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
345 
346 	/* Release the lock if we took it. */
347 	if (rl)
348 		up_read(&ni->runlist.lock);
349 
350 	/* Check we have at least one buffer ready for i/o. */
351 	if (nr) {
352 		struct buffer_head *tbh;
353 
354 		/* Lock the buffers. */
355 		for (i = 0; i < nr; i++) {
356 			tbh = arr[i];
357 			lock_buffer(tbh);
358 			tbh->b_end_io = ntfs_end_buffer_async_read;
359 			set_buffer_async_read(tbh);
360 		}
361 		/* Finally, start i/o on the buffers. */
362 		for (i = 0; i < nr; i++) {
363 			tbh = arr[i];
364 			if (likely(!buffer_uptodate(tbh)))
365 				submit_bh(READ, tbh);
366 			else
367 				ntfs_end_buffer_async_read(tbh, 1);
368 		}
369 		return 0;
370 	}
371 	/* No i/o was scheduled on any of the buffers. */
372 	if (likely(!PageError(page)))
373 		SetPageUptodate(page);
374 	else /* Signal synchronous i/o error. */
375 		nr = -EIO;
376 	unlock_page(page);
377 	return nr;
378 }
379 
380 /**
381  * ntfs_readpage - fill a @page of a @file with data from the device
382  * @file:	open file to which the page @page belongs or NULL
383  * @page:	page cache page to fill with data
384  *
385  * For non-resident attributes, ntfs_readpage() fills the @page of the open
386  * file @file by calling the ntfs version of the generic block_read_full_page()
387  * function, ntfs_read_block(), which in turn creates and reads in the buffers
388  * associated with the page asynchronously.
389  *
390  * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
391  * data from the mft record (which at this stage is most likely in memory) and
392  * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
393  * even if the mft record is not cached at this point in time, we need to wait
394  * for it to be read in before we can do the copy.
395  *
396  * Return 0 on success and -errno on error.
397  */
398 static int ntfs_readpage(struct file *file, struct page *page)
399 {
400 	loff_t i_size;
401 	struct inode *vi;
402 	ntfs_inode *ni, *base_ni;
403 	u8 *addr;
404 	ntfs_attr_search_ctx *ctx;
405 	MFT_RECORD *mrec;
406 	unsigned long flags;
407 	u32 attr_len;
408 	int err = 0;
409 
410 retry_readpage:
411 	BUG_ON(!PageLocked(page));
412 	vi = page->mapping->host;
413 	i_size = i_size_read(vi);
414 	/* Is the page fully outside i_size? (truncate in progress) */
415 	if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >>
416 			PAGE_CACHE_SHIFT)) {
417 		zero_user(page, 0, PAGE_CACHE_SIZE);
418 		ntfs_debug("Read outside i_size - truncated?");
419 		goto done;
420 	}
421 	/*
422 	 * This can potentially happen because we clear PageUptodate() during
423 	 * ntfs_writepage() of MstProtected() attributes.
424 	 */
425 	if (PageUptodate(page)) {
426 		unlock_page(page);
427 		return 0;
428 	}
429 	ni = NTFS_I(vi);
430 	/*
431 	 * Only $DATA attributes can be encrypted and only unnamed $DATA
432 	 * attributes can be compressed.  Index root can have the flags set but
433 	 * this means to create compressed/encrypted files, not that the
434 	 * attribute is compressed/encrypted.  Note we need to check for
435 	 * AT_INDEX_ALLOCATION since this is the type of both directory and
436 	 * index inodes.
437 	 */
438 	if (ni->type != AT_INDEX_ALLOCATION) {
439 		/* If attribute is encrypted, deny access, just like NT4. */
440 		if (NInoEncrypted(ni)) {
441 			BUG_ON(ni->type != AT_DATA);
442 			err = -EACCES;
443 			goto err_out;
444 		}
445 		/* Compressed data streams are handled in compress.c. */
446 		if (NInoNonResident(ni) && NInoCompressed(ni)) {
447 			BUG_ON(ni->type != AT_DATA);
448 			BUG_ON(ni->name_len);
449 			return ntfs_read_compressed_block(page);
450 		}
451 	}
452 	/* NInoNonResident() == NInoIndexAllocPresent() */
453 	if (NInoNonResident(ni)) {
454 		/* Normal, non-resident data stream. */
455 		return ntfs_read_block(page);
456 	}
457 	/*
458 	 * Attribute is resident, implying it is not compressed or encrypted.
459 	 * This also means the attribute is smaller than an mft record and
460 	 * hence smaller than a page, so can simply zero out any pages with
461 	 * index above 0.  Note the attribute can actually be marked compressed
462 	 * but if it is resident the actual data is not compressed so we are
463 	 * ok to ignore the compressed flag here.
464 	 */
465 	if (unlikely(page->index > 0)) {
466 		zero_user(page, 0, PAGE_CACHE_SIZE);
467 		goto done;
468 	}
469 	if (!NInoAttr(ni))
470 		base_ni = ni;
471 	else
472 		base_ni = ni->ext.base_ntfs_ino;
473 	/* Map, pin, and lock the mft record. */
474 	mrec = map_mft_record(base_ni);
475 	if (IS_ERR(mrec)) {
476 		err = PTR_ERR(mrec);
477 		goto err_out;
478 	}
479 	/*
480 	 * If a parallel write made the attribute non-resident, drop the mft
481 	 * record and retry the readpage.
482 	 */
483 	if (unlikely(NInoNonResident(ni))) {
484 		unmap_mft_record(base_ni);
485 		goto retry_readpage;
486 	}
487 	ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
488 	if (unlikely(!ctx)) {
489 		err = -ENOMEM;
490 		goto unm_err_out;
491 	}
492 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
493 			CASE_SENSITIVE, 0, NULL, 0, ctx);
494 	if (unlikely(err))
495 		goto put_unm_err_out;
496 	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
497 	read_lock_irqsave(&ni->size_lock, flags);
498 	if (unlikely(attr_len > ni->initialized_size))
499 		attr_len = ni->initialized_size;
500 	i_size = i_size_read(vi);
501 	read_unlock_irqrestore(&ni->size_lock, flags);
502 	if (unlikely(attr_len > i_size)) {
503 		/* Race with shrinking truncate. */
504 		attr_len = i_size;
505 	}
506 	addr = kmap_atomic(page, KM_USER0);
507 	/* Copy the data to the page. */
508 	memcpy(addr, (u8*)ctx->attr +
509 			le16_to_cpu(ctx->attr->data.resident.value_offset),
510 			attr_len);
511 	/* Zero the remainder of the page. */
512 	memset(addr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
513 	flush_dcache_page(page);
514 	kunmap_atomic(addr, KM_USER0);
515 put_unm_err_out:
516 	ntfs_attr_put_search_ctx(ctx);
517 unm_err_out:
518 	unmap_mft_record(base_ni);
519 done:
520 	SetPageUptodate(page);
521 err_out:
522 	unlock_page(page);
523 	return err;
524 }
525 
526 #ifdef NTFS_RW
527 
528 /**
529  * ntfs_write_block - write a @page to the backing store
530  * @page:	page cache page to write out
531  * @wbc:	writeback control structure
532  *
533  * This function is for writing pages belonging to non-resident, non-mst
534  * protected attributes to their backing store.
535  *
536  * For a page with buffers, map and write the dirty buffers asynchronously
537  * under page writeback. For a page without buffers, create buffers for the
538  * page, then proceed as above.
539  *
540  * If a page doesn't have buffers the page dirty state is definitive. If a page
541  * does have buffers, the page dirty state is just a hint, and the buffer dirty
542  * state is definitive. (A hint which has rules: dirty buffers against a clean
543  * page is illegal. Other combinations are legal and need to be handled. In
544  * particular a dirty page containing clean buffers for example.)
545  *
546  * Return 0 on success and -errno on error.
547  *
548  * Based on ntfs_read_block() and __block_write_full_page().
549  */
550 static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
551 {
552 	VCN vcn;
553 	LCN lcn;
554 	s64 initialized_size;
555 	loff_t i_size;
556 	sector_t block, dblock, iblock;
557 	struct inode *vi;
558 	ntfs_inode *ni;
559 	ntfs_volume *vol;
560 	runlist_element *rl;
561 	struct buffer_head *bh, *head;
562 	unsigned long flags;
563 	unsigned int blocksize, vcn_ofs;
564 	int err;
565 	bool need_end_writeback;
566 	unsigned char blocksize_bits;
567 
568 	vi = page->mapping->host;
569 	ni = NTFS_I(vi);
570 	vol = ni->vol;
571 
572 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
573 			"0x%lx.", ni->mft_no, ni->type, page->index);
574 
575 	BUG_ON(!NInoNonResident(ni));
576 	BUG_ON(NInoMstProtected(ni));
577 	blocksize = vol->sb->s_blocksize;
578 	blocksize_bits = vol->sb->s_blocksize_bits;
579 	if (!page_has_buffers(page)) {
580 		BUG_ON(!PageUptodate(page));
581 		create_empty_buffers(page, blocksize,
582 				(1 << BH_Uptodate) | (1 << BH_Dirty));
583 		if (unlikely(!page_has_buffers(page))) {
584 			ntfs_warning(vol->sb, "Error allocating page "
585 					"buffers.  Redirtying page so we try "
586 					"again later.");
587 			/*
588 			 * Put the page back on mapping->dirty_pages, but leave
589 			 * its buffers' dirty state as-is.
590 			 */
591 			redirty_page_for_writepage(wbc, page);
592 			unlock_page(page);
593 			return 0;
594 		}
595 	}
596 	bh = head = page_buffers(page);
597 	BUG_ON(!bh);
598 
599 	/* NOTE: Different naming scheme to ntfs_read_block()! */
600 
601 	/* The first block in the page. */
602 	block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
603 
604 	read_lock_irqsave(&ni->size_lock, flags);
605 	i_size = i_size_read(vi);
606 	initialized_size = ni->initialized_size;
607 	read_unlock_irqrestore(&ni->size_lock, flags);
608 
609 	/* The first out of bounds block for the data size. */
610 	dblock = (i_size + blocksize - 1) >> blocksize_bits;
611 
612 	/* The last (fully or partially) initialized block. */
613 	iblock = initialized_size >> blocksize_bits;
614 
615 	/*
616 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
617 	 * here, and the (potentially unmapped) buffers may become dirty at
618 	 * any time.  If a buffer becomes dirty here after we've inspected it
619 	 * then we just miss that fact, and the page stays dirty.
620 	 *
621 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
622 	 * handle that here by just cleaning them.
623 	 */
624 
625 	/*
626 	 * Loop through all the buffers in the page, mapping all the dirty
627 	 * buffers to disk addresses and handling any aliases from the
628 	 * underlying block device's mapping.
629 	 */
630 	rl = NULL;
631 	err = 0;
632 	do {
633 		bool is_retry = false;
634 
635 		if (unlikely(block >= dblock)) {
636 			/*
637 			 * Mapped buffers outside i_size will occur, because
638 			 * this page can be outside i_size when there is a
639 			 * truncate in progress. The contents of such buffers
640 			 * were zeroed by ntfs_writepage().
641 			 *
642 			 * FIXME: What about the small race window where
643 			 * ntfs_writepage() has not done any clearing because
644 			 * the page was within i_size but before we get here,
645 			 * vmtruncate() modifies i_size?
646 			 */
647 			clear_buffer_dirty(bh);
648 			set_buffer_uptodate(bh);
649 			continue;
650 		}
651 
652 		/* Clean buffers are not written out, so no need to map them. */
653 		if (!buffer_dirty(bh))
654 			continue;
655 
656 		/* Make sure we have enough initialized size. */
657 		if (unlikely((block >= iblock) &&
658 				(initialized_size < i_size))) {
659 			/*
660 			 * If this page is fully outside initialized size, zero
661 			 * out all pages between the current initialized size
662 			 * and the current page. Just use ntfs_readpage() to do
663 			 * the zeroing transparently.
664 			 */
665 			if (block > iblock) {
666 				// TODO:
667 				// For each page do:
668 				// - read_cache_page()
669 				// Again for each page do:
670 				// - wait_on_page_locked()
671 				// - Check (PageUptodate(page) &&
672 				//			!PageError(page))
673 				// Update initialized size in the attribute and
674 				// in the inode.
675 				// Again, for each page do:
676 				//	__set_page_dirty_buffers();
677 				// page_cache_release()
678 				// We don't need to wait on the writes.
679 				// Update iblock.
680 			}
681 			/*
682 			 * The current page straddles initialized size. Zero
683 			 * all non-uptodate buffers and set them uptodate (and
684 			 * dirty?). Note, there aren't any non-uptodate buffers
685 			 * if the page is uptodate.
686 			 * FIXME: For an uptodate page, the buffers may need to
687 			 * be written out because they were not initialized on
688 			 * disk before.
689 			 */
690 			if (!PageUptodate(page)) {
691 				// TODO:
692 				// Zero any non-uptodate buffers up to i_size.
693 				// Set them uptodate and dirty.
694 			}
695 			// TODO:
696 			// Update initialized size in the attribute and in the
697 			// inode (up to i_size).
698 			// Update iblock.
699 			// FIXME: This is inefficient. Try to batch the two
700 			// size changes to happen in one go.
701 			ntfs_error(vol->sb, "Writing beyond initialized size "
702 					"is not supported yet. Sorry.");
703 			err = -EOPNOTSUPP;
704 			break;
705 			// Do NOT set_buffer_new() BUT DO clear buffer range
706 			// outside write request range.
707 			// set_buffer_uptodate() on complete buffers as well as
708 			// set_buffer_dirty().
709 		}
710 
711 		/* No need to map buffers that are already mapped. */
712 		if (buffer_mapped(bh))
713 			continue;
714 
715 		/* Unmapped, dirty buffer. Need to map it. */
716 		bh->b_bdev = vol->sb->s_bdev;
717 
718 		/* Convert block into corresponding vcn and offset. */
719 		vcn = (VCN)block << blocksize_bits;
720 		vcn_ofs = vcn & vol->cluster_size_mask;
721 		vcn >>= vol->cluster_size_bits;
722 		if (!rl) {
723 lock_retry_remap:
724 			down_read(&ni->runlist.lock);
725 			rl = ni->runlist.rl;
726 		}
727 		if (likely(rl != NULL)) {
728 			/* Seek to element containing target vcn. */
729 			while (rl->length && rl[1].vcn <= vcn)
730 				rl++;
731 			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
732 		} else
733 			lcn = LCN_RL_NOT_MAPPED;
734 		/* Successful remap. */
735 		if (lcn >= 0) {
736 			/* Setup buffer head to point to correct block. */
737 			bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
738 					vcn_ofs) >> blocksize_bits;
739 			set_buffer_mapped(bh);
740 			continue;
741 		}
742 		/* It is a hole, need to instantiate it. */
743 		if (lcn == LCN_HOLE) {
744 			u8 *kaddr;
745 			unsigned long *bpos, *bend;
746 
747 			/* Check if the buffer is zero. */
748 			kaddr = kmap_atomic(page, KM_USER0);
749 			bpos = (unsigned long *)(kaddr + bh_offset(bh));
750 			bend = (unsigned long *)((u8*)bpos + blocksize);
751 			do {
752 				if (unlikely(*bpos))
753 					break;
754 			} while (likely(++bpos < bend));
755 			kunmap_atomic(kaddr, KM_USER0);
756 			if (bpos == bend) {
757 				/*
758 				 * Buffer is zero and sparse, no need to write
759 				 * it.
760 				 */
761 				bh->b_blocknr = -1;
762 				clear_buffer_dirty(bh);
763 				continue;
764 			}
765 			// TODO: Instantiate the hole.
766 			// clear_buffer_new(bh);
767 			// unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
768 			ntfs_error(vol->sb, "Writing into sparse regions is "
769 					"not supported yet. Sorry.");
770 			err = -EOPNOTSUPP;
771 			break;
772 		}
773 		/* If first try and runlist unmapped, map and retry. */
774 		if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
775 			is_retry = true;
776 			/*
777 			 * Attempt to map runlist, dropping lock for
778 			 * the duration.
779 			 */
780 			up_read(&ni->runlist.lock);
781 			err = ntfs_map_runlist(ni, vcn);
782 			if (likely(!err))
783 				goto lock_retry_remap;
784 			rl = NULL;
785 		} else if (!rl)
786 			up_read(&ni->runlist.lock);
787 		/*
788 		 * If buffer is outside the runlist, truncate has cut it out
789 		 * of the runlist.  Just clean and clear the buffer and set it
790 		 * uptodate so it can get discarded by the VM.
791 		 */
792 		if (err == -ENOENT || lcn == LCN_ENOENT) {
793 			bh->b_blocknr = -1;
794 			clear_buffer_dirty(bh);
795 			zero_user(page, bh_offset(bh), blocksize);
796 			set_buffer_uptodate(bh);
797 			err = 0;
798 			continue;
799 		}
800 		/* Failed to map the buffer, even after retrying. */
801 		if (!err)
802 			err = -EIO;
803 		bh->b_blocknr = -1;
804 		ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
805 				"attribute type 0x%x, vcn 0x%llx, offset 0x%x "
806 				"because its location on disk could not be "
807 				"determined%s (error code %i).", ni->mft_no,
808 				ni->type, (unsigned long long)vcn,
809 				vcn_ofs, is_retry ? " even after "
810 				"retrying" : "", err);
811 		break;
812 	} while (block++, (bh = bh->b_this_page) != head);
813 
814 	/* Release the lock if we took it. */
815 	if (rl)
816 		up_read(&ni->runlist.lock);
817 
818 	/* For the error case, need to reset bh to the beginning. */
819 	bh = head;
820 
821 	/* Just an optimization, so ->readpage() is not called later. */
822 	if (unlikely(!PageUptodate(page))) {
823 		int uptodate = 1;
824 		do {
825 			if (!buffer_uptodate(bh)) {
826 				uptodate = 0;
827 				bh = head;
828 				break;
829 			}
830 		} while ((bh = bh->b_this_page) != head);
831 		if (uptodate)
832 			SetPageUptodate(page);
833 	}
834 
835 	/* Setup all mapped, dirty buffers for async write i/o. */
836 	do {
837 		if (buffer_mapped(bh) && buffer_dirty(bh)) {
838 			lock_buffer(bh);
839 			if (test_clear_buffer_dirty(bh)) {
840 				BUG_ON(!buffer_uptodate(bh));
841 				mark_buffer_async_write(bh);
842 			} else
843 				unlock_buffer(bh);
844 		} else if (unlikely(err)) {
845 			/*
846 			 * For the error case. The buffer may have been set
847 			 * dirty during attachment to a dirty page.
848 			 */
849 			if (err != -ENOMEM)
850 				clear_buffer_dirty(bh);
851 		}
852 	} while ((bh = bh->b_this_page) != head);
853 
854 	if (unlikely(err)) {
855 		// TODO: Remove the -EOPNOTSUPP check later on...
856 		if (unlikely(err == -EOPNOTSUPP))
857 			err = 0;
858 		else if (err == -ENOMEM) {
859 			ntfs_warning(vol->sb, "Error allocating memory. "
860 					"Redirtying page so we try again "
861 					"later.");
862 			/*
863 			 * Put the page back on mapping->dirty_pages, but
864 			 * leave its buffer's dirty state as-is.
865 			 */
866 			redirty_page_for_writepage(wbc, page);
867 			err = 0;
868 		} else
869 			SetPageError(page);
870 	}
871 
872 	BUG_ON(PageWriteback(page));
873 	set_page_writeback(page);	/* Keeps try_to_free_buffers() away. */
874 
875 	/* Submit the prepared buffers for i/o. */
876 	need_end_writeback = true;
877 	do {
878 		struct buffer_head *next = bh->b_this_page;
879 		if (buffer_async_write(bh)) {
880 			submit_bh(WRITE, bh);
881 			need_end_writeback = false;
882 		}
883 		bh = next;
884 	} while (bh != head);
885 	unlock_page(page);
886 
887 	/* If no i/o was started, need to end_page_writeback(). */
888 	if (unlikely(need_end_writeback))
889 		end_page_writeback(page);
890 
891 	ntfs_debug("Done.");
892 	return err;
893 }
894 
895 /**
896  * ntfs_write_mst_block - write a @page to the backing store
897  * @page:	page cache page to write out
898  * @wbc:	writeback control structure
899  *
900  * This function is for writing pages belonging to non-resident, mst protected
901  * attributes to their backing store.  The only supported attributes are index
902  * allocation and $MFT/$DATA.  Both directory inodes and index inodes are
903  * supported for the index allocation case.
904  *
905  * The page must remain locked for the duration of the write because we apply
906  * the mst fixups, write, and then undo the fixups, so if we were to unlock the
907  * page before undoing the fixups, any other user of the page will see the
908  * page contents as corrupt.
909  *
910  * We clear the page uptodate flag for the duration of the function to ensure
911  * exclusion for the $MFT/$DATA case against someone mapping an mft record we
912  * are about to apply the mst fixups to.
913  *
914  * Return 0 on success and -errno on error.
915  *
916  * Based on ntfs_write_block(), ntfs_mft_writepage(), and
917  * write_mft_record_nolock().
918  */
919 static int ntfs_write_mst_block(struct page *page,
920 		struct writeback_control *wbc)
921 {
922 	sector_t block, dblock, rec_block;
923 	struct inode *vi = page->mapping->host;
924 	ntfs_inode *ni = NTFS_I(vi);
925 	ntfs_volume *vol = ni->vol;
926 	u8 *kaddr;
927 	unsigned int rec_size = ni->itype.index.block_size;
928 	ntfs_inode *locked_nis[PAGE_CACHE_SIZE / rec_size];
929 	struct buffer_head *bh, *head, *tbh, *rec_start_bh;
930 	struct buffer_head *bhs[MAX_BUF_PER_PAGE];
931 	runlist_element *rl;
932 	int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2;
933 	unsigned bh_size, rec_size_bits;
934 	bool sync, is_mft, page_is_dirty, rec_is_dirty;
935 	unsigned char bh_size_bits;
936 
937 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
938 			"0x%lx.", vi->i_ino, ni->type, page->index);
939 	BUG_ON(!NInoNonResident(ni));
940 	BUG_ON(!NInoMstProtected(ni));
941 	is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
942 	/*
943 	 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
944 	 * in its page cache were to be marked dirty.  However this should
945 	 * never happen with the current driver and considering we do not
946 	 * handle this case here we do want to BUG(), at least for now.
947 	 */
948 	BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
949 			(NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
950 	bh_size = vol->sb->s_blocksize;
951 	bh_size_bits = vol->sb->s_blocksize_bits;
952 	max_bhs = PAGE_CACHE_SIZE / bh_size;
953 	BUG_ON(!max_bhs);
954 	BUG_ON(max_bhs > MAX_BUF_PER_PAGE);
955 
956 	/* Were we called for sync purposes? */
957 	sync = (wbc->sync_mode == WB_SYNC_ALL);
958 
959 	/* Make sure we have mapped buffers. */
960 	bh = head = page_buffers(page);
961 	BUG_ON(!bh);
962 
963 	rec_size_bits = ni->itype.index.block_size_bits;
964 	BUG_ON(!(PAGE_CACHE_SIZE >> rec_size_bits));
965 	bhs_per_rec = rec_size >> bh_size_bits;
966 	BUG_ON(!bhs_per_rec);
967 
968 	/* The first block in the page. */
969 	rec_block = block = (sector_t)page->index <<
970 			(PAGE_CACHE_SHIFT - bh_size_bits);
971 
972 	/* The first out of bounds block for the data size. */
973 	dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits;
974 
975 	rl = NULL;
976 	err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
977 	page_is_dirty = rec_is_dirty = false;
978 	rec_start_bh = NULL;
979 	do {
980 		bool is_retry = false;
981 
982 		if (likely(block < rec_block)) {
983 			if (unlikely(block >= dblock)) {
984 				clear_buffer_dirty(bh);
985 				set_buffer_uptodate(bh);
986 				continue;
987 			}
988 			/*
989 			 * This block is not the first one in the record.  We
990 			 * ignore the buffer's dirty state because we could
991 			 * have raced with a parallel mark_ntfs_record_dirty().
992 			 */
993 			if (!rec_is_dirty)
994 				continue;
995 			if (unlikely(err2)) {
996 				if (err2 != -ENOMEM)
997 					clear_buffer_dirty(bh);
998 				continue;
999 			}
1000 		} else /* if (block == rec_block) */ {
1001 			BUG_ON(block > rec_block);
1002 			/* This block is the first one in the record. */
1003 			rec_block += bhs_per_rec;
1004 			err2 = 0;
1005 			if (unlikely(block >= dblock)) {
1006 				clear_buffer_dirty(bh);
1007 				continue;
1008 			}
1009 			if (!buffer_dirty(bh)) {
1010 				/* Clean records are not written out. */
1011 				rec_is_dirty = false;
1012 				continue;
1013 			}
1014 			rec_is_dirty = true;
1015 			rec_start_bh = bh;
1016 		}
1017 		/* Need to map the buffer if it is not mapped already. */
1018 		if (unlikely(!buffer_mapped(bh))) {
1019 			VCN vcn;
1020 			LCN lcn;
1021 			unsigned int vcn_ofs;
1022 
1023 			bh->b_bdev = vol->sb->s_bdev;
1024 			/* Obtain the vcn and offset of the current block. */
1025 			vcn = (VCN)block << bh_size_bits;
1026 			vcn_ofs = vcn & vol->cluster_size_mask;
1027 			vcn >>= vol->cluster_size_bits;
1028 			if (!rl) {
1029 lock_retry_remap:
1030 				down_read(&ni->runlist.lock);
1031 				rl = ni->runlist.rl;
1032 			}
1033 			if (likely(rl != NULL)) {
1034 				/* Seek to element containing target vcn. */
1035 				while (rl->length && rl[1].vcn <= vcn)
1036 					rl++;
1037 				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
1038 			} else
1039 				lcn = LCN_RL_NOT_MAPPED;
1040 			/* Successful remap. */
1041 			if (likely(lcn >= 0)) {
1042 				/* Setup buffer head to correct block. */
1043 				bh->b_blocknr = ((lcn <<
1044 						vol->cluster_size_bits) +
1045 						vcn_ofs) >> bh_size_bits;
1046 				set_buffer_mapped(bh);
1047 			} else {
1048 				/*
1049 				 * Remap failed.  Retry to map the runlist once
1050 				 * unless we are working on $MFT which always
1051 				 * has the whole of its runlist in memory.
1052 				 */
1053 				if (!is_mft && !is_retry &&
1054 						lcn == LCN_RL_NOT_MAPPED) {
1055 					is_retry = true;
1056 					/*
1057 					 * Attempt to map runlist, dropping
1058 					 * lock for the duration.
1059 					 */
1060 					up_read(&ni->runlist.lock);
1061 					err2 = ntfs_map_runlist(ni, vcn);
1062 					if (likely(!err2))
1063 						goto lock_retry_remap;
1064 					if (err2 == -ENOMEM)
1065 						page_is_dirty = true;
1066 					lcn = err2;
1067 				} else {
1068 					err2 = -EIO;
1069 					if (!rl)
1070 						up_read(&ni->runlist.lock);
1071 				}
1072 				/* Hard error.  Abort writing this record. */
1073 				if (!err || err == -ENOMEM)
1074 					err = err2;
1075 				bh->b_blocknr = -1;
1076 				ntfs_error(vol->sb, "Cannot write ntfs record "
1077 						"0x%llx (inode 0x%lx, "
1078 						"attribute type 0x%x) because "
1079 						"its location on disk could "
1080 						"not be determined (error "
1081 						"code %lli).",
1082 						(long long)block <<
1083 						bh_size_bits >>
1084 						vol->mft_record_size_bits,
1085 						ni->mft_no, ni->type,
1086 						(long long)lcn);
1087 				/*
1088 				 * If this is not the first buffer, remove the
1089 				 * buffers in this record from the list of
1090 				 * buffers to write and clear their dirty bit
1091 				 * if not error -ENOMEM.
1092 				 */
1093 				if (rec_start_bh != bh) {
1094 					while (bhs[--nr_bhs] != rec_start_bh)
1095 						;
1096 					if (err2 != -ENOMEM) {
1097 						do {
1098 							clear_buffer_dirty(
1099 								rec_start_bh);
1100 						} while ((rec_start_bh =
1101 								rec_start_bh->
1102 								b_this_page) !=
1103 								bh);
1104 					}
1105 				}
1106 				continue;
1107 			}
1108 		}
1109 		BUG_ON(!buffer_uptodate(bh));
1110 		BUG_ON(nr_bhs >= max_bhs);
1111 		bhs[nr_bhs++] = bh;
1112 	} while (block++, (bh = bh->b_this_page) != head);
1113 	if (unlikely(rl))
1114 		up_read(&ni->runlist.lock);
1115 	/* If there were no dirty buffers, we are done. */
1116 	if (!nr_bhs)
1117 		goto done;
1118 	/* Map the page so we can access its contents. */
1119 	kaddr = kmap(page);
1120 	/* Clear the page uptodate flag whilst the mst fixups are applied. */
1121 	BUG_ON(!PageUptodate(page));
1122 	ClearPageUptodate(page);
1123 	for (i = 0; i < nr_bhs; i++) {
1124 		unsigned int ofs;
1125 
1126 		/* Skip buffers which are not at the beginning of records. */
1127 		if (i % bhs_per_rec)
1128 			continue;
1129 		tbh = bhs[i];
1130 		ofs = bh_offset(tbh);
1131 		if (is_mft) {
1132 			ntfs_inode *tni;
1133 			unsigned long mft_no;
1134 
1135 			/* Get the mft record number. */
1136 			mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1137 					>> rec_size_bits;
1138 			/* Check whether to write this mft record. */
1139 			tni = NULL;
1140 			if (!ntfs_may_write_mft_record(vol, mft_no,
1141 					(MFT_RECORD*)(kaddr + ofs), &tni)) {
1142 				/*
1143 				 * The record should not be written.  This
1144 				 * means we need to redirty the page before
1145 				 * returning.
1146 				 */
1147 				page_is_dirty = true;
1148 				/*
1149 				 * Remove the buffers in this mft record from
1150 				 * the list of buffers to write.
1151 				 */
1152 				do {
1153 					bhs[i] = NULL;
1154 				} while (++i % bhs_per_rec);
1155 				continue;
1156 			}
1157 			/*
1158 			 * The record should be written.  If a locked ntfs
1159 			 * inode was returned, add it to the array of locked
1160 			 * ntfs inodes.
1161 			 */
1162 			if (tni)
1163 				locked_nis[nr_locked_nis++] = tni;
1164 		}
1165 		/* Apply the mst protection fixups. */
1166 		err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
1167 				rec_size);
1168 		if (unlikely(err2)) {
1169 			if (!err || err == -ENOMEM)
1170 				err = -EIO;
1171 			ntfs_error(vol->sb, "Failed to apply mst fixups "
1172 					"(inode 0x%lx, attribute type 0x%x, "
1173 					"page index 0x%lx, page offset 0x%x)!"
1174 					"  Unmount and run chkdsk.", vi->i_ino,
1175 					ni->type, page->index, ofs);
1176 			/*
1177 			 * Mark all the buffers in this record clean as we do
1178 			 * not want to write corrupt data to disk.
1179 			 */
1180 			do {
1181 				clear_buffer_dirty(bhs[i]);
1182 				bhs[i] = NULL;
1183 			} while (++i % bhs_per_rec);
1184 			continue;
1185 		}
1186 		nr_recs++;
1187 	}
1188 	/* If no records are to be written out, we are done. */
1189 	if (!nr_recs)
1190 		goto unm_done;
1191 	flush_dcache_page(page);
1192 	/* Lock buffers and start synchronous write i/o on them. */
1193 	for (i = 0; i < nr_bhs; i++) {
1194 		tbh = bhs[i];
1195 		if (!tbh)
1196 			continue;
1197 		if (!trylock_buffer(tbh))
1198 			BUG();
1199 		/* The buffer dirty state is now irrelevant, just clean it. */
1200 		clear_buffer_dirty(tbh);
1201 		BUG_ON(!buffer_uptodate(tbh));
1202 		BUG_ON(!buffer_mapped(tbh));
1203 		get_bh(tbh);
1204 		tbh->b_end_io = end_buffer_write_sync;
1205 		submit_bh(WRITE, tbh);
1206 	}
1207 	/* Synchronize the mft mirror now if not @sync. */
1208 	if (is_mft && !sync)
1209 		goto do_mirror;
1210 do_wait:
1211 	/* Wait on i/o completion of buffers. */
1212 	for (i = 0; i < nr_bhs; i++) {
1213 		tbh = bhs[i];
1214 		if (!tbh)
1215 			continue;
1216 		wait_on_buffer(tbh);
1217 		if (unlikely(!buffer_uptodate(tbh))) {
1218 			ntfs_error(vol->sb, "I/O error while writing ntfs "
1219 					"record buffer (inode 0x%lx, "
1220 					"attribute type 0x%x, page index "
1221 					"0x%lx, page offset 0x%lx)!  Unmount "
1222 					"and run chkdsk.", vi->i_ino, ni->type,
1223 					page->index, bh_offset(tbh));
1224 			if (!err || err == -ENOMEM)
1225 				err = -EIO;
1226 			/*
1227 			 * Set the buffer uptodate so the page and buffer
1228 			 * states do not become out of sync.
1229 			 */
1230 			set_buffer_uptodate(tbh);
1231 		}
1232 	}
1233 	/* If @sync, now synchronize the mft mirror. */
1234 	if (is_mft && sync) {
1235 do_mirror:
1236 		for (i = 0; i < nr_bhs; i++) {
1237 			unsigned long mft_no;
1238 			unsigned int ofs;
1239 
1240 			/*
1241 			 * Skip buffers which are not at the beginning of
1242 			 * records.
1243 			 */
1244 			if (i % bhs_per_rec)
1245 				continue;
1246 			tbh = bhs[i];
1247 			/* Skip removed buffers (and hence records). */
1248 			if (!tbh)
1249 				continue;
1250 			ofs = bh_offset(tbh);
1251 			/* Get the mft record number. */
1252 			mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1253 					>> rec_size_bits;
1254 			if (mft_no < vol->mftmirr_size)
1255 				ntfs_sync_mft_mirror(vol, mft_no,
1256 						(MFT_RECORD*)(kaddr + ofs),
1257 						sync);
1258 		}
1259 		if (!sync)
1260 			goto do_wait;
1261 	}
1262 	/* Remove the mst protection fixups again. */
1263 	for (i = 0; i < nr_bhs; i++) {
1264 		if (!(i % bhs_per_rec)) {
1265 			tbh = bhs[i];
1266 			if (!tbh)
1267 				continue;
1268 			post_write_mst_fixup((NTFS_RECORD*)(kaddr +
1269 					bh_offset(tbh)));
1270 		}
1271 	}
1272 	flush_dcache_page(page);
1273 unm_done:
1274 	/* Unlock any locked inodes. */
1275 	while (nr_locked_nis-- > 0) {
1276 		ntfs_inode *tni, *base_tni;
1277 
1278 		tni = locked_nis[nr_locked_nis];
1279 		/* Get the base inode. */
1280 		mutex_lock(&tni->extent_lock);
1281 		if (tni->nr_extents >= 0)
1282 			base_tni = tni;
1283 		else {
1284 			base_tni = tni->ext.base_ntfs_ino;
1285 			BUG_ON(!base_tni);
1286 		}
1287 		mutex_unlock(&tni->extent_lock);
1288 		ntfs_debug("Unlocking %s inode 0x%lx.",
1289 				tni == base_tni ? "base" : "extent",
1290 				tni->mft_no);
1291 		mutex_unlock(&tni->mrec_lock);
1292 		atomic_dec(&tni->count);
1293 		iput(VFS_I(base_tni));
1294 	}
1295 	SetPageUptodate(page);
1296 	kunmap(page);
1297 done:
1298 	if (unlikely(err && err != -ENOMEM)) {
1299 		/*
1300 		 * Set page error if there is only one ntfs record in the page.
1301 		 * Otherwise we would loose per-record granularity.
1302 		 */
1303 		if (ni->itype.index.block_size == PAGE_CACHE_SIZE)
1304 			SetPageError(page);
1305 		NVolSetErrors(vol);
1306 	}
1307 	if (page_is_dirty) {
1308 		ntfs_debug("Page still contains one or more dirty ntfs "
1309 				"records.  Redirtying the page starting at "
1310 				"record 0x%lx.", page->index <<
1311 				(PAGE_CACHE_SHIFT - rec_size_bits));
1312 		redirty_page_for_writepage(wbc, page);
1313 		unlock_page(page);
1314 	} else {
1315 		/*
1316 		 * Keep the VM happy.  This must be done otherwise the
1317 		 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1318 		 * the page is clean.
1319 		 */
1320 		BUG_ON(PageWriteback(page));
1321 		set_page_writeback(page);
1322 		unlock_page(page);
1323 		end_page_writeback(page);
1324 	}
1325 	if (likely(!err))
1326 		ntfs_debug("Done.");
1327 	return err;
1328 }
1329 
1330 /**
1331  * ntfs_writepage - write a @page to the backing store
1332  * @page:	page cache page to write out
1333  * @wbc:	writeback control structure
1334  *
1335  * This is called from the VM when it wants to have a dirty ntfs page cache
1336  * page cleaned.  The VM has already locked the page and marked it clean.
1337  *
1338  * For non-resident attributes, ntfs_writepage() writes the @page by calling
1339  * the ntfs version of the generic block_write_full_page() function,
1340  * ntfs_write_block(), which in turn if necessary creates and writes the
1341  * buffers associated with the page asynchronously.
1342  *
1343  * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1344  * the data to the mft record (which at this stage is most likely in memory).
1345  * The mft record is then marked dirty and written out asynchronously via the
1346  * vfs inode dirty code path for the inode the mft record belongs to or via the
1347  * vm page dirty code path for the page the mft record is in.
1348  *
1349  * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1350  *
1351  * Return 0 on success and -errno on error.
1352  */
1353 static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
1354 {
1355 	loff_t i_size;
1356 	struct inode *vi = page->mapping->host;
1357 	ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1358 	char *addr;
1359 	ntfs_attr_search_ctx *ctx = NULL;
1360 	MFT_RECORD *m = NULL;
1361 	u32 attr_len;
1362 	int err;
1363 
1364 retry_writepage:
1365 	BUG_ON(!PageLocked(page));
1366 	i_size = i_size_read(vi);
1367 	/* Is the page fully outside i_size? (truncate in progress) */
1368 	if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >>
1369 			PAGE_CACHE_SHIFT)) {
1370 		/*
1371 		 * The page may have dirty, unmapped buffers.  Make them
1372 		 * freeable here, so the page does not leak.
1373 		 */
1374 		block_invalidatepage(page, 0);
1375 		unlock_page(page);
1376 		ntfs_debug("Write outside i_size - truncated?");
1377 		return 0;
1378 	}
1379 	/*
1380 	 * Only $DATA attributes can be encrypted and only unnamed $DATA
1381 	 * attributes can be compressed.  Index root can have the flags set but
1382 	 * this means to create compressed/encrypted files, not that the
1383 	 * attribute is compressed/encrypted.  Note we need to check for
1384 	 * AT_INDEX_ALLOCATION since this is the type of both directory and
1385 	 * index inodes.
1386 	 */
1387 	if (ni->type != AT_INDEX_ALLOCATION) {
1388 		/* If file is encrypted, deny access, just like NT4. */
1389 		if (NInoEncrypted(ni)) {
1390 			unlock_page(page);
1391 			BUG_ON(ni->type != AT_DATA);
1392 			ntfs_debug("Denying write access to encrypted file.");
1393 			return -EACCES;
1394 		}
1395 		/* Compressed data streams are handled in compress.c. */
1396 		if (NInoNonResident(ni) && NInoCompressed(ni)) {
1397 			BUG_ON(ni->type != AT_DATA);
1398 			BUG_ON(ni->name_len);
1399 			// TODO: Implement and replace this with
1400 			// return ntfs_write_compressed_block(page);
1401 			unlock_page(page);
1402 			ntfs_error(vi->i_sb, "Writing to compressed files is "
1403 					"not supported yet.  Sorry.");
1404 			return -EOPNOTSUPP;
1405 		}
1406 		// TODO: Implement and remove this check.
1407 		if (NInoNonResident(ni) && NInoSparse(ni)) {
1408 			unlock_page(page);
1409 			ntfs_error(vi->i_sb, "Writing to sparse files is not "
1410 					"supported yet.  Sorry.");
1411 			return -EOPNOTSUPP;
1412 		}
1413 	}
1414 	/* NInoNonResident() == NInoIndexAllocPresent() */
1415 	if (NInoNonResident(ni)) {
1416 		/* We have to zero every time due to mmap-at-end-of-file. */
1417 		if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) {
1418 			/* The page straddles i_size. */
1419 			unsigned int ofs = i_size & ~PAGE_CACHE_MASK;
1420 			zero_user_segment(page, ofs, PAGE_CACHE_SIZE);
1421 		}
1422 		/* Handle mst protected attributes. */
1423 		if (NInoMstProtected(ni))
1424 			return ntfs_write_mst_block(page, wbc);
1425 		/* Normal, non-resident data stream. */
1426 		return ntfs_write_block(page, wbc);
1427 	}
1428 	/*
1429 	 * Attribute is resident, implying it is not compressed, encrypted, or
1430 	 * mst protected.  This also means the attribute is smaller than an mft
1431 	 * record and hence smaller than a page, so can simply return error on
1432 	 * any pages with index above 0.  Note the attribute can actually be
1433 	 * marked compressed but if it is resident the actual data is not
1434 	 * compressed so we are ok to ignore the compressed flag here.
1435 	 */
1436 	BUG_ON(page_has_buffers(page));
1437 	BUG_ON(!PageUptodate(page));
1438 	if (unlikely(page->index > 0)) {
1439 		ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0.  "
1440 				"Aborting write.", page->index);
1441 		BUG_ON(PageWriteback(page));
1442 		set_page_writeback(page);
1443 		unlock_page(page);
1444 		end_page_writeback(page);
1445 		return -EIO;
1446 	}
1447 	if (!NInoAttr(ni))
1448 		base_ni = ni;
1449 	else
1450 		base_ni = ni->ext.base_ntfs_ino;
1451 	/* Map, pin, and lock the mft record. */
1452 	m = map_mft_record(base_ni);
1453 	if (IS_ERR(m)) {
1454 		err = PTR_ERR(m);
1455 		m = NULL;
1456 		ctx = NULL;
1457 		goto err_out;
1458 	}
1459 	/*
1460 	 * If a parallel write made the attribute non-resident, drop the mft
1461 	 * record and retry the writepage.
1462 	 */
1463 	if (unlikely(NInoNonResident(ni))) {
1464 		unmap_mft_record(base_ni);
1465 		goto retry_writepage;
1466 	}
1467 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1468 	if (unlikely(!ctx)) {
1469 		err = -ENOMEM;
1470 		goto err_out;
1471 	}
1472 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1473 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1474 	if (unlikely(err))
1475 		goto err_out;
1476 	/*
1477 	 * Keep the VM happy.  This must be done otherwise the radix-tree tag
1478 	 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1479 	 */
1480 	BUG_ON(PageWriteback(page));
1481 	set_page_writeback(page);
1482 	unlock_page(page);
1483 	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
1484 	i_size = i_size_read(vi);
1485 	if (unlikely(attr_len > i_size)) {
1486 		/* Race with shrinking truncate or a failed truncate. */
1487 		attr_len = i_size;
1488 		/*
1489 		 * If the truncate failed, fix it up now.  If a concurrent
1490 		 * truncate, we do its job, so it does not have to do anything.
1491 		 */
1492 		err = ntfs_resident_attr_value_resize(ctx->mrec, ctx->attr,
1493 				attr_len);
1494 		/* Shrinking cannot fail. */
1495 		BUG_ON(err);
1496 	}
1497 	addr = kmap_atomic(page, KM_USER0);
1498 	/* Copy the data from the page to the mft record. */
1499 	memcpy((u8*)ctx->attr +
1500 			le16_to_cpu(ctx->attr->data.resident.value_offset),
1501 			addr, attr_len);
1502 	/* Zero out of bounds area in the page cache page. */
1503 	memset(addr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1504 	kunmap_atomic(addr, KM_USER0);
1505 	flush_dcache_page(page);
1506 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1507 	/* We are done with the page. */
1508 	end_page_writeback(page);
1509 	/* Finally, mark the mft record dirty, so it gets written back. */
1510 	mark_mft_record_dirty(ctx->ntfs_ino);
1511 	ntfs_attr_put_search_ctx(ctx);
1512 	unmap_mft_record(base_ni);
1513 	return 0;
1514 err_out:
1515 	if (err == -ENOMEM) {
1516 		ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
1517 				"page so we try again later.");
1518 		/*
1519 		 * Put the page back on mapping->dirty_pages, but leave its
1520 		 * buffers' dirty state as-is.
1521 		 */
1522 		redirty_page_for_writepage(wbc, page);
1523 		err = 0;
1524 	} else {
1525 		ntfs_error(vi->i_sb, "Resident attribute write failed with "
1526 				"error %i.", err);
1527 		SetPageError(page);
1528 		NVolSetErrors(ni->vol);
1529 	}
1530 	unlock_page(page);
1531 	if (ctx)
1532 		ntfs_attr_put_search_ctx(ctx);
1533 	if (m)
1534 		unmap_mft_record(base_ni);
1535 	return err;
1536 }
1537 
1538 #endif	/* NTFS_RW */
1539 
1540 /**
1541  * ntfs_aops - general address space operations for inodes and attributes
1542  */
1543 const struct address_space_operations ntfs_aops = {
1544 	.readpage	= ntfs_readpage,	/* Fill page with data. */
1545 	.sync_page	= block_sync_page,	/* Currently, just unplugs the
1546 						   disk request queue. */
1547 #ifdef NTFS_RW
1548 	.writepage	= ntfs_writepage,	/* Write dirty page to disk. */
1549 #endif /* NTFS_RW */
1550 	.migratepage	= buffer_migrate_page,	/* Move a page cache page from
1551 						   one physical page to an
1552 						   other. */
1553 };
1554 
1555 /**
1556  * ntfs_mst_aops - general address space operations for mst protecteed inodes
1557  *		   and attributes
1558  */
1559 const struct address_space_operations ntfs_mst_aops = {
1560 	.readpage	= ntfs_readpage,	/* Fill page with data. */
1561 	.sync_page	= block_sync_page,	/* Currently, just unplugs the
1562 						   disk request queue. */
1563 #ifdef NTFS_RW
1564 	.writepage	= ntfs_writepage,	/* Write dirty page to disk. */
1565 	.set_page_dirty	= __set_page_dirty_nobuffers,	/* Set the page dirty
1566 						   without touching the buffers
1567 						   belonging to the page. */
1568 #endif /* NTFS_RW */
1569 	.migratepage	= buffer_migrate_page,	/* Move a page cache page from
1570 						   one physical page to an
1571 						   other. */
1572 };
1573 
1574 #ifdef NTFS_RW
1575 
1576 /**
1577  * mark_ntfs_record_dirty - mark an ntfs record dirty
1578  * @page:	page containing the ntfs record to mark dirty
1579  * @ofs:	byte offset within @page at which the ntfs record begins
1580  *
1581  * Set the buffers and the page in which the ntfs record is located dirty.
1582  *
1583  * The latter also marks the vfs inode the ntfs record belongs to dirty
1584  * (I_DIRTY_PAGES only).
1585  *
1586  * If the page does not have buffers, we create them and set them uptodate.
1587  * The page may not be locked which is why we need to handle the buffers under
1588  * the mapping->private_lock.  Once the buffers are marked dirty we no longer
1589  * need the lock since try_to_free_buffers() does not free dirty buffers.
1590  */
1591 void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
1592 	struct address_space *mapping = page->mapping;
1593 	ntfs_inode *ni = NTFS_I(mapping->host);
1594 	struct buffer_head *bh, *head, *buffers_to_free = NULL;
1595 	unsigned int end, bh_size, bh_ofs;
1596 
1597 	BUG_ON(!PageUptodate(page));
1598 	end = ofs + ni->itype.index.block_size;
1599 	bh_size = VFS_I(ni)->i_sb->s_blocksize;
1600 	spin_lock(&mapping->private_lock);
1601 	if (unlikely(!page_has_buffers(page))) {
1602 		spin_unlock(&mapping->private_lock);
1603 		bh = head = alloc_page_buffers(page, bh_size, 1);
1604 		spin_lock(&mapping->private_lock);
1605 		if (likely(!page_has_buffers(page))) {
1606 			struct buffer_head *tail;
1607 
1608 			do {
1609 				set_buffer_uptodate(bh);
1610 				tail = bh;
1611 				bh = bh->b_this_page;
1612 			} while (bh);
1613 			tail->b_this_page = head;
1614 			attach_page_buffers(page, head);
1615 		} else
1616 			buffers_to_free = bh;
1617 	}
1618 	bh = head = page_buffers(page);
1619 	BUG_ON(!bh);
1620 	do {
1621 		bh_ofs = bh_offset(bh);
1622 		if (bh_ofs + bh_size <= ofs)
1623 			continue;
1624 		if (unlikely(bh_ofs >= end))
1625 			break;
1626 		set_buffer_dirty(bh);
1627 	} while ((bh = bh->b_this_page) != head);
1628 	spin_unlock(&mapping->private_lock);
1629 	__set_page_dirty_nobuffers(page);
1630 	if (unlikely(buffers_to_free)) {
1631 		do {
1632 			bh = buffers_to_free->b_this_page;
1633 			free_buffer_head(buffers_to_free);
1634 			buffers_to_free = bh;
1635 		} while (buffers_to_free);
1636 	}
1637 }
1638 
1639 #endif /* NTFS_RW */
1640