xref: /openbmc/linux/fs/ntfs/aops.c (revision aa1d19f1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3  * aops.c - NTFS kernel address space operations and page cache handling.
4  *
5  * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
6  * Copyright (c) 2002 Richard Russon
7  */
8 
9 #include <linux/errno.h>
10 #include <linux/fs.h>
11 #include <linux/gfp.h>
12 #include <linux/mm.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/buffer_head.h>
16 #include <linux/writeback.h>
17 #include <linux/bit_spinlock.h>
18 #include <linux/bio.h>
19 
20 #include "aops.h"
21 #include "attrib.h"
22 #include "debug.h"
23 #include "inode.h"
24 #include "mft.h"
25 #include "runlist.h"
26 #include "types.h"
27 #include "ntfs.h"
28 
29 /**
30  * ntfs_end_buffer_async_read - async io completion for reading attributes
31  * @bh:		buffer head on which io is completed
32  * @uptodate:	whether @bh is now uptodate or not
33  *
34  * Asynchronous I/O completion handler for reading pages belonging to the
35  * attribute address space of an inode.  The inodes can either be files or
36  * directories or they can be fake inodes describing some attribute.
37  *
38  * If NInoMstProtected(), perform the post read mst fixups when all IO on the
39  * page has been completed and mark the page uptodate or set the error bit on
40  * the page.  To determine the size of the records that need fixing up, we
41  * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
42  * record size, and index_block_size_bits, to the log(base 2) of the ntfs
43  * record size.
44  */
45 static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
46 {
47 	unsigned long flags;
48 	struct buffer_head *first, *tmp;
49 	struct page *page;
50 	struct inode *vi;
51 	ntfs_inode *ni;
52 	int page_uptodate = 1;
53 
54 	page = bh->b_page;
55 	vi = page->mapping->host;
56 	ni = NTFS_I(vi);
57 
58 	if (likely(uptodate)) {
59 		loff_t i_size;
60 		s64 file_ofs, init_size;
61 
62 		set_buffer_uptodate(bh);
63 
64 		file_ofs = ((s64)page->index << PAGE_SHIFT) +
65 				bh_offset(bh);
66 		read_lock_irqsave(&ni->size_lock, flags);
67 		init_size = ni->initialized_size;
68 		i_size = i_size_read(vi);
69 		read_unlock_irqrestore(&ni->size_lock, flags);
70 		if (unlikely(init_size > i_size)) {
71 			/* Race with shrinking truncate. */
72 			init_size = i_size;
73 		}
74 		/* Check for the current buffer head overflowing. */
75 		if (unlikely(file_ofs + bh->b_size > init_size)) {
76 			int ofs;
77 			void *kaddr;
78 
79 			ofs = 0;
80 			if (file_ofs < init_size)
81 				ofs = init_size - file_ofs;
82 			kaddr = kmap_atomic(page);
83 			memset(kaddr + bh_offset(bh) + ofs, 0,
84 					bh->b_size - ofs);
85 			flush_dcache_page(page);
86 			kunmap_atomic(kaddr);
87 		}
88 	} else {
89 		clear_buffer_uptodate(bh);
90 		SetPageError(page);
91 		ntfs_error(ni->vol->sb, "Buffer I/O error, logical block "
92 				"0x%llx.", (unsigned long long)bh->b_blocknr);
93 	}
94 	first = page_buffers(page);
95 	local_irq_save(flags);
96 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
97 	clear_buffer_async_read(bh);
98 	unlock_buffer(bh);
99 	tmp = bh;
100 	do {
101 		if (!buffer_uptodate(tmp))
102 			page_uptodate = 0;
103 		if (buffer_async_read(tmp)) {
104 			if (likely(buffer_locked(tmp)))
105 				goto still_busy;
106 			/* Async buffers must be locked. */
107 			BUG();
108 		}
109 		tmp = tmp->b_this_page;
110 	} while (tmp != bh);
111 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
112 	local_irq_restore(flags);
113 	/*
114 	 * If none of the buffers had errors then we can set the page uptodate,
115 	 * but we first have to perform the post read mst fixups, if the
116 	 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
117 	 * Note we ignore fixup errors as those are detected when
118 	 * map_mft_record() is called which gives us per record granularity
119 	 * rather than per page granularity.
120 	 */
121 	if (!NInoMstProtected(ni)) {
122 		if (likely(page_uptodate && !PageError(page)))
123 			SetPageUptodate(page);
124 	} else {
125 		u8 *kaddr;
126 		unsigned int i, recs;
127 		u32 rec_size;
128 
129 		rec_size = ni->itype.index.block_size;
130 		recs = PAGE_SIZE / rec_size;
131 		/* Should have been verified before we got here... */
132 		BUG_ON(!recs);
133 		kaddr = kmap_atomic(page);
134 		for (i = 0; i < recs; i++)
135 			post_read_mst_fixup((NTFS_RECORD*)(kaddr +
136 					i * rec_size), rec_size);
137 		kunmap_atomic(kaddr);
138 		flush_dcache_page(page);
139 		if (likely(page_uptodate && !PageError(page)))
140 			SetPageUptodate(page);
141 	}
142 	unlock_page(page);
143 	return;
144 still_busy:
145 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
146 	local_irq_restore(flags);
147 	return;
148 }
149 
150 /**
151  * ntfs_read_block - fill a @page of an address space with data
152  * @page:	page cache page to fill with data
153  *
154  * Fill the page @page of the address space belonging to the @page->host inode.
155  * We read each buffer asynchronously and when all buffers are read in, our io
156  * completion handler ntfs_end_buffer_read_async(), if required, automatically
157  * applies the mst fixups to the page before finally marking it uptodate and
158  * unlocking it.
159  *
160  * We only enforce allocated_size limit because i_size is checked for in
161  * generic_file_read().
162  *
163  * Return 0 on success and -errno on error.
164  *
165  * Contains an adapted version of fs/buffer.c::block_read_full_page().
166  */
167 static int ntfs_read_block(struct page *page)
168 {
169 	loff_t i_size;
170 	VCN vcn;
171 	LCN lcn;
172 	s64 init_size;
173 	struct inode *vi;
174 	ntfs_inode *ni;
175 	ntfs_volume *vol;
176 	runlist_element *rl;
177 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
178 	sector_t iblock, lblock, zblock;
179 	unsigned long flags;
180 	unsigned int blocksize, vcn_ofs;
181 	int i, nr;
182 	unsigned char blocksize_bits;
183 
184 	vi = page->mapping->host;
185 	ni = NTFS_I(vi);
186 	vol = ni->vol;
187 
188 	/* $MFT/$DATA must have its complete runlist in memory at all times. */
189 	BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
190 
191 	blocksize = vol->sb->s_blocksize;
192 	blocksize_bits = vol->sb->s_blocksize_bits;
193 
194 	if (!page_has_buffers(page)) {
195 		create_empty_buffers(page, blocksize, 0);
196 		if (unlikely(!page_has_buffers(page))) {
197 			unlock_page(page);
198 			return -ENOMEM;
199 		}
200 	}
201 	bh = head = page_buffers(page);
202 	BUG_ON(!bh);
203 
204 	/*
205 	 * We may be racing with truncate.  To avoid some of the problems we
206 	 * now take a snapshot of the various sizes and use those for the whole
207 	 * of the function.  In case of an extending truncate it just means we
208 	 * may leave some buffers unmapped which are now allocated.  This is
209 	 * not a problem since these buffers will just get mapped when a write
210 	 * occurs.  In case of a shrinking truncate, we will detect this later
211 	 * on due to the runlist being incomplete and if the page is being
212 	 * fully truncated, truncate will throw it away as soon as we unlock
213 	 * it so no need to worry what we do with it.
214 	 */
215 	iblock = (s64)page->index << (PAGE_SHIFT - blocksize_bits);
216 	read_lock_irqsave(&ni->size_lock, flags);
217 	lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
218 	init_size = ni->initialized_size;
219 	i_size = i_size_read(vi);
220 	read_unlock_irqrestore(&ni->size_lock, flags);
221 	if (unlikely(init_size > i_size)) {
222 		/* Race with shrinking truncate. */
223 		init_size = i_size;
224 	}
225 	zblock = (init_size + blocksize - 1) >> blocksize_bits;
226 
227 	/* Loop through all the buffers in the page. */
228 	rl = NULL;
229 	nr = i = 0;
230 	do {
231 		int err = 0;
232 
233 		if (unlikely(buffer_uptodate(bh)))
234 			continue;
235 		if (unlikely(buffer_mapped(bh))) {
236 			arr[nr++] = bh;
237 			continue;
238 		}
239 		bh->b_bdev = vol->sb->s_bdev;
240 		/* Is the block within the allowed limits? */
241 		if (iblock < lblock) {
242 			bool is_retry = false;
243 
244 			/* Convert iblock into corresponding vcn and offset. */
245 			vcn = (VCN)iblock << blocksize_bits >>
246 					vol->cluster_size_bits;
247 			vcn_ofs = ((VCN)iblock << blocksize_bits) &
248 					vol->cluster_size_mask;
249 			if (!rl) {
250 lock_retry_remap:
251 				down_read(&ni->runlist.lock);
252 				rl = ni->runlist.rl;
253 			}
254 			if (likely(rl != NULL)) {
255 				/* Seek to element containing target vcn. */
256 				while (rl->length && rl[1].vcn <= vcn)
257 					rl++;
258 				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
259 			} else
260 				lcn = LCN_RL_NOT_MAPPED;
261 			/* Successful remap. */
262 			if (lcn >= 0) {
263 				/* Setup buffer head to correct block. */
264 				bh->b_blocknr = ((lcn << vol->cluster_size_bits)
265 						+ vcn_ofs) >> blocksize_bits;
266 				set_buffer_mapped(bh);
267 				/* Only read initialized data blocks. */
268 				if (iblock < zblock) {
269 					arr[nr++] = bh;
270 					continue;
271 				}
272 				/* Fully non-initialized data block, zero it. */
273 				goto handle_zblock;
274 			}
275 			/* It is a hole, need to zero it. */
276 			if (lcn == LCN_HOLE)
277 				goto handle_hole;
278 			/* If first try and runlist unmapped, map and retry. */
279 			if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
280 				is_retry = true;
281 				/*
282 				 * Attempt to map runlist, dropping lock for
283 				 * the duration.
284 				 */
285 				up_read(&ni->runlist.lock);
286 				err = ntfs_map_runlist(ni, vcn);
287 				if (likely(!err))
288 					goto lock_retry_remap;
289 				rl = NULL;
290 			} else if (!rl)
291 				up_read(&ni->runlist.lock);
292 			/*
293 			 * If buffer is outside the runlist, treat it as a
294 			 * hole.  This can happen due to concurrent truncate
295 			 * for example.
296 			 */
297 			if (err == -ENOENT || lcn == LCN_ENOENT) {
298 				err = 0;
299 				goto handle_hole;
300 			}
301 			/* Hard error, zero out region. */
302 			if (!err)
303 				err = -EIO;
304 			bh->b_blocknr = -1;
305 			SetPageError(page);
306 			ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
307 					"attribute type 0x%x, vcn 0x%llx, "
308 					"offset 0x%x because its location on "
309 					"disk could not be determined%s "
310 					"(error code %i).", ni->mft_no,
311 					ni->type, (unsigned long long)vcn,
312 					vcn_ofs, is_retry ? " even after "
313 					"retrying" : "", err);
314 		}
315 		/*
316 		 * Either iblock was outside lblock limits or
317 		 * ntfs_rl_vcn_to_lcn() returned error.  Just zero that portion
318 		 * of the page and set the buffer uptodate.
319 		 */
320 handle_hole:
321 		bh->b_blocknr = -1UL;
322 		clear_buffer_mapped(bh);
323 handle_zblock:
324 		zero_user(page, i * blocksize, blocksize);
325 		if (likely(!err))
326 			set_buffer_uptodate(bh);
327 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
328 
329 	/* Release the lock if we took it. */
330 	if (rl)
331 		up_read(&ni->runlist.lock);
332 
333 	/* Check we have at least one buffer ready for i/o. */
334 	if (nr) {
335 		struct buffer_head *tbh;
336 
337 		/* Lock the buffers. */
338 		for (i = 0; i < nr; i++) {
339 			tbh = arr[i];
340 			lock_buffer(tbh);
341 			tbh->b_end_io = ntfs_end_buffer_async_read;
342 			set_buffer_async_read(tbh);
343 		}
344 		/* Finally, start i/o on the buffers. */
345 		for (i = 0; i < nr; i++) {
346 			tbh = arr[i];
347 			if (likely(!buffer_uptodate(tbh)))
348 				submit_bh(REQ_OP_READ, 0, tbh);
349 			else
350 				ntfs_end_buffer_async_read(tbh, 1);
351 		}
352 		return 0;
353 	}
354 	/* No i/o was scheduled on any of the buffers. */
355 	if (likely(!PageError(page)))
356 		SetPageUptodate(page);
357 	else /* Signal synchronous i/o error. */
358 		nr = -EIO;
359 	unlock_page(page);
360 	return nr;
361 }
362 
363 /**
364  * ntfs_readpage - fill a @page of a @file with data from the device
365  * @file:	open file to which the page @page belongs or NULL
366  * @page:	page cache page to fill with data
367  *
368  * For non-resident attributes, ntfs_readpage() fills the @page of the open
369  * file @file by calling the ntfs version of the generic block_read_full_page()
370  * function, ntfs_read_block(), which in turn creates and reads in the buffers
371  * associated with the page asynchronously.
372  *
373  * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
374  * data from the mft record (which at this stage is most likely in memory) and
375  * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
376  * even if the mft record is not cached at this point in time, we need to wait
377  * for it to be read in before we can do the copy.
378  *
379  * Return 0 on success and -errno on error.
380  */
381 static int ntfs_readpage(struct file *file, struct page *page)
382 {
383 	loff_t i_size;
384 	struct inode *vi;
385 	ntfs_inode *ni, *base_ni;
386 	u8 *addr;
387 	ntfs_attr_search_ctx *ctx;
388 	MFT_RECORD *mrec;
389 	unsigned long flags;
390 	u32 attr_len;
391 	int err = 0;
392 
393 retry_readpage:
394 	BUG_ON(!PageLocked(page));
395 	vi = page->mapping->host;
396 	i_size = i_size_read(vi);
397 	/* Is the page fully outside i_size? (truncate in progress) */
398 	if (unlikely(page->index >= (i_size + PAGE_SIZE - 1) >>
399 			PAGE_SHIFT)) {
400 		zero_user(page, 0, PAGE_SIZE);
401 		ntfs_debug("Read outside i_size - truncated?");
402 		goto done;
403 	}
404 	/*
405 	 * This can potentially happen because we clear PageUptodate() during
406 	 * ntfs_writepage() of MstProtected() attributes.
407 	 */
408 	if (PageUptodate(page)) {
409 		unlock_page(page);
410 		return 0;
411 	}
412 	ni = NTFS_I(vi);
413 	/*
414 	 * Only $DATA attributes can be encrypted and only unnamed $DATA
415 	 * attributes can be compressed.  Index root can have the flags set but
416 	 * this means to create compressed/encrypted files, not that the
417 	 * attribute is compressed/encrypted.  Note we need to check for
418 	 * AT_INDEX_ALLOCATION since this is the type of both directory and
419 	 * index inodes.
420 	 */
421 	if (ni->type != AT_INDEX_ALLOCATION) {
422 		/* If attribute is encrypted, deny access, just like NT4. */
423 		if (NInoEncrypted(ni)) {
424 			BUG_ON(ni->type != AT_DATA);
425 			err = -EACCES;
426 			goto err_out;
427 		}
428 		/* Compressed data streams are handled in compress.c. */
429 		if (NInoNonResident(ni) && NInoCompressed(ni)) {
430 			BUG_ON(ni->type != AT_DATA);
431 			BUG_ON(ni->name_len);
432 			return ntfs_read_compressed_block(page);
433 		}
434 	}
435 	/* NInoNonResident() == NInoIndexAllocPresent() */
436 	if (NInoNonResident(ni)) {
437 		/* Normal, non-resident data stream. */
438 		return ntfs_read_block(page);
439 	}
440 	/*
441 	 * Attribute is resident, implying it is not compressed or encrypted.
442 	 * This also means the attribute is smaller than an mft record and
443 	 * hence smaller than a page, so can simply zero out any pages with
444 	 * index above 0.  Note the attribute can actually be marked compressed
445 	 * but if it is resident the actual data is not compressed so we are
446 	 * ok to ignore the compressed flag here.
447 	 */
448 	if (unlikely(page->index > 0)) {
449 		zero_user(page, 0, PAGE_SIZE);
450 		goto done;
451 	}
452 	if (!NInoAttr(ni))
453 		base_ni = ni;
454 	else
455 		base_ni = ni->ext.base_ntfs_ino;
456 	/* Map, pin, and lock the mft record. */
457 	mrec = map_mft_record(base_ni);
458 	if (IS_ERR(mrec)) {
459 		err = PTR_ERR(mrec);
460 		goto err_out;
461 	}
462 	/*
463 	 * If a parallel write made the attribute non-resident, drop the mft
464 	 * record and retry the readpage.
465 	 */
466 	if (unlikely(NInoNonResident(ni))) {
467 		unmap_mft_record(base_ni);
468 		goto retry_readpage;
469 	}
470 	ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
471 	if (unlikely(!ctx)) {
472 		err = -ENOMEM;
473 		goto unm_err_out;
474 	}
475 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
476 			CASE_SENSITIVE, 0, NULL, 0, ctx);
477 	if (unlikely(err))
478 		goto put_unm_err_out;
479 	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
480 	read_lock_irqsave(&ni->size_lock, flags);
481 	if (unlikely(attr_len > ni->initialized_size))
482 		attr_len = ni->initialized_size;
483 	i_size = i_size_read(vi);
484 	read_unlock_irqrestore(&ni->size_lock, flags);
485 	if (unlikely(attr_len > i_size)) {
486 		/* Race with shrinking truncate. */
487 		attr_len = i_size;
488 	}
489 	addr = kmap_atomic(page);
490 	/* Copy the data to the page. */
491 	memcpy(addr, (u8*)ctx->attr +
492 			le16_to_cpu(ctx->attr->data.resident.value_offset),
493 			attr_len);
494 	/* Zero the remainder of the page. */
495 	memset(addr + attr_len, 0, PAGE_SIZE - attr_len);
496 	flush_dcache_page(page);
497 	kunmap_atomic(addr);
498 put_unm_err_out:
499 	ntfs_attr_put_search_ctx(ctx);
500 unm_err_out:
501 	unmap_mft_record(base_ni);
502 done:
503 	SetPageUptodate(page);
504 err_out:
505 	unlock_page(page);
506 	return err;
507 }
508 
509 #ifdef NTFS_RW
510 
511 /**
512  * ntfs_write_block - write a @page to the backing store
513  * @page:	page cache page to write out
514  * @wbc:	writeback control structure
515  *
516  * This function is for writing pages belonging to non-resident, non-mst
517  * protected attributes to their backing store.
518  *
519  * For a page with buffers, map and write the dirty buffers asynchronously
520  * under page writeback. For a page without buffers, create buffers for the
521  * page, then proceed as above.
522  *
523  * If a page doesn't have buffers the page dirty state is definitive. If a page
524  * does have buffers, the page dirty state is just a hint, and the buffer dirty
525  * state is definitive. (A hint which has rules: dirty buffers against a clean
526  * page is illegal. Other combinations are legal and need to be handled. In
527  * particular a dirty page containing clean buffers for example.)
528  *
529  * Return 0 on success and -errno on error.
530  *
531  * Based on ntfs_read_block() and __block_write_full_page().
532  */
533 static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
534 {
535 	VCN vcn;
536 	LCN lcn;
537 	s64 initialized_size;
538 	loff_t i_size;
539 	sector_t block, dblock, iblock;
540 	struct inode *vi;
541 	ntfs_inode *ni;
542 	ntfs_volume *vol;
543 	runlist_element *rl;
544 	struct buffer_head *bh, *head;
545 	unsigned long flags;
546 	unsigned int blocksize, vcn_ofs;
547 	int err;
548 	bool need_end_writeback;
549 	unsigned char blocksize_bits;
550 
551 	vi = page->mapping->host;
552 	ni = NTFS_I(vi);
553 	vol = ni->vol;
554 
555 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
556 			"0x%lx.", ni->mft_no, ni->type, page->index);
557 
558 	BUG_ON(!NInoNonResident(ni));
559 	BUG_ON(NInoMstProtected(ni));
560 	blocksize = vol->sb->s_blocksize;
561 	blocksize_bits = vol->sb->s_blocksize_bits;
562 	if (!page_has_buffers(page)) {
563 		BUG_ON(!PageUptodate(page));
564 		create_empty_buffers(page, blocksize,
565 				(1 << BH_Uptodate) | (1 << BH_Dirty));
566 		if (unlikely(!page_has_buffers(page))) {
567 			ntfs_warning(vol->sb, "Error allocating page "
568 					"buffers.  Redirtying page so we try "
569 					"again later.");
570 			/*
571 			 * Put the page back on mapping->dirty_pages, but leave
572 			 * its buffers' dirty state as-is.
573 			 */
574 			redirty_page_for_writepage(wbc, page);
575 			unlock_page(page);
576 			return 0;
577 		}
578 	}
579 	bh = head = page_buffers(page);
580 	BUG_ON(!bh);
581 
582 	/* NOTE: Different naming scheme to ntfs_read_block()! */
583 
584 	/* The first block in the page. */
585 	block = (s64)page->index << (PAGE_SHIFT - blocksize_bits);
586 
587 	read_lock_irqsave(&ni->size_lock, flags);
588 	i_size = i_size_read(vi);
589 	initialized_size = ni->initialized_size;
590 	read_unlock_irqrestore(&ni->size_lock, flags);
591 
592 	/* The first out of bounds block for the data size. */
593 	dblock = (i_size + blocksize - 1) >> blocksize_bits;
594 
595 	/* The last (fully or partially) initialized block. */
596 	iblock = initialized_size >> blocksize_bits;
597 
598 	/*
599 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
600 	 * here, and the (potentially unmapped) buffers may become dirty at
601 	 * any time.  If a buffer becomes dirty here after we've inspected it
602 	 * then we just miss that fact, and the page stays dirty.
603 	 *
604 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
605 	 * handle that here by just cleaning them.
606 	 */
607 
608 	/*
609 	 * Loop through all the buffers in the page, mapping all the dirty
610 	 * buffers to disk addresses and handling any aliases from the
611 	 * underlying block device's mapping.
612 	 */
613 	rl = NULL;
614 	err = 0;
615 	do {
616 		bool is_retry = false;
617 
618 		if (unlikely(block >= dblock)) {
619 			/*
620 			 * Mapped buffers outside i_size will occur, because
621 			 * this page can be outside i_size when there is a
622 			 * truncate in progress. The contents of such buffers
623 			 * were zeroed by ntfs_writepage().
624 			 *
625 			 * FIXME: What about the small race window where
626 			 * ntfs_writepage() has not done any clearing because
627 			 * the page was within i_size but before we get here,
628 			 * vmtruncate() modifies i_size?
629 			 */
630 			clear_buffer_dirty(bh);
631 			set_buffer_uptodate(bh);
632 			continue;
633 		}
634 
635 		/* Clean buffers are not written out, so no need to map them. */
636 		if (!buffer_dirty(bh))
637 			continue;
638 
639 		/* Make sure we have enough initialized size. */
640 		if (unlikely((block >= iblock) &&
641 				(initialized_size < i_size))) {
642 			/*
643 			 * If this page is fully outside initialized size, zero
644 			 * out all pages between the current initialized size
645 			 * and the current page. Just use ntfs_readpage() to do
646 			 * the zeroing transparently.
647 			 */
648 			if (block > iblock) {
649 				// TODO:
650 				// For each page do:
651 				// - read_cache_page()
652 				// Again for each page do:
653 				// - wait_on_page_locked()
654 				// - Check (PageUptodate(page) &&
655 				//			!PageError(page))
656 				// Update initialized size in the attribute and
657 				// in the inode.
658 				// Again, for each page do:
659 				//	__set_page_dirty_buffers();
660 				// put_page()
661 				// We don't need to wait on the writes.
662 				// Update iblock.
663 			}
664 			/*
665 			 * The current page straddles initialized size. Zero
666 			 * all non-uptodate buffers and set them uptodate (and
667 			 * dirty?). Note, there aren't any non-uptodate buffers
668 			 * if the page is uptodate.
669 			 * FIXME: For an uptodate page, the buffers may need to
670 			 * be written out because they were not initialized on
671 			 * disk before.
672 			 */
673 			if (!PageUptodate(page)) {
674 				// TODO:
675 				// Zero any non-uptodate buffers up to i_size.
676 				// Set them uptodate and dirty.
677 			}
678 			// TODO:
679 			// Update initialized size in the attribute and in the
680 			// inode (up to i_size).
681 			// Update iblock.
682 			// FIXME: This is inefficient. Try to batch the two
683 			// size changes to happen in one go.
684 			ntfs_error(vol->sb, "Writing beyond initialized size "
685 					"is not supported yet. Sorry.");
686 			err = -EOPNOTSUPP;
687 			break;
688 			// Do NOT set_buffer_new() BUT DO clear buffer range
689 			// outside write request range.
690 			// set_buffer_uptodate() on complete buffers as well as
691 			// set_buffer_dirty().
692 		}
693 
694 		/* No need to map buffers that are already mapped. */
695 		if (buffer_mapped(bh))
696 			continue;
697 
698 		/* Unmapped, dirty buffer. Need to map it. */
699 		bh->b_bdev = vol->sb->s_bdev;
700 
701 		/* Convert block into corresponding vcn and offset. */
702 		vcn = (VCN)block << blocksize_bits;
703 		vcn_ofs = vcn & vol->cluster_size_mask;
704 		vcn >>= vol->cluster_size_bits;
705 		if (!rl) {
706 lock_retry_remap:
707 			down_read(&ni->runlist.lock);
708 			rl = ni->runlist.rl;
709 		}
710 		if (likely(rl != NULL)) {
711 			/* Seek to element containing target vcn. */
712 			while (rl->length && rl[1].vcn <= vcn)
713 				rl++;
714 			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
715 		} else
716 			lcn = LCN_RL_NOT_MAPPED;
717 		/* Successful remap. */
718 		if (lcn >= 0) {
719 			/* Setup buffer head to point to correct block. */
720 			bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
721 					vcn_ofs) >> blocksize_bits;
722 			set_buffer_mapped(bh);
723 			continue;
724 		}
725 		/* It is a hole, need to instantiate it. */
726 		if (lcn == LCN_HOLE) {
727 			u8 *kaddr;
728 			unsigned long *bpos, *bend;
729 
730 			/* Check if the buffer is zero. */
731 			kaddr = kmap_atomic(page);
732 			bpos = (unsigned long *)(kaddr + bh_offset(bh));
733 			bend = (unsigned long *)((u8*)bpos + blocksize);
734 			do {
735 				if (unlikely(*bpos))
736 					break;
737 			} while (likely(++bpos < bend));
738 			kunmap_atomic(kaddr);
739 			if (bpos == bend) {
740 				/*
741 				 * Buffer is zero and sparse, no need to write
742 				 * it.
743 				 */
744 				bh->b_blocknr = -1;
745 				clear_buffer_dirty(bh);
746 				continue;
747 			}
748 			// TODO: Instantiate the hole.
749 			// clear_buffer_new(bh);
750 			// clean_bdev_bh_alias(bh);
751 			ntfs_error(vol->sb, "Writing into sparse regions is "
752 					"not supported yet. Sorry.");
753 			err = -EOPNOTSUPP;
754 			break;
755 		}
756 		/* If first try and runlist unmapped, map and retry. */
757 		if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
758 			is_retry = true;
759 			/*
760 			 * Attempt to map runlist, dropping lock for
761 			 * the duration.
762 			 */
763 			up_read(&ni->runlist.lock);
764 			err = ntfs_map_runlist(ni, vcn);
765 			if (likely(!err))
766 				goto lock_retry_remap;
767 			rl = NULL;
768 		} else if (!rl)
769 			up_read(&ni->runlist.lock);
770 		/*
771 		 * If buffer is outside the runlist, truncate has cut it out
772 		 * of the runlist.  Just clean and clear the buffer and set it
773 		 * uptodate so it can get discarded by the VM.
774 		 */
775 		if (err == -ENOENT || lcn == LCN_ENOENT) {
776 			bh->b_blocknr = -1;
777 			clear_buffer_dirty(bh);
778 			zero_user(page, bh_offset(bh), blocksize);
779 			set_buffer_uptodate(bh);
780 			err = 0;
781 			continue;
782 		}
783 		/* Failed to map the buffer, even after retrying. */
784 		if (!err)
785 			err = -EIO;
786 		bh->b_blocknr = -1;
787 		ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
788 				"attribute type 0x%x, vcn 0x%llx, offset 0x%x "
789 				"because its location on disk could not be "
790 				"determined%s (error code %i).", ni->mft_no,
791 				ni->type, (unsigned long long)vcn,
792 				vcn_ofs, is_retry ? " even after "
793 				"retrying" : "", err);
794 		break;
795 	} while (block++, (bh = bh->b_this_page) != head);
796 
797 	/* Release the lock if we took it. */
798 	if (rl)
799 		up_read(&ni->runlist.lock);
800 
801 	/* For the error case, need to reset bh to the beginning. */
802 	bh = head;
803 
804 	/* Just an optimization, so ->readpage() is not called later. */
805 	if (unlikely(!PageUptodate(page))) {
806 		int uptodate = 1;
807 		do {
808 			if (!buffer_uptodate(bh)) {
809 				uptodate = 0;
810 				bh = head;
811 				break;
812 			}
813 		} while ((bh = bh->b_this_page) != head);
814 		if (uptodate)
815 			SetPageUptodate(page);
816 	}
817 
818 	/* Setup all mapped, dirty buffers for async write i/o. */
819 	do {
820 		if (buffer_mapped(bh) && buffer_dirty(bh)) {
821 			lock_buffer(bh);
822 			if (test_clear_buffer_dirty(bh)) {
823 				BUG_ON(!buffer_uptodate(bh));
824 				mark_buffer_async_write(bh);
825 			} else
826 				unlock_buffer(bh);
827 		} else if (unlikely(err)) {
828 			/*
829 			 * For the error case. The buffer may have been set
830 			 * dirty during attachment to a dirty page.
831 			 */
832 			if (err != -ENOMEM)
833 				clear_buffer_dirty(bh);
834 		}
835 	} while ((bh = bh->b_this_page) != head);
836 
837 	if (unlikely(err)) {
838 		// TODO: Remove the -EOPNOTSUPP check later on...
839 		if (unlikely(err == -EOPNOTSUPP))
840 			err = 0;
841 		else if (err == -ENOMEM) {
842 			ntfs_warning(vol->sb, "Error allocating memory. "
843 					"Redirtying page so we try again "
844 					"later.");
845 			/*
846 			 * Put the page back on mapping->dirty_pages, but
847 			 * leave its buffer's dirty state as-is.
848 			 */
849 			redirty_page_for_writepage(wbc, page);
850 			err = 0;
851 		} else
852 			SetPageError(page);
853 	}
854 
855 	BUG_ON(PageWriteback(page));
856 	set_page_writeback(page);	/* Keeps try_to_free_buffers() away. */
857 
858 	/* Submit the prepared buffers for i/o. */
859 	need_end_writeback = true;
860 	do {
861 		struct buffer_head *next = bh->b_this_page;
862 		if (buffer_async_write(bh)) {
863 			submit_bh(REQ_OP_WRITE, 0, bh);
864 			need_end_writeback = false;
865 		}
866 		bh = next;
867 	} while (bh != head);
868 	unlock_page(page);
869 
870 	/* If no i/o was started, need to end_page_writeback(). */
871 	if (unlikely(need_end_writeback))
872 		end_page_writeback(page);
873 
874 	ntfs_debug("Done.");
875 	return err;
876 }
877 
878 /**
879  * ntfs_write_mst_block - write a @page to the backing store
880  * @page:	page cache page to write out
881  * @wbc:	writeback control structure
882  *
883  * This function is for writing pages belonging to non-resident, mst protected
884  * attributes to their backing store.  The only supported attributes are index
885  * allocation and $MFT/$DATA.  Both directory inodes and index inodes are
886  * supported for the index allocation case.
887  *
888  * The page must remain locked for the duration of the write because we apply
889  * the mst fixups, write, and then undo the fixups, so if we were to unlock the
890  * page before undoing the fixups, any other user of the page will see the
891  * page contents as corrupt.
892  *
893  * We clear the page uptodate flag for the duration of the function to ensure
894  * exclusion for the $MFT/$DATA case against someone mapping an mft record we
895  * are about to apply the mst fixups to.
896  *
897  * Return 0 on success and -errno on error.
898  *
899  * Based on ntfs_write_block(), ntfs_mft_writepage(), and
900  * write_mft_record_nolock().
901  */
902 static int ntfs_write_mst_block(struct page *page,
903 		struct writeback_control *wbc)
904 {
905 	sector_t block, dblock, rec_block;
906 	struct inode *vi = page->mapping->host;
907 	ntfs_inode *ni = NTFS_I(vi);
908 	ntfs_volume *vol = ni->vol;
909 	u8 *kaddr;
910 	unsigned int rec_size = ni->itype.index.block_size;
911 	ntfs_inode *locked_nis[PAGE_SIZE / NTFS_BLOCK_SIZE];
912 	struct buffer_head *bh, *head, *tbh, *rec_start_bh;
913 	struct buffer_head *bhs[MAX_BUF_PER_PAGE];
914 	runlist_element *rl;
915 	int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2;
916 	unsigned bh_size, rec_size_bits;
917 	bool sync, is_mft, page_is_dirty, rec_is_dirty;
918 	unsigned char bh_size_bits;
919 
920 	if (WARN_ON(rec_size < NTFS_BLOCK_SIZE))
921 		return -EINVAL;
922 
923 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
924 			"0x%lx.", vi->i_ino, ni->type, page->index);
925 	BUG_ON(!NInoNonResident(ni));
926 	BUG_ON(!NInoMstProtected(ni));
927 	is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
928 	/*
929 	 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
930 	 * in its page cache were to be marked dirty.  However this should
931 	 * never happen with the current driver and considering we do not
932 	 * handle this case here we do want to BUG(), at least for now.
933 	 */
934 	BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
935 			(NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
936 	bh_size = vol->sb->s_blocksize;
937 	bh_size_bits = vol->sb->s_blocksize_bits;
938 	max_bhs = PAGE_SIZE / bh_size;
939 	BUG_ON(!max_bhs);
940 	BUG_ON(max_bhs > MAX_BUF_PER_PAGE);
941 
942 	/* Were we called for sync purposes? */
943 	sync = (wbc->sync_mode == WB_SYNC_ALL);
944 
945 	/* Make sure we have mapped buffers. */
946 	bh = head = page_buffers(page);
947 	BUG_ON(!bh);
948 
949 	rec_size_bits = ni->itype.index.block_size_bits;
950 	BUG_ON(!(PAGE_SIZE >> rec_size_bits));
951 	bhs_per_rec = rec_size >> bh_size_bits;
952 	BUG_ON(!bhs_per_rec);
953 
954 	/* The first block in the page. */
955 	rec_block = block = (sector_t)page->index <<
956 			(PAGE_SHIFT - bh_size_bits);
957 
958 	/* The first out of bounds block for the data size. */
959 	dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits;
960 
961 	rl = NULL;
962 	err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
963 	page_is_dirty = rec_is_dirty = false;
964 	rec_start_bh = NULL;
965 	do {
966 		bool is_retry = false;
967 
968 		if (likely(block < rec_block)) {
969 			if (unlikely(block >= dblock)) {
970 				clear_buffer_dirty(bh);
971 				set_buffer_uptodate(bh);
972 				continue;
973 			}
974 			/*
975 			 * This block is not the first one in the record.  We
976 			 * ignore the buffer's dirty state because we could
977 			 * have raced with a parallel mark_ntfs_record_dirty().
978 			 */
979 			if (!rec_is_dirty)
980 				continue;
981 			if (unlikely(err2)) {
982 				if (err2 != -ENOMEM)
983 					clear_buffer_dirty(bh);
984 				continue;
985 			}
986 		} else /* if (block == rec_block) */ {
987 			BUG_ON(block > rec_block);
988 			/* This block is the first one in the record. */
989 			rec_block += bhs_per_rec;
990 			err2 = 0;
991 			if (unlikely(block >= dblock)) {
992 				clear_buffer_dirty(bh);
993 				continue;
994 			}
995 			if (!buffer_dirty(bh)) {
996 				/* Clean records are not written out. */
997 				rec_is_dirty = false;
998 				continue;
999 			}
1000 			rec_is_dirty = true;
1001 			rec_start_bh = bh;
1002 		}
1003 		/* Need to map the buffer if it is not mapped already. */
1004 		if (unlikely(!buffer_mapped(bh))) {
1005 			VCN vcn;
1006 			LCN lcn;
1007 			unsigned int vcn_ofs;
1008 
1009 			bh->b_bdev = vol->sb->s_bdev;
1010 			/* Obtain the vcn and offset of the current block. */
1011 			vcn = (VCN)block << bh_size_bits;
1012 			vcn_ofs = vcn & vol->cluster_size_mask;
1013 			vcn >>= vol->cluster_size_bits;
1014 			if (!rl) {
1015 lock_retry_remap:
1016 				down_read(&ni->runlist.lock);
1017 				rl = ni->runlist.rl;
1018 			}
1019 			if (likely(rl != NULL)) {
1020 				/* Seek to element containing target vcn. */
1021 				while (rl->length && rl[1].vcn <= vcn)
1022 					rl++;
1023 				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
1024 			} else
1025 				lcn = LCN_RL_NOT_MAPPED;
1026 			/* Successful remap. */
1027 			if (likely(lcn >= 0)) {
1028 				/* Setup buffer head to correct block. */
1029 				bh->b_blocknr = ((lcn <<
1030 						vol->cluster_size_bits) +
1031 						vcn_ofs) >> bh_size_bits;
1032 				set_buffer_mapped(bh);
1033 			} else {
1034 				/*
1035 				 * Remap failed.  Retry to map the runlist once
1036 				 * unless we are working on $MFT which always
1037 				 * has the whole of its runlist in memory.
1038 				 */
1039 				if (!is_mft && !is_retry &&
1040 						lcn == LCN_RL_NOT_MAPPED) {
1041 					is_retry = true;
1042 					/*
1043 					 * Attempt to map runlist, dropping
1044 					 * lock for the duration.
1045 					 */
1046 					up_read(&ni->runlist.lock);
1047 					err2 = ntfs_map_runlist(ni, vcn);
1048 					if (likely(!err2))
1049 						goto lock_retry_remap;
1050 					if (err2 == -ENOMEM)
1051 						page_is_dirty = true;
1052 					lcn = err2;
1053 				} else {
1054 					err2 = -EIO;
1055 					if (!rl)
1056 						up_read(&ni->runlist.lock);
1057 				}
1058 				/* Hard error.  Abort writing this record. */
1059 				if (!err || err == -ENOMEM)
1060 					err = err2;
1061 				bh->b_blocknr = -1;
1062 				ntfs_error(vol->sb, "Cannot write ntfs record "
1063 						"0x%llx (inode 0x%lx, "
1064 						"attribute type 0x%x) because "
1065 						"its location on disk could "
1066 						"not be determined (error "
1067 						"code %lli).",
1068 						(long long)block <<
1069 						bh_size_bits >>
1070 						vol->mft_record_size_bits,
1071 						ni->mft_no, ni->type,
1072 						(long long)lcn);
1073 				/*
1074 				 * If this is not the first buffer, remove the
1075 				 * buffers in this record from the list of
1076 				 * buffers to write and clear their dirty bit
1077 				 * if not error -ENOMEM.
1078 				 */
1079 				if (rec_start_bh != bh) {
1080 					while (bhs[--nr_bhs] != rec_start_bh)
1081 						;
1082 					if (err2 != -ENOMEM) {
1083 						do {
1084 							clear_buffer_dirty(
1085 								rec_start_bh);
1086 						} while ((rec_start_bh =
1087 								rec_start_bh->
1088 								b_this_page) !=
1089 								bh);
1090 					}
1091 				}
1092 				continue;
1093 			}
1094 		}
1095 		BUG_ON(!buffer_uptodate(bh));
1096 		BUG_ON(nr_bhs >= max_bhs);
1097 		bhs[nr_bhs++] = bh;
1098 	} while (block++, (bh = bh->b_this_page) != head);
1099 	if (unlikely(rl))
1100 		up_read(&ni->runlist.lock);
1101 	/* If there were no dirty buffers, we are done. */
1102 	if (!nr_bhs)
1103 		goto done;
1104 	/* Map the page so we can access its contents. */
1105 	kaddr = kmap(page);
1106 	/* Clear the page uptodate flag whilst the mst fixups are applied. */
1107 	BUG_ON(!PageUptodate(page));
1108 	ClearPageUptodate(page);
1109 	for (i = 0; i < nr_bhs; i++) {
1110 		unsigned int ofs;
1111 
1112 		/* Skip buffers which are not at the beginning of records. */
1113 		if (i % bhs_per_rec)
1114 			continue;
1115 		tbh = bhs[i];
1116 		ofs = bh_offset(tbh);
1117 		if (is_mft) {
1118 			ntfs_inode *tni;
1119 			unsigned long mft_no;
1120 
1121 			/* Get the mft record number. */
1122 			mft_no = (((s64)page->index << PAGE_SHIFT) + ofs)
1123 					>> rec_size_bits;
1124 			/* Check whether to write this mft record. */
1125 			tni = NULL;
1126 			if (!ntfs_may_write_mft_record(vol, mft_no,
1127 					(MFT_RECORD*)(kaddr + ofs), &tni)) {
1128 				/*
1129 				 * The record should not be written.  This
1130 				 * means we need to redirty the page before
1131 				 * returning.
1132 				 */
1133 				page_is_dirty = true;
1134 				/*
1135 				 * Remove the buffers in this mft record from
1136 				 * the list of buffers to write.
1137 				 */
1138 				do {
1139 					bhs[i] = NULL;
1140 				} while (++i % bhs_per_rec);
1141 				continue;
1142 			}
1143 			/*
1144 			 * The record should be written.  If a locked ntfs
1145 			 * inode was returned, add it to the array of locked
1146 			 * ntfs inodes.
1147 			 */
1148 			if (tni)
1149 				locked_nis[nr_locked_nis++] = tni;
1150 		}
1151 		/* Apply the mst protection fixups. */
1152 		err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
1153 				rec_size);
1154 		if (unlikely(err2)) {
1155 			if (!err || err == -ENOMEM)
1156 				err = -EIO;
1157 			ntfs_error(vol->sb, "Failed to apply mst fixups "
1158 					"(inode 0x%lx, attribute type 0x%x, "
1159 					"page index 0x%lx, page offset 0x%x)!"
1160 					"  Unmount and run chkdsk.", vi->i_ino,
1161 					ni->type, page->index, ofs);
1162 			/*
1163 			 * Mark all the buffers in this record clean as we do
1164 			 * not want to write corrupt data to disk.
1165 			 */
1166 			do {
1167 				clear_buffer_dirty(bhs[i]);
1168 				bhs[i] = NULL;
1169 			} while (++i % bhs_per_rec);
1170 			continue;
1171 		}
1172 		nr_recs++;
1173 	}
1174 	/* If no records are to be written out, we are done. */
1175 	if (!nr_recs)
1176 		goto unm_done;
1177 	flush_dcache_page(page);
1178 	/* Lock buffers and start synchronous write i/o on them. */
1179 	for (i = 0; i < nr_bhs; i++) {
1180 		tbh = bhs[i];
1181 		if (!tbh)
1182 			continue;
1183 		if (!trylock_buffer(tbh))
1184 			BUG();
1185 		/* The buffer dirty state is now irrelevant, just clean it. */
1186 		clear_buffer_dirty(tbh);
1187 		BUG_ON(!buffer_uptodate(tbh));
1188 		BUG_ON(!buffer_mapped(tbh));
1189 		get_bh(tbh);
1190 		tbh->b_end_io = end_buffer_write_sync;
1191 		submit_bh(REQ_OP_WRITE, 0, tbh);
1192 	}
1193 	/* Synchronize the mft mirror now if not @sync. */
1194 	if (is_mft && !sync)
1195 		goto do_mirror;
1196 do_wait:
1197 	/* Wait on i/o completion of buffers. */
1198 	for (i = 0; i < nr_bhs; i++) {
1199 		tbh = bhs[i];
1200 		if (!tbh)
1201 			continue;
1202 		wait_on_buffer(tbh);
1203 		if (unlikely(!buffer_uptodate(tbh))) {
1204 			ntfs_error(vol->sb, "I/O error while writing ntfs "
1205 					"record buffer (inode 0x%lx, "
1206 					"attribute type 0x%x, page index "
1207 					"0x%lx, page offset 0x%lx)!  Unmount "
1208 					"and run chkdsk.", vi->i_ino, ni->type,
1209 					page->index, bh_offset(tbh));
1210 			if (!err || err == -ENOMEM)
1211 				err = -EIO;
1212 			/*
1213 			 * Set the buffer uptodate so the page and buffer
1214 			 * states do not become out of sync.
1215 			 */
1216 			set_buffer_uptodate(tbh);
1217 		}
1218 	}
1219 	/* If @sync, now synchronize the mft mirror. */
1220 	if (is_mft && sync) {
1221 do_mirror:
1222 		for (i = 0; i < nr_bhs; i++) {
1223 			unsigned long mft_no;
1224 			unsigned int ofs;
1225 
1226 			/*
1227 			 * Skip buffers which are not at the beginning of
1228 			 * records.
1229 			 */
1230 			if (i % bhs_per_rec)
1231 				continue;
1232 			tbh = bhs[i];
1233 			/* Skip removed buffers (and hence records). */
1234 			if (!tbh)
1235 				continue;
1236 			ofs = bh_offset(tbh);
1237 			/* Get the mft record number. */
1238 			mft_no = (((s64)page->index << PAGE_SHIFT) + ofs)
1239 					>> rec_size_bits;
1240 			if (mft_no < vol->mftmirr_size)
1241 				ntfs_sync_mft_mirror(vol, mft_no,
1242 						(MFT_RECORD*)(kaddr + ofs),
1243 						sync);
1244 		}
1245 		if (!sync)
1246 			goto do_wait;
1247 	}
1248 	/* Remove the mst protection fixups again. */
1249 	for (i = 0; i < nr_bhs; i++) {
1250 		if (!(i % bhs_per_rec)) {
1251 			tbh = bhs[i];
1252 			if (!tbh)
1253 				continue;
1254 			post_write_mst_fixup((NTFS_RECORD*)(kaddr +
1255 					bh_offset(tbh)));
1256 		}
1257 	}
1258 	flush_dcache_page(page);
1259 unm_done:
1260 	/* Unlock any locked inodes. */
1261 	while (nr_locked_nis-- > 0) {
1262 		ntfs_inode *tni, *base_tni;
1263 
1264 		tni = locked_nis[nr_locked_nis];
1265 		/* Get the base inode. */
1266 		mutex_lock(&tni->extent_lock);
1267 		if (tni->nr_extents >= 0)
1268 			base_tni = tni;
1269 		else {
1270 			base_tni = tni->ext.base_ntfs_ino;
1271 			BUG_ON(!base_tni);
1272 		}
1273 		mutex_unlock(&tni->extent_lock);
1274 		ntfs_debug("Unlocking %s inode 0x%lx.",
1275 				tni == base_tni ? "base" : "extent",
1276 				tni->mft_no);
1277 		mutex_unlock(&tni->mrec_lock);
1278 		atomic_dec(&tni->count);
1279 		iput(VFS_I(base_tni));
1280 	}
1281 	SetPageUptodate(page);
1282 	kunmap(page);
1283 done:
1284 	if (unlikely(err && err != -ENOMEM)) {
1285 		/*
1286 		 * Set page error if there is only one ntfs record in the page.
1287 		 * Otherwise we would loose per-record granularity.
1288 		 */
1289 		if (ni->itype.index.block_size == PAGE_SIZE)
1290 			SetPageError(page);
1291 		NVolSetErrors(vol);
1292 	}
1293 	if (page_is_dirty) {
1294 		ntfs_debug("Page still contains one or more dirty ntfs "
1295 				"records.  Redirtying the page starting at "
1296 				"record 0x%lx.", page->index <<
1297 				(PAGE_SHIFT - rec_size_bits));
1298 		redirty_page_for_writepage(wbc, page);
1299 		unlock_page(page);
1300 	} else {
1301 		/*
1302 		 * Keep the VM happy.  This must be done otherwise the
1303 		 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1304 		 * the page is clean.
1305 		 */
1306 		BUG_ON(PageWriteback(page));
1307 		set_page_writeback(page);
1308 		unlock_page(page);
1309 		end_page_writeback(page);
1310 	}
1311 	if (likely(!err))
1312 		ntfs_debug("Done.");
1313 	return err;
1314 }
1315 
1316 /**
1317  * ntfs_writepage - write a @page to the backing store
1318  * @page:	page cache page to write out
1319  * @wbc:	writeback control structure
1320  *
1321  * This is called from the VM when it wants to have a dirty ntfs page cache
1322  * page cleaned.  The VM has already locked the page and marked it clean.
1323  *
1324  * For non-resident attributes, ntfs_writepage() writes the @page by calling
1325  * the ntfs version of the generic block_write_full_page() function,
1326  * ntfs_write_block(), which in turn if necessary creates and writes the
1327  * buffers associated with the page asynchronously.
1328  *
1329  * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1330  * the data to the mft record (which at this stage is most likely in memory).
1331  * The mft record is then marked dirty and written out asynchronously via the
1332  * vfs inode dirty code path for the inode the mft record belongs to or via the
1333  * vm page dirty code path for the page the mft record is in.
1334  *
1335  * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1336  *
1337  * Return 0 on success and -errno on error.
1338  */
1339 static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
1340 {
1341 	loff_t i_size;
1342 	struct inode *vi = page->mapping->host;
1343 	ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1344 	char *addr;
1345 	ntfs_attr_search_ctx *ctx = NULL;
1346 	MFT_RECORD *m = NULL;
1347 	u32 attr_len;
1348 	int err;
1349 
1350 retry_writepage:
1351 	BUG_ON(!PageLocked(page));
1352 	i_size = i_size_read(vi);
1353 	/* Is the page fully outside i_size? (truncate in progress) */
1354 	if (unlikely(page->index >= (i_size + PAGE_SIZE - 1) >>
1355 			PAGE_SHIFT)) {
1356 		/*
1357 		 * The page may have dirty, unmapped buffers.  Make them
1358 		 * freeable here, so the page does not leak.
1359 		 */
1360 		block_invalidatepage(page, 0, PAGE_SIZE);
1361 		unlock_page(page);
1362 		ntfs_debug("Write outside i_size - truncated?");
1363 		return 0;
1364 	}
1365 	/*
1366 	 * Only $DATA attributes can be encrypted and only unnamed $DATA
1367 	 * attributes can be compressed.  Index root can have the flags set but
1368 	 * this means to create compressed/encrypted files, not that the
1369 	 * attribute is compressed/encrypted.  Note we need to check for
1370 	 * AT_INDEX_ALLOCATION since this is the type of both directory and
1371 	 * index inodes.
1372 	 */
1373 	if (ni->type != AT_INDEX_ALLOCATION) {
1374 		/* If file is encrypted, deny access, just like NT4. */
1375 		if (NInoEncrypted(ni)) {
1376 			unlock_page(page);
1377 			BUG_ON(ni->type != AT_DATA);
1378 			ntfs_debug("Denying write access to encrypted file.");
1379 			return -EACCES;
1380 		}
1381 		/* Compressed data streams are handled in compress.c. */
1382 		if (NInoNonResident(ni) && NInoCompressed(ni)) {
1383 			BUG_ON(ni->type != AT_DATA);
1384 			BUG_ON(ni->name_len);
1385 			// TODO: Implement and replace this with
1386 			// return ntfs_write_compressed_block(page);
1387 			unlock_page(page);
1388 			ntfs_error(vi->i_sb, "Writing to compressed files is "
1389 					"not supported yet.  Sorry.");
1390 			return -EOPNOTSUPP;
1391 		}
1392 		// TODO: Implement and remove this check.
1393 		if (NInoNonResident(ni) && NInoSparse(ni)) {
1394 			unlock_page(page);
1395 			ntfs_error(vi->i_sb, "Writing to sparse files is not "
1396 					"supported yet.  Sorry.");
1397 			return -EOPNOTSUPP;
1398 		}
1399 	}
1400 	/* NInoNonResident() == NInoIndexAllocPresent() */
1401 	if (NInoNonResident(ni)) {
1402 		/* We have to zero every time due to mmap-at-end-of-file. */
1403 		if (page->index >= (i_size >> PAGE_SHIFT)) {
1404 			/* The page straddles i_size. */
1405 			unsigned int ofs = i_size & ~PAGE_MASK;
1406 			zero_user_segment(page, ofs, PAGE_SIZE);
1407 		}
1408 		/* Handle mst protected attributes. */
1409 		if (NInoMstProtected(ni))
1410 			return ntfs_write_mst_block(page, wbc);
1411 		/* Normal, non-resident data stream. */
1412 		return ntfs_write_block(page, wbc);
1413 	}
1414 	/*
1415 	 * Attribute is resident, implying it is not compressed, encrypted, or
1416 	 * mst protected.  This also means the attribute is smaller than an mft
1417 	 * record and hence smaller than a page, so can simply return error on
1418 	 * any pages with index above 0.  Note the attribute can actually be
1419 	 * marked compressed but if it is resident the actual data is not
1420 	 * compressed so we are ok to ignore the compressed flag here.
1421 	 */
1422 	BUG_ON(page_has_buffers(page));
1423 	BUG_ON(!PageUptodate(page));
1424 	if (unlikely(page->index > 0)) {
1425 		ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0.  "
1426 				"Aborting write.", page->index);
1427 		BUG_ON(PageWriteback(page));
1428 		set_page_writeback(page);
1429 		unlock_page(page);
1430 		end_page_writeback(page);
1431 		return -EIO;
1432 	}
1433 	if (!NInoAttr(ni))
1434 		base_ni = ni;
1435 	else
1436 		base_ni = ni->ext.base_ntfs_ino;
1437 	/* Map, pin, and lock the mft record. */
1438 	m = map_mft_record(base_ni);
1439 	if (IS_ERR(m)) {
1440 		err = PTR_ERR(m);
1441 		m = NULL;
1442 		ctx = NULL;
1443 		goto err_out;
1444 	}
1445 	/*
1446 	 * If a parallel write made the attribute non-resident, drop the mft
1447 	 * record and retry the writepage.
1448 	 */
1449 	if (unlikely(NInoNonResident(ni))) {
1450 		unmap_mft_record(base_ni);
1451 		goto retry_writepage;
1452 	}
1453 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1454 	if (unlikely(!ctx)) {
1455 		err = -ENOMEM;
1456 		goto err_out;
1457 	}
1458 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1459 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1460 	if (unlikely(err))
1461 		goto err_out;
1462 	/*
1463 	 * Keep the VM happy.  This must be done otherwise the radix-tree tag
1464 	 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1465 	 */
1466 	BUG_ON(PageWriteback(page));
1467 	set_page_writeback(page);
1468 	unlock_page(page);
1469 	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
1470 	i_size = i_size_read(vi);
1471 	if (unlikely(attr_len > i_size)) {
1472 		/* Race with shrinking truncate or a failed truncate. */
1473 		attr_len = i_size;
1474 		/*
1475 		 * If the truncate failed, fix it up now.  If a concurrent
1476 		 * truncate, we do its job, so it does not have to do anything.
1477 		 */
1478 		err = ntfs_resident_attr_value_resize(ctx->mrec, ctx->attr,
1479 				attr_len);
1480 		/* Shrinking cannot fail. */
1481 		BUG_ON(err);
1482 	}
1483 	addr = kmap_atomic(page);
1484 	/* Copy the data from the page to the mft record. */
1485 	memcpy((u8*)ctx->attr +
1486 			le16_to_cpu(ctx->attr->data.resident.value_offset),
1487 			addr, attr_len);
1488 	/* Zero out of bounds area in the page cache page. */
1489 	memset(addr + attr_len, 0, PAGE_SIZE - attr_len);
1490 	kunmap_atomic(addr);
1491 	flush_dcache_page(page);
1492 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1493 	/* We are done with the page. */
1494 	end_page_writeback(page);
1495 	/* Finally, mark the mft record dirty, so it gets written back. */
1496 	mark_mft_record_dirty(ctx->ntfs_ino);
1497 	ntfs_attr_put_search_ctx(ctx);
1498 	unmap_mft_record(base_ni);
1499 	return 0;
1500 err_out:
1501 	if (err == -ENOMEM) {
1502 		ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
1503 				"page so we try again later.");
1504 		/*
1505 		 * Put the page back on mapping->dirty_pages, but leave its
1506 		 * buffers' dirty state as-is.
1507 		 */
1508 		redirty_page_for_writepage(wbc, page);
1509 		err = 0;
1510 	} else {
1511 		ntfs_error(vi->i_sb, "Resident attribute write failed with "
1512 				"error %i.", err);
1513 		SetPageError(page);
1514 		NVolSetErrors(ni->vol);
1515 	}
1516 	unlock_page(page);
1517 	if (ctx)
1518 		ntfs_attr_put_search_ctx(ctx);
1519 	if (m)
1520 		unmap_mft_record(base_ni);
1521 	return err;
1522 }
1523 
1524 #endif	/* NTFS_RW */
1525 
1526 /**
1527  * ntfs_bmap - map logical file block to physical device block
1528  * @mapping:	address space mapping to which the block to be mapped belongs
1529  * @block:	logical block to map to its physical device block
1530  *
1531  * For regular, non-resident files (i.e. not compressed and not encrypted), map
1532  * the logical @block belonging to the file described by the address space
1533  * mapping @mapping to its physical device block.
1534  *
1535  * The size of the block is equal to the @s_blocksize field of the super block
1536  * of the mounted file system which is guaranteed to be smaller than or equal
1537  * to the cluster size thus the block is guaranteed to fit entirely inside the
1538  * cluster which means we do not need to care how many contiguous bytes are
1539  * available after the beginning of the block.
1540  *
1541  * Return the physical device block if the mapping succeeded or 0 if the block
1542  * is sparse or there was an error.
1543  *
1544  * Note: This is a problem if someone tries to run bmap() on $Boot system file
1545  * as that really is in block zero but there is nothing we can do.  bmap() is
1546  * just broken in that respect (just like it cannot distinguish sparse from
1547  * not available or error).
1548  */
1549 static sector_t ntfs_bmap(struct address_space *mapping, sector_t block)
1550 {
1551 	s64 ofs, size;
1552 	loff_t i_size;
1553 	LCN lcn;
1554 	unsigned long blocksize, flags;
1555 	ntfs_inode *ni = NTFS_I(mapping->host);
1556 	ntfs_volume *vol = ni->vol;
1557 	unsigned delta;
1558 	unsigned char blocksize_bits, cluster_size_shift;
1559 
1560 	ntfs_debug("Entering for mft_no 0x%lx, logical block 0x%llx.",
1561 			ni->mft_no, (unsigned long long)block);
1562 	if (ni->type != AT_DATA || !NInoNonResident(ni) || NInoEncrypted(ni)) {
1563 		ntfs_error(vol->sb, "BMAP does not make sense for %s "
1564 				"attributes, returning 0.",
1565 				(ni->type != AT_DATA) ? "non-data" :
1566 				(!NInoNonResident(ni) ? "resident" :
1567 				"encrypted"));
1568 		return 0;
1569 	}
1570 	/* None of these can happen. */
1571 	BUG_ON(NInoCompressed(ni));
1572 	BUG_ON(NInoMstProtected(ni));
1573 	blocksize = vol->sb->s_blocksize;
1574 	blocksize_bits = vol->sb->s_blocksize_bits;
1575 	ofs = (s64)block << blocksize_bits;
1576 	read_lock_irqsave(&ni->size_lock, flags);
1577 	size = ni->initialized_size;
1578 	i_size = i_size_read(VFS_I(ni));
1579 	read_unlock_irqrestore(&ni->size_lock, flags);
1580 	/*
1581 	 * If the offset is outside the initialized size or the block straddles
1582 	 * the initialized size then pretend it is a hole unless the
1583 	 * initialized size equals the file size.
1584 	 */
1585 	if (unlikely(ofs >= size || (ofs + blocksize > size && size < i_size)))
1586 		goto hole;
1587 	cluster_size_shift = vol->cluster_size_bits;
1588 	down_read(&ni->runlist.lock);
1589 	lcn = ntfs_attr_vcn_to_lcn_nolock(ni, ofs >> cluster_size_shift, false);
1590 	up_read(&ni->runlist.lock);
1591 	if (unlikely(lcn < LCN_HOLE)) {
1592 		/*
1593 		 * Step down to an integer to avoid gcc doing a long long
1594 		 * comparision in the switch when we know @lcn is between
1595 		 * LCN_HOLE and LCN_EIO (i.e. -1 to -5).
1596 		 *
1597 		 * Otherwise older gcc (at least on some architectures) will
1598 		 * try to use __cmpdi2() which is of course not available in
1599 		 * the kernel.
1600 		 */
1601 		switch ((int)lcn) {
1602 		case LCN_ENOENT:
1603 			/*
1604 			 * If the offset is out of bounds then pretend it is a
1605 			 * hole.
1606 			 */
1607 			goto hole;
1608 		case LCN_ENOMEM:
1609 			ntfs_error(vol->sb, "Not enough memory to complete "
1610 					"mapping for inode 0x%lx.  "
1611 					"Returning 0.", ni->mft_no);
1612 			break;
1613 		default:
1614 			ntfs_error(vol->sb, "Failed to complete mapping for "
1615 					"inode 0x%lx.  Run chkdsk.  "
1616 					"Returning 0.", ni->mft_no);
1617 			break;
1618 		}
1619 		return 0;
1620 	}
1621 	if (lcn < 0) {
1622 		/* It is a hole. */
1623 hole:
1624 		ntfs_debug("Done (returning hole).");
1625 		return 0;
1626 	}
1627 	/*
1628 	 * The block is really allocated and fullfils all our criteria.
1629 	 * Convert the cluster to units of block size and return the result.
1630 	 */
1631 	delta = ofs & vol->cluster_size_mask;
1632 	if (unlikely(sizeof(block) < sizeof(lcn))) {
1633 		block = lcn = ((lcn << cluster_size_shift) + delta) >>
1634 				blocksize_bits;
1635 		/* If the block number was truncated return 0. */
1636 		if (unlikely(block != lcn)) {
1637 			ntfs_error(vol->sb, "Physical block 0x%llx is too "
1638 					"large to be returned, returning 0.",
1639 					(long long)lcn);
1640 			return 0;
1641 		}
1642 	} else
1643 		block = ((lcn << cluster_size_shift) + delta) >>
1644 				blocksize_bits;
1645 	ntfs_debug("Done (returning block 0x%llx).", (unsigned long long)lcn);
1646 	return block;
1647 }
1648 
1649 /**
1650  * ntfs_normal_aops - address space operations for normal inodes and attributes
1651  *
1652  * Note these are not used for compressed or mst protected inodes and
1653  * attributes.
1654  */
1655 const struct address_space_operations ntfs_normal_aops = {
1656 	.readpage	= ntfs_readpage,
1657 #ifdef NTFS_RW
1658 	.writepage	= ntfs_writepage,
1659 	.set_page_dirty	= __set_page_dirty_buffers,
1660 #endif /* NTFS_RW */
1661 	.bmap		= ntfs_bmap,
1662 	.migratepage	= buffer_migrate_page,
1663 	.is_partially_uptodate = block_is_partially_uptodate,
1664 	.error_remove_page = generic_error_remove_page,
1665 };
1666 
1667 /**
1668  * ntfs_compressed_aops - address space operations for compressed inodes
1669  */
1670 const struct address_space_operations ntfs_compressed_aops = {
1671 	.readpage	= ntfs_readpage,
1672 #ifdef NTFS_RW
1673 	.writepage	= ntfs_writepage,
1674 	.set_page_dirty	= __set_page_dirty_buffers,
1675 #endif /* NTFS_RW */
1676 	.migratepage	= buffer_migrate_page,
1677 	.is_partially_uptodate = block_is_partially_uptodate,
1678 	.error_remove_page = generic_error_remove_page,
1679 };
1680 
1681 /**
1682  * ntfs_mst_aops - general address space operations for mst protecteed inodes
1683  *		   and attributes
1684  */
1685 const struct address_space_operations ntfs_mst_aops = {
1686 	.readpage	= ntfs_readpage,	/* Fill page with data. */
1687 #ifdef NTFS_RW
1688 	.writepage	= ntfs_writepage,	/* Write dirty page to disk. */
1689 	.set_page_dirty	= __set_page_dirty_nobuffers,	/* Set the page dirty
1690 						   without touching the buffers
1691 						   belonging to the page. */
1692 #endif /* NTFS_RW */
1693 	.migratepage	= buffer_migrate_page,
1694 	.is_partially_uptodate	= block_is_partially_uptodate,
1695 	.error_remove_page = generic_error_remove_page,
1696 };
1697 
1698 #ifdef NTFS_RW
1699 
1700 /**
1701  * mark_ntfs_record_dirty - mark an ntfs record dirty
1702  * @page:	page containing the ntfs record to mark dirty
1703  * @ofs:	byte offset within @page at which the ntfs record begins
1704  *
1705  * Set the buffers and the page in which the ntfs record is located dirty.
1706  *
1707  * The latter also marks the vfs inode the ntfs record belongs to dirty
1708  * (I_DIRTY_PAGES only).
1709  *
1710  * If the page does not have buffers, we create them and set them uptodate.
1711  * The page may not be locked which is why we need to handle the buffers under
1712  * the mapping->private_lock.  Once the buffers are marked dirty we no longer
1713  * need the lock since try_to_free_buffers() does not free dirty buffers.
1714  */
1715 void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
1716 	struct address_space *mapping = page->mapping;
1717 	ntfs_inode *ni = NTFS_I(mapping->host);
1718 	struct buffer_head *bh, *head, *buffers_to_free = NULL;
1719 	unsigned int end, bh_size, bh_ofs;
1720 
1721 	BUG_ON(!PageUptodate(page));
1722 	end = ofs + ni->itype.index.block_size;
1723 	bh_size = VFS_I(ni)->i_sb->s_blocksize;
1724 	spin_lock(&mapping->private_lock);
1725 	if (unlikely(!page_has_buffers(page))) {
1726 		spin_unlock(&mapping->private_lock);
1727 		bh = head = alloc_page_buffers(page, bh_size, true);
1728 		spin_lock(&mapping->private_lock);
1729 		if (likely(!page_has_buffers(page))) {
1730 			struct buffer_head *tail;
1731 
1732 			do {
1733 				set_buffer_uptodate(bh);
1734 				tail = bh;
1735 				bh = bh->b_this_page;
1736 			} while (bh);
1737 			tail->b_this_page = head;
1738 			attach_page_buffers(page, head);
1739 		} else
1740 			buffers_to_free = bh;
1741 	}
1742 	bh = head = page_buffers(page);
1743 	BUG_ON(!bh);
1744 	do {
1745 		bh_ofs = bh_offset(bh);
1746 		if (bh_ofs + bh_size <= ofs)
1747 			continue;
1748 		if (unlikely(bh_ofs >= end))
1749 			break;
1750 		set_buffer_dirty(bh);
1751 	} while ((bh = bh->b_this_page) != head);
1752 	spin_unlock(&mapping->private_lock);
1753 	__set_page_dirty_nobuffers(page);
1754 	if (unlikely(buffers_to_free)) {
1755 		do {
1756 			bh = buffers_to_free->b_this_page;
1757 			free_buffer_head(buffers_to_free);
1758 			buffers_to_free = bh;
1759 		} while (buffers_to_free);
1760 	}
1761 }
1762 
1763 #endif /* NTFS_RW */
1764