xref: /openbmc/linux/fs/ntfs/aops.c (revision 9b68f30b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * aops.c - NTFS kernel address space operations and page cache handling.
4  *
5  * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
6  * Copyright (c) 2002 Richard Russon
7  */
8 
9 #include <linux/errno.h>
10 #include <linux/fs.h>
11 #include <linux/gfp.h>
12 #include <linux/mm.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/buffer_head.h>
16 #include <linux/writeback.h>
17 #include <linux/bit_spinlock.h>
18 #include <linux/bio.h>
19 
20 #include "aops.h"
21 #include "attrib.h"
22 #include "debug.h"
23 #include "inode.h"
24 #include "mft.h"
25 #include "runlist.h"
26 #include "types.h"
27 #include "ntfs.h"
28 
29 /**
30  * ntfs_end_buffer_async_read - async io completion for reading attributes
31  * @bh:		buffer head on which io is completed
32  * @uptodate:	whether @bh is now uptodate or not
33  *
34  * Asynchronous I/O completion handler for reading pages belonging to the
35  * attribute address space of an inode.  The inodes can either be files or
36  * directories or they can be fake inodes describing some attribute.
37  *
38  * If NInoMstProtected(), perform the post read mst fixups when all IO on the
39  * page has been completed and mark the page uptodate or set the error bit on
40  * the page.  To determine the size of the records that need fixing up, we
41  * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
42  * record size, and index_block_size_bits, to the log(base 2) of the ntfs
43  * record size.
44  */
45 static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
46 {
47 	unsigned long flags;
48 	struct buffer_head *first, *tmp;
49 	struct page *page;
50 	struct inode *vi;
51 	ntfs_inode *ni;
52 	int page_uptodate = 1;
53 
54 	page = bh->b_page;
55 	vi = page->mapping->host;
56 	ni = NTFS_I(vi);
57 
58 	if (likely(uptodate)) {
59 		loff_t i_size;
60 		s64 file_ofs, init_size;
61 
62 		set_buffer_uptodate(bh);
63 
64 		file_ofs = ((s64)page->index << PAGE_SHIFT) +
65 				bh_offset(bh);
66 		read_lock_irqsave(&ni->size_lock, flags);
67 		init_size = ni->initialized_size;
68 		i_size = i_size_read(vi);
69 		read_unlock_irqrestore(&ni->size_lock, flags);
70 		if (unlikely(init_size > i_size)) {
71 			/* Race with shrinking truncate. */
72 			init_size = i_size;
73 		}
74 		/* Check for the current buffer head overflowing. */
75 		if (unlikely(file_ofs + bh->b_size > init_size)) {
76 			int ofs;
77 			void *kaddr;
78 
79 			ofs = 0;
80 			if (file_ofs < init_size)
81 				ofs = init_size - file_ofs;
82 			kaddr = kmap_atomic(page);
83 			memset(kaddr + bh_offset(bh) + ofs, 0,
84 					bh->b_size - ofs);
85 			flush_dcache_page(page);
86 			kunmap_atomic(kaddr);
87 		}
88 	} else {
89 		clear_buffer_uptodate(bh);
90 		SetPageError(page);
91 		ntfs_error(ni->vol->sb, "Buffer I/O error, logical block "
92 				"0x%llx.", (unsigned long long)bh->b_blocknr);
93 	}
94 	first = page_buffers(page);
95 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
96 	clear_buffer_async_read(bh);
97 	unlock_buffer(bh);
98 	tmp = bh;
99 	do {
100 		if (!buffer_uptodate(tmp))
101 			page_uptodate = 0;
102 		if (buffer_async_read(tmp)) {
103 			if (likely(buffer_locked(tmp)))
104 				goto still_busy;
105 			/* Async buffers must be locked. */
106 			BUG();
107 		}
108 		tmp = tmp->b_this_page;
109 	} while (tmp != bh);
110 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
111 	/*
112 	 * If none of the buffers had errors then we can set the page uptodate,
113 	 * but we first have to perform the post read mst fixups, if the
114 	 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
115 	 * Note we ignore fixup errors as those are detected when
116 	 * map_mft_record() is called which gives us per record granularity
117 	 * rather than per page granularity.
118 	 */
119 	if (!NInoMstProtected(ni)) {
120 		if (likely(page_uptodate && !PageError(page)))
121 			SetPageUptodate(page);
122 	} else {
123 		u8 *kaddr;
124 		unsigned int i, recs;
125 		u32 rec_size;
126 
127 		rec_size = ni->itype.index.block_size;
128 		recs = PAGE_SIZE / rec_size;
129 		/* Should have been verified before we got here... */
130 		BUG_ON(!recs);
131 		kaddr = kmap_atomic(page);
132 		for (i = 0; i < recs; i++)
133 			post_read_mst_fixup((NTFS_RECORD*)(kaddr +
134 					i * rec_size), rec_size);
135 		kunmap_atomic(kaddr);
136 		flush_dcache_page(page);
137 		if (likely(page_uptodate && !PageError(page)))
138 			SetPageUptodate(page);
139 	}
140 	unlock_page(page);
141 	return;
142 still_busy:
143 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
144 	return;
145 }
146 
147 /**
148  * ntfs_read_block - fill a @page of an address space with data
149  * @page:	page cache page to fill with data
150  *
151  * Fill the page @page of the address space belonging to the @page->host inode.
152  * We read each buffer asynchronously and when all buffers are read in, our io
153  * completion handler ntfs_end_buffer_read_async(), if required, automatically
154  * applies the mst fixups to the page before finally marking it uptodate and
155  * unlocking it.
156  *
157  * We only enforce allocated_size limit because i_size is checked for in
158  * generic_file_read().
159  *
160  * Return 0 on success and -errno on error.
161  *
162  * Contains an adapted version of fs/buffer.c::block_read_full_folio().
163  */
164 static int ntfs_read_block(struct page *page)
165 {
166 	loff_t i_size;
167 	VCN vcn;
168 	LCN lcn;
169 	s64 init_size;
170 	struct inode *vi;
171 	ntfs_inode *ni;
172 	ntfs_volume *vol;
173 	runlist_element *rl;
174 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
175 	sector_t iblock, lblock, zblock;
176 	unsigned long flags;
177 	unsigned int blocksize, vcn_ofs;
178 	int i, nr;
179 	unsigned char blocksize_bits;
180 
181 	vi = page->mapping->host;
182 	ni = NTFS_I(vi);
183 	vol = ni->vol;
184 
185 	/* $MFT/$DATA must have its complete runlist in memory at all times. */
186 	BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
187 
188 	blocksize = vol->sb->s_blocksize;
189 	blocksize_bits = vol->sb->s_blocksize_bits;
190 
191 	if (!page_has_buffers(page)) {
192 		create_empty_buffers(page, blocksize, 0);
193 		if (unlikely(!page_has_buffers(page))) {
194 			unlock_page(page);
195 			return -ENOMEM;
196 		}
197 	}
198 	bh = head = page_buffers(page);
199 	BUG_ON(!bh);
200 
201 	/*
202 	 * We may be racing with truncate.  To avoid some of the problems we
203 	 * now take a snapshot of the various sizes and use those for the whole
204 	 * of the function.  In case of an extending truncate it just means we
205 	 * may leave some buffers unmapped which are now allocated.  This is
206 	 * not a problem since these buffers will just get mapped when a write
207 	 * occurs.  In case of a shrinking truncate, we will detect this later
208 	 * on due to the runlist being incomplete and if the page is being
209 	 * fully truncated, truncate will throw it away as soon as we unlock
210 	 * it so no need to worry what we do with it.
211 	 */
212 	iblock = (s64)page->index << (PAGE_SHIFT - blocksize_bits);
213 	read_lock_irqsave(&ni->size_lock, flags);
214 	lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
215 	init_size = ni->initialized_size;
216 	i_size = i_size_read(vi);
217 	read_unlock_irqrestore(&ni->size_lock, flags);
218 	if (unlikely(init_size > i_size)) {
219 		/* Race with shrinking truncate. */
220 		init_size = i_size;
221 	}
222 	zblock = (init_size + blocksize - 1) >> blocksize_bits;
223 
224 	/* Loop through all the buffers in the page. */
225 	rl = NULL;
226 	nr = i = 0;
227 	do {
228 		int err = 0;
229 
230 		if (unlikely(buffer_uptodate(bh)))
231 			continue;
232 		if (unlikely(buffer_mapped(bh))) {
233 			arr[nr++] = bh;
234 			continue;
235 		}
236 		bh->b_bdev = vol->sb->s_bdev;
237 		/* Is the block within the allowed limits? */
238 		if (iblock < lblock) {
239 			bool is_retry = false;
240 
241 			/* Convert iblock into corresponding vcn and offset. */
242 			vcn = (VCN)iblock << blocksize_bits >>
243 					vol->cluster_size_bits;
244 			vcn_ofs = ((VCN)iblock << blocksize_bits) &
245 					vol->cluster_size_mask;
246 			if (!rl) {
247 lock_retry_remap:
248 				down_read(&ni->runlist.lock);
249 				rl = ni->runlist.rl;
250 			}
251 			if (likely(rl != NULL)) {
252 				/* Seek to element containing target vcn. */
253 				while (rl->length && rl[1].vcn <= vcn)
254 					rl++;
255 				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
256 			} else
257 				lcn = LCN_RL_NOT_MAPPED;
258 			/* Successful remap. */
259 			if (lcn >= 0) {
260 				/* Setup buffer head to correct block. */
261 				bh->b_blocknr = ((lcn << vol->cluster_size_bits)
262 						+ vcn_ofs) >> blocksize_bits;
263 				set_buffer_mapped(bh);
264 				/* Only read initialized data blocks. */
265 				if (iblock < zblock) {
266 					arr[nr++] = bh;
267 					continue;
268 				}
269 				/* Fully non-initialized data block, zero it. */
270 				goto handle_zblock;
271 			}
272 			/* It is a hole, need to zero it. */
273 			if (lcn == LCN_HOLE)
274 				goto handle_hole;
275 			/* If first try and runlist unmapped, map and retry. */
276 			if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
277 				is_retry = true;
278 				/*
279 				 * Attempt to map runlist, dropping lock for
280 				 * the duration.
281 				 */
282 				up_read(&ni->runlist.lock);
283 				err = ntfs_map_runlist(ni, vcn);
284 				if (likely(!err))
285 					goto lock_retry_remap;
286 				rl = NULL;
287 			} else if (!rl)
288 				up_read(&ni->runlist.lock);
289 			/*
290 			 * If buffer is outside the runlist, treat it as a
291 			 * hole.  This can happen due to concurrent truncate
292 			 * for example.
293 			 */
294 			if (err == -ENOENT || lcn == LCN_ENOENT) {
295 				err = 0;
296 				goto handle_hole;
297 			}
298 			/* Hard error, zero out region. */
299 			if (!err)
300 				err = -EIO;
301 			bh->b_blocknr = -1;
302 			SetPageError(page);
303 			ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
304 					"attribute type 0x%x, vcn 0x%llx, "
305 					"offset 0x%x because its location on "
306 					"disk could not be determined%s "
307 					"(error code %i).", ni->mft_no,
308 					ni->type, (unsigned long long)vcn,
309 					vcn_ofs, is_retry ? " even after "
310 					"retrying" : "", err);
311 		}
312 		/*
313 		 * Either iblock was outside lblock limits or
314 		 * ntfs_rl_vcn_to_lcn() returned error.  Just zero that portion
315 		 * of the page and set the buffer uptodate.
316 		 */
317 handle_hole:
318 		bh->b_blocknr = -1UL;
319 		clear_buffer_mapped(bh);
320 handle_zblock:
321 		zero_user(page, i * blocksize, blocksize);
322 		if (likely(!err))
323 			set_buffer_uptodate(bh);
324 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
325 
326 	/* Release the lock if we took it. */
327 	if (rl)
328 		up_read(&ni->runlist.lock);
329 
330 	/* Check we have at least one buffer ready for i/o. */
331 	if (nr) {
332 		struct buffer_head *tbh;
333 
334 		/* Lock the buffers. */
335 		for (i = 0; i < nr; i++) {
336 			tbh = arr[i];
337 			lock_buffer(tbh);
338 			tbh->b_end_io = ntfs_end_buffer_async_read;
339 			set_buffer_async_read(tbh);
340 		}
341 		/* Finally, start i/o on the buffers. */
342 		for (i = 0; i < nr; i++) {
343 			tbh = arr[i];
344 			if (likely(!buffer_uptodate(tbh)))
345 				submit_bh(REQ_OP_READ, tbh);
346 			else
347 				ntfs_end_buffer_async_read(tbh, 1);
348 		}
349 		return 0;
350 	}
351 	/* No i/o was scheduled on any of the buffers. */
352 	if (likely(!PageError(page)))
353 		SetPageUptodate(page);
354 	else /* Signal synchronous i/o error. */
355 		nr = -EIO;
356 	unlock_page(page);
357 	return nr;
358 }
359 
360 /**
361  * ntfs_read_folio - fill a @folio of a @file with data from the device
362  * @file:	open file to which the folio @folio belongs or NULL
363  * @folio:	page cache folio to fill with data
364  *
365  * For non-resident attributes, ntfs_read_folio() fills the @folio of the open
366  * file @file by calling the ntfs version of the generic block_read_full_folio()
367  * function, ntfs_read_block(), which in turn creates and reads in the buffers
368  * associated with the folio asynchronously.
369  *
370  * For resident attributes, OTOH, ntfs_read_folio() fills @folio by copying the
371  * data from the mft record (which at this stage is most likely in memory) and
372  * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
373  * even if the mft record is not cached at this point in time, we need to wait
374  * for it to be read in before we can do the copy.
375  *
376  * Return 0 on success and -errno on error.
377  */
378 static int ntfs_read_folio(struct file *file, struct folio *folio)
379 {
380 	struct page *page = &folio->page;
381 	loff_t i_size;
382 	struct inode *vi;
383 	ntfs_inode *ni, *base_ni;
384 	u8 *addr;
385 	ntfs_attr_search_ctx *ctx;
386 	MFT_RECORD *mrec;
387 	unsigned long flags;
388 	u32 attr_len;
389 	int err = 0;
390 
391 retry_readpage:
392 	BUG_ON(!PageLocked(page));
393 	vi = page->mapping->host;
394 	i_size = i_size_read(vi);
395 	/* Is the page fully outside i_size? (truncate in progress) */
396 	if (unlikely(page->index >= (i_size + PAGE_SIZE - 1) >>
397 			PAGE_SHIFT)) {
398 		zero_user(page, 0, PAGE_SIZE);
399 		ntfs_debug("Read outside i_size - truncated?");
400 		goto done;
401 	}
402 	/*
403 	 * This can potentially happen because we clear PageUptodate() during
404 	 * ntfs_writepage() of MstProtected() attributes.
405 	 */
406 	if (PageUptodate(page)) {
407 		unlock_page(page);
408 		return 0;
409 	}
410 	ni = NTFS_I(vi);
411 	/*
412 	 * Only $DATA attributes can be encrypted and only unnamed $DATA
413 	 * attributes can be compressed.  Index root can have the flags set but
414 	 * this means to create compressed/encrypted files, not that the
415 	 * attribute is compressed/encrypted.  Note we need to check for
416 	 * AT_INDEX_ALLOCATION since this is the type of both directory and
417 	 * index inodes.
418 	 */
419 	if (ni->type != AT_INDEX_ALLOCATION) {
420 		/* If attribute is encrypted, deny access, just like NT4. */
421 		if (NInoEncrypted(ni)) {
422 			BUG_ON(ni->type != AT_DATA);
423 			err = -EACCES;
424 			goto err_out;
425 		}
426 		/* Compressed data streams are handled in compress.c. */
427 		if (NInoNonResident(ni) && NInoCompressed(ni)) {
428 			BUG_ON(ni->type != AT_DATA);
429 			BUG_ON(ni->name_len);
430 			return ntfs_read_compressed_block(page);
431 		}
432 	}
433 	/* NInoNonResident() == NInoIndexAllocPresent() */
434 	if (NInoNonResident(ni)) {
435 		/* Normal, non-resident data stream. */
436 		return ntfs_read_block(page);
437 	}
438 	/*
439 	 * Attribute is resident, implying it is not compressed or encrypted.
440 	 * This also means the attribute is smaller than an mft record and
441 	 * hence smaller than a page, so can simply zero out any pages with
442 	 * index above 0.  Note the attribute can actually be marked compressed
443 	 * but if it is resident the actual data is not compressed so we are
444 	 * ok to ignore the compressed flag here.
445 	 */
446 	if (unlikely(page->index > 0)) {
447 		zero_user(page, 0, PAGE_SIZE);
448 		goto done;
449 	}
450 	if (!NInoAttr(ni))
451 		base_ni = ni;
452 	else
453 		base_ni = ni->ext.base_ntfs_ino;
454 	/* Map, pin, and lock the mft record. */
455 	mrec = map_mft_record(base_ni);
456 	if (IS_ERR(mrec)) {
457 		err = PTR_ERR(mrec);
458 		goto err_out;
459 	}
460 	/*
461 	 * If a parallel write made the attribute non-resident, drop the mft
462 	 * record and retry the read_folio.
463 	 */
464 	if (unlikely(NInoNonResident(ni))) {
465 		unmap_mft_record(base_ni);
466 		goto retry_readpage;
467 	}
468 	ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
469 	if (unlikely(!ctx)) {
470 		err = -ENOMEM;
471 		goto unm_err_out;
472 	}
473 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
474 			CASE_SENSITIVE, 0, NULL, 0, ctx);
475 	if (unlikely(err))
476 		goto put_unm_err_out;
477 	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
478 	read_lock_irqsave(&ni->size_lock, flags);
479 	if (unlikely(attr_len > ni->initialized_size))
480 		attr_len = ni->initialized_size;
481 	i_size = i_size_read(vi);
482 	read_unlock_irqrestore(&ni->size_lock, flags);
483 	if (unlikely(attr_len > i_size)) {
484 		/* Race with shrinking truncate. */
485 		attr_len = i_size;
486 	}
487 	addr = kmap_atomic(page);
488 	/* Copy the data to the page. */
489 	memcpy(addr, (u8*)ctx->attr +
490 			le16_to_cpu(ctx->attr->data.resident.value_offset),
491 			attr_len);
492 	/* Zero the remainder of the page. */
493 	memset(addr + attr_len, 0, PAGE_SIZE - attr_len);
494 	flush_dcache_page(page);
495 	kunmap_atomic(addr);
496 put_unm_err_out:
497 	ntfs_attr_put_search_ctx(ctx);
498 unm_err_out:
499 	unmap_mft_record(base_ni);
500 done:
501 	SetPageUptodate(page);
502 err_out:
503 	unlock_page(page);
504 	return err;
505 }
506 
507 #ifdef NTFS_RW
508 
509 /**
510  * ntfs_write_block - write a @page to the backing store
511  * @page:	page cache page to write out
512  * @wbc:	writeback control structure
513  *
514  * This function is for writing pages belonging to non-resident, non-mst
515  * protected attributes to their backing store.
516  *
517  * For a page with buffers, map and write the dirty buffers asynchronously
518  * under page writeback. For a page without buffers, create buffers for the
519  * page, then proceed as above.
520  *
521  * If a page doesn't have buffers the page dirty state is definitive. If a page
522  * does have buffers, the page dirty state is just a hint, and the buffer dirty
523  * state is definitive. (A hint which has rules: dirty buffers against a clean
524  * page is illegal. Other combinations are legal and need to be handled. In
525  * particular a dirty page containing clean buffers for example.)
526  *
527  * Return 0 on success and -errno on error.
528  *
529  * Based on ntfs_read_block() and __block_write_full_page().
530  */
531 static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
532 {
533 	VCN vcn;
534 	LCN lcn;
535 	s64 initialized_size;
536 	loff_t i_size;
537 	sector_t block, dblock, iblock;
538 	struct inode *vi;
539 	ntfs_inode *ni;
540 	ntfs_volume *vol;
541 	runlist_element *rl;
542 	struct buffer_head *bh, *head;
543 	unsigned long flags;
544 	unsigned int blocksize, vcn_ofs;
545 	int err;
546 	bool need_end_writeback;
547 	unsigned char blocksize_bits;
548 
549 	vi = page->mapping->host;
550 	ni = NTFS_I(vi);
551 	vol = ni->vol;
552 
553 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
554 			"0x%lx.", ni->mft_no, ni->type, page->index);
555 
556 	BUG_ON(!NInoNonResident(ni));
557 	BUG_ON(NInoMstProtected(ni));
558 	blocksize = vol->sb->s_blocksize;
559 	blocksize_bits = vol->sb->s_blocksize_bits;
560 	if (!page_has_buffers(page)) {
561 		BUG_ON(!PageUptodate(page));
562 		create_empty_buffers(page, blocksize,
563 				(1 << BH_Uptodate) | (1 << BH_Dirty));
564 		if (unlikely(!page_has_buffers(page))) {
565 			ntfs_warning(vol->sb, "Error allocating page "
566 					"buffers.  Redirtying page so we try "
567 					"again later.");
568 			/*
569 			 * Put the page back on mapping->dirty_pages, but leave
570 			 * its buffers' dirty state as-is.
571 			 */
572 			redirty_page_for_writepage(wbc, page);
573 			unlock_page(page);
574 			return 0;
575 		}
576 	}
577 	bh = head = page_buffers(page);
578 	BUG_ON(!bh);
579 
580 	/* NOTE: Different naming scheme to ntfs_read_block()! */
581 
582 	/* The first block in the page. */
583 	block = (s64)page->index << (PAGE_SHIFT - blocksize_bits);
584 
585 	read_lock_irqsave(&ni->size_lock, flags);
586 	i_size = i_size_read(vi);
587 	initialized_size = ni->initialized_size;
588 	read_unlock_irqrestore(&ni->size_lock, flags);
589 
590 	/* The first out of bounds block for the data size. */
591 	dblock = (i_size + blocksize - 1) >> blocksize_bits;
592 
593 	/* The last (fully or partially) initialized block. */
594 	iblock = initialized_size >> blocksize_bits;
595 
596 	/*
597 	 * Be very careful.  We have no exclusion from block_dirty_folio
598 	 * here, and the (potentially unmapped) buffers may become dirty at
599 	 * any time.  If a buffer becomes dirty here after we've inspected it
600 	 * then we just miss that fact, and the page stays dirty.
601 	 *
602 	 * Buffers outside i_size may be dirtied by block_dirty_folio;
603 	 * handle that here by just cleaning them.
604 	 */
605 
606 	/*
607 	 * Loop through all the buffers in the page, mapping all the dirty
608 	 * buffers to disk addresses and handling any aliases from the
609 	 * underlying block device's mapping.
610 	 */
611 	rl = NULL;
612 	err = 0;
613 	do {
614 		bool is_retry = false;
615 
616 		if (unlikely(block >= dblock)) {
617 			/*
618 			 * Mapped buffers outside i_size will occur, because
619 			 * this page can be outside i_size when there is a
620 			 * truncate in progress. The contents of such buffers
621 			 * were zeroed by ntfs_writepage().
622 			 *
623 			 * FIXME: What about the small race window where
624 			 * ntfs_writepage() has not done any clearing because
625 			 * the page was within i_size but before we get here,
626 			 * vmtruncate() modifies i_size?
627 			 */
628 			clear_buffer_dirty(bh);
629 			set_buffer_uptodate(bh);
630 			continue;
631 		}
632 
633 		/* Clean buffers are not written out, so no need to map them. */
634 		if (!buffer_dirty(bh))
635 			continue;
636 
637 		/* Make sure we have enough initialized size. */
638 		if (unlikely((block >= iblock) &&
639 				(initialized_size < i_size))) {
640 			/*
641 			 * If this page is fully outside initialized
642 			 * size, zero out all pages between the current
643 			 * initialized size and the current page. Just
644 			 * use ntfs_read_folio() to do the zeroing
645 			 * transparently.
646 			 */
647 			if (block > iblock) {
648 				// TODO:
649 				// For each page do:
650 				// - read_cache_page()
651 				// Again for each page do:
652 				// - wait_on_page_locked()
653 				// - Check (PageUptodate(page) &&
654 				//			!PageError(page))
655 				// Update initialized size in the attribute and
656 				// in the inode.
657 				// Again, for each page do:
658 				//	block_dirty_folio();
659 				// put_page()
660 				// We don't need to wait on the writes.
661 				// Update iblock.
662 			}
663 			/*
664 			 * The current page straddles initialized size. Zero
665 			 * all non-uptodate buffers and set them uptodate (and
666 			 * dirty?). Note, there aren't any non-uptodate buffers
667 			 * if the page is uptodate.
668 			 * FIXME: For an uptodate page, the buffers may need to
669 			 * be written out because they were not initialized on
670 			 * disk before.
671 			 */
672 			if (!PageUptodate(page)) {
673 				// TODO:
674 				// Zero any non-uptodate buffers up to i_size.
675 				// Set them uptodate and dirty.
676 			}
677 			// TODO:
678 			// Update initialized size in the attribute and in the
679 			// inode (up to i_size).
680 			// Update iblock.
681 			// FIXME: This is inefficient. Try to batch the two
682 			// size changes to happen in one go.
683 			ntfs_error(vol->sb, "Writing beyond initialized size "
684 					"is not supported yet. Sorry.");
685 			err = -EOPNOTSUPP;
686 			break;
687 			// Do NOT set_buffer_new() BUT DO clear buffer range
688 			// outside write request range.
689 			// set_buffer_uptodate() on complete buffers as well as
690 			// set_buffer_dirty().
691 		}
692 
693 		/* No need to map buffers that are already mapped. */
694 		if (buffer_mapped(bh))
695 			continue;
696 
697 		/* Unmapped, dirty buffer. Need to map it. */
698 		bh->b_bdev = vol->sb->s_bdev;
699 
700 		/* Convert block into corresponding vcn and offset. */
701 		vcn = (VCN)block << blocksize_bits;
702 		vcn_ofs = vcn & vol->cluster_size_mask;
703 		vcn >>= vol->cluster_size_bits;
704 		if (!rl) {
705 lock_retry_remap:
706 			down_read(&ni->runlist.lock);
707 			rl = ni->runlist.rl;
708 		}
709 		if (likely(rl != NULL)) {
710 			/* Seek to element containing target vcn. */
711 			while (rl->length && rl[1].vcn <= vcn)
712 				rl++;
713 			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
714 		} else
715 			lcn = LCN_RL_NOT_MAPPED;
716 		/* Successful remap. */
717 		if (lcn >= 0) {
718 			/* Setup buffer head to point to correct block. */
719 			bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
720 					vcn_ofs) >> blocksize_bits;
721 			set_buffer_mapped(bh);
722 			continue;
723 		}
724 		/* It is a hole, need to instantiate it. */
725 		if (lcn == LCN_HOLE) {
726 			u8 *kaddr;
727 			unsigned long *bpos, *bend;
728 
729 			/* Check if the buffer is zero. */
730 			kaddr = kmap_atomic(page);
731 			bpos = (unsigned long *)(kaddr + bh_offset(bh));
732 			bend = (unsigned long *)((u8*)bpos + blocksize);
733 			do {
734 				if (unlikely(*bpos))
735 					break;
736 			} while (likely(++bpos < bend));
737 			kunmap_atomic(kaddr);
738 			if (bpos == bend) {
739 				/*
740 				 * Buffer is zero and sparse, no need to write
741 				 * it.
742 				 */
743 				bh->b_blocknr = -1;
744 				clear_buffer_dirty(bh);
745 				continue;
746 			}
747 			// TODO: Instantiate the hole.
748 			// clear_buffer_new(bh);
749 			// clean_bdev_bh_alias(bh);
750 			ntfs_error(vol->sb, "Writing into sparse regions is "
751 					"not supported yet. Sorry.");
752 			err = -EOPNOTSUPP;
753 			break;
754 		}
755 		/* If first try and runlist unmapped, map and retry. */
756 		if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
757 			is_retry = true;
758 			/*
759 			 * Attempt to map runlist, dropping lock for
760 			 * the duration.
761 			 */
762 			up_read(&ni->runlist.lock);
763 			err = ntfs_map_runlist(ni, vcn);
764 			if (likely(!err))
765 				goto lock_retry_remap;
766 			rl = NULL;
767 		} else if (!rl)
768 			up_read(&ni->runlist.lock);
769 		/*
770 		 * If buffer is outside the runlist, truncate has cut it out
771 		 * of the runlist.  Just clean and clear the buffer and set it
772 		 * uptodate so it can get discarded by the VM.
773 		 */
774 		if (err == -ENOENT || lcn == LCN_ENOENT) {
775 			bh->b_blocknr = -1;
776 			clear_buffer_dirty(bh);
777 			zero_user(page, bh_offset(bh), blocksize);
778 			set_buffer_uptodate(bh);
779 			err = 0;
780 			continue;
781 		}
782 		/* Failed to map the buffer, even after retrying. */
783 		if (!err)
784 			err = -EIO;
785 		bh->b_blocknr = -1;
786 		ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
787 				"attribute type 0x%x, vcn 0x%llx, offset 0x%x "
788 				"because its location on disk could not be "
789 				"determined%s (error code %i).", ni->mft_no,
790 				ni->type, (unsigned long long)vcn,
791 				vcn_ofs, is_retry ? " even after "
792 				"retrying" : "", err);
793 		break;
794 	} while (block++, (bh = bh->b_this_page) != head);
795 
796 	/* Release the lock if we took it. */
797 	if (rl)
798 		up_read(&ni->runlist.lock);
799 
800 	/* For the error case, need to reset bh to the beginning. */
801 	bh = head;
802 
803 	/* Just an optimization, so ->read_folio() is not called later. */
804 	if (unlikely(!PageUptodate(page))) {
805 		int uptodate = 1;
806 		do {
807 			if (!buffer_uptodate(bh)) {
808 				uptodate = 0;
809 				bh = head;
810 				break;
811 			}
812 		} while ((bh = bh->b_this_page) != head);
813 		if (uptodate)
814 			SetPageUptodate(page);
815 	}
816 
817 	/* Setup all mapped, dirty buffers for async write i/o. */
818 	do {
819 		if (buffer_mapped(bh) && buffer_dirty(bh)) {
820 			lock_buffer(bh);
821 			if (test_clear_buffer_dirty(bh)) {
822 				BUG_ON(!buffer_uptodate(bh));
823 				mark_buffer_async_write(bh);
824 			} else
825 				unlock_buffer(bh);
826 		} else if (unlikely(err)) {
827 			/*
828 			 * For the error case. The buffer may have been set
829 			 * dirty during attachment to a dirty page.
830 			 */
831 			if (err != -ENOMEM)
832 				clear_buffer_dirty(bh);
833 		}
834 	} while ((bh = bh->b_this_page) != head);
835 
836 	if (unlikely(err)) {
837 		// TODO: Remove the -EOPNOTSUPP check later on...
838 		if (unlikely(err == -EOPNOTSUPP))
839 			err = 0;
840 		else if (err == -ENOMEM) {
841 			ntfs_warning(vol->sb, "Error allocating memory. "
842 					"Redirtying page so we try again "
843 					"later.");
844 			/*
845 			 * Put the page back on mapping->dirty_pages, but
846 			 * leave its buffer's dirty state as-is.
847 			 */
848 			redirty_page_for_writepage(wbc, page);
849 			err = 0;
850 		} else
851 			SetPageError(page);
852 	}
853 
854 	BUG_ON(PageWriteback(page));
855 	set_page_writeback(page);	/* Keeps try_to_free_buffers() away. */
856 
857 	/* Submit the prepared buffers for i/o. */
858 	need_end_writeback = true;
859 	do {
860 		struct buffer_head *next = bh->b_this_page;
861 		if (buffer_async_write(bh)) {
862 			submit_bh(REQ_OP_WRITE, bh);
863 			need_end_writeback = false;
864 		}
865 		bh = next;
866 	} while (bh != head);
867 	unlock_page(page);
868 
869 	/* If no i/o was started, need to end_page_writeback(). */
870 	if (unlikely(need_end_writeback))
871 		end_page_writeback(page);
872 
873 	ntfs_debug("Done.");
874 	return err;
875 }
876 
877 /**
878  * ntfs_write_mst_block - write a @page to the backing store
879  * @page:	page cache page to write out
880  * @wbc:	writeback control structure
881  *
882  * This function is for writing pages belonging to non-resident, mst protected
883  * attributes to their backing store.  The only supported attributes are index
884  * allocation and $MFT/$DATA.  Both directory inodes and index inodes are
885  * supported for the index allocation case.
886  *
887  * The page must remain locked for the duration of the write because we apply
888  * the mst fixups, write, and then undo the fixups, so if we were to unlock the
889  * page before undoing the fixups, any other user of the page will see the
890  * page contents as corrupt.
891  *
892  * We clear the page uptodate flag for the duration of the function to ensure
893  * exclusion for the $MFT/$DATA case against someone mapping an mft record we
894  * are about to apply the mst fixups to.
895  *
896  * Return 0 on success and -errno on error.
897  *
898  * Based on ntfs_write_block(), ntfs_mft_writepage(), and
899  * write_mft_record_nolock().
900  */
901 static int ntfs_write_mst_block(struct page *page,
902 		struct writeback_control *wbc)
903 {
904 	sector_t block, dblock, rec_block;
905 	struct inode *vi = page->mapping->host;
906 	ntfs_inode *ni = NTFS_I(vi);
907 	ntfs_volume *vol = ni->vol;
908 	u8 *kaddr;
909 	unsigned int rec_size = ni->itype.index.block_size;
910 	ntfs_inode *locked_nis[PAGE_SIZE / NTFS_BLOCK_SIZE];
911 	struct buffer_head *bh, *head, *tbh, *rec_start_bh;
912 	struct buffer_head *bhs[MAX_BUF_PER_PAGE];
913 	runlist_element *rl;
914 	int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2;
915 	unsigned bh_size, rec_size_bits;
916 	bool sync, is_mft, page_is_dirty, rec_is_dirty;
917 	unsigned char bh_size_bits;
918 
919 	if (WARN_ON(rec_size < NTFS_BLOCK_SIZE))
920 		return -EINVAL;
921 
922 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
923 			"0x%lx.", vi->i_ino, ni->type, page->index);
924 	BUG_ON(!NInoNonResident(ni));
925 	BUG_ON(!NInoMstProtected(ni));
926 	is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
927 	/*
928 	 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
929 	 * in its page cache were to be marked dirty.  However this should
930 	 * never happen with the current driver and considering we do not
931 	 * handle this case here we do want to BUG(), at least for now.
932 	 */
933 	BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
934 			(NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
935 	bh_size = vol->sb->s_blocksize;
936 	bh_size_bits = vol->sb->s_blocksize_bits;
937 	max_bhs = PAGE_SIZE / bh_size;
938 	BUG_ON(!max_bhs);
939 	BUG_ON(max_bhs > MAX_BUF_PER_PAGE);
940 
941 	/* Were we called for sync purposes? */
942 	sync = (wbc->sync_mode == WB_SYNC_ALL);
943 
944 	/* Make sure we have mapped buffers. */
945 	bh = head = page_buffers(page);
946 	BUG_ON(!bh);
947 
948 	rec_size_bits = ni->itype.index.block_size_bits;
949 	BUG_ON(!(PAGE_SIZE >> rec_size_bits));
950 	bhs_per_rec = rec_size >> bh_size_bits;
951 	BUG_ON(!bhs_per_rec);
952 
953 	/* The first block in the page. */
954 	rec_block = block = (sector_t)page->index <<
955 			(PAGE_SHIFT - bh_size_bits);
956 
957 	/* The first out of bounds block for the data size. */
958 	dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits;
959 
960 	rl = NULL;
961 	err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
962 	page_is_dirty = rec_is_dirty = false;
963 	rec_start_bh = NULL;
964 	do {
965 		bool is_retry = false;
966 
967 		if (likely(block < rec_block)) {
968 			if (unlikely(block >= dblock)) {
969 				clear_buffer_dirty(bh);
970 				set_buffer_uptodate(bh);
971 				continue;
972 			}
973 			/*
974 			 * This block is not the first one in the record.  We
975 			 * ignore the buffer's dirty state because we could
976 			 * have raced with a parallel mark_ntfs_record_dirty().
977 			 */
978 			if (!rec_is_dirty)
979 				continue;
980 			if (unlikely(err2)) {
981 				if (err2 != -ENOMEM)
982 					clear_buffer_dirty(bh);
983 				continue;
984 			}
985 		} else /* if (block == rec_block) */ {
986 			BUG_ON(block > rec_block);
987 			/* This block is the first one in the record. */
988 			rec_block += bhs_per_rec;
989 			err2 = 0;
990 			if (unlikely(block >= dblock)) {
991 				clear_buffer_dirty(bh);
992 				continue;
993 			}
994 			if (!buffer_dirty(bh)) {
995 				/* Clean records are not written out. */
996 				rec_is_dirty = false;
997 				continue;
998 			}
999 			rec_is_dirty = true;
1000 			rec_start_bh = bh;
1001 		}
1002 		/* Need to map the buffer if it is not mapped already. */
1003 		if (unlikely(!buffer_mapped(bh))) {
1004 			VCN vcn;
1005 			LCN lcn;
1006 			unsigned int vcn_ofs;
1007 
1008 			bh->b_bdev = vol->sb->s_bdev;
1009 			/* Obtain the vcn and offset of the current block. */
1010 			vcn = (VCN)block << bh_size_bits;
1011 			vcn_ofs = vcn & vol->cluster_size_mask;
1012 			vcn >>= vol->cluster_size_bits;
1013 			if (!rl) {
1014 lock_retry_remap:
1015 				down_read(&ni->runlist.lock);
1016 				rl = ni->runlist.rl;
1017 			}
1018 			if (likely(rl != NULL)) {
1019 				/* Seek to element containing target vcn. */
1020 				while (rl->length && rl[1].vcn <= vcn)
1021 					rl++;
1022 				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
1023 			} else
1024 				lcn = LCN_RL_NOT_MAPPED;
1025 			/* Successful remap. */
1026 			if (likely(lcn >= 0)) {
1027 				/* Setup buffer head to correct block. */
1028 				bh->b_blocknr = ((lcn <<
1029 						vol->cluster_size_bits) +
1030 						vcn_ofs) >> bh_size_bits;
1031 				set_buffer_mapped(bh);
1032 			} else {
1033 				/*
1034 				 * Remap failed.  Retry to map the runlist once
1035 				 * unless we are working on $MFT which always
1036 				 * has the whole of its runlist in memory.
1037 				 */
1038 				if (!is_mft && !is_retry &&
1039 						lcn == LCN_RL_NOT_MAPPED) {
1040 					is_retry = true;
1041 					/*
1042 					 * Attempt to map runlist, dropping
1043 					 * lock for the duration.
1044 					 */
1045 					up_read(&ni->runlist.lock);
1046 					err2 = ntfs_map_runlist(ni, vcn);
1047 					if (likely(!err2))
1048 						goto lock_retry_remap;
1049 					if (err2 == -ENOMEM)
1050 						page_is_dirty = true;
1051 					lcn = err2;
1052 				} else {
1053 					err2 = -EIO;
1054 					if (!rl)
1055 						up_read(&ni->runlist.lock);
1056 				}
1057 				/* Hard error.  Abort writing this record. */
1058 				if (!err || err == -ENOMEM)
1059 					err = err2;
1060 				bh->b_blocknr = -1;
1061 				ntfs_error(vol->sb, "Cannot write ntfs record "
1062 						"0x%llx (inode 0x%lx, "
1063 						"attribute type 0x%x) because "
1064 						"its location on disk could "
1065 						"not be determined (error "
1066 						"code %lli).",
1067 						(long long)block <<
1068 						bh_size_bits >>
1069 						vol->mft_record_size_bits,
1070 						ni->mft_no, ni->type,
1071 						(long long)lcn);
1072 				/*
1073 				 * If this is not the first buffer, remove the
1074 				 * buffers in this record from the list of
1075 				 * buffers to write and clear their dirty bit
1076 				 * if not error -ENOMEM.
1077 				 */
1078 				if (rec_start_bh != bh) {
1079 					while (bhs[--nr_bhs] != rec_start_bh)
1080 						;
1081 					if (err2 != -ENOMEM) {
1082 						do {
1083 							clear_buffer_dirty(
1084 								rec_start_bh);
1085 						} while ((rec_start_bh =
1086 								rec_start_bh->
1087 								b_this_page) !=
1088 								bh);
1089 					}
1090 				}
1091 				continue;
1092 			}
1093 		}
1094 		BUG_ON(!buffer_uptodate(bh));
1095 		BUG_ON(nr_bhs >= max_bhs);
1096 		bhs[nr_bhs++] = bh;
1097 	} while (block++, (bh = bh->b_this_page) != head);
1098 	if (unlikely(rl))
1099 		up_read(&ni->runlist.lock);
1100 	/* If there were no dirty buffers, we are done. */
1101 	if (!nr_bhs)
1102 		goto done;
1103 	/* Map the page so we can access its contents. */
1104 	kaddr = kmap(page);
1105 	/* Clear the page uptodate flag whilst the mst fixups are applied. */
1106 	BUG_ON(!PageUptodate(page));
1107 	ClearPageUptodate(page);
1108 	for (i = 0; i < nr_bhs; i++) {
1109 		unsigned int ofs;
1110 
1111 		/* Skip buffers which are not at the beginning of records. */
1112 		if (i % bhs_per_rec)
1113 			continue;
1114 		tbh = bhs[i];
1115 		ofs = bh_offset(tbh);
1116 		if (is_mft) {
1117 			ntfs_inode *tni;
1118 			unsigned long mft_no;
1119 
1120 			/* Get the mft record number. */
1121 			mft_no = (((s64)page->index << PAGE_SHIFT) + ofs)
1122 					>> rec_size_bits;
1123 			/* Check whether to write this mft record. */
1124 			tni = NULL;
1125 			if (!ntfs_may_write_mft_record(vol, mft_no,
1126 					(MFT_RECORD*)(kaddr + ofs), &tni)) {
1127 				/*
1128 				 * The record should not be written.  This
1129 				 * means we need to redirty the page before
1130 				 * returning.
1131 				 */
1132 				page_is_dirty = true;
1133 				/*
1134 				 * Remove the buffers in this mft record from
1135 				 * the list of buffers to write.
1136 				 */
1137 				do {
1138 					bhs[i] = NULL;
1139 				} while (++i % bhs_per_rec);
1140 				continue;
1141 			}
1142 			/*
1143 			 * The record should be written.  If a locked ntfs
1144 			 * inode was returned, add it to the array of locked
1145 			 * ntfs inodes.
1146 			 */
1147 			if (tni)
1148 				locked_nis[nr_locked_nis++] = tni;
1149 		}
1150 		/* Apply the mst protection fixups. */
1151 		err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
1152 				rec_size);
1153 		if (unlikely(err2)) {
1154 			if (!err || err == -ENOMEM)
1155 				err = -EIO;
1156 			ntfs_error(vol->sb, "Failed to apply mst fixups "
1157 					"(inode 0x%lx, attribute type 0x%x, "
1158 					"page index 0x%lx, page offset 0x%x)!"
1159 					"  Unmount and run chkdsk.", vi->i_ino,
1160 					ni->type, page->index, ofs);
1161 			/*
1162 			 * Mark all the buffers in this record clean as we do
1163 			 * not want to write corrupt data to disk.
1164 			 */
1165 			do {
1166 				clear_buffer_dirty(bhs[i]);
1167 				bhs[i] = NULL;
1168 			} while (++i % bhs_per_rec);
1169 			continue;
1170 		}
1171 		nr_recs++;
1172 	}
1173 	/* If no records are to be written out, we are done. */
1174 	if (!nr_recs)
1175 		goto unm_done;
1176 	flush_dcache_page(page);
1177 	/* Lock buffers and start synchronous write i/o on them. */
1178 	for (i = 0; i < nr_bhs; i++) {
1179 		tbh = bhs[i];
1180 		if (!tbh)
1181 			continue;
1182 		if (!trylock_buffer(tbh))
1183 			BUG();
1184 		/* The buffer dirty state is now irrelevant, just clean it. */
1185 		clear_buffer_dirty(tbh);
1186 		BUG_ON(!buffer_uptodate(tbh));
1187 		BUG_ON(!buffer_mapped(tbh));
1188 		get_bh(tbh);
1189 		tbh->b_end_io = end_buffer_write_sync;
1190 		submit_bh(REQ_OP_WRITE, tbh);
1191 	}
1192 	/* Synchronize the mft mirror now if not @sync. */
1193 	if (is_mft && !sync)
1194 		goto do_mirror;
1195 do_wait:
1196 	/* Wait on i/o completion of buffers. */
1197 	for (i = 0; i < nr_bhs; i++) {
1198 		tbh = bhs[i];
1199 		if (!tbh)
1200 			continue;
1201 		wait_on_buffer(tbh);
1202 		if (unlikely(!buffer_uptodate(tbh))) {
1203 			ntfs_error(vol->sb, "I/O error while writing ntfs "
1204 					"record buffer (inode 0x%lx, "
1205 					"attribute type 0x%x, page index "
1206 					"0x%lx, page offset 0x%lx)!  Unmount "
1207 					"and run chkdsk.", vi->i_ino, ni->type,
1208 					page->index, bh_offset(tbh));
1209 			if (!err || err == -ENOMEM)
1210 				err = -EIO;
1211 			/*
1212 			 * Set the buffer uptodate so the page and buffer
1213 			 * states do not become out of sync.
1214 			 */
1215 			set_buffer_uptodate(tbh);
1216 		}
1217 	}
1218 	/* If @sync, now synchronize the mft mirror. */
1219 	if (is_mft && sync) {
1220 do_mirror:
1221 		for (i = 0; i < nr_bhs; i++) {
1222 			unsigned long mft_no;
1223 			unsigned int ofs;
1224 
1225 			/*
1226 			 * Skip buffers which are not at the beginning of
1227 			 * records.
1228 			 */
1229 			if (i % bhs_per_rec)
1230 				continue;
1231 			tbh = bhs[i];
1232 			/* Skip removed buffers (and hence records). */
1233 			if (!tbh)
1234 				continue;
1235 			ofs = bh_offset(tbh);
1236 			/* Get the mft record number. */
1237 			mft_no = (((s64)page->index << PAGE_SHIFT) + ofs)
1238 					>> rec_size_bits;
1239 			if (mft_no < vol->mftmirr_size)
1240 				ntfs_sync_mft_mirror(vol, mft_no,
1241 						(MFT_RECORD*)(kaddr + ofs),
1242 						sync);
1243 		}
1244 		if (!sync)
1245 			goto do_wait;
1246 	}
1247 	/* Remove the mst protection fixups again. */
1248 	for (i = 0; i < nr_bhs; i++) {
1249 		if (!(i % bhs_per_rec)) {
1250 			tbh = bhs[i];
1251 			if (!tbh)
1252 				continue;
1253 			post_write_mst_fixup((NTFS_RECORD*)(kaddr +
1254 					bh_offset(tbh)));
1255 		}
1256 	}
1257 	flush_dcache_page(page);
1258 unm_done:
1259 	/* Unlock any locked inodes. */
1260 	while (nr_locked_nis-- > 0) {
1261 		ntfs_inode *tni, *base_tni;
1262 
1263 		tni = locked_nis[nr_locked_nis];
1264 		/* Get the base inode. */
1265 		mutex_lock(&tni->extent_lock);
1266 		if (tni->nr_extents >= 0)
1267 			base_tni = tni;
1268 		else {
1269 			base_tni = tni->ext.base_ntfs_ino;
1270 			BUG_ON(!base_tni);
1271 		}
1272 		mutex_unlock(&tni->extent_lock);
1273 		ntfs_debug("Unlocking %s inode 0x%lx.",
1274 				tni == base_tni ? "base" : "extent",
1275 				tni->mft_no);
1276 		mutex_unlock(&tni->mrec_lock);
1277 		atomic_dec(&tni->count);
1278 		iput(VFS_I(base_tni));
1279 	}
1280 	SetPageUptodate(page);
1281 	kunmap(page);
1282 done:
1283 	if (unlikely(err && err != -ENOMEM)) {
1284 		/*
1285 		 * Set page error if there is only one ntfs record in the page.
1286 		 * Otherwise we would loose per-record granularity.
1287 		 */
1288 		if (ni->itype.index.block_size == PAGE_SIZE)
1289 			SetPageError(page);
1290 		NVolSetErrors(vol);
1291 	}
1292 	if (page_is_dirty) {
1293 		ntfs_debug("Page still contains one or more dirty ntfs "
1294 				"records.  Redirtying the page starting at "
1295 				"record 0x%lx.", page->index <<
1296 				(PAGE_SHIFT - rec_size_bits));
1297 		redirty_page_for_writepage(wbc, page);
1298 		unlock_page(page);
1299 	} else {
1300 		/*
1301 		 * Keep the VM happy.  This must be done otherwise the
1302 		 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1303 		 * the page is clean.
1304 		 */
1305 		BUG_ON(PageWriteback(page));
1306 		set_page_writeback(page);
1307 		unlock_page(page);
1308 		end_page_writeback(page);
1309 	}
1310 	if (likely(!err))
1311 		ntfs_debug("Done.");
1312 	return err;
1313 }
1314 
1315 /**
1316  * ntfs_writepage - write a @page to the backing store
1317  * @page:	page cache page to write out
1318  * @wbc:	writeback control structure
1319  *
1320  * This is called from the VM when it wants to have a dirty ntfs page cache
1321  * page cleaned.  The VM has already locked the page and marked it clean.
1322  *
1323  * For non-resident attributes, ntfs_writepage() writes the @page by calling
1324  * the ntfs version of the generic block_write_full_page() function,
1325  * ntfs_write_block(), which in turn if necessary creates and writes the
1326  * buffers associated with the page asynchronously.
1327  *
1328  * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1329  * the data to the mft record (which at this stage is most likely in memory).
1330  * The mft record is then marked dirty and written out asynchronously via the
1331  * vfs inode dirty code path for the inode the mft record belongs to or via the
1332  * vm page dirty code path for the page the mft record is in.
1333  *
1334  * Based on ntfs_read_folio() and fs/buffer.c::block_write_full_page().
1335  *
1336  * Return 0 on success and -errno on error.
1337  */
1338 static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
1339 {
1340 	loff_t i_size;
1341 	struct inode *vi = page->mapping->host;
1342 	ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1343 	char *addr;
1344 	ntfs_attr_search_ctx *ctx = NULL;
1345 	MFT_RECORD *m = NULL;
1346 	u32 attr_len;
1347 	int err;
1348 
1349 retry_writepage:
1350 	BUG_ON(!PageLocked(page));
1351 	i_size = i_size_read(vi);
1352 	/* Is the page fully outside i_size? (truncate in progress) */
1353 	if (unlikely(page->index >= (i_size + PAGE_SIZE - 1) >>
1354 			PAGE_SHIFT)) {
1355 		struct folio *folio = page_folio(page);
1356 		/*
1357 		 * The page may have dirty, unmapped buffers.  Make them
1358 		 * freeable here, so the page does not leak.
1359 		 */
1360 		block_invalidate_folio(folio, 0, folio_size(folio));
1361 		folio_unlock(folio);
1362 		ntfs_debug("Write outside i_size - truncated?");
1363 		return 0;
1364 	}
1365 	/*
1366 	 * Only $DATA attributes can be encrypted and only unnamed $DATA
1367 	 * attributes can be compressed.  Index root can have the flags set but
1368 	 * this means to create compressed/encrypted files, not that the
1369 	 * attribute is compressed/encrypted.  Note we need to check for
1370 	 * AT_INDEX_ALLOCATION since this is the type of both directory and
1371 	 * index inodes.
1372 	 */
1373 	if (ni->type != AT_INDEX_ALLOCATION) {
1374 		/* If file is encrypted, deny access, just like NT4. */
1375 		if (NInoEncrypted(ni)) {
1376 			unlock_page(page);
1377 			BUG_ON(ni->type != AT_DATA);
1378 			ntfs_debug("Denying write access to encrypted file.");
1379 			return -EACCES;
1380 		}
1381 		/* Compressed data streams are handled in compress.c. */
1382 		if (NInoNonResident(ni) && NInoCompressed(ni)) {
1383 			BUG_ON(ni->type != AT_DATA);
1384 			BUG_ON(ni->name_len);
1385 			// TODO: Implement and replace this with
1386 			// return ntfs_write_compressed_block(page);
1387 			unlock_page(page);
1388 			ntfs_error(vi->i_sb, "Writing to compressed files is "
1389 					"not supported yet.  Sorry.");
1390 			return -EOPNOTSUPP;
1391 		}
1392 		// TODO: Implement and remove this check.
1393 		if (NInoNonResident(ni) && NInoSparse(ni)) {
1394 			unlock_page(page);
1395 			ntfs_error(vi->i_sb, "Writing to sparse files is not "
1396 					"supported yet.  Sorry.");
1397 			return -EOPNOTSUPP;
1398 		}
1399 	}
1400 	/* NInoNonResident() == NInoIndexAllocPresent() */
1401 	if (NInoNonResident(ni)) {
1402 		/* We have to zero every time due to mmap-at-end-of-file. */
1403 		if (page->index >= (i_size >> PAGE_SHIFT)) {
1404 			/* The page straddles i_size. */
1405 			unsigned int ofs = i_size & ~PAGE_MASK;
1406 			zero_user_segment(page, ofs, PAGE_SIZE);
1407 		}
1408 		/* Handle mst protected attributes. */
1409 		if (NInoMstProtected(ni))
1410 			return ntfs_write_mst_block(page, wbc);
1411 		/* Normal, non-resident data stream. */
1412 		return ntfs_write_block(page, wbc);
1413 	}
1414 	/*
1415 	 * Attribute is resident, implying it is not compressed, encrypted, or
1416 	 * mst protected.  This also means the attribute is smaller than an mft
1417 	 * record and hence smaller than a page, so can simply return error on
1418 	 * any pages with index above 0.  Note the attribute can actually be
1419 	 * marked compressed but if it is resident the actual data is not
1420 	 * compressed so we are ok to ignore the compressed flag here.
1421 	 */
1422 	BUG_ON(page_has_buffers(page));
1423 	BUG_ON(!PageUptodate(page));
1424 	if (unlikely(page->index > 0)) {
1425 		ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0.  "
1426 				"Aborting write.", page->index);
1427 		BUG_ON(PageWriteback(page));
1428 		set_page_writeback(page);
1429 		unlock_page(page);
1430 		end_page_writeback(page);
1431 		return -EIO;
1432 	}
1433 	if (!NInoAttr(ni))
1434 		base_ni = ni;
1435 	else
1436 		base_ni = ni->ext.base_ntfs_ino;
1437 	/* Map, pin, and lock the mft record. */
1438 	m = map_mft_record(base_ni);
1439 	if (IS_ERR(m)) {
1440 		err = PTR_ERR(m);
1441 		m = NULL;
1442 		ctx = NULL;
1443 		goto err_out;
1444 	}
1445 	/*
1446 	 * If a parallel write made the attribute non-resident, drop the mft
1447 	 * record and retry the writepage.
1448 	 */
1449 	if (unlikely(NInoNonResident(ni))) {
1450 		unmap_mft_record(base_ni);
1451 		goto retry_writepage;
1452 	}
1453 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1454 	if (unlikely(!ctx)) {
1455 		err = -ENOMEM;
1456 		goto err_out;
1457 	}
1458 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1459 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1460 	if (unlikely(err))
1461 		goto err_out;
1462 	/*
1463 	 * Keep the VM happy.  This must be done otherwise the radix-tree tag
1464 	 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1465 	 */
1466 	BUG_ON(PageWriteback(page));
1467 	set_page_writeback(page);
1468 	unlock_page(page);
1469 	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
1470 	i_size = i_size_read(vi);
1471 	if (unlikely(attr_len > i_size)) {
1472 		/* Race with shrinking truncate or a failed truncate. */
1473 		attr_len = i_size;
1474 		/*
1475 		 * If the truncate failed, fix it up now.  If a concurrent
1476 		 * truncate, we do its job, so it does not have to do anything.
1477 		 */
1478 		err = ntfs_resident_attr_value_resize(ctx->mrec, ctx->attr,
1479 				attr_len);
1480 		/* Shrinking cannot fail. */
1481 		BUG_ON(err);
1482 	}
1483 	addr = kmap_atomic(page);
1484 	/* Copy the data from the page to the mft record. */
1485 	memcpy((u8*)ctx->attr +
1486 			le16_to_cpu(ctx->attr->data.resident.value_offset),
1487 			addr, attr_len);
1488 	/* Zero out of bounds area in the page cache page. */
1489 	memset(addr + attr_len, 0, PAGE_SIZE - attr_len);
1490 	kunmap_atomic(addr);
1491 	flush_dcache_page(page);
1492 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1493 	/* We are done with the page. */
1494 	end_page_writeback(page);
1495 	/* Finally, mark the mft record dirty, so it gets written back. */
1496 	mark_mft_record_dirty(ctx->ntfs_ino);
1497 	ntfs_attr_put_search_ctx(ctx);
1498 	unmap_mft_record(base_ni);
1499 	return 0;
1500 err_out:
1501 	if (err == -ENOMEM) {
1502 		ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
1503 				"page so we try again later.");
1504 		/*
1505 		 * Put the page back on mapping->dirty_pages, but leave its
1506 		 * buffers' dirty state as-is.
1507 		 */
1508 		redirty_page_for_writepage(wbc, page);
1509 		err = 0;
1510 	} else {
1511 		ntfs_error(vi->i_sb, "Resident attribute write failed with "
1512 				"error %i.", err);
1513 		SetPageError(page);
1514 		NVolSetErrors(ni->vol);
1515 	}
1516 	unlock_page(page);
1517 	if (ctx)
1518 		ntfs_attr_put_search_ctx(ctx);
1519 	if (m)
1520 		unmap_mft_record(base_ni);
1521 	return err;
1522 }
1523 
1524 #endif	/* NTFS_RW */
1525 
1526 /**
1527  * ntfs_bmap - map logical file block to physical device block
1528  * @mapping:	address space mapping to which the block to be mapped belongs
1529  * @block:	logical block to map to its physical device block
1530  *
1531  * For regular, non-resident files (i.e. not compressed and not encrypted), map
1532  * the logical @block belonging to the file described by the address space
1533  * mapping @mapping to its physical device block.
1534  *
1535  * The size of the block is equal to the @s_blocksize field of the super block
1536  * of the mounted file system which is guaranteed to be smaller than or equal
1537  * to the cluster size thus the block is guaranteed to fit entirely inside the
1538  * cluster which means we do not need to care how many contiguous bytes are
1539  * available after the beginning of the block.
1540  *
1541  * Return the physical device block if the mapping succeeded or 0 if the block
1542  * is sparse or there was an error.
1543  *
1544  * Note: This is a problem if someone tries to run bmap() on $Boot system file
1545  * as that really is in block zero but there is nothing we can do.  bmap() is
1546  * just broken in that respect (just like it cannot distinguish sparse from
1547  * not available or error).
1548  */
1549 static sector_t ntfs_bmap(struct address_space *mapping, sector_t block)
1550 {
1551 	s64 ofs, size;
1552 	loff_t i_size;
1553 	LCN lcn;
1554 	unsigned long blocksize, flags;
1555 	ntfs_inode *ni = NTFS_I(mapping->host);
1556 	ntfs_volume *vol = ni->vol;
1557 	unsigned delta;
1558 	unsigned char blocksize_bits, cluster_size_shift;
1559 
1560 	ntfs_debug("Entering for mft_no 0x%lx, logical block 0x%llx.",
1561 			ni->mft_no, (unsigned long long)block);
1562 	if (ni->type != AT_DATA || !NInoNonResident(ni) || NInoEncrypted(ni)) {
1563 		ntfs_error(vol->sb, "BMAP does not make sense for %s "
1564 				"attributes, returning 0.",
1565 				(ni->type != AT_DATA) ? "non-data" :
1566 				(!NInoNonResident(ni) ? "resident" :
1567 				"encrypted"));
1568 		return 0;
1569 	}
1570 	/* None of these can happen. */
1571 	BUG_ON(NInoCompressed(ni));
1572 	BUG_ON(NInoMstProtected(ni));
1573 	blocksize = vol->sb->s_blocksize;
1574 	blocksize_bits = vol->sb->s_blocksize_bits;
1575 	ofs = (s64)block << blocksize_bits;
1576 	read_lock_irqsave(&ni->size_lock, flags);
1577 	size = ni->initialized_size;
1578 	i_size = i_size_read(VFS_I(ni));
1579 	read_unlock_irqrestore(&ni->size_lock, flags);
1580 	/*
1581 	 * If the offset is outside the initialized size or the block straddles
1582 	 * the initialized size then pretend it is a hole unless the
1583 	 * initialized size equals the file size.
1584 	 */
1585 	if (unlikely(ofs >= size || (ofs + blocksize > size && size < i_size)))
1586 		goto hole;
1587 	cluster_size_shift = vol->cluster_size_bits;
1588 	down_read(&ni->runlist.lock);
1589 	lcn = ntfs_attr_vcn_to_lcn_nolock(ni, ofs >> cluster_size_shift, false);
1590 	up_read(&ni->runlist.lock);
1591 	if (unlikely(lcn < LCN_HOLE)) {
1592 		/*
1593 		 * Step down to an integer to avoid gcc doing a long long
1594 		 * comparision in the switch when we know @lcn is between
1595 		 * LCN_HOLE and LCN_EIO (i.e. -1 to -5).
1596 		 *
1597 		 * Otherwise older gcc (at least on some architectures) will
1598 		 * try to use __cmpdi2() which is of course not available in
1599 		 * the kernel.
1600 		 */
1601 		switch ((int)lcn) {
1602 		case LCN_ENOENT:
1603 			/*
1604 			 * If the offset is out of bounds then pretend it is a
1605 			 * hole.
1606 			 */
1607 			goto hole;
1608 		case LCN_ENOMEM:
1609 			ntfs_error(vol->sb, "Not enough memory to complete "
1610 					"mapping for inode 0x%lx.  "
1611 					"Returning 0.", ni->mft_no);
1612 			break;
1613 		default:
1614 			ntfs_error(vol->sb, "Failed to complete mapping for "
1615 					"inode 0x%lx.  Run chkdsk.  "
1616 					"Returning 0.", ni->mft_no);
1617 			break;
1618 		}
1619 		return 0;
1620 	}
1621 	if (lcn < 0) {
1622 		/* It is a hole. */
1623 hole:
1624 		ntfs_debug("Done (returning hole).");
1625 		return 0;
1626 	}
1627 	/*
1628 	 * The block is really allocated and fullfils all our criteria.
1629 	 * Convert the cluster to units of block size and return the result.
1630 	 */
1631 	delta = ofs & vol->cluster_size_mask;
1632 	if (unlikely(sizeof(block) < sizeof(lcn))) {
1633 		block = lcn = ((lcn << cluster_size_shift) + delta) >>
1634 				blocksize_bits;
1635 		/* If the block number was truncated return 0. */
1636 		if (unlikely(block != lcn)) {
1637 			ntfs_error(vol->sb, "Physical block 0x%llx is too "
1638 					"large to be returned, returning 0.",
1639 					(long long)lcn);
1640 			return 0;
1641 		}
1642 	} else
1643 		block = ((lcn << cluster_size_shift) + delta) >>
1644 				blocksize_bits;
1645 	ntfs_debug("Done (returning block 0x%llx).", (unsigned long long)lcn);
1646 	return block;
1647 }
1648 
1649 /*
1650  * ntfs_normal_aops - address space operations for normal inodes and attributes
1651  *
1652  * Note these are not used for compressed or mst protected inodes and
1653  * attributes.
1654  */
1655 const struct address_space_operations ntfs_normal_aops = {
1656 	.read_folio	= ntfs_read_folio,
1657 #ifdef NTFS_RW
1658 	.writepage	= ntfs_writepage,
1659 	.dirty_folio	= block_dirty_folio,
1660 #endif /* NTFS_RW */
1661 	.bmap		= ntfs_bmap,
1662 	.migrate_folio	= buffer_migrate_folio,
1663 	.is_partially_uptodate = block_is_partially_uptodate,
1664 	.error_remove_page = generic_error_remove_page,
1665 };
1666 
1667 /*
1668  * ntfs_compressed_aops - address space operations for compressed inodes
1669  */
1670 const struct address_space_operations ntfs_compressed_aops = {
1671 	.read_folio	= ntfs_read_folio,
1672 #ifdef NTFS_RW
1673 	.writepage	= ntfs_writepage,
1674 	.dirty_folio	= block_dirty_folio,
1675 #endif /* NTFS_RW */
1676 	.migrate_folio	= buffer_migrate_folio,
1677 	.is_partially_uptodate = block_is_partially_uptodate,
1678 	.error_remove_page = generic_error_remove_page,
1679 };
1680 
1681 /*
1682  * ntfs_mst_aops - general address space operations for mst protecteed inodes
1683  *			  and attributes
1684  */
1685 const struct address_space_operations ntfs_mst_aops = {
1686 	.read_folio	= ntfs_read_folio,	/* Fill page with data. */
1687 #ifdef NTFS_RW
1688 	.writepage	= ntfs_writepage,	/* Write dirty page to disk. */
1689 	.dirty_folio	= filemap_dirty_folio,
1690 #endif /* NTFS_RW */
1691 	.migrate_folio	= buffer_migrate_folio,
1692 	.is_partially_uptodate	= block_is_partially_uptodate,
1693 	.error_remove_page = generic_error_remove_page,
1694 };
1695 
1696 #ifdef NTFS_RW
1697 
1698 /**
1699  * mark_ntfs_record_dirty - mark an ntfs record dirty
1700  * @page:	page containing the ntfs record to mark dirty
1701  * @ofs:	byte offset within @page at which the ntfs record begins
1702  *
1703  * Set the buffers and the page in which the ntfs record is located dirty.
1704  *
1705  * The latter also marks the vfs inode the ntfs record belongs to dirty
1706  * (I_DIRTY_PAGES only).
1707  *
1708  * If the page does not have buffers, we create them and set them uptodate.
1709  * The page may not be locked which is why we need to handle the buffers under
1710  * the mapping->private_lock.  Once the buffers are marked dirty we no longer
1711  * need the lock since try_to_free_buffers() does not free dirty buffers.
1712  */
1713 void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
1714 	struct address_space *mapping = page->mapping;
1715 	ntfs_inode *ni = NTFS_I(mapping->host);
1716 	struct buffer_head *bh, *head, *buffers_to_free = NULL;
1717 	unsigned int end, bh_size, bh_ofs;
1718 
1719 	BUG_ON(!PageUptodate(page));
1720 	end = ofs + ni->itype.index.block_size;
1721 	bh_size = VFS_I(ni)->i_sb->s_blocksize;
1722 	spin_lock(&mapping->private_lock);
1723 	if (unlikely(!page_has_buffers(page))) {
1724 		spin_unlock(&mapping->private_lock);
1725 		bh = head = alloc_page_buffers(page, bh_size, true);
1726 		spin_lock(&mapping->private_lock);
1727 		if (likely(!page_has_buffers(page))) {
1728 			struct buffer_head *tail;
1729 
1730 			do {
1731 				set_buffer_uptodate(bh);
1732 				tail = bh;
1733 				bh = bh->b_this_page;
1734 			} while (bh);
1735 			tail->b_this_page = head;
1736 			attach_page_private(page, head);
1737 		} else
1738 			buffers_to_free = bh;
1739 	}
1740 	bh = head = page_buffers(page);
1741 	BUG_ON(!bh);
1742 	do {
1743 		bh_ofs = bh_offset(bh);
1744 		if (bh_ofs + bh_size <= ofs)
1745 			continue;
1746 		if (unlikely(bh_ofs >= end))
1747 			break;
1748 		set_buffer_dirty(bh);
1749 	} while ((bh = bh->b_this_page) != head);
1750 	spin_unlock(&mapping->private_lock);
1751 	filemap_dirty_folio(mapping, page_folio(page));
1752 	if (unlikely(buffers_to_free)) {
1753 		do {
1754 			bh = buffers_to_free->b_this_page;
1755 			free_buffer_head(buffers_to_free);
1756 			buffers_to_free = bh;
1757 		} while (buffers_to_free);
1758 	}
1759 }
1760 
1761 #endif /* NTFS_RW */
1762