1 /** 2 * aops.c - NTFS kernel address space operations and page cache handling. 3 * Part of the Linux-NTFS project. 4 * 5 * Copyright (c) 2001-2005 Anton Altaparmakov 6 * Copyright (c) 2002 Richard Russon 7 * 8 * This program/include file is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as published 10 * by the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program/include file is distributed in the hope that it will be 14 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program (in the main directory of the Linux-NTFS 20 * distribution in the file COPYING); if not, write to the Free Software 21 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 */ 23 24 #include <linux/errno.h> 25 #include <linux/mm.h> 26 #include <linux/pagemap.h> 27 #include <linux/swap.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/bit_spinlock.h> 31 32 #include "aops.h" 33 #include "attrib.h" 34 #include "debug.h" 35 #include "inode.h" 36 #include "mft.h" 37 #include "runlist.h" 38 #include "types.h" 39 #include "ntfs.h" 40 41 /** 42 * ntfs_end_buffer_async_read - async io completion for reading attributes 43 * @bh: buffer head on which io is completed 44 * @uptodate: whether @bh is now uptodate or not 45 * 46 * Asynchronous I/O completion handler for reading pages belonging to the 47 * attribute address space of an inode. The inodes can either be files or 48 * directories or they can be fake inodes describing some attribute. 49 * 50 * If NInoMstProtected(), perform the post read mst fixups when all IO on the 51 * page has been completed and mark the page uptodate or set the error bit on 52 * the page. To determine the size of the records that need fixing up, we 53 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs 54 * record size, and index_block_size_bits, to the log(base 2) of the ntfs 55 * record size. 56 */ 57 static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate) 58 { 59 unsigned long flags; 60 struct buffer_head *first, *tmp; 61 struct page *page; 62 struct inode *vi; 63 ntfs_inode *ni; 64 int page_uptodate = 1; 65 66 page = bh->b_page; 67 vi = page->mapping->host; 68 ni = NTFS_I(vi); 69 70 if (likely(uptodate)) { 71 loff_t i_size; 72 s64 file_ofs, init_size; 73 74 set_buffer_uptodate(bh); 75 76 file_ofs = ((s64)page->index << PAGE_CACHE_SHIFT) + 77 bh_offset(bh); 78 read_lock_irqsave(&ni->size_lock, flags); 79 init_size = ni->initialized_size; 80 i_size = i_size_read(vi); 81 read_unlock_irqrestore(&ni->size_lock, flags); 82 if (unlikely(init_size > i_size)) { 83 /* Race with shrinking truncate. */ 84 init_size = i_size; 85 } 86 /* Check for the current buffer head overflowing. */ 87 if (unlikely(file_ofs + bh->b_size > init_size)) { 88 u8 *kaddr; 89 int ofs; 90 91 ofs = 0; 92 if (file_ofs < init_size) 93 ofs = init_size - file_ofs; 94 kaddr = kmap_atomic(page, KM_BIO_SRC_IRQ); 95 memset(kaddr + bh_offset(bh) + ofs, 0, 96 bh->b_size - ofs); 97 kunmap_atomic(kaddr, KM_BIO_SRC_IRQ); 98 flush_dcache_page(page); 99 } 100 } else { 101 clear_buffer_uptodate(bh); 102 SetPageError(page); 103 ntfs_error(ni->vol->sb, "Buffer I/O error, logical block " 104 "0x%llx.", (unsigned long long)bh->b_blocknr); 105 } 106 first = page_buffers(page); 107 local_irq_save(flags); 108 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 109 clear_buffer_async_read(bh); 110 unlock_buffer(bh); 111 tmp = bh; 112 do { 113 if (!buffer_uptodate(tmp)) 114 page_uptodate = 0; 115 if (buffer_async_read(tmp)) { 116 if (likely(buffer_locked(tmp))) 117 goto still_busy; 118 /* Async buffers must be locked. */ 119 BUG(); 120 } 121 tmp = tmp->b_this_page; 122 } while (tmp != bh); 123 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 124 local_irq_restore(flags); 125 /* 126 * If none of the buffers had errors then we can set the page uptodate, 127 * but we first have to perform the post read mst fixups, if the 128 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true. 129 * Note we ignore fixup errors as those are detected when 130 * map_mft_record() is called which gives us per record granularity 131 * rather than per page granularity. 132 */ 133 if (!NInoMstProtected(ni)) { 134 if (likely(page_uptodate && !PageError(page))) 135 SetPageUptodate(page); 136 } else { 137 u8 *kaddr; 138 unsigned int i, recs; 139 u32 rec_size; 140 141 rec_size = ni->itype.index.block_size; 142 recs = PAGE_CACHE_SIZE / rec_size; 143 /* Should have been verified before we got here... */ 144 BUG_ON(!recs); 145 kaddr = kmap_atomic(page, KM_BIO_SRC_IRQ); 146 for (i = 0; i < recs; i++) 147 post_read_mst_fixup((NTFS_RECORD*)(kaddr + 148 i * rec_size), rec_size); 149 kunmap_atomic(kaddr, KM_BIO_SRC_IRQ); 150 flush_dcache_page(page); 151 if (likely(page_uptodate && !PageError(page))) 152 SetPageUptodate(page); 153 } 154 unlock_page(page); 155 return; 156 still_busy: 157 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 158 local_irq_restore(flags); 159 return; 160 } 161 162 /** 163 * ntfs_read_block - fill a @page of an address space with data 164 * @page: page cache page to fill with data 165 * 166 * Fill the page @page of the address space belonging to the @page->host inode. 167 * We read each buffer asynchronously and when all buffers are read in, our io 168 * completion handler ntfs_end_buffer_read_async(), if required, automatically 169 * applies the mst fixups to the page before finally marking it uptodate and 170 * unlocking it. 171 * 172 * We only enforce allocated_size limit because i_size is checked for in 173 * generic_file_read(). 174 * 175 * Return 0 on success and -errno on error. 176 * 177 * Contains an adapted version of fs/buffer.c::block_read_full_page(). 178 */ 179 static int ntfs_read_block(struct page *page) 180 { 181 loff_t i_size; 182 VCN vcn; 183 LCN lcn; 184 s64 init_size; 185 struct inode *vi; 186 ntfs_inode *ni; 187 ntfs_volume *vol; 188 runlist_element *rl; 189 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 190 sector_t iblock, lblock, zblock; 191 unsigned long flags; 192 unsigned int blocksize, vcn_ofs; 193 int i, nr; 194 unsigned char blocksize_bits; 195 196 vi = page->mapping->host; 197 ni = NTFS_I(vi); 198 vol = ni->vol; 199 200 /* $MFT/$DATA must have its complete runlist in memory at all times. */ 201 BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni)); 202 203 blocksize_bits = VFS_I(ni)->i_blkbits; 204 blocksize = 1 << blocksize_bits; 205 206 if (!page_has_buffers(page)) { 207 create_empty_buffers(page, blocksize, 0); 208 if (unlikely(!page_has_buffers(page))) { 209 unlock_page(page); 210 return -ENOMEM; 211 } 212 } 213 bh = head = page_buffers(page); 214 BUG_ON(!bh); 215 216 /* 217 * We may be racing with truncate. To avoid some of the problems we 218 * now take a snapshot of the various sizes and use those for the whole 219 * of the function. In case of an extending truncate it just means we 220 * may leave some buffers unmapped which are now allocated. This is 221 * not a problem since these buffers will just get mapped when a write 222 * occurs. In case of a shrinking truncate, we will detect this later 223 * on due to the runlist being incomplete and if the page is being 224 * fully truncated, truncate will throw it away as soon as we unlock 225 * it so no need to worry what we do with it. 226 */ 227 iblock = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits); 228 read_lock_irqsave(&ni->size_lock, flags); 229 lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits; 230 init_size = ni->initialized_size; 231 i_size = i_size_read(vi); 232 read_unlock_irqrestore(&ni->size_lock, flags); 233 if (unlikely(init_size > i_size)) { 234 /* Race with shrinking truncate. */ 235 init_size = i_size; 236 } 237 zblock = (init_size + blocksize - 1) >> blocksize_bits; 238 239 /* Loop through all the buffers in the page. */ 240 rl = NULL; 241 nr = i = 0; 242 do { 243 u8 *kaddr; 244 int err; 245 246 if (unlikely(buffer_uptodate(bh))) 247 continue; 248 if (unlikely(buffer_mapped(bh))) { 249 arr[nr++] = bh; 250 continue; 251 } 252 err = 0; 253 bh->b_bdev = vol->sb->s_bdev; 254 /* Is the block within the allowed limits? */ 255 if (iblock < lblock) { 256 BOOL is_retry = FALSE; 257 258 /* Convert iblock into corresponding vcn and offset. */ 259 vcn = (VCN)iblock << blocksize_bits >> 260 vol->cluster_size_bits; 261 vcn_ofs = ((VCN)iblock << blocksize_bits) & 262 vol->cluster_size_mask; 263 if (!rl) { 264 lock_retry_remap: 265 down_read(&ni->runlist.lock); 266 rl = ni->runlist.rl; 267 } 268 if (likely(rl != NULL)) { 269 /* Seek to element containing target vcn. */ 270 while (rl->length && rl[1].vcn <= vcn) 271 rl++; 272 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 273 } else 274 lcn = LCN_RL_NOT_MAPPED; 275 /* Successful remap. */ 276 if (lcn >= 0) { 277 /* Setup buffer head to correct block. */ 278 bh->b_blocknr = ((lcn << vol->cluster_size_bits) 279 + vcn_ofs) >> blocksize_bits; 280 set_buffer_mapped(bh); 281 /* Only read initialized data blocks. */ 282 if (iblock < zblock) { 283 arr[nr++] = bh; 284 continue; 285 } 286 /* Fully non-initialized data block, zero it. */ 287 goto handle_zblock; 288 } 289 /* It is a hole, need to zero it. */ 290 if (lcn == LCN_HOLE) 291 goto handle_hole; 292 /* If first try and runlist unmapped, map and retry. */ 293 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) { 294 is_retry = TRUE; 295 /* 296 * Attempt to map runlist, dropping lock for 297 * the duration. 298 */ 299 up_read(&ni->runlist.lock); 300 err = ntfs_map_runlist(ni, vcn); 301 if (likely(!err)) 302 goto lock_retry_remap; 303 rl = NULL; 304 } else if (!rl) 305 up_read(&ni->runlist.lock); 306 /* 307 * If buffer is outside the runlist, treat it as a 308 * hole. This can happen due to concurrent truncate 309 * for example. 310 */ 311 if (err == -ENOENT || lcn == LCN_ENOENT) { 312 err = 0; 313 goto handle_hole; 314 } 315 /* Hard error, zero out region. */ 316 if (!err) 317 err = -EIO; 318 bh->b_blocknr = -1; 319 SetPageError(page); 320 ntfs_error(vol->sb, "Failed to read from inode 0x%lx, " 321 "attribute type 0x%x, vcn 0x%llx, " 322 "offset 0x%x because its location on " 323 "disk could not be determined%s " 324 "(error code %i).", ni->mft_no, 325 ni->type, (unsigned long long)vcn, 326 vcn_ofs, is_retry ? " even after " 327 "retrying" : "", err); 328 } 329 /* 330 * Either iblock was outside lblock limits or 331 * ntfs_rl_vcn_to_lcn() returned error. Just zero that portion 332 * of the page and set the buffer uptodate. 333 */ 334 handle_hole: 335 bh->b_blocknr = -1UL; 336 clear_buffer_mapped(bh); 337 handle_zblock: 338 kaddr = kmap_atomic(page, KM_USER0); 339 memset(kaddr + i * blocksize, 0, blocksize); 340 kunmap_atomic(kaddr, KM_USER0); 341 flush_dcache_page(page); 342 if (likely(!err)) 343 set_buffer_uptodate(bh); 344 } while (i++, iblock++, (bh = bh->b_this_page) != head); 345 346 /* Release the lock if we took it. */ 347 if (rl) 348 up_read(&ni->runlist.lock); 349 350 /* Check we have at least one buffer ready for i/o. */ 351 if (nr) { 352 struct buffer_head *tbh; 353 354 /* Lock the buffers. */ 355 for (i = 0; i < nr; i++) { 356 tbh = arr[i]; 357 lock_buffer(tbh); 358 tbh->b_end_io = ntfs_end_buffer_async_read; 359 set_buffer_async_read(tbh); 360 } 361 /* Finally, start i/o on the buffers. */ 362 for (i = 0; i < nr; i++) { 363 tbh = arr[i]; 364 if (likely(!buffer_uptodate(tbh))) 365 submit_bh(READ, tbh); 366 else 367 ntfs_end_buffer_async_read(tbh, 1); 368 } 369 return 0; 370 } 371 /* No i/o was scheduled on any of the buffers. */ 372 if (likely(!PageError(page))) 373 SetPageUptodate(page); 374 else /* Signal synchronous i/o error. */ 375 nr = -EIO; 376 unlock_page(page); 377 return nr; 378 } 379 380 /** 381 * ntfs_readpage - fill a @page of a @file with data from the device 382 * @file: open file to which the page @page belongs or NULL 383 * @page: page cache page to fill with data 384 * 385 * For non-resident attributes, ntfs_readpage() fills the @page of the open 386 * file @file by calling the ntfs version of the generic block_read_full_page() 387 * function, ntfs_read_block(), which in turn creates and reads in the buffers 388 * associated with the page asynchronously. 389 * 390 * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the 391 * data from the mft record (which at this stage is most likely in memory) and 392 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as 393 * even if the mft record is not cached at this point in time, we need to wait 394 * for it to be read in before we can do the copy. 395 * 396 * Return 0 on success and -errno on error. 397 */ 398 static int ntfs_readpage(struct file *file, struct page *page) 399 { 400 loff_t i_size; 401 struct inode *vi; 402 ntfs_inode *ni, *base_ni; 403 u8 *kaddr; 404 ntfs_attr_search_ctx *ctx; 405 MFT_RECORD *mrec; 406 unsigned long flags; 407 u32 attr_len; 408 int err = 0; 409 410 retry_readpage: 411 BUG_ON(!PageLocked(page)); 412 /* 413 * This can potentially happen because we clear PageUptodate() during 414 * ntfs_writepage() of MstProtected() attributes. 415 */ 416 if (PageUptodate(page)) { 417 unlock_page(page); 418 return 0; 419 } 420 vi = page->mapping->host; 421 ni = NTFS_I(vi); 422 /* 423 * Only $DATA attributes can be encrypted and only unnamed $DATA 424 * attributes can be compressed. Index root can have the flags set but 425 * this means to create compressed/encrypted files, not that the 426 * attribute is compressed/encrypted. Note we need to check for 427 * AT_INDEX_ALLOCATION since this is the type of both directory and 428 * index inodes. 429 */ 430 if (ni->type != AT_INDEX_ALLOCATION) { 431 /* If attribute is encrypted, deny access, just like NT4. */ 432 if (NInoEncrypted(ni)) { 433 BUG_ON(ni->type != AT_DATA); 434 err = -EACCES; 435 goto err_out; 436 } 437 /* Compressed data streams are handled in compress.c. */ 438 if (NInoNonResident(ni) && NInoCompressed(ni)) { 439 BUG_ON(ni->type != AT_DATA); 440 BUG_ON(ni->name_len); 441 return ntfs_read_compressed_block(page); 442 } 443 } 444 /* NInoNonResident() == NInoIndexAllocPresent() */ 445 if (NInoNonResident(ni)) { 446 /* Normal, non-resident data stream. */ 447 return ntfs_read_block(page); 448 } 449 /* 450 * Attribute is resident, implying it is not compressed or encrypted. 451 * This also means the attribute is smaller than an mft record and 452 * hence smaller than a page, so can simply zero out any pages with 453 * index above 0. Note the attribute can actually be marked compressed 454 * but if it is resident the actual data is not compressed so we are 455 * ok to ignore the compressed flag here. 456 */ 457 if (unlikely(page->index > 0)) { 458 kaddr = kmap_atomic(page, KM_USER0); 459 memset(kaddr, 0, PAGE_CACHE_SIZE); 460 flush_dcache_page(page); 461 kunmap_atomic(kaddr, KM_USER0); 462 goto done; 463 } 464 if (!NInoAttr(ni)) 465 base_ni = ni; 466 else 467 base_ni = ni->ext.base_ntfs_ino; 468 /* Map, pin, and lock the mft record. */ 469 mrec = map_mft_record(base_ni); 470 if (IS_ERR(mrec)) { 471 err = PTR_ERR(mrec); 472 goto err_out; 473 } 474 /* 475 * If a parallel write made the attribute non-resident, drop the mft 476 * record and retry the readpage. 477 */ 478 if (unlikely(NInoNonResident(ni))) { 479 unmap_mft_record(base_ni); 480 goto retry_readpage; 481 } 482 ctx = ntfs_attr_get_search_ctx(base_ni, mrec); 483 if (unlikely(!ctx)) { 484 err = -ENOMEM; 485 goto unm_err_out; 486 } 487 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 488 CASE_SENSITIVE, 0, NULL, 0, ctx); 489 if (unlikely(err)) 490 goto put_unm_err_out; 491 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length); 492 read_lock_irqsave(&ni->size_lock, flags); 493 if (unlikely(attr_len > ni->initialized_size)) 494 attr_len = ni->initialized_size; 495 i_size = i_size_read(vi); 496 read_unlock_irqrestore(&ni->size_lock, flags); 497 if (unlikely(attr_len > i_size)) { 498 /* Race with shrinking truncate. */ 499 attr_len = i_size; 500 } 501 kaddr = kmap_atomic(page, KM_USER0); 502 /* Copy the data to the page. */ 503 memcpy(kaddr, (u8*)ctx->attr + 504 le16_to_cpu(ctx->attr->data.resident.value_offset), 505 attr_len); 506 /* Zero the remainder of the page. */ 507 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); 508 flush_dcache_page(page); 509 kunmap_atomic(kaddr, KM_USER0); 510 put_unm_err_out: 511 ntfs_attr_put_search_ctx(ctx); 512 unm_err_out: 513 unmap_mft_record(base_ni); 514 done: 515 SetPageUptodate(page); 516 err_out: 517 unlock_page(page); 518 return err; 519 } 520 521 #ifdef NTFS_RW 522 523 /** 524 * ntfs_write_block - write a @page to the backing store 525 * @page: page cache page to write out 526 * @wbc: writeback control structure 527 * 528 * This function is for writing pages belonging to non-resident, non-mst 529 * protected attributes to their backing store. 530 * 531 * For a page with buffers, map and write the dirty buffers asynchronously 532 * under page writeback. For a page without buffers, create buffers for the 533 * page, then proceed as above. 534 * 535 * If a page doesn't have buffers the page dirty state is definitive. If a page 536 * does have buffers, the page dirty state is just a hint, and the buffer dirty 537 * state is definitive. (A hint which has rules: dirty buffers against a clean 538 * page is illegal. Other combinations are legal and need to be handled. In 539 * particular a dirty page containing clean buffers for example.) 540 * 541 * Return 0 on success and -errno on error. 542 * 543 * Based on ntfs_read_block() and __block_write_full_page(). 544 */ 545 static int ntfs_write_block(struct page *page, struct writeback_control *wbc) 546 { 547 VCN vcn; 548 LCN lcn; 549 s64 initialized_size; 550 loff_t i_size; 551 sector_t block, dblock, iblock; 552 struct inode *vi; 553 ntfs_inode *ni; 554 ntfs_volume *vol; 555 runlist_element *rl; 556 struct buffer_head *bh, *head; 557 unsigned long flags; 558 unsigned int blocksize, vcn_ofs; 559 int err; 560 BOOL need_end_writeback; 561 unsigned char blocksize_bits; 562 563 vi = page->mapping->host; 564 ni = NTFS_I(vi); 565 vol = ni->vol; 566 567 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " 568 "0x%lx.", ni->mft_no, ni->type, page->index); 569 570 BUG_ON(!NInoNonResident(ni)); 571 BUG_ON(NInoMstProtected(ni)); 572 573 blocksize_bits = vi->i_blkbits; 574 blocksize = 1 << blocksize_bits; 575 576 if (!page_has_buffers(page)) { 577 BUG_ON(!PageUptodate(page)); 578 create_empty_buffers(page, blocksize, 579 (1 << BH_Uptodate) | (1 << BH_Dirty)); 580 if (unlikely(!page_has_buffers(page))) { 581 ntfs_warning(vol->sb, "Error allocating page " 582 "buffers. Redirtying page so we try " 583 "again later."); 584 /* 585 * Put the page back on mapping->dirty_pages, but leave 586 * its buffers' dirty state as-is. 587 */ 588 redirty_page_for_writepage(wbc, page); 589 unlock_page(page); 590 return 0; 591 } 592 } 593 bh = head = page_buffers(page); 594 BUG_ON(!bh); 595 596 /* NOTE: Different naming scheme to ntfs_read_block()! */ 597 598 /* The first block in the page. */ 599 block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits); 600 601 read_lock_irqsave(&ni->size_lock, flags); 602 i_size = i_size_read(vi); 603 initialized_size = ni->initialized_size; 604 read_unlock_irqrestore(&ni->size_lock, flags); 605 606 /* The first out of bounds block for the data size. */ 607 dblock = (i_size + blocksize - 1) >> blocksize_bits; 608 609 /* The last (fully or partially) initialized block. */ 610 iblock = initialized_size >> blocksize_bits; 611 612 /* 613 * Be very careful. We have no exclusion from __set_page_dirty_buffers 614 * here, and the (potentially unmapped) buffers may become dirty at 615 * any time. If a buffer becomes dirty here after we've inspected it 616 * then we just miss that fact, and the page stays dirty. 617 * 618 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 619 * handle that here by just cleaning them. 620 */ 621 622 /* 623 * Loop through all the buffers in the page, mapping all the dirty 624 * buffers to disk addresses and handling any aliases from the 625 * underlying block device's mapping. 626 */ 627 rl = NULL; 628 err = 0; 629 do { 630 BOOL is_retry = FALSE; 631 632 if (unlikely(block >= dblock)) { 633 /* 634 * Mapped buffers outside i_size will occur, because 635 * this page can be outside i_size when there is a 636 * truncate in progress. The contents of such buffers 637 * were zeroed by ntfs_writepage(). 638 * 639 * FIXME: What about the small race window where 640 * ntfs_writepage() has not done any clearing because 641 * the page was within i_size but before we get here, 642 * vmtruncate() modifies i_size? 643 */ 644 clear_buffer_dirty(bh); 645 set_buffer_uptodate(bh); 646 continue; 647 } 648 649 /* Clean buffers are not written out, so no need to map them. */ 650 if (!buffer_dirty(bh)) 651 continue; 652 653 /* Make sure we have enough initialized size. */ 654 if (unlikely((block >= iblock) && 655 (initialized_size < i_size))) { 656 /* 657 * If this page is fully outside initialized size, zero 658 * out all pages between the current initialized size 659 * and the current page. Just use ntfs_readpage() to do 660 * the zeroing transparently. 661 */ 662 if (block > iblock) { 663 // TODO: 664 // For each page do: 665 // - read_cache_page() 666 // Again for each page do: 667 // - wait_on_page_locked() 668 // - Check (PageUptodate(page) && 669 // !PageError(page)) 670 // Update initialized size in the attribute and 671 // in the inode. 672 // Again, for each page do: 673 // __set_page_dirty_buffers(); 674 // page_cache_release() 675 // We don't need to wait on the writes. 676 // Update iblock. 677 } 678 /* 679 * The current page straddles initialized size. Zero 680 * all non-uptodate buffers and set them uptodate (and 681 * dirty?). Note, there aren't any non-uptodate buffers 682 * if the page is uptodate. 683 * FIXME: For an uptodate page, the buffers may need to 684 * be written out because they were not initialized on 685 * disk before. 686 */ 687 if (!PageUptodate(page)) { 688 // TODO: 689 // Zero any non-uptodate buffers up to i_size. 690 // Set them uptodate and dirty. 691 } 692 // TODO: 693 // Update initialized size in the attribute and in the 694 // inode (up to i_size). 695 // Update iblock. 696 // FIXME: This is inefficient. Try to batch the two 697 // size changes to happen in one go. 698 ntfs_error(vol->sb, "Writing beyond initialized size " 699 "is not supported yet. Sorry."); 700 err = -EOPNOTSUPP; 701 break; 702 // Do NOT set_buffer_new() BUT DO clear buffer range 703 // outside write request range. 704 // set_buffer_uptodate() on complete buffers as well as 705 // set_buffer_dirty(). 706 } 707 708 /* No need to map buffers that are already mapped. */ 709 if (buffer_mapped(bh)) 710 continue; 711 712 /* Unmapped, dirty buffer. Need to map it. */ 713 bh->b_bdev = vol->sb->s_bdev; 714 715 /* Convert block into corresponding vcn and offset. */ 716 vcn = (VCN)block << blocksize_bits; 717 vcn_ofs = vcn & vol->cluster_size_mask; 718 vcn >>= vol->cluster_size_bits; 719 if (!rl) { 720 lock_retry_remap: 721 down_read(&ni->runlist.lock); 722 rl = ni->runlist.rl; 723 } 724 if (likely(rl != NULL)) { 725 /* Seek to element containing target vcn. */ 726 while (rl->length && rl[1].vcn <= vcn) 727 rl++; 728 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 729 } else 730 lcn = LCN_RL_NOT_MAPPED; 731 /* Successful remap. */ 732 if (lcn >= 0) { 733 /* Setup buffer head to point to correct block. */ 734 bh->b_blocknr = ((lcn << vol->cluster_size_bits) + 735 vcn_ofs) >> blocksize_bits; 736 set_buffer_mapped(bh); 737 continue; 738 } 739 /* It is a hole, need to instantiate it. */ 740 if (lcn == LCN_HOLE) { 741 u8 *kaddr; 742 unsigned long *bpos, *bend; 743 744 /* Check if the buffer is zero. */ 745 kaddr = kmap_atomic(page, KM_USER0); 746 bpos = (unsigned long *)(kaddr + bh_offset(bh)); 747 bend = (unsigned long *)((u8*)bpos + blocksize); 748 do { 749 if (unlikely(*bpos)) 750 break; 751 } while (likely(++bpos < bend)); 752 kunmap_atomic(kaddr, KM_USER0); 753 if (bpos == bend) { 754 /* 755 * Buffer is zero and sparse, no need to write 756 * it. 757 */ 758 bh->b_blocknr = -1; 759 clear_buffer_dirty(bh); 760 continue; 761 } 762 // TODO: Instantiate the hole. 763 // clear_buffer_new(bh); 764 // unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 765 ntfs_error(vol->sb, "Writing into sparse regions is " 766 "not supported yet. Sorry."); 767 err = -EOPNOTSUPP; 768 break; 769 } 770 /* If first try and runlist unmapped, map and retry. */ 771 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) { 772 is_retry = TRUE; 773 /* 774 * Attempt to map runlist, dropping lock for 775 * the duration. 776 */ 777 up_read(&ni->runlist.lock); 778 err = ntfs_map_runlist(ni, vcn); 779 if (likely(!err)) 780 goto lock_retry_remap; 781 rl = NULL; 782 } else if (!rl) 783 up_read(&ni->runlist.lock); 784 /* 785 * If buffer is outside the runlist, truncate has cut it out 786 * of the runlist. Just clean and clear the buffer and set it 787 * uptodate so it can get discarded by the VM. 788 */ 789 if (err == -ENOENT || lcn == LCN_ENOENT) { 790 u8 *kaddr; 791 792 bh->b_blocknr = -1; 793 clear_buffer_dirty(bh); 794 kaddr = kmap_atomic(page, KM_USER0); 795 memset(kaddr + bh_offset(bh), 0, blocksize); 796 kunmap_atomic(kaddr, KM_USER0); 797 flush_dcache_page(page); 798 set_buffer_uptodate(bh); 799 err = 0; 800 continue; 801 } 802 /* Failed to map the buffer, even after retrying. */ 803 if (!err) 804 err = -EIO; 805 bh->b_blocknr = -1; 806 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, " 807 "attribute type 0x%x, vcn 0x%llx, offset 0x%x " 808 "because its location on disk could not be " 809 "determined%s (error code %i).", ni->mft_no, 810 ni->type, (unsigned long long)vcn, 811 vcn_ofs, is_retry ? " even after " 812 "retrying" : "", err); 813 break; 814 } while (block++, (bh = bh->b_this_page) != head); 815 816 /* Release the lock if we took it. */ 817 if (rl) 818 up_read(&ni->runlist.lock); 819 820 /* For the error case, need to reset bh to the beginning. */ 821 bh = head; 822 823 /* Just an optimization, so ->readpage() is not called later. */ 824 if (unlikely(!PageUptodate(page))) { 825 int uptodate = 1; 826 do { 827 if (!buffer_uptodate(bh)) { 828 uptodate = 0; 829 bh = head; 830 break; 831 } 832 } while ((bh = bh->b_this_page) != head); 833 if (uptodate) 834 SetPageUptodate(page); 835 } 836 837 /* Setup all mapped, dirty buffers for async write i/o. */ 838 do { 839 if (buffer_mapped(bh) && buffer_dirty(bh)) { 840 lock_buffer(bh); 841 if (test_clear_buffer_dirty(bh)) { 842 BUG_ON(!buffer_uptodate(bh)); 843 mark_buffer_async_write(bh); 844 } else 845 unlock_buffer(bh); 846 } else if (unlikely(err)) { 847 /* 848 * For the error case. The buffer may have been set 849 * dirty during attachment to a dirty page. 850 */ 851 if (err != -ENOMEM) 852 clear_buffer_dirty(bh); 853 } 854 } while ((bh = bh->b_this_page) != head); 855 856 if (unlikely(err)) { 857 // TODO: Remove the -EOPNOTSUPP check later on... 858 if (unlikely(err == -EOPNOTSUPP)) 859 err = 0; 860 else if (err == -ENOMEM) { 861 ntfs_warning(vol->sb, "Error allocating memory. " 862 "Redirtying page so we try again " 863 "later."); 864 /* 865 * Put the page back on mapping->dirty_pages, but 866 * leave its buffer's dirty state as-is. 867 */ 868 redirty_page_for_writepage(wbc, page); 869 err = 0; 870 } else 871 SetPageError(page); 872 } 873 874 BUG_ON(PageWriteback(page)); 875 set_page_writeback(page); /* Keeps try_to_free_buffers() away. */ 876 877 /* Submit the prepared buffers for i/o. */ 878 need_end_writeback = TRUE; 879 do { 880 struct buffer_head *next = bh->b_this_page; 881 if (buffer_async_write(bh)) { 882 submit_bh(WRITE, bh); 883 need_end_writeback = FALSE; 884 } 885 bh = next; 886 } while (bh != head); 887 unlock_page(page); 888 889 /* If no i/o was started, need to end_page_writeback(). */ 890 if (unlikely(need_end_writeback)) 891 end_page_writeback(page); 892 893 ntfs_debug("Done."); 894 return err; 895 } 896 897 /** 898 * ntfs_write_mst_block - write a @page to the backing store 899 * @page: page cache page to write out 900 * @wbc: writeback control structure 901 * 902 * This function is for writing pages belonging to non-resident, mst protected 903 * attributes to their backing store. The only supported attributes are index 904 * allocation and $MFT/$DATA. Both directory inodes and index inodes are 905 * supported for the index allocation case. 906 * 907 * The page must remain locked for the duration of the write because we apply 908 * the mst fixups, write, and then undo the fixups, so if we were to unlock the 909 * page before undoing the fixups, any other user of the page will see the 910 * page contents as corrupt. 911 * 912 * We clear the page uptodate flag for the duration of the function to ensure 913 * exclusion for the $MFT/$DATA case against someone mapping an mft record we 914 * are about to apply the mst fixups to. 915 * 916 * Return 0 on success and -errno on error. 917 * 918 * Based on ntfs_write_block(), ntfs_mft_writepage(), and 919 * write_mft_record_nolock(). 920 */ 921 static int ntfs_write_mst_block(struct page *page, 922 struct writeback_control *wbc) 923 { 924 sector_t block, dblock, rec_block; 925 struct inode *vi = page->mapping->host; 926 ntfs_inode *ni = NTFS_I(vi); 927 ntfs_volume *vol = ni->vol; 928 u8 *kaddr; 929 unsigned int rec_size = ni->itype.index.block_size; 930 ntfs_inode *locked_nis[PAGE_CACHE_SIZE / rec_size]; 931 struct buffer_head *bh, *head, *tbh, *rec_start_bh; 932 struct buffer_head *bhs[MAX_BUF_PER_PAGE]; 933 runlist_element *rl; 934 int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2; 935 unsigned bh_size, rec_size_bits; 936 BOOL sync, is_mft, page_is_dirty, rec_is_dirty; 937 unsigned char bh_size_bits; 938 939 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " 940 "0x%lx.", vi->i_ino, ni->type, page->index); 941 BUG_ON(!NInoNonResident(ni)); 942 BUG_ON(!NInoMstProtected(ni)); 943 is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino); 944 /* 945 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page 946 * in its page cache were to be marked dirty. However this should 947 * never happen with the current driver and considering we do not 948 * handle this case here we do want to BUG(), at least for now. 949 */ 950 BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) || 951 (NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION))); 952 bh_size_bits = vi->i_blkbits; 953 bh_size = 1 << bh_size_bits; 954 max_bhs = PAGE_CACHE_SIZE / bh_size; 955 BUG_ON(!max_bhs); 956 BUG_ON(max_bhs > MAX_BUF_PER_PAGE); 957 958 /* Were we called for sync purposes? */ 959 sync = (wbc->sync_mode == WB_SYNC_ALL); 960 961 /* Make sure we have mapped buffers. */ 962 bh = head = page_buffers(page); 963 BUG_ON(!bh); 964 965 rec_size_bits = ni->itype.index.block_size_bits; 966 BUG_ON(!(PAGE_CACHE_SIZE >> rec_size_bits)); 967 bhs_per_rec = rec_size >> bh_size_bits; 968 BUG_ON(!bhs_per_rec); 969 970 /* The first block in the page. */ 971 rec_block = block = (sector_t)page->index << 972 (PAGE_CACHE_SHIFT - bh_size_bits); 973 974 /* The first out of bounds block for the data size. */ 975 dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits; 976 977 rl = NULL; 978 err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0; 979 page_is_dirty = rec_is_dirty = FALSE; 980 rec_start_bh = NULL; 981 do { 982 BOOL is_retry = FALSE; 983 984 if (likely(block < rec_block)) { 985 if (unlikely(block >= dblock)) { 986 clear_buffer_dirty(bh); 987 set_buffer_uptodate(bh); 988 continue; 989 } 990 /* 991 * This block is not the first one in the record. We 992 * ignore the buffer's dirty state because we could 993 * have raced with a parallel mark_ntfs_record_dirty(). 994 */ 995 if (!rec_is_dirty) 996 continue; 997 if (unlikely(err2)) { 998 if (err2 != -ENOMEM) 999 clear_buffer_dirty(bh); 1000 continue; 1001 } 1002 } else /* if (block == rec_block) */ { 1003 BUG_ON(block > rec_block); 1004 /* This block is the first one in the record. */ 1005 rec_block += bhs_per_rec; 1006 err2 = 0; 1007 if (unlikely(block >= dblock)) { 1008 clear_buffer_dirty(bh); 1009 continue; 1010 } 1011 if (!buffer_dirty(bh)) { 1012 /* Clean records are not written out. */ 1013 rec_is_dirty = FALSE; 1014 continue; 1015 } 1016 rec_is_dirty = TRUE; 1017 rec_start_bh = bh; 1018 } 1019 /* Need to map the buffer if it is not mapped already. */ 1020 if (unlikely(!buffer_mapped(bh))) { 1021 VCN vcn; 1022 LCN lcn; 1023 unsigned int vcn_ofs; 1024 1025 bh->b_bdev = vol->sb->s_bdev; 1026 /* Obtain the vcn and offset of the current block. */ 1027 vcn = (VCN)block << bh_size_bits; 1028 vcn_ofs = vcn & vol->cluster_size_mask; 1029 vcn >>= vol->cluster_size_bits; 1030 if (!rl) { 1031 lock_retry_remap: 1032 down_read(&ni->runlist.lock); 1033 rl = ni->runlist.rl; 1034 } 1035 if (likely(rl != NULL)) { 1036 /* Seek to element containing target vcn. */ 1037 while (rl->length && rl[1].vcn <= vcn) 1038 rl++; 1039 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 1040 } else 1041 lcn = LCN_RL_NOT_MAPPED; 1042 /* Successful remap. */ 1043 if (likely(lcn >= 0)) { 1044 /* Setup buffer head to correct block. */ 1045 bh->b_blocknr = ((lcn << 1046 vol->cluster_size_bits) + 1047 vcn_ofs) >> bh_size_bits; 1048 set_buffer_mapped(bh); 1049 } else { 1050 /* 1051 * Remap failed. Retry to map the runlist once 1052 * unless we are working on $MFT which always 1053 * has the whole of its runlist in memory. 1054 */ 1055 if (!is_mft && !is_retry && 1056 lcn == LCN_RL_NOT_MAPPED) { 1057 is_retry = TRUE; 1058 /* 1059 * Attempt to map runlist, dropping 1060 * lock for the duration. 1061 */ 1062 up_read(&ni->runlist.lock); 1063 err2 = ntfs_map_runlist(ni, vcn); 1064 if (likely(!err2)) 1065 goto lock_retry_remap; 1066 if (err2 == -ENOMEM) 1067 page_is_dirty = TRUE; 1068 lcn = err2; 1069 } else { 1070 err2 = -EIO; 1071 if (!rl) 1072 up_read(&ni->runlist.lock); 1073 } 1074 /* Hard error. Abort writing this record. */ 1075 if (!err || err == -ENOMEM) 1076 err = err2; 1077 bh->b_blocknr = -1; 1078 ntfs_error(vol->sb, "Cannot write ntfs record " 1079 "0x%llx (inode 0x%lx, " 1080 "attribute type 0x%x) because " 1081 "its location on disk could " 1082 "not be determined (error " 1083 "code %lli).", 1084 (long long)block << 1085 bh_size_bits >> 1086 vol->mft_record_size_bits, 1087 ni->mft_no, ni->type, 1088 (long long)lcn); 1089 /* 1090 * If this is not the first buffer, remove the 1091 * buffers in this record from the list of 1092 * buffers to write and clear their dirty bit 1093 * if not error -ENOMEM. 1094 */ 1095 if (rec_start_bh != bh) { 1096 while (bhs[--nr_bhs] != rec_start_bh) 1097 ; 1098 if (err2 != -ENOMEM) { 1099 do { 1100 clear_buffer_dirty( 1101 rec_start_bh); 1102 } while ((rec_start_bh = 1103 rec_start_bh-> 1104 b_this_page) != 1105 bh); 1106 } 1107 } 1108 continue; 1109 } 1110 } 1111 BUG_ON(!buffer_uptodate(bh)); 1112 BUG_ON(nr_bhs >= max_bhs); 1113 bhs[nr_bhs++] = bh; 1114 } while (block++, (bh = bh->b_this_page) != head); 1115 if (unlikely(rl)) 1116 up_read(&ni->runlist.lock); 1117 /* If there were no dirty buffers, we are done. */ 1118 if (!nr_bhs) 1119 goto done; 1120 /* Map the page so we can access its contents. */ 1121 kaddr = kmap(page); 1122 /* Clear the page uptodate flag whilst the mst fixups are applied. */ 1123 BUG_ON(!PageUptodate(page)); 1124 ClearPageUptodate(page); 1125 for (i = 0; i < nr_bhs; i++) { 1126 unsigned int ofs; 1127 1128 /* Skip buffers which are not at the beginning of records. */ 1129 if (i % bhs_per_rec) 1130 continue; 1131 tbh = bhs[i]; 1132 ofs = bh_offset(tbh); 1133 if (is_mft) { 1134 ntfs_inode *tni; 1135 unsigned long mft_no; 1136 1137 /* Get the mft record number. */ 1138 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs) 1139 >> rec_size_bits; 1140 /* Check whether to write this mft record. */ 1141 tni = NULL; 1142 if (!ntfs_may_write_mft_record(vol, mft_no, 1143 (MFT_RECORD*)(kaddr + ofs), &tni)) { 1144 /* 1145 * The record should not be written. This 1146 * means we need to redirty the page before 1147 * returning. 1148 */ 1149 page_is_dirty = TRUE; 1150 /* 1151 * Remove the buffers in this mft record from 1152 * the list of buffers to write. 1153 */ 1154 do { 1155 bhs[i] = NULL; 1156 } while (++i % bhs_per_rec); 1157 continue; 1158 } 1159 /* 1160 * The record should be written. If a locked ntfs 1161 * inode was returned, add it to the array of locked 1162 * ntfs inodes. 1163 */ 1164 if (tni) 1165 locked_nis[nr_locked_nis++] = tni; 1166 } 1167 /* Apply the mst protection fixups. */ 1168 err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs), 1169 rec_size); 1170 if (unlikely(err2)) { 1171 if (!err || err == -ENOMEM) 1172 err = -EIO; 1173 ntfs_error(vol->sb, "Failed to apply mst fixups " 1174 "(inode 0x%lx, attribute type 0x%x, " 1175 "page index 0x%lx, page offset 0x%x)!" 1176 " Unmount and run chkdsk.", vi->i_ino, 1177 ni->type, page->index, ofs); 1178 /* 1179 * Mark all the buffers in this record clean as we do 1180 * not want to write corrupt data to disk. 1181 */ 1182 do { 1183 clear_buffer_dirty(bhs[i]); 1184 bhs[i] = NULL; 1185 } while (++i % bhs_per_rec); 1186 continue; 1187 } 1188 nr_recs++; 1189 } 1190 /* If no records are to be written out, we are done. */ 1191 if (!nr_recs) 1192 goto unm_done; 1193 flush_dcache_page(page); 1194 /* Lock buffers and start synchronous write i/o on them. */ 1195 for (i = 0; i < nr_bhs; i++) { 1196 tbh = bhs[i]; 1197 if (!tbh) 1198 continue; 1199 if (unlikely(test_set_buffer_locked(tbh))) 1200 BUG(); 1201 /* The buffer dirty state is now irrelevant, just clean it. */ 1202 clear_buffer_dirty(tbh); 1203 BUG_ON(!buffer_uptodate(tbh)); 1204 BUG_ON(!buffer_mapped(tbh)); 1205 get_bh(tbh); 1206 tbh->b_end_io = end_buffer_write_sync; 1207 submit_bh(WRITE, tbh); 1208 } 1209 /* Synchronize the mft mirror now if not @sync. */ 1210 if (is_mft && !sync) 1211 goto do_mirror; 1212 do_wait: 1213 /* Wait on i/o completion of buffers. */ 1214 for (i = 0; i < nr_bhs; i++) { 1215 tbh = bhs[i]; 1216 if (!tbh) 1217 continue; 1218 wait_on_buffer(tbh); 1219 if (unlikely(!buffer_uptodate(tbh))) { 1220 ntfs_error(vol->sb, "I/O error while writing ntfs " 1221 "record buffer (inode 0x%lx, " 1222 "attribute type 0x%x, page index " 1223 "0x%lx, page offset 0x%lx)! Unmount " 1224 "and run chkdsk.", vi->i_ino, ni->type, 1225 page->index, bh_offset(tbh)); 1226 if (!err || err == -ENOMEM) 1227 err = -EIO; 1228 /* 1229 * Set the buffer uptodate so the page and buffer 1230 * states do not become out of sync. 1231 */ 1232 set_buffer_uptodate(tbh); 1233 } 1234 } 1235 /* If @sync, now synchronize the mft mirror. */ 1236 if (is_mft && sync) { 1237 do_mirror: 1238 for (i = 0; i < nr_bhs; i++) { 1239 unsigned long mft_no; 1240 unsigned int ofs; 1241 1242 /* 1243 * Skip buffers which are not at the beginning of 1244 * records. 1245 */ 1246 if (i % bhs_per_rec) 1247 continue; 1248 tbh = bhs[i]; 1249 /* Skip removed buffers (and hence records). */ 1250 if (!tbh) 1251 continue; 1252 ofs = bh_offset(tbh); 1253 /* Get the mft record number. */ 1254 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs) 1255 >> rec_size_bits; 1256 if (mft_no < vol->mftmirr_size) 1257 ntfs_sync_mft_mirror(vol, mft_no, 1258 (MFT_RECORD*)(kaddr + ofs), 1259 sync); 1260 } 1261 if (!sync) 1262 goto do_wait; 1263 } 1264 /* Remove the mst protection fixups again. */ 1265 for (i = 0; i < nr_bhs; i++) { 1266 if (!(i % bhs_per_rec)) { 1267 tbh = bhs[i]; 1268 if (!tbh) 1269 continue; 1270 post_write_mst_fixup((NTFS_RECORD*)(kaddr + 1271 bh_offset(tbh))); 1272 } 1273 } 1274 flush_dcache_page(page); 1275 unm_done: 1276 /* Unlock any locked inodes. */ 1277 while (nr_locked_nis-- > 0) { 1278 ntfs_inode *tni, *base_tni; 1279 1280 tni = locked_nis[nr_locked_nis]; 1281 /* Get the base inode. */ 1282 down(&tni->extent_lock); 1283 if (tni->nr_extents >= 0) 1284 base_tni = tni; 1285 else { 1286 base_tni = tni->ext.base_ntfs_ino; 1287 BUG_ON(!base_tni); 1288 } 1289 up(&tni->extent_lock); 1290 ntfs_debug("Unlocking %s inode 0x%lx.", 1291 tni == base_tni ? "base" : "extent", 1292 tni->mft_no); 1293 up(&tni->mrec_lock); 1294 atomic_dec(&tni->count); 1295 iput(VFS_I(base_tni)); 1296 } 1297 SetPageUptodate(page); 1298 kunmap(page); 1299 done: 1300 if (unlikely(err && err != -ENOMEM)) { 1301 /* 1302 * Set page error if there is only one ntfs record in the page. 1303 * Otherwise we would loose per-record granularity. 1304 */ 1305 if (ni->itype.index.block_size == PAGE_CACHE_SIZE) 1306 SetPageError(page); 1307 NVolSetErrors(vol); 1308 } 1309 if (page_is_dirty) { 1310 ntfs_debug("Page still contains one or more dirty ntfs " 1311 "records. Redirtying the page starting at " 1312 "record 0x%lx.", page->index << 1313 (PAGE_CACHE_SHIFT - rec_size_bits)); 1314 redirty_page_for_writepage(wbc, page); 1315 unlock_page(page); 1316 } else { 1317 /* 1318 * Keep the VM happy. This must be done otherwise the 1319 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though 1320 * the page is clean. 1321 */ 1322 BUG_ON(PageWriteback(page)); 1323 set_page_writeback(page); 1324 unlock_page(page); 1325 end_page_writeback(page); 1326 } 1327 if (likely(!err)) 1328 ntfs_debug("Done."); 1329 return err; 1330 } 1331 1332 /** 1333 * ntfs_writepage - write a @page to the backing store 1334 * @page: page cache page to write out 1335 * @wbc: writeback control structure 1336 * 1337 * This is called from the VM when it wants to have a dirty ntfs page cache 1338 * page cleaned. The VM has already locked the page and marked it clean. 1339 * 1340 * For non-resident attributes, ntfs_writepage() writes the @page by calling 1341 * the ntfs version of the generic block_write_full_page() function, 1342 * ntfs_write_block(), which in turn if necessary creates and writes the 1343 * buffers associated with the page asynchronously. 1344 * 1345 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying 1346 * the data to the mft record (which at this stage is most likely in memory). 1347 * The mft record is then marked dirty and written out asynchronously via the 1348 * vfs inode dirty code path for the inode the mft record belongs to or via the 1349 * vm page dirty code path for the page the mft record is in. 1350 * 1351 * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page(). 1352 * 1353 * Return 0 on success and -errno on error. 1354 */ 1355 static int ntfs_writepage(struct page *page, struct writeback_control *wbc) 1356 { 1357 loff_t i_size; 1358 struct inode *vi = page->mapping->host; 1359 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi); 1360 char *kaddr; 1361 ntfs_attr_search_ctx *ctx = NULL; 1362 MFT_RECORD *m = NULL; 1363 u32 attr_len; 1364 int err; 1365 1366 retry_writepage: 1367 BUG_ON(!PageLocked(page)); 1368 i_size = i_size_read(vi); 1369 /* Is the page fully outside i_size? (truncate in progress) */ 1370 if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >> 1371 PAGE_CACHE_SHIFT)) { 1372 /* 1373 * The page may have dirty, unmapped buffers. Make them 1374 * freeable here, so the page does not leak. 1375 */ 1376 block_invalidatepage(page, 0); 1377 unlock_page(page); 1378 ntfs_debug("Write outside i_size - truncated?"); 1379 return 0; 1380 } 1381 /* 1382 * Only $DATA attributes can be encrypted and only unnamed $DATA 1383 * attributes can be compressed. Index root can have the flags set but 1384 * this means to create compressed/encrypted files, not that the 1385 * attribute is compressed/encrypted. Note we need to check for 1386 * AT_INDEX_ALLOCATION since this is the type of both directory and 1387 * index inodes. 1388 */ 1389 if (ni->type != AT_INDEX_ALLOCATION) { 1390 /* If file is encrypted, deny access, just like NT4. */ 1391 if (NInoEncrypted(ni)) { 1392 unlock_page(page); 1393 BUG_ON(ni->type != AT_DATA); 1394 ntfs_debug("Denying write access to encrypted file."); 1395 return -EACCES; 1396 } 1397 /* Compressed data streams are handled in compress.c. */ 1398 if (NInoNonResident(ni) && NInoCompressed(ni)) { 1399 BUG_ON(ni->type != AT_DATA); 1400 BUG_ON(ni->name_len); 1401 // TODO: Implement and replace this with 1402 // return ntfs_write_compressed_block(page); 1403 unlock_page(page); 1404 ntfs_error(vi->i_sb, "Writing to compressed files is " 1405 "not supported yet. Sorry."); 1406 return -EOPNOTSUPP; 1407 } 1408 // TODO: Implement and remove this check. 1409 if (NInoNonResident(ni) && NInoSparse(ni)) { 1410 unlock_page(page); 1411 ntfs_error(vi->i_sb, "Writing to sparse files is not " 1412 "supported yet. Sorry."); 1413 return -EOPNOTSUPP; 1414 } 1415 } 1416 /* NInoNonResident() == NInoIndexAllocPresent() */ 1417 if (NInoNonResident(ni)) { 1418 /* We have to zero every time due to mmap-at-end-of-file. */ 1419 if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) { 1420 /* The page straddles i_size. */ 1421 unsigned int ofs = i_size & ~PAGE_CACHE_MASK; 1422 kaddr = kmap_atomic(page, KM_USER0); 1423 memset(kaddr + ofs, 0, PAGE_CACHE_SIZE - ofs); 1424 kunmap_atomic(kaddr, KM_USER0); 1425 flush_dcache_page(page); 1426 } 1427 /* Handle mst protected attributes. */ 1428 if (NInoMstProtected(ni)) 1429 return ntfs_write_mst_block(page, wbc); 1430 /* Normal, non-resident data stream. */ 1431 return ntfs_write_block(page, wbc); 1432 } 1433 /* 1434 * Attribute is resident, implying it is not compressed, encrypted, or 1435 * mst protected. This also means the attribute is smaller than an mft 1436 * record and hence smaller than a page, so can simply return error on 1437 * any pages with index above 0. Note the attribute can actually be 1438 * marked compressed but if it is resident the actual data is not 1439 * compressed so we are ok to ignore the compressed flag here. 1440 */ 1441 BUG_ON(page_has_buffers(page)); 1442 BUG_ON(!PageUptodate(page)); 1443 if (unlikely(page->index > 0)) { 1444 ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0. " 1445 "Aborting write.", page->index); 1446 BUG_ON(PageWriteback(page)); 1447 set_page_writeback(page); 1448 unlock_page(page); 1449 end_page_writeback(page); 1450 return -EIO; 1451 } 1452 if (!NInoAttr(ni)) 1453 base_ni = ni; 1454 else 1455 base_ni = ni->ext.base_ntfs_ino; 1456 /* Map, pin, and lock the mft record. */ 1457 m = map_mft_record(base_ni); 1458 if (IS_ERR(m)) { 1459 err = PTR_ERR(m); 1460 m = NULL; 1461 ctx = NULL; 1462 goto err_out; 1463 } 1464 /* 1465 * If a parallel write made the attribute non-resident, drop the mft 1466 * record and retry the writepage. 1467 */ 1468 if (unlikely(NInoNonResident(ni))) { 1469 unmap_mft_record(base_ni); 1470 goto retry_writepage; 1471 } 1472 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1473 if (unlikely(!ctx)) { 1474 err = -ENOMEM; 1475 goto err_out; 1476 } 1477 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1478 CASE_SENSITIVE, 0, NULL, 0, ctx); 1479 if (unlikely(err)) 1480 goto err_out; 1481 /* 1482 * Keep the VM happy. This must be done otherwise the radix-tree tag 1483 * PAGECACHE_TAG_DIRTY remains set even though the page is clean. 1484 */ 1485 BUG_ON(PageWriteback(page)); 1486 set_page_writeback(page); 1487 unlock_page(page); 1488 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length); 1489 i_size = i_size_read(vi); 1490 if (unlikely(attr_len > i_size)) { 1491 /* Race with shrinking truncate or a failed truncate. */ 1492 attr_len = i_size; 1493 /* 1494 * If the truncate failed, fix it up now. If a concurrent 1495 * truncate, we do its job, so it does not have to do anything. 1496 */ 1497 err = ntfs_resident_attr_value_resize(ctx->mrec, ctx->attr, 1498 attr_len); 1499 /* Shrinking cannot fail. */ 1500 BUG_ON(err); 1501 } 1502 kaddr = kmap_atomic(page, KM_USER0); 1503 /* Copy the data from the page to the mft record. */ 1504 memcpy((u8*)ctx->attr + 1505 le16_to_cpu(ctx->attr->data.resident.value_offset), 1506 kaddr, attr_len); 1507 /* Zero out of bounds area in the page cache page. */ 1508 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); 1509 kunmap_atomic(kaddr, KM_USER0); 1510 flush_dcache_page(page); 1511 flush_dcache_mft_record_page(ctx->ntfs_ino); 1512 /* We are done with the page. */ 1513 end_page_writeback(page); 1514 /* Finally, mark the mft record dirty, so it gets written back. */ 1515 mark_mft_record_dirty(ctx->ntfs_ino); 1516 ntfs_attr_put_search_ctx(ctx); 1517 unmap_mft_record(base_ni); 1518 return 0; 1519 err_out: 1520 if (err == -ENOMEM) { 1521 ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying " 1522 "page so we try again later."); 1523 /* 1524 * Put the page back on mapping->dirty_pages, but leave its 1525 * buffers' dirty state as-is. 1526 */ 1527 redirty_page_for_writepage(wbc, page); 1528 err = 0; 1529 } else { 1530 ntfs_error(vi->i_sb, "Resident attribute write failed with " 1531 "error %i.", err); 1532 SetPageError(page); 1533 NVolSetErrors(ni->vol); 1534 make_bad_inode(vi); 1535 } 1536 unlock_page(page); 1537 if (ctx) 1538 ntfs_attr_put_search_ctx(ctx); 1539 if (m) 1540 unmap_mft_record(base_ni); 1541 return err; 1542 } 1543 1544 #endif /* NTFS_RW */ 1545 1546 /** 1547 * ntfs_aops - general address space operations for inodes and attributes 1548 */ 1549 struct address_space_operations ntfs_aops = { 1550 .readpage = ntfs_readpage, /* Fill page with data. */ 1551 .sync_page = block_sync_page, /* Currently, just unplugs the 1552 disk request queue. */ 1553 #ifdef NTFS_RW 1554 .writepage = ntfs_writepage, /* Write dirty page to disk. */ 1555 #endif /* NTFS_RW */ 1556 }; 1557 1558 /** 1559 * ntfs_mst_aops - general address space operations for mst protecteed inodes 1560 * and attributes 1561 */ 1562 struct address_space_operations ntfs_mst_aops = { 1563 .readpage = ntfs_readpage, /* Fill page with data. */ 1564 .sync_page = block_sync_page, /* Currently, just unplugs the 1565 disk request queue. */ 1566 #ifdef NTFS_RW 1567 .writepage = ntfs_writepage, /* Write dirty page to disk. */ 1568 .set_page_dirty = __set_page_dirty_nobuffers, /* Set the page dirty 1569 without touching the buffers 1570 belonging to the page. */ 1571 #endif /* NTFS_RW */ 1572 }; 1573 1574 #ifdef NTFS_RW 1575 1576 /** 1577 * mark_ntfs_record_dirty - mark an ntfs record dirty 1578 * @page: page containing the ntfs record to mark dirty 1579 * @ofs: byte offset within @page at which the ntfs record begins 1580 * 1581 * Set the buffers and the page in which the ntfs record is located dirty. 1582 * 1583 * The latter also marks the vfs inode the ntfs record belongs to dirty 1584 * (I_DIRTY_PAGES only). 1585 * 1586 * If the page does not have buffers, we create them and set them uptodate. 1587 * The page may not be locked which is why we need to handle the buffers under 1588 * the mapping->private_lock. Once the buffers are marked dirty we no longer 1589 * need the lock since try_to_free_buffers() does not free dirty buffers. 1590 */ 1591 void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) { 1592 struct address_space *mapping = page->mapping; 1593 ntfs_inode *ni = NTFS_I(mapping->host); 1594 struct buffer_head *bh, *head, *buffers_to_free = NULL; 1595 unsigned int end, bh_size, bh_ofs; 1596 1597 BUG_ON(!PageUptodate(page)); 1598 end = ofs + ni->itype.index.block_size; 1599 bh_size = 1 << VFS_I(ni)->i_blkbits; 1600 spin_lock(&mapping->private_lock); 1601 if (unlikely(!page_has_buffers(page))) { 1602 spin_unlock(&mapping->private_lock); 1603 bh = head = alloc_page_buffers(page, bh_size, 1); 1604 spin_lock(&mapping->private_lock); 1605 if (likely(!page_has_buffers(page))) { 1606 struct buffer_head *tail; 1607 1608 do { 1609 set_buffer_uptodate(bh); 1610 tail = bh; 1611 bh = bh->b_this_page; 1612 } while (bh); 1613 tail->b_this_page = head; 1614 attach_page_buffers(page, head); 1615 } else 1616 buffers_to_free = bh; 1617 } 1618 bh = head = page_buffers(page); 1619 BUG_ON(!bh); 1620 do { 1621 bh_ofs = bh_offset(bh); 1622 if (bh_ofs + bh_size <= ofs) 1623 continue; 1624 if (unlikely(bh_ofs >= end)) 1625 break; 1626 set_buffer_dirty(bh); 1627 } while ((bh = bh->b_this_page) != head); 1628 spin_unlock(&mapping->private_lock); 1629 __set_page_dirty_nobuffers(page); 1630 if (unlikely(buffers_to_free)) { 1631 do { 1632 bh = buffers_to_free->b_this_page; 1633 free_buffer_head(buffers_to_free); 1634 buffers_to_free = bh; 1635 } while (buffers_to_free); 1636 } 1637 } 1638 1639 #endif /* NTFS_RW */ 1640