1 /** 2 * aops.c - NTFS kernel address space operations and page cache handling. 3 * Part of the Linux-NTFS project. 4 * 5 * Copyright (c) 2001-2007 Anton Altaparmakov 6 * Copyright (c) 2002 Richard Russon 7 * 8 * This program/include file is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as published 10 * by the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program/include file is distributed in the hope that it will be 14 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program (in the main directory of the Linux-NTFS 20 * distribution in the file COPYING); if not, write to the Free Software 21 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 */ 23 24 #include <linux/errno.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/pagemap.h> 28 #include <linux/swap.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/bit_spinlock.h> 32 33 #include "aops.h" 34 #include "attrib.h" 35 #include "debug.h" 36 #include "inode.h" 37 #include "mft.h" 38 #include "runlist.h" 39 #include "types.h" 40 #include "ntfs.h" 41 42 /** 43 * ntfs_end_buffer_async_read - async io completion for reading attributes 44 * @bh: buffer head on which io is completed 45 * @uptodate: whether @bh is now uptodate or not 46 * 47 * Asynchronous I/O completion handler for reading pages belonging to the 48 * attribute address space of an inode. The inodes can either be files or 49 * directories or they can be fake inodes describing some attribute. 50 * 51 * If NInoMstProtected(), perform the post read mst fixups when all IO on the 52 * page has been completed and mark the page uptodate or set the error bit on 53 * the page. To determine the size of the records that need fixing up, we 54 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs 55 * record size, and index_block_size_bits, to the log(base 2) of the ntfs 56 * record size. 57 */ 58 static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate) 59 { 60 unsigned long flags; 61 struct buffer_head *first, *tmp; 62 struct page *page; 63 struct inode *vi; 64 ntfs_inode *ni; 65 int page_uptodate = 1; 66 67 page = bh->b_page; 68 vi = page->mapping->host; 69 ni = NTFS_I(vi); 70 71 if (likely(uptodate)) { 72 loff_t i_size; 73 s64 file_ofs, init_size; 74 75 set_buffer_uptodate(bh); 76 77 file_ofs = ((s64)page->index << PAGE_CACHE_SHIFT) + 78 bh_offset(bh); 79 read_lock_irqsave(&ni->size_lock, flags); 80 init_size = ni->initialized_size; 81 i_size = i_size_read(vi); 82 read_unlock_irqrestore(&ni->size_lock, flags); 83 if (unlikely(init_size > i_size)) { 84 /* Race with shrinking truncate. */ 85 init_size = i_size; 86 } 87 /* Check for the current buffer head overflowing. */ 88 if (unlikely(file_ofs + bh->b_size > init_size)) { 89 int ofs; 90 void *kaddr; 91 92 ofs = 0; 93 if (file_ofs < init_size) 94 ofs = init_size - file_ofs; 95 local_irq_save(flags); 96 kaddr = kmap_atomic(page, KM_BIO_SRC_IRQ); 97 memset(kaddr + bh_offset(bh) + ofs, 0, 98 bh->b_size - ofs); 99 flush_dcache_page(page); 100 kunmap_atomic(kaddr, KM_BIO_SRC_IRQ); 101 local_irq_restore(flags); 102 } 103 } else { 104 clear_buffer_uptodate(bh); 105 SetPageError(page); 106 ntfs_error(ni->vol->sb, "Buffer I/O error, logical block " 107 "0x%llx.", (unsigned long long)bh->b_blocknr); 108 } 109 first = page_buffers(page); 110 local_irq_save(flags); 111 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 112 clear_buffer_async_read(bh); 113 unlock_buffer(bh); 114 tmp = bh; 115 do { 116 if (!buffer_uptodate(tmp)) 117 page_uptodate = 0; 118 if (buffer_async_read(tmp)) { 119 if (likely(buffer_locked(tmp))) 120 goto still_busy; 121 /* Async buffers must be locked. */ 122 BUG(); 123 } 124 tmp = tmp->b_this_page; 125 } while (tmp != bh); 126 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 127 local_irq_restore(flags); 128 /* 129 * If none of the buffers had errors then we can set the page uptodate, 130 * but we first have to perform the post read mst fixups, if the 131 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true. 132 * Note we ignore fixup errors as those are detected when 133 * map_mft_record() is called which gives us per record granularity 134 * rather than per page granularity. 135 */ 136 if (!NInoMstProtected(ni)) { 137 if (likely(page_uptodate && !PageError(page))) 138 SetPageUptodate(page); 139 } else { 140 u8 *kaddr; 141 unsigned int i, recs; 142 u32 rec_size; 143 144 rec_size = ni->itype.index.block_size; 145 recs = PAGE_CACHE_SIZE / rec_size; 146 /* Should have been verified before we got here... */ 147 BUG_ON(!recs); 148 local_irq_save(flags); 149 kaddr = kmap_atomic(page, KM_BIO_SRC_IRQ); 150 for (i = 0; i < recs; i++) 151 post_read_mst_fixup((NTFS_RECORD*)(kaddr + 152 i * rec_size), rec_size); 153 kunmap_atomic(kaddr, KM_BIO_SRC_IRQ); 154 local_irq_restore(flags); 155 flush_dcache_page(page); 156 if (likely(page_uptodate && !PageError(page))) 157 SetPageUptodate(page); 158 } 159 unlock_page(page); 160 return; 161 still_busy: 162 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 163 local_irq_restore(flags); 164 return; 165 } 166 167 /** 168 * ntfs_read_block - fill a @page of an address space with data 169 * @page: page cache page to fill with data 170 * 171 * Fill the page @page of the address space belonging to the @page->host inode. 172 * We read each buffer asynchronously and when all buffers are read in, our io 173 * completion handler ntfs_end_buffer_read_async(), if required, automatically 174 * applies the mst fixups to the page before finally marking it uptodate and 175 * unlocking it. 176 * 177 * We only enforce allocated_size limit because i_size is checked for in 178 * generic_file_read(). 179 * 180 * Return 0 on success and -errno on error. 181 * 182 * Contains an adapted version of fs/buffer.c::block_read_full_page(). 183 */ 184 static int ntfs_read_block(struct page *page) 185 { 186 loff_t i_size; 187 VCN vcn; 188 LCN lcn; 189 s64 init_size; 190 struct inode *vi; 191 ntfs_inode *ni; 192 ntfs_volume *vol; 193 runlist_element *rl; 194 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 195 sector_t iblock, lblock, zblock; 196 unsigned long flags; 197 unsigned int blocksize, vcn_ofs; 198 int i, nr; 199 unsigned char blocksize_bits; 200 201 vi = page->mapping->host; 202 ni = NTFS_I(vi); 203 vol = ni->vol; 204 205 /* $MFT/$DATA must have its complete runlist in memory at all times. */ 206 BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni)); 207 208 blocksize = vol->sb->s_blocksize; 209 blocksize_bits = vol->sb->s_blocksize_bits; 210 211 if (!page_has_buffers(page)) { 212 create_empty_buffers(page, blocksize, 0); 213 if (unlikely(!page_has_buffers(page))) { 214 unlock_page(page); 215 return -ENOMEM; 216 } 217 } 218 bh = head = page_buffers(page); 219 BUG_ON(!bh); 220 221 /* 222 * We may be racing with truncate. To avoid some of the problems we 223 * now take a snapshot of the various sizes and use those for the whole 224 * of the function. In case of an extending truncate it just means we 225 * may leave some buffers unmapped which are now allocated. This is 226 * not a problem since these buffers will just get mapped when a write 227 * occurs. In case of a shrinking truncate, we will detect this later 228 * on due to the runlist being incomplete and if the page is being 229 * fully truncated, truncate will throw it away as soon as we unlock 230 * it so no need to worry what we do with it. 231 */ 232 iblock = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits); 233 read_lock_irqsave(&ni->size_lock, flags); 234 lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits; 235 init_size = ni->initialized_size; 236 i_size = i_size_read(vi); 237 read_unlock_irqrestore(&ni->size_lock, flags); 238 if (unlikely(init_size > i_size)) { 239 /* Race with shrinking truncate. */ 240 init_size = i_size; 241 } 242 zblock = (init_size + blocksize - 1) >> blocksize_bits; 243 244 /* Loop through all the buffers in the page. */ 245 rl = NULL; 246 nr = i = 0; 247 do { 248 int err = 0; 249 250 if (unlikely(buffer_uptodate(bh))) 251 continue; 252 if (unlikely(buffer_mapped(bh))) { 253 arr[nr++] = bh; 254 continue; 255 } 256 bh->b_bdev = vol->sb->s_bdev; 257 /* Is the block within the allowed limits? */ 258 if (iblock < lblock) { 259 bool is_retry = false; 260 261 /* Convert iblock into corresponding vcn and offset. */ 262 vcn = (VCN)iblock << blocksize_bits >> 263 vol->cluster_size_bits; 264 vcn_ofs = ((VCN)iblock << blocksize_bits) & 265 vol->cluster_size_mask; 266 if (!rl) { 267 lock_retry_remap: 268 down_read(&ni->runlist.lock); 269 rl = ni->runlist.rl; 270 } 271 if (likely(rl != NULL)) { 272 /* Seek to element containing target vcn. */ 273 while (rl->length && rl[1].vcn <= vcn) 274 rl++; 275 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 276 } else 277 lcn = LCN_RL_NOT_MAPPED; 278 /* Successful remap. */ 279 if (lcn >= 0) { 280 /* Setup buffer head to correct block. */ 281 bh->b_blocknr = ((lcn << vol->cluster_size_bits) 282 + vcn_ofs) >> blocksize_bits; 283 set_buffer_mapped(bh); 284 /* Only read initialized data blocks. */ 285 if (iblock < zblock) { 286 arr[nr++] = bh; 287 continue; 288 } 289 /* Fully non-initialized data block, zero it. */ 290 goto handle_zblock; 291 } 292 /* It is a hole, need to zero it. */ 293 if (lcn == LCN_HOLE) 294 goto handle_hole; 295 /* If first try and runlist unmapped, map and retry. */ 296 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) { 297 is_retry = true; 298 /* 299 * Attempt to map runlist, dropping lock for 300 * the duration. 301 */ 302 up_read(&ni->runlist.lock); 303 err = ntfs_map_runlist(ni, vcn); 304 if (likely(!err)) 305 goto lock_retry_remap; 306 rl = NULL; 307 } else if (!rl) 308 up_read(&ni->runlist.lock); 309 /* 310 * If buffer is outside the runlist, treat it as a 311 * hole. This can happen due to concurrent truncate 312 * for example. 313 */ 314 if (err == -ENOENT || lcn == LCN_ENOENT) { 315 err = 0; 316 goto handle_hole; 317 } 318 /* Hard error, zero out region. */ 319 if (!err) 320 err = -EIO; 321 bh->b_blocknr = -1; 322 SetPageError(page); 323 ntfs_error(vol->sb, "Failed to read from inode 0x%lx, " 324 "attribute type 0x%x, vcn 0x%llx, " 325 "offset 0x%x because its location on " 326 "disk could not be determined%s " 327 "(error code %i).", ni->mft_no, 328 ni->type, (unsigned long long)vcn, 329 vcn_ofs, is_retry ? " even after " 330 "retrying" : "", err); 331 } 332 /* 333 * Either iblock was outside lblock limits or 334 * ntfs_rl_vcn_to_lcn() returned error. Just zero that portion 335 * of the page and set the buffer uptodate. 336 */ 337 handle_hole: 338 bh->b_blocknr = -1UL; 339 clear_buffer_mapped(bh); 340 handle_zblock: 341 zero_user(page, i * blocksize, blocksize); 342 if (likely(!err)) 343 set_buffer_uptodate(bh); 344 } while (i++, iblock++, (bh = bh->b_this_page) != head); 345 346 /* Release the lock if we took it. */ 347 if (rl) 348 up_read(&ni->runlist.lock); 349 350 /* Check we have at least one buffer ready for i/o. */ 351 if (nr) { 352 struct buffer_head *tbh; 353 354 /* Lock the buffers. */ 355 for (i = 0; i < nr; i++) { 356 tbh = arr[i]; 357 lock_buffer(tbh); 358 tbh->b_end_io = ntfs_end_buffer_async_read; 359 set_buffer_async_read(tbh); 360 } 361 /* Finally, start i/o on the buffers. */ 362 for (i = 0; i < nr; i++) { 363 tbh = arr[i]; 364 if (likely(!buffer_uptodate(tbh))) 365 submit_bh(READ, tbh); 366 else 367 ntfs_end_buffer_async_read(tbh, 1); 368 } 369 return 0; 370 } 371 /* No i/o was scheduled on any of the buffers. */ 372 if (likely(!PageError(page))) 373 SetPageUptodate(page); 374 else /* Signal synchronous i/o error. */ 375 nr = -EIO; 376 unlock_page(page); 377 return nr; 378 } 379 380 /** 381 * ntfs_readpage - fill a @page of a @file with data from the device 382 * @file: open file to which the page @page belongs or NULL 383 * @page: page cache page to fill with data 384 * 385 * For non-resident attributes, ntfs_readpage() fills the @page of the open 386 * file @file by calling the ntfs version of the generic block_read_full_page() 387 * function, ntfs_read_block(), which in turn creates and reads in the buffers 388 * associated with the page asynchronously. 389 * 390 * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the 391 * data from the mft record (which at this stage is most likely in memory) and 392 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as 393 * even if the mft record is not cached at this point in time, we need to wait 394 * for it to be read in before we can do the copy. 395 * 396 * Return 0 on success and -errno on error. 397 */ 398 static int ntfs_readpage(struct file *file, struct page *page) 399 { 400 loff_t i_size; 401 struct inode *vi; 402 ntfs_inode *ni, *base_ni; 403 u8 *addr; 404 ntfs_attr_search_ctx *ctx; 405 MFT_RECORD *mrec; 406 unsigned long flags; 407 u32 attr_len; 408 int err = 0; 409 410 retry_readpage: 411 BUG_ON(!PageLocked(page)); 412 vi = page->mapping->host; 413 i_size = i_size_read(vi); 414 /* Is the page fully outside i_size? (truncate in progress) */ 415 if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >> 416 PAGE_CACHE_SHIFT)) { 417 zero_user(page, 0, PAGE_CACHE_SIZE); 418 ntfs_debug("Read outside i_size - truncated?"); 419 goto done; 420 } 421 /* 422 * This can potentially happen because we clear PageUptodate() during 423 * ntfs_writepage() of MstProtected() attributes. 424 */ 425 if (PageUptodate(page)) { 426 unlock_page(page); 427 return 0; 428 } 429 ni = NTFS_I(vi); 430 /* 431 * Only $DATA attributes can be encrypted and only unnamed $DATA 432 * attributes can be compressed. Index root can have the flags set but 433 * this means to create compressed/encrypted files, not that the 434 * attribute is compressed/encrypted. Note we need to check for 435 * AT_INDEX_ALLOCATION since this is the type of both directory and 436 * index inodes. 437 */ 438 if (ni->type != AT_INDEX_ALLOCATION) { 439 /* If attribute is encrypted, deny access, just like NT4. */ 440 if (NInoEncrypted(ni)) { 441 BUG_ON(ni->type != AT_DATA); 442 err = -EACCES; 443 goto err_out; 444 } 445 /* Compressed data streams are handled in compress.c. */ 446 if (NInoNonResident(ni) && NInoCompressed(ni)) { 447 BUG_ON(ni->type != AT_DATA); 448 BUG_ON(ni->name_len); 449 return ntfs_read_compressed_block(page); 450 } 451 } 452 /* NInoNonResident() == NInoIndexAllocPresent() */ 453 if (NInoNonResident(ni)) { 454 /* Normal, non-resident data stream. */ 455 return ntfs_read_block(page); 456 } 457 /* 458 * Attribute is resident, implying it is not compressed or encrypted. 459 * This also means the attribute is smaller than an mft record and 460 * hence smaller than a page, so can simply zero out any pages with 461 * index above 0. Note the attribute can actually be marked compressed 462 * but if it is resident the actual data is not compressed so we are 463 * ok to ignore the compressed flag here. 464 */ 465 if (unlikely(page->index > 0)) { 466 zero_user(page, 0, PAGE_CACHE_SIZE); 467 goto done; 468 } 469 if (!NInoAttr(ni)) 470 base_ni = ni; 471 else 472 base_ni = ni->ext.base_ntfs_ino; 473 /* Map, pin, and lock the mft record. */ 474 mrec = map_mft_record(base_ni); 475 if (IS_ERR(mrec)) { 476 err = PTR_ERR(mrec); 477 goto err_out; 478 } 479 /* 480 * If a parallel write made the attribute non-resident, drop the mft 481 * record and retry the readpage. 482 */ 483 if (unlikely(NInoNonResident(ni))) { 484 unmap_mft_record(base_ni); 485 goto retry_readpage; 486 } 487 ctx = ntfs_attr_get_search_ctx(base_ni, mrec); 488 if (unlikely(!ctx)) { 489 err = -ENOMEM; 490 goto unm_err_out; 491 } 492 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 493 CASE_SENSITIVE, 0, NULL, 0, ctx); 494 if (unlikely(err)) 495 goto put_unm_err_out; 496 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length); 497 read_lock_irqsave(&ni->size_lock, flags); 498 if (unlikely(attr_len > ni->initialized_size)) 499 attr_len = ni->initialized_size; 500 i_size = i_size_read(vi); 501 read_unlock_irqrestore(&ni->size_lock, flags); 502 if (unlikely(attr_len > i_size)) { 503 /* Race with shrinking truncate. */ 504 attr_len = i_size; 505 } 506 addr = kmap_atomic(page, KM_USER0); 507 /* Copy the data to the page. */ 508 memcpy(addr, (u8*)ctx->attr + 509 le16_to_cpu(ctx->attr->data.resident.value_offset), 510 attr_len); 511 /* Zero the remainder of the page. */ 512 memset(addr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); 513 flush_dcache_page(page); 514 kunmap_atomic(addr, KM_USER0); 515 put_unm_err_out: 516 ntfs_attr_put_search_ctx(ctx); 517 unm_err_out: 518 unmap_mft_record(base_ni); 519 done: 520 SetPageUptodate(page); 521 err_out: 522 unlock_page(page); 523 return err; 524 } 525 526 #ifdef NTFS_RW 527 528 /** 529 * ntfs_write_block - write a @page to the backing store 530 * @page: page cache page to write out 531 * @wbc: writeback control structure 532 * 533 * This function is for writing pages belonging to non-resident, non-mst 534 * protected attributes to their backing store. 535 * 536 * For a page with buffers, map and write the dirty buffers asynchronously 537 * under page writeback. For a page without buffers, create buffers for the 538 * page, then proceed as above. 539 * 540 * If a page doesn't have buffers the page dirty state is definitive. If a page 541 * does have buffers, the page dirty state is just a hint, and the buffer dirty 542 * state is definitive. (A hint which has rules: dirty buffers against a clean 543 * page is illegal. Other combinations are legal and need to be handled. In 544 * particular a dirty page containing clean buffers for example.) 545 * 546 * Return 0 on success and -errno on error. 547 * 548 * Based on ntfs_read_block() and __block_write_full_page(). 549 */ 550 static int ntfs_write_block(struct page *page, struct writeback_control *wbc) 551 { 552 VCN vcn; 553 LCN lcn; 554 s64 initialized_size; 555 loff_t i_size; 556 sector_t block, dblock, iblock; 557 struct inode *vi; 558 ntfs_inode *ni; 559 ntfs_volume *vol; 560 runlist_element *rl; 561 struct buffer_head *bh, *head; 562 unsigned long flags; 563 unsigned int blocksize, vcn_ofs; 564 int err; 565 bool need_end_writeback; 566 unsigned char blocksize_bits; 567 568 vi = page->mapping->host; 569 ni = NTFS_I(vi); 570 vol = ni->vol; 571 572 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " 573 "0x%lx.", ni->mft_no, ni->type, page->index); 574 575 BUG_ON(!NInoNonResident(ni)); 576 BUG_ON(NInoMstProtected(ni)); 577 blocksize = vol->sb->s_blocksize; 578 blocksize_bits = vol->sb->s_blocksize_bits; 579 if (!page_has_buffers(page)) { 580 BUG_ON(!PageUptodate(page)); 581 create_empty_buffers(page, blocksize, 582 (1 << BH_Uptodate) | (1 << BH_Dirty)); 583 if (unlikely(!page_has_buffers(page))) { 584 ntfs_warning(vol->sb, "Error allocating page " 585 "buffers. Redirtying page so we try " 586 "again later."); 587 /* 588 * Put the page back on mapping->dirty_pages, but leave 589 * its buffers' dirty state as-is. 590 */ 591 redirty_page_for_writepage(wbc, page); 592 unlock_page(page); 593 return 0; 594 } 595 } 596 bh = head = page_buffers(page); 597 BUG_ON(!bh); 598 599 /* NOTE: Different naming scheme to ntfs_read_block()! */ 600 601 /* The first block in the page. */ 602 block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits); 603 604 read_lock_irqsave(&ni->size_lock, flags); 605 i_size = i_size_read(vi); 606 initialized_size = ni->initialized_size; 607 read_unlock_irqrestore(&ni->size_lock, flags); 608 609 /* The first out of bounds block for the data size. */ 610 dblock = (i_size + blocksize - 1) >> blocksize_bits; 611 612 /* The last (fully or partially) initialized block. */ 613 iblock = initialized_size >> blocksize_bits; 614 615 /* 616 * Be very careful. We have no exclusion from __set_page_dirty_buffers 617 * here, and the (potentially unmapped) buffers may become dirty at 618 * any time. If a buffer becomes dirty here after we've inspected it 619 * then we just miss that fact, and the page stays dirty. 620 * 621 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 622 * handle that here by just cleaning them. 623 */ 624 625 /* 626 * Loop through all the buffers in the page, mapping all the dirty 627 * buffers to disk addresses and handling any aliases from the 628 * underlying block device's mapping. 629 */ 630 rl = NULL; 631 err = 0; 632 do { 633 bool is_retry = false; 634 635 if (unlikely(block >= dblock)) { 636 /* 637 * Mapped buffers outside i_size will occur, because 638 * this page can be outside i_size when there is a 639 * truncate in progress. The contents of such buffers 640 * were zeroed by ntfs_writepage(). 641 * 642 * FIXME: What about the small race window where 643 * ntfs_writepage() has not done any clearing because 644 * the page was within i_size but before we get here, 645 * vmtruncate() modifies i_size? 646 */ 647 clear_buffer_dirty(bh); 648 set_buffer_uptodate(bh); 649 continue; 650 } 651 652 /* Clean buffers are not written out, so no need to map them. */ 653 if (!buffer_dirty(bh)) 654 continue; 655 656 /* Make sure we have enough initialized size. */ 657 if (unlikely((block >= iblock) && 658 (initialized_size < i_size))) { 659 /* 660 * If this page is fully outside initialized size, zero 661 * out all pages between the current initialized size 662 * and the current page. Just use ntfs_readpage() to do 663 * the zeroing transparently. 664 */ 665 if (block > iblock) { 666 // TODO: 667 // For each page do: 668 // - read_cache_page() 669 // Again for each page do: 670 // - wait_on_page_locked() 671 // - Check (PageUptodate(page) && 672 // !PageError(page)) 673 // Update initialized size in the attribute and 674 // in the inode. 675 // Again, for each page do: 676 // __set_page_dirty_buffers(); 677 // page_cache_release() 678 // We don't need to wait on the writes. 679 // Update iblock. 680 } 681 /* 682 * The current page straddles initialized size. Zero 683 * all non-uptodate buffers and set them uptodate (and 684 * dirty?). Note, there aren't any non-uptodate buffers 685 * if the page is uptodate. 686 * FIXME: For an uptodate page, the buffers may need to 687 * be written out because they were not initialized on 688 * disk before. 689 */ 690 if (!PageUptodate(page)) { 691 // TODO: 692 // Zero any non-uptodate buffers up to i_size. 693 // Set them uptodate and dirty. 694 } 695 // TODO: 696 // Update initialized size in the attribute and in the 697 // inode (up to i_size). 698 // Update iblock. 699 // FIXME: This is inefficient. Try to batch the two 700 // size changes to happen in one go. 701 ntfs_error(vol->sb, "Writing beyond initialized size " 702 "is not supported yet. Sorry."); 703 err = -EOPNOTSUPP; 704 break; 705 // Do NOT set_buffer_new() BUT DO clear buffer range 706 // outside write request range. 707 // set_buffer_uptodate() on complete buffers as well as 708 // set_buffer_dirty(). 709 } 710 711 /* No need to map buffers that are already mapped. */ 712 if (buffer_mapped(bh)) 713 continue; 714 715 /* Unmapped, dirty buffer. Need to map it. */ 716 bh->b_bdev = vol->sb->s_bdev; 717 718 /* Convert block into corresponding vcn and offset. */ 719 vcn = (VCN)block << blocksize_bits; 720 vcn_ofs = vcn & vol->cluster_size_mask; 721 vcn >>= vol->cluster_size_bits; 722 if (!rl) { 723 lock_retry_remap: 724 down_read(&ni->runlist.lock); 725 rl = ni->runlist.rl; 726 } 727 if (likely(rl != NULL)) { 728 /* Seek to element containing target vcn. */ 729 while (rl->length && rl[1].vcn <= vcn) 730 rl++; 731 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 732 } else 733 lcn = LCN_RL_NOT_MAPPED; 734 /* Successful remap. */ 735 if (lcn >= 0) { 736 /* Setup buffer head to point to correct block. */ 737 bh->b_blocknr = ((lcn << vol->cluster_size_bits) + 738 vcn_ofs) >> blocksize_bits; 739 set_buffer_mapped(bh); 740 continue; 741 } 742 /* It is a hole, need to instantiate it. */ 743 if (lcn == LCN_HOLE) { 744 u8 *kaddr; 745 unsigned long *bpos, *bend; 746 747 /* Check if the buffer is zero. */ 748 kaddr = kmap_atomic(page, KM_USER0); 749 bpos = (unsigned long *)(kaddr + bh_offset(bh)); 750 bend = (unsigned long *)((u8*)bpos + blocksize); 751 do { 752 if (unlikely(*bpos)) 753 break; 754 } while (likely(++bpos < bend)); 755 kunmap_atomic(kaddr, KM_USER0); 756 if (bpos == bend) { 757 /* 758 * Buffer is zero and sparse, no need to write 759 * it. 760 */ 761 bh->b_blocknr = -1; 762 clear_buffer_dirty(bh); 763 continue; 764 } 765 // TODO: Instantiate the hole. 766 // clear_buffer_new(bh); 767 // unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 768 ntfs_error(vol->sb, "Writing into sparse regions is " 769 "not supported yet. Sorry."); 770 err = -EOPNOTSUPP; 771 break; 772 } 773 /* If first try and runlist unmapped, map and retry. */ 774 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) { 775 is_retry = true; 776 /* 777 * Attempt to map runlist, dropping lock for 778 * the duration. 779 */ 780 up_read(&ni->runlist.lock); 781 err = ntfs_map_runlist(ni, vcn); 782 if (likely(!err)) 783 goto lock_retry_remap; 784 rl = NULL; 785 } else if (!rl) 786 up_read(&ni->runlist.lock); 787 /* 788 * If buffer is outside the runlist, truncate has cut it out 789 * of the runlist. Just clean and clear the buffer and set it 790 * uptodate so it can get discarded by the VM. 791 */ 792 if (err == -ENOENT || lcn == LCN_ENOENT) { 793 bh->b_blocknr = -1; 794 clear_buffer_dirty(bh); 795 zero_user(page, bh_offset(bh), blocksize); 796 set_buffer_uptodate(bh); 797 err = 0; 798 continue; 799 } 800 /* Failed to map the buffer, even after retrying. */ 801 if (!err) 802 err = -EIO; 803 bh->b_blocknr = -1; 804 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, " 805 "attribute type 0x%x, vcn 0x%llx, offset 0x%x " 806 "because its location on disk could not be " 807 "determined%s (error code %i).", ni->mft_no, 808 ni->type, (unsigned long long)vcn, 809 vcn_ofs, is_retry ? " even after " 810 "retrying" : "", err); 811 break; 812 } while (block++, (bh = bh->b_this_page) != head); 813 814 /* Release the lock if we took it. */ 815 if (rl) 816 up_read(&ni->runlist.lock); 817 818 /* For the error case, need to reset bh to the beginning. */ 819 bh = head; 820 821 /* Just an optimization, so ->readpage() is not called later. */ 822 if (unlikely(!PageUptodate(page))) { 823 int uptodate = 1; 824 do { 825 if (!buffer_uptodate(bh)) { 826 uptodate = 0; 827 bh = head; 828 break; 829 } 830 } while ((bh = bh->b_this_page) != head); 831 if (uptodate) 832 SetPageUptodate(page); 833 } 834 835 /* Setup all mapped, dirty buffers for async write i/o. */ 836 do { 837 if (buffer_mapped(bh) && buffer_dirty(bh)) { 838 lock_buffer(bh); 839 if (test_clear_buffer_dirty(bh)) { 840 BUG_ON(!buffer_uptodate(bh)); 841 mark_buffer_async_write(bh); 842 } else 843 unlock_buffer(bh); 844 } else if (unlikely(err)) { 845 /* 846 * For the error case. The buffer may have been set 847 * dirty during attachment to a dirty page. 848 */ 849 if (err != -ENOMEM) 850 clear_buffer_dirty(bh); 851 } 852 } while ((bh = bh->b_this_page) != head); 853 854 if (unlikely(err)) { 855 // TODO: Remove the -EOPNOTSUPP check later on... 856 if (unlikely(err == -EOPNOTSUPP)) 857 err = 0; 858 else if (err == -ENOMEM) { 859 ntfs_warning(vol->sb, "Error allocating memory. " 860 "Redirtying page so we try again " 861 "later."); 862 /* 863 * Put the page back on mapping->dirty_pages, but 864 * leave its buffer's dirty state as-is. 865 */ 866 redirty_page_for_writepage(wbc, page); 867 err = 0; 868 } else 869 SetPageError(page); 870 } 871 872 BUG_ON(PageWriteback(page)); 873 set_page_writeback(page); /* Keeps try_to_free_buffers() away. */ 874 875 /* Submit the prepared buffers for i/o. */ 876 need_end_writeback = true; 877 do { 878 struct buffer_head *next = bh->b_this_page; 879 if (buffer_async_write(bh)) { 880 submit_bh(WRITE, bh); 881 need_end_writeback = false; 882 } 883 bh = next; 884 } while (bh != head); 885 unlock_page(page); 886 887 /* If no i/o was started, need to end_page_writeback(). */ 888 if (unlikely(need_end_writeback)) 889 end_page_writeback(page); 890 891 ntfs_debug("Done."); 892 return err; 893 } 894 895 /** 896 * ntfs_write_mst_block - write a @page to the backing store 897 * @page: page cache page to write out 898 * @wbc: writeback control structure 899 * 900 * This function is for writing pages belonging to non-resident, mst protected 901 * attributes to their backing store. The only supported attributes are index 902 * allocation and $MFT/$DATA. Both directory inodes and index inodes are 903 * supported for the index allocation case. 904 * 905 * The page must remain locked for the duration of the write because we apply 906 * the mst fixups, write, and then undo the fixups, so if we were to unlock the 907 * page before undoing the fixups, any other user of the page will see the 908 * page contents as corrupt. 909 * 910 * We clear the page uptodate flag for the duration of the function to ensure 911 * exclusion for the $MFT/$DATA case against someone mapping an mft record we 912 * are about to apply the mst fixups to. 913 * 914 * Return 0 on success and -errno on error. 915 * 916 * Based on ntfs_write_block(), ntfs_mft_writepage(), and 917 * write_mft_record_nolock(). 918 */ 919 static int ntfs_write_mst_block(struct page *page, 920 struct writeback_control *wbc) 921 { 922 sector_t block, dblock, rec_block; 923 struct inode *vi = page->mapping->host; 924 ntfs_inode *ni = NTFS_I(vi); 925 ntfs_volume *vol = ni->vol; 926 u8 *kaddr; 927 unsigned int rec_size = ni->itype.index.block_size; 928 ntfs_inode *locked_nis[PAGE_CACHE_SIZE / rec_size]; 929 struct buffer_head *bh, *head, *tbh, *rec_start_bh; 930 struct buffer_head *bhs[MAX_BUF_PER_PAGE]; 931 runlist_element *rl; 932 int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2; 933 unsigned bh_size, rec_size_bits; 934 bool sync, is_mft, page_is_dirty, rec_is_dirty; 935 unsigned char bh_size_bits; 936 937 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " 938 "0x%lx.", vi->i_ino, ni->type, page->index); 939 BUG_ON(!NInoNonResident(ni)); 940 BUG_ON(!NInoMstProtected(ni)); 941 is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino); 942 /* 943 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page 944 * in its page cache were to be marked dirty. However this should 945 * never happen with the current driver and considering we do not 946 * handle this case here we do want to BUG(), at least for now. 947 */ 948 BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) || 949 (NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION))); 950 bh_size = vol->sb->s_blocksize; 951 bh_size_bits = vol->sb->s_blocksize_bits; 952 max_bhs = PAGE_CACHE_SIZE / bh_size; 953 BUG_ON(!max_bhs); 954 BUG_ON(max_bhs > MAX_BUF_PER_PAGE); 955 956 /* Were we called for sync purposes? */ 957 sync = (wbc->sync_mode == WB_SYNC_ALL); 958 959 /* Make sure we have mapped buffers. */ 960 bh = head = page_buffers(page); 961 BUG_ON(!bh); 962 963 rec_size_bits = ni->itype.index.block_size_bits; 964 BUG_ON(!(PAGE_CACHE_SIZE >> rec_size_bits)); 965 bhs_per_rec = rec_size >> bh_size_bits; 966 BUG_ON(!bhs_per_rec); 967 968 /* The first block in the page. */ 969 rec_block = block = (sector_t)page->index << 970 (PAGE_CACHE_SHIFT - bh_size_bits); 971 972 /* The first out of bounds block for the data size. */ 973 dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits; 974 975 rl = NULL; 976 err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0; 977 page_is_dirty = rec_is_dirty = false; 978 rec_start_bh = NULL; 979 do { 980 bool is_retry = false; 981 982 if (likely(block < rec_block)) { 983 if (unlikely(block >= dblock)) { 984 clear_buffer_dirty(bh); 985 set_buffer_uptodate(bh); 986 continue; 987 } 988 /* 989 * This block is not the first one in the record. We 990 * ignore the buffer's dirty state because we could 991 * have raced with a parallel mark_ntfs_record_dirty(). 992 */ 993 if (!rec_is_dirty) 994 continue; 995 if (unlikely(err2)) { 996 if (err2 != -ENOMEM) 997 clear_buffer_dirty(bh); 998 continue; 999 } 1000 } else /* if (block == rec_block) */ { 1001 BUG_ON(block > rec_block); 1002 /* This block is the first one in the record. */ 1003 rec_block += bhs_per_rec; 1004 err2 = 0; 1005 if (unlikely(block >= dblock)) { 1006 clear_buffer_dirty(bh); 1007 continue; 1008 } 1009 if (!buffer_dirty(bh)) { 1010 /* Clean records are not written out. */ 1011 rec_is_dirty = false; 1012 continue; 1013 } 1014 rec_is_dirty = true; 1015 rec_start_bh = bh; 1016 } 1017 /* Need to map the buffer if it is not mapped already. */ 1018 if (unlikely(!buffer_mapped(bh))) { 1019 VCN vcn; 1020 LCN lcn; 1021 unsigned int vcn_ofs; 1022 1023 bh->b_bdev = vol->sb->s_bdev; 1024 /* Obtain the vcn and offset of the current block. */ 1025 vcn = (VCN)block << bh_size_bits; 1026 vcn_ofs = vcn & vol->cluster_size_mask; 1027 vcn >>= vol->cluster_size_bits; 1028 if (!rl) { 1029 lock_retry_remap: 1030 down_read(&ni->runlist.lock); 1031 rl = ni->runlist.rl; 1032 } 1033 if (likely(rl != NULL)) { 1034 /* Seek to element containing target vcn. */ 1035 while (rl->length && rl[1].vcn <= vcn) 1036 rl++; 1037 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 1038 } else 1039 lcn = LCN_RL_NOT_MAPPED; 1040 /* Successful remap. */ 1041 if (likely(lcn >= 0)) { 1042 /* Setup buffer head to correct block. */ 1043 bh->b_blocknr = ((lcn << 1044 vol->cluster_size_bits) + 1045 vcn_ofs) >> bh_size_bits; 1046 set_buffer_mapped(bh); 1047 } else { 1048 /* 1049 * Remap failed. Retry to map the runlist once 1050 * unless we are working on $MFT which always 1051 * has the whole of its runlist in memory. 1052 */ 1053 if (!is_mft && !is_retry && 1054 lcn == LCN_RL_NOT_MAPPED) { 1055 is_retry = true; 1056 /* 1057 * Attempt to map runlist, dropping 1058 * lock for the duration. 1059 */ 1060 up_read(&ni->runlist.lock); 1061 err2 = ntfs_map_runlist(ni, vcn); 1062 if (likely(!err2)) 1063 goto lock_retry_remap; 1064 if (err2 == -ENOMEM) 1065 page_is_dirty = true; 1066 lcn = err2; 1067 } else { 1068 err2 = -EIO; 1069 if (!rl) 1070 up_read(&ni->runlist.lock); 1071 } 1072 /* Hard error. Abort writing this record. */ 1073 if (!err || err == -ENOMEM) 1074 err = err2; 1075 bh->b_blocknr = -1; 1076 ntfs_error(vol->sb, "Cannot write ntfs record " 1077 "0x%llx (inode 0x%lx, " 1078 "attribute type 0x%x) because " 1079 "its location on disk could " 1080 "not be determined (error " 1081 "code %lli).", 1082 (long long)block << 1083 bh_size_bits >> 1084 vol->mft_record_size_bits, 1085 ni->mft_no, ni->type, 1086 (long long)lcn); 1087 /* 1088 * If this is not the first buffer, remove the 1089 * buffers in this record from the list of 1090 * buffers to write and clear their dirty bit 1091 * if not error -ENOMEM. 1092 */ 1093 if (rec_start_bh != bh) { 1094 while (bhs[--nr_bhs] != rec_start_bh) 1095 ; 1096 if (err2 != -ENOMEM) { 1097 do { 1098 clear_buffer_dirty( 1099 rec_start_bh); 1100 } while ((rec_start_bh = 1101 rec_start_bh-> 1102 b_this_page) != 1103 bh); 1104 } 1105 } 1106 continue; 1107 } 1108 } 1109 BUG_ON(!buffer_uptodate(bh)); 1110 BUG_ON(nr_bhs >= max_bhs); 1111 bhs[nr_bhs++] = bh; 1112 } while (block++, (bh = bh->b_this_page) != head); 1113 if (unlikely(rl)) 1114 up_read(&ni->runlist.lock); 1115 /* If there were no dirty buffers, we are done. */ 1116 if (!nr_bhs) 1117 goto done; 1118 /* Map the page so we can access its contents. */ 1119 kaddr = kmap(page); 1120 /* Clear the page uptodate flag whilst the mst fixups are applied. */ 1121 BUG_ON(!PageUptodate(page)); 1122 ClearPageUptodate(page); 1123 for (i = 0; i < nr_bhs; i++) { 1124 unsigned int ofs; 1125 1126 /* Skip buffers which are not at the beginning of records. */ 1127 if (i % bhs_per_rec) 1128 continue; 1129 tbh = bhs[i]; 1130 ofs = bh_offset(tbh); 1131 if (is_mft) { 1132 ntfs_inode *tni; 1133 unsigned long mft_no; 1134 1135 /* Get the mft record number. */ 1136 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs) 1137 >> rec_size_bits; 1138 /* Check whether to write this mft record. */ 1139 tni = NULL; 1140 if (!ntfs_may_write_mft_record(vol, mft_no, 1141 (MFT_RECORD*)(kaddr + ofs), &tni)) { 1142 /* 1143 * The record should not be written. This 1144 * means we need to redirty the page before 1145 * returning. 1146 */ 1147 page_is_dirty = true; 1148 /* 1149 * Remove the buffers in this mft record from 1150 * the list of buffers to write. 1151 */ 1152 do { 1153 bhs[i] = NULL; 1154 } while (++i % bhs_per_rec); 1155 continue; 1156 } 1157 /* 1158 * The record should be written. If a locked ntfs 1159 * inode was returned, add it to the array of locked 1160 * ntfs inodes. 1161 */ 1162 if (tni) 1163 locked_nis[nr_locked_nis++] = tni; 1164 } 1165 /* Apply the mst protection fixups. */ 1166 err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs), 1167 rec_size); 1168 if (unlikely(err2)) { 1169 if (!err || err == -ENOMEM) 1170 err = -EIO; 1171 ntfs_error(vol->sb, "Failed to apply mst fixups " 1172 "(inode 0x%lx, attribute type 0x%x, " 1173 "page index 0x%lx, page offset 0x%x)!" 1174 " Unmount and run chkdsk.", vi->i_ino, 1175 ni->type, page->index, ofs); 1176 /* 1177 * Mark all the buffers in this record clean as we do 1178 * not want to write corrupt data to disk. 1179 */ 1180 do { 1181 clear_buffer_dirty(bhs[i]); 1182 bhs[i] = NULL; 1183 } while (++i % bhs_per_rec); 1184 continue; 1185 } 1186 nr_recs++; 1187 } 1188 /* If no records are to be written out, we are done. */ 1189 if (!nr_recs) 1190 goto unm_done; 1191 flush_dcache_page(page); 1192 /* Lock buffers and start synchronous write i/o on them. */ 1193 for (i = 0; i < nr_bhs; i++) { 1194 tbh = bhs[i]; 1195 if (!tbh) 1196 continue; 1197 if (unlikely(test_set_buffer_locked(tbh))) 1198 BUG(); 1199 /* The buffer dirty state is now irrelevant, just clean it. */ 1200 clear_buffer_dirty(tbh); 1201 BUG_ON(!buffer_uptodate(tbh)); 1202 BUG_ON(!buffer_mapped(tbh)); 1203 get_bh(tbh); 1204 tbh->b_end_io = end_buffer_write_sync; 1205 submit_bh(WRITE, tbh); 1206 } 1207 /* Synchronize the mft mirror now if not @sync. */ 1208 if (is_mft && !sync) 1209 goto do_mirror; 1210 do_wait: 1211 /* Wait on i/o completion of buffers. */ 1212 for (i = 0; i < nr_bhs; i++) { 1213 tbh = bhs[i]; 1214 if (!tbh) 1215 continue; 1216 wait_on_buffer(tbh); 1217 if (unlikely(!buffer_uptodate(tbh))) { 1218 ntfs_error(vol->sb, "I/O error while writing ntfs " 1219 "record buffer (inode 0x%lx, " 1220 "attribute type 0x%x, page index " 1221 "0x%lx, page offset 0x%lx)! Unmount " 1222 "and run chkdsk.", vi->i_ino, ni->type, 1223 page->index, bh_offset(tbh)); 1224 if (!err || err == -ENOMEM) 1225 err = -EIO; 1226 /* 1227 * Set the buffer uptodate so the page and buffer 1228 * states do not become out of sync. 1229 */ 1230 set_buffer_uptodate(tbh); 1231 } 1232 } 1233 /* If @sync, now synchronize the mft mirror. */ 1234 if (is_mft && sync) { 1235 do_mirror: 1236 for (i = 0; i < nr_bhs; i++) { 1237 unsigned long mft_no; 1238 unsigned int ofs; 1239 1240 /* 1241 * Skip buffers which are not at the beginning of 1242 * records. 1243 */ 1244 if (i % bhs_per_rec) 1245 continue; 1246 tbh = bhs[i]; 1247 /* Skip removed buffers (and hence records). */ 1248 if (!tbh) 1249 continue; 1250 ofs = bh_offset(tbh); 1251 /* Get the mft record number. */ 1252 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs) 1253 >> rec_size_bits; 1254 if (mft_no < vol->mftmirr_size) 1255 ntfs_sync_mft_mirror(vol, mft_no, 1256 (MFT_RECORD*)(kaddr + ofs), 1257 sync); 1258 } 1259 if (!sync) 1260 goto do_wait; 1261 } 1262 /* Remove the mst protection fixups again. */ 1263 for (i = 0; i < nr_bhs; i++) { 1264 if (!(i % bhs_per_rec)) { 1265 tbh = bhs[i]; 1266 if (!tbh) 1267 continue; 1268 post_write_mst_fixup((NTFS_RECORD*)(kaddr + 1269 bh_offset(tbh))); 1270 } 1271 } 1272 flush_dcache_page(page); 1273 unm_done: 1274 /* Unlock any locked inodes. */ 1275 while (nr_locked_nis-- > 0) { 1276 ntfs_inode *tni, *base_tni; 1277 1278 tni = locked_nis[nr_locked_nis]; 1279 /* Get the base inode. */ 1280 mutex_lock(&tni->extent_lock); 1281 if (tni->nr_extents >= 0) 1282 base_tni = tni; 1283 else { 1284 base_tni = tni->ext.base_ntfs_ino; 1285 BUG_ON(!base_tni); 1286 } 1287 mutex_unlock(&tni->extent_lock); 1288 ntfs_debug("Unlocking %s inode 0x%lx.", 1289 tni == base_tni ? "base" : "extent", 1290 tni->mft_no); 1291 mutex_unlock(&tni->mrec_lock); 1292 atomic_dec(&tni->count); 1293 iput(VFS_I(base_tni)); 1294 } 1295 SetPageUptodate(page); 1296 kunmap(page); 1297 done: 1298 if (unlikely(err && err != -ENOMEM)) { 1299 /* 1300 * Set page error if there is only one ntfs record in the page. 1301 * Otherwise we would loose per-record granularity. 1302 */ 1303 if (ni->itype.index.block_size == PAGE_CACHE_SIZE) 1304 SetPageError(page); 1305 NVolSetErrors(vol); 1306 } 1307 if (page_is_dirty) { 1308 ntfs_debug("Page still contains one or more dirty ntfs " 1309 "records. Redirtying the page starting at " 1310 "record 0x%lx.", page->index << 1311 (PAGE_CACHE_SHIFT - rec_size_bits)); 1312 redirty_page_for_writepage(wbc, page); 1313 unlock_page(page); 1314 } else { 1315 /* 1316 * Keep the VM happy. This must be done otherwise the 1317 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though 1318 * the page is clean. 1319 */ 1320 BUG_ON(PageWriteback(page)); 1321 set_page_writeback(page); 1322 unlock_page(page); 1323 end_page_writeback(page); 1324 } 1325 if (likely(!err)) 1326 ntfs_debug("Done."); 1327 return err; 1328 } 1329 1330 /** 1331 * ntfs_writepage - write a @page to the backing store 1332 * @page: page cache page to write out 1333 * @wbc: writeback control structure 1334 * 1335 * This is called from the VM when it wants to have a dirty ntfs page cache 1336 * page cleaned. The VM has already locked the page and marked it clean. 1337 * 1338 * For non-resident attributes, ntfs_writepage() writes the @page by calling 1339 * the ntfs version of the generic block_write_full_page() function, 1340 * ntfs_write_block(), which in turn if necessary creates and writes the 1341 * buffers associated with the page asynchronously. 1342 * 1343 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying 1344 * the data to the mft record (which at this stage is most likely in memory). 1345 * The mft record is then marked dirty and written out asynchronously via the 1346 * vfs inode dirty code path for the inode the mft record belongs to or via the 1347 * vm page dirty code path for the page the mft record is in. 1348 * 1349 * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page(). 1350 * 1351 * Return 0 on success and -errno on error. 1352 */ 1353 static int ntfs_writepage(struct page *page, struct writeback_control *wbc) 1354 { 1355 loff_t i_size; 1356 struct inode *vi = page->mapping->host; 1357 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi); 1358 char *addr; 1359 ntfs_attr_search_ctx *ctx = NULL; 1360 MFT_RECORD *m = NULL; 1361 u32 attr_len; 1362 int err; 1363 1364 retry_writepage: 1365 BUG_ON(!PageLocked(page)); 1366 i_size = i_size_read(vi); 1367 /* Is the page fully outside i_size? (truncate in progress) */ 1368 if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >> 1369 PAGE_CACHE_SHIFT)) { 1370 /* 1371 * The page may have dirty, unmapped buffers. Make them 1372 * freeable here, so the page does not leak. 1373 */ 1374 block_invalidatepage(page, 0); 1375 unlock_page(page); 1376 ntfs_debug("Write outside i_size - truncated?"); 1377 return 0; 1378 } 1379 /* 1380 * Only $DATA attributes can be encrypted and only unnamed $DATA 1381 * attributes can be compressed. Index root can have the flags set but 1382 * this means to create compressed/encrypted files, not that the 1383 * attribute is compressed/encrypted. Note we need to check for 1384 * AT_INDEX_ALLOCATION since this is the type of both directory and 1385 * index inodes. 1386 */ 1387 if (ni->type != AT_INDEX_ALLOCATION) { 1388 /* If file is encrypted, deny access, just like NT4. */ 1389 if (NInoEncrypted(ni)) { 1390 unlock_page(page); 1391 BUG_ON(ni->type != AT_DATA); 1392 ntfs_debug("Denying write access to encrypted file."); 1393 return -EACCES; 1394 } 1395 /* Compressed data streams are handled in compress.c. */ 1396 if (NInoNonResident(ni) && NInoCompressed(ni)) { 1397 BUG_ON(ni->type != AT_DATA); 1398 BUG_ON(ni->name_len); 1399 // TODO: Implement and replace this with 1400 // return ntfs_write_compressed_block(page); 1401 unlock_page(page); 1402 ntfs_error(vi->i_sb, "Writing to compressed files is " 1403 "not supported yet. Sorry."); 1404 return -EOPNOTSUPP; 1405 } 1406 // TODO: Implement and remove this check. 1407 if (NInoNonResident(ni) && NInoSparse(ni)) { 1408 unlock_page(page); 1409 ntfs_error(vi->i_sb, "Writing to sparse files is not " 1410 "supported yet. Sorry."); 1411 return -EOPNOTSUPP; 1412 } 1413 } 1414 /* NInoNonResident() == NInoIndexAllocPresent() */ 1415 if (NInoNonResident(ni)) { 1416 /* We have to zero every time due to mmap-at-end-of-file. */ 1417 if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) { 1418 /* The page straddles i_size. */ 1419 unsigned int ofs = i_size & ~PAGE_CACHE_MASK; 1420 zero_user_segment(page, ofs, PAGE_CACHE_SIZE); 1421 } 1422 /* Handle mst protected attributes. */ 1423 if (NInoMstProtected(ni)) 1424 return ntfs_write_mst_block(page, wbc); 1425 /* Normal, non-resident data stream. */ 1426 return ntfs_write_block(page, wbc); 1427 } 1428 /* 1429 * Attribute is resident, implying it is not compressed, encrypted, or 1430 * mst protected. This also means the attribute is smaller than an mft 1431 * record and hence smaller than a page, so can simply return error on 1432 * any pages with index above 0. Note the attribute can actually be 1433 * marked compressed but if it is resident the actual data is not 1434 * compressed so we are ok to ignore the compressed flag here. 1435 */ 1436 BUG_ON(page_has_buffers(page)); 1437 BUG_ON(!PageUptodate(page)); 1438 if (unlikely(page->index > 0)) { 1439 ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0. " 1440 "Aborting write.", page->index); 1441 BUG_ON(PageWriteback(page)); 1442 set_page_writeback(page); 1443 unlock_page(page); 1444 end_page_writeback(page); 1445 return -EIO; 1446 } 1447 if (!NInoAttr(ni)) 1448 base_ni = ni; 1449 else 1450 base_ni = ni->ext.base_ntfs_ino; 1451 /* Map, pin, and lock the mft record. */ 1452 m = map_mft_record(base_ni); 1453 if (IS_ERR(m)) { 1454 err = PTR_ERR(m); 1455 m = NULL; 1456 ctx = NULL; 1457 goto err_out; 1458 } 1459 /* 1460 * If a parallel write made the attribute non-resident, drop the mft 1461 * record and retry the writepage. 1462 */ 1463 if (unlikely(NInoNonResident(ni))) { 1464 unmap_mft_record(base_ni); 1465 goto retry_writepage; 1466 } 1467 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1468 if (unlikely(!ctx)) { 1469 err = -ENOMEM; 1470 goto err_out; 1471 } 1472 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1473 CASE_SENSITIVE, 0, NULL, 0, ctx); 1474 if (unlikely(err)) 1475 goto err_out; 1476 /* 1477 * Keep the VM happy. This must be done otherwise the radix-tree tag 1478 * PAGECACHE_TAG_DIRTY remains set even though the page is clean. 1479 */ 1480 BUG_ON(PageWriteback(page)); 1481 set_page_writeback(page); 1482 unlock_page(page); 1483 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length); 1484 i_size = i_size_read(vi); 1485 if (unlikely(attr_len > i_size)) { 1486 /* Race with shrinking truncate or a failed truncate. */ 1487 attr_len = i_size; 1488 /* 1489 * If the truncate failed, fix it up now. If a concurrent 1490 * truncate, we do its job, so it does not have to do anything. 1491 */ 1492 err = ntfs_resident_attr_value_resize(ctx->mrec, ctx->attr, 1493 attr_len); 1494 /* Shrinking cannot fail. */ 1495 BUG_ON(err); 1496 } 1497 addr = kmap_atomic(page, KM_USER0); 1498 /* Copy the data from the page to the mft record. */ 1499 memcpy((u8*)ctx->attr + 1500 le16_to_cpu(ctx->attr->data.resident.value_offset), 1501 addr, attr_len); 1502 /* Zero out of bounds area in the page cache page. */ 1503 memset(addr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); 1504 kunmap_atomic(addr, KM_USER0); 1505 flush_dcache_page(page); 1506 flush_dcache_mft_record_page(ctx->ntfs_ino); 1507 /* We are done with the page. */ 1508 end_page_writeback(page); 1509 /* Finally, mark the mft record dirty, so it gets written back. */ 1510 mark_mft_record_dirty(ctx->ntfs_ino); 1511 ntfs_attr_put_search_ctx(ctx); 1512 unmap_mft_record(base_ni); 1513 return 0; 1514 err_out: 1515 if (err == -ENOMEM) { 1516 ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying " 1517 "page so we try again later."); 1518 /* 1519 * Put the page back on mapping->dirty_pages, but leave its 1520 * buffers' dirty state as-is. 1521 */ 1522 redirty_page_for_writepage(wbc, page); 1523 err = 0; 1524 } else { 1525 ntfs_error(vi->i_sb, "Resident attribute write failed with " 1526 "error %i.", err); 1527 SetPageError(page); 1528 NVolSetErrors(ni->vol); 1529 } 1530 unlock_page(page); 1531 if (ctx) 1532 ntfs_attr_put_search_ctx(ctx); 1533 if (m) 1534 unmap_mft_record(base_ni); 1535 return err; 1536 } 1537 1538 #endif /* NTFS_RW */ 1539 1540 /** 1541 * ntfs_aops - general address space operations for inodes and attributes 1542 */ 1543 const struct address_space_operations ntfs_aops = { 1544 .readpage = ntfs_readpage, /* Fill page with data. */ 1545 .sync_page = block_sync_page, /* Currently, just unplugs the 1546 disk request queue. */ 1547 #ifdef NTFS_RW 1548 .writepage = ntfs_writepage, /* Write dirty page to disk. */ 1549 #endif /* NTFS_RW */ 1550 .migratepage = buffer_migrate_page, /* Move a page cache page from 1551 one physical page to an 1552 other. */ 1553 }; 1554 1555 /** 1556 * ntfs_mst_aops - general address space operations for mst protecteed inodes 1557 * and attributes 1558 */ 1559 const struct address_space_operations ntfs_mst_aops = { 1560 .readpage = ntfs_readpage, /* Fill page with data. */ 1561 .sync_page = block_sync_page, /* Currently, just unplugs the 1562 disk request queue. */ 1563 #ifdef NTFS_RW 1564 .writepage = ntfs_writepage, /* Write dirty page to disk. */ 1565 .set_page_dirty = __set_page_dirty_nobuffers, /* Set the page dirty 1566 without touching the buffers 1567 belonging to the page. */ 1568 #endif /* NTFS_RW */ 1569 .migratepage = buffer_migrate_page, /* Move a page cache page from 1570 one physical page to an 1571 other. */ 1572 }; 1573 1574 #ifdef NTFS_RW 1575 1576 /** 1577 * mark_ntfs_record_dirty - mark an ntfs record dirty 1578 * @page: page containing the ntfs record to mark dirty 1579 * @ofs: byte offset within @page at which the ntfs record begins 1580 * 1581 * Set the buffers and the page in which the ntfs record is located dirty. 1582 * 1583 * The latter also marks the vfs inode the ntfs record belongs to dirty 1584 * (I_DIRTY_PAGES only). 1585 * 1586 * If the page does not have buffers, we create them and set them uptodate. 1587 * The page may not be locked which is why we need to handle the buffers under 1588 * the mapping->private_lock. Once the buffers are marked dirty we no longer 1589 * need the lock since try_to_free_buffers() does not free dirty buffers. 1590 */ 1591 void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) { 1592 struct address_space *mapping = page->mapping; 1593 ntfs_inode *ni = NTFS_I(mapping->host); 1594 struct buffer_head *bh, *head, *buffers_to_free = NULL; 1595 unsigned int end, bh_size, bh_ofs; 1596 1597 BUG_ON(!PageUptodate(page)); 1598 end = ofs + ni->itype.index.block_size; 1599 bh_size = VFS_I(ni)->i_sb->s_blocksize; 1600 spin_lock(&mapping->private_lock); 1601 if (unlikely(!page_has_buffers(page))) { 1602 spin_unlock(&mapping->private_lock); 1603 bh = head = alloc_page_buffers(page, bh_size, 1); 1604 spin_lock(&mapping->private_lock); 1605 if (likely(!page_has_buffers(page))) { 1606 struct buffer_head *tail; 1607 1608 do { 1609 set_buffer_uptodate(bh); 1610 tail = bh; 1611 bh = bh->b_this_page; 1612 } while (bh); 1613 tail->b_this_page = head; 1614 attach_page_buffers(page, head); 1615 } else 1616 buffers_to_free = bh; 1617 } 1618 bh = head = page_buffers(page); 1619 BUG_ON(!bh); 1620 do { 1621 bh_ofs = bh_offset(bh); 1622 if (bh_ofs + bh_size <= ofs) 1623 continue; 1624 if (unlikely(bh_ofs >= end)) 1625 break; 1626 set_buffer_dirty(bh); 1627 } while ((bh = bh->b_this_page) != head); 1628 spin_unlock(&mapping->private_lock); 1629 __set_page_dirty_nobuffers(page); 1630 if (unlikely(buffers_to_free)) { 1631 do { 1632 bh = buffers_to_free->b_this_page; 1633 free_buffer_head(buffers_to_free); 1634 buffers_to_free = bh; 1635 } while (buffers_to_free); 1636 } 1637 } 1638 1639 #endif /* NTFS_RW */ 1640