xref: /openbmc/linux/fs/ntfs/aops.c (revision 87c2ce3b)
1 /**
2  * aops.c - NTFS kernel address space operations and page cache handling.
3  *	    Part of the Linux-NTFS project.
4  *
5  * Copyright (c) 2001-2005 Anton Altaparmakov
6  * Copyright (c) 2002 Richard Russon
7  *
8  * This program/include file is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as published
10  * by the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program/include file is distributed in the hope that it will be
14  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program (in the main directory of the Linux-NTFS
20  * distribution in the file COPYING); if not, write to the Free Software
21  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23 
24 #include <linux/errno.h>
25 #include <linux/mm.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/bit_spinlock.h>
31 
32 #include "aops.h"
33 #include "attrib.h"
34 #include "debug.h"
35 #include "inode.h"
36 #include "mft.h"
37 #include "runlist.h"
38 #include "types.h"
39 #include "ntfs.h"
40 
41 /**
42  * ntfs_end_buffer_async_read - async io completion for reading attributes
43  * @bh:		buffer head on which io is completed
44  * @uptodate:	whether @bh is now uptodate or not
45  *
46  * Asynchronous I/O completion handler for reading pages belonging to the
47  * attribute address space of an inode.  The inodes can either be files or
48  * directories or they can be fake inodes describing some attribute.
49  *
50  * If NInoMstProtected(), perform the post read mst fixups when all IO on the
51  * page has been completed and mark the page uptodate or set the error bit on
52  * the page.  To determine the size of the records that need fixing up, we
53  * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
54  * record size, and index_block_size_bits, to the log(base 2) of the ntfs
55  * record size.
56  */
57 static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
58 {
59 	unsigned long flags;
60 	struct buffer_head *first, *tmp;
61 	struct page *page;
62 	struct inode *vi;
63 	ntfs_inode *ni;
64 	int page_uptodate = 1;
65 
66 	page = bh->b_page;
67 	vi = page->mapping->host;
68 	ni = NTFS_I(vi);
69 
70 	if (likely(uptodate)) {
71 		loff_t i_size;
72 		s64 file_ofs, init_size;
73 
74 		set_buffer_uptodate(bh);
75 
76 		file_ofs = ((s64)page->index << PAGE_CACHE_SHIFT) +
77 				bh_offset(bh);
78 		read_lock_irqsave(&ni->size_lock, flags);
79 		init_size = ni->initialized_size;
80 		i_size = i_size_read(vi);
81 		read_unlock_irqrestore(&ni->size_lock, flags);
82 		if (unlikely(init_size > i_size)) {
83 			/* Race with shrinking truncate. */
84 			init_size = i_size;
85 		}
86 		/* Check for the current buffer head overflowing. */
87 		if (unlikely(file_ofs + bh->b_size > init_size)) {
88 			u8 *kaddr;
89 			int ofs;
90 
91 			ofs = 0;
92 			if (file_ofs < init_size)
93 				ofs = init_size - file_ofs;
94 			kaddr = kmap_atomic(page, KM_BIO_SRC_IRQ);
95 			memset(kaddr + bh_offset(bh) + ofs, 0,
96 					bh->b_size - ofs);
97 			kunmap_atomic(kaddr, KM_BIO_SRC_IRQ);
98 			flush_dcache_page(page);
99 		}
100 	} else {
101 		clear_buffer_uptodate(bh);
102 		SetPageError(page);
103 		ntfs_error(ni->vol->sb, "Buffer I/O error, logical block "
104 				"0x%llx.", (unsigned long long)bh->b_blocknr);
105 	}
106 	first = page_buffers(page);
107 	local_irq_save(flags);
108 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
109 	clear_buffer_async_read(bh);
110 	unlock_buffer(bh);
111 	tmp = bh;
112 	do {
113 		if (!buffer_uptodate(tmp))
114 			page_uptodate = 0;
115 		if (buffer_async_read(tmp)) {
116 			if (likely(buffer_locked(tmp)))
117 				goto still_busy;
118 			/* Async buffers must be locked. */
119 			BUG();
120 		}
121 		tmp = tmp->b_this_page;
122 	} while (tmp != bh);
123 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
124 	local_irq_restore(flags);
125 	/*
126 	 * If none of the buffers had errors then we can set the page uptodate,
127 	 * but we first have to perform the post read mst fixups, if the
128 	 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
129 	 * Note we ignore fixup errors as those are detected when
130 	 * map_mft_record() is called which gives us per record granularity
131 	 * rather than per page granularity.
132 	 */
133 	if (!NInoMstProtected(ni)) {
134 		if (likely(page_uptodate && !PageError(page)))
135 			SetPageUptodate(page);
136 	} else {
137 		u8 *kaddr;
138 		unsigned int i, recs;
139 		u32 rec_size;
140 
141 		rec_size = ni->itype.index.block_size;
142 		recs = PAGE_CACHE_SIZE / rec_size;
143 		/* Should have been verified before we got here... */
144 		BUG_ON(!recs);
145 		kaddr = kmap_atomic(page, KM_BIO_SRC_IRQ);
146 		for (i = 0; i < recs; i++)
147 			post_read_mst_fixup((NTFS_RECORD*)(kaddr +
148 					i * rec_size), rec_size);
149 		kunmap_atomic(kaddr, KM_BIO_SRC_IRQ);
150 		flush_dcache_page(page);
151 		if (likely(page_uptodate && !PageError(page)))
152 			SetPageUptodate(page);
153 	}
154 	unlock_page(page);
155 	return;
156 still_busy:
157 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
158 	local_irq_restore(flags);
159 	return;
160 }
161 
162 /**
163  * ntfs_read_block - fill a @page of an address space with data
164  * @page:	page cache page to fill with data
165  *
166  * Fill the page @page of the address space belonging to the @page->host inode.
167  * We read each buffer asynchronously and when all buffers are read in, our io
168  * completion handler ntfs_end_buffer_read_async(), if required, automatically
169  * applies the mst fixups to the page before finally marking it uptodate and
170  * unlocking it.
171  *
172  * We only enforce allocated_size limit because i_size is checked for in
173  * generic_file_read().
174  *
175  * Return 0 on success and -errno on error.
176  *
177  * Contains an adapted version of fs/buffer.c::block_read_full_page().
178  */
179 static int ntfs_read_block(struct page *page)
180 {
181 	loff_t i_size;
182 	VCN vcn;
183 	LCN lcn;
184 	s64 init_size;
185 	struct inode *vi;
186 	ntfs_inode *ni;
187 	ntfs_volume *vol;
188 	runlist_element *rl;
189 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
190 	sector_t iblock, lblock, zblock;
191 	unsigned long flags;
192 	unsigned int blocksize, vcn_ofs;
193 	int i, nr;
194 	unsigned char blocksize_bits;
195 
196 	vi = page->mapping->host;
197 	ni = NTFS_I(vi);
198 	vol = ni->vol;
199 
200 	/* $MFT/$DATA must have its complete runlist in memory at all times. */
201 	BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
202 
203 	blocksize_bits = VFS_I(ni)->i_blkbits;
204 	blocksize = 1 << blocksize_bits;
205 
206 	if (!page_has_buffers(page)) {
207 		create_empty_buffers(page, blocksize, 0);
208 		if (unlikely(!page_has_buffers(page))) {
209 			unlock_page(page);
210 			return -ENOMEM;
211 		}
212 	}
213 	bh = head = page_buffers(page);
214 	BUG_ON(!bh);
215 
216 	/*
217 	 * We may be racing with truncate.  To avoid some of the problems we
218 	 * now take a snapshot of the various sizes and use those for the whole
219 	 * of the function.  In case of an extending truncate it just means we
220 	 * may leave some buffers unmapped which are now allocated.  This is
221 	 * not a problem since these buffers will just get mapped when a write
222 	 * occurs.  In case of a shrinking truncate, we will detect this later
223 	 * on due to the runlist being incomplete and if the page is being
224 	 * fully truncated, truncate will throw it away as soon as we unlock
225 	 * it so no need to worry what we do with it.
226 	 */
227 	iblock = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
228 	read_lock_irqsave(&ni->size_lock, flags);
229 	lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
230 	init_size = ni->initialized_size;
231 	i_size = i_size_read(vi);
232 	read_unlock_irqrestore(&ni->size_lock, flags);
233 	if (unlikely(init_size > i_size)) {
234 		/* Race with shrinking truncate. */
235 		init_size = i_size;
236 	}
237 	zblock = (init_size + blocksize - 1) >> blocksize_bits;
238 
239 	/* Loop through all the buffers in the page. */
240 	rl = NULL;
241 	nr = i = 0;
242 	do {
243 		u8 *kaddr;
244 		int err;
245 
246 		if (unlikely(buffer_uptodate(bh)))
247 			continue;
248 		if (unlikely(buffer_mapped(bh))) {
249 			arr[nr++] = bh;
250 			continue;
251 		}
252 		err = 0;
253 		bh->b_bdev = vol->sb->s_bdev;
254 		/* Is the block within the allowed limits? */
255 		if (iblock < lblock) {
256 			BOOL is_retry = FALSE;
257 
258 			/* Convert iblock into corresponding vcn and offset. */
259 			vcn = (VCN)iblock << blocksize_bits >>
260 					vol->cluster_size_bits;
261 			vcn_ofs = ((VCN)iblock << blocksize_bits) &
262 					vol->cluster_size_mask;
263 			if (!rl) {
264 lock_retry_remap:
265 				down_read(&ni->runlist.lock);
266 				rl = ni->runlist.rl;
267 			}
268 			if (likely(rl != NULL)) {
269 				/* Seek to element containing target vcn. */
270 				while (rl->length && rl[1].vcn <= vcn)
271 					rl++;
272 				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
273 			} else
274 				lcn = LCN_RL_NOT_MAPPED;
275 			/* Successful remap. */
276 			if (lcn >= 0) {
277 				/* Setup buffer head to correct block. */
278 				bh->b_blocknr = ((lcn << vol->cluster_size_bits)
279 						+ vcn_ofs) >> blocksize_bits;
280 				set_buffer_mapped(bh);
281 				/* Only read initialized data blocks. */
282 				if (iblock < zblock) {
283 					arr[nr++] = bh;
284 					continue;
285 				}
286 				/* Fully non-initialized data block, zero it. */
287 				goto handle_zblock;
288 			}
289 			/* It is a hole, need to zero it. */
290 			if (lcn == LCN_HOLE)
291 				goto handle_hole;
292 			/* If first try and runlist unmapped, map and retry. */
293 			if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
294 				is_retry = TRUE;
295 				/*
296 				 * Attempt to map runlist, dropping lock for
297 				 * the duration.
298 				 */
299 				up_read(&ni->runlist.lock);
300 				err = ntfs_map_runlist(ni, vcn);
301 				if (likely(!err))
302 					goto lock_retry_remap;
303 				rl = NULL;
304 			} else if (!rl)
305 				up_read(&ni->runlist.lock);
306 			/*
307 			 * If buffer is outside the runlist, treat it as a
308 			 * hole.  This can happen due to concurrent truncate
309 			 * for example.
310 			 */
311 			if (err == -ENOENT || lcn == LCN_ENOENT) {
312 				err = 0;
313 				goto handle_hole;
314 			}
315 			/* Hard error, zero out region. */
316 			if (!err)
317 				err = -EIO;
318 			bh->b_blocknr = -1;
319 			SetPageError(page);
320 			ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
321 					"attribute type 0x%x, vcn 0x%llx, "
322 					"offset 0x%x because its location on "
323 					"disk could not be determined%s "
324 					"(error code %i).", ni->mft_no,
325 					ni->type, (unsigned long long)vcn,
326 					vcn_ofs, is_retry ? " even after "
327 					"retrying" : "", err);
328 		}
329 		/*
330 		 * Either iblock was outside lblock limits or
331 		 * ntfs_rl_vcn_to_lcn() returned error.  Just zero that portion
332 		 * of the page and set the buffer uptodate.
333 		 */
334 handle_hole:
335 		bh->b_blocknr = -1UL;
336 		clear_buffer_mapped(bh);
337 handle_zblock:
338 		kaddr = kmap_atomic(page, KM_USER0);
339 		memset(kaddr + i * blocksize, 0, blocksize);
340 		kunmap_atomic(kaddr, KM_USER0);
341 		flush_dcache_page(page);
342 		if (likely(!err))
343 			set_buffer_uptodate(bh);
344 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
345 
346 	/* Release the lock if we took it. */
347 	if (rl)
348 		up_read(&ni->runlist.lock);
349 
350 	/* Check we have at least one buffer ready for i/o. */
351 	if (nr) {
352 		struct buffer_head *tbh;
353 
354 		/* Lock the buffers. */
355 		for (i = 0; i < nr; i++) {
356 			tbh = arr[i];
357 			lock_buffer(tbh);
358 			tbh->b_end_io = ntfs_end_buffer_async_read;
359 			set_buffer_async_read(tbh);
360 		}
361 		/* Finally, start i/o on the buffers. */
362 		for (i = 0; i < nr; i++) {
363 			tbh = arr[i];
364 			if (likely(!buffer_uptodate(tbh)))
365 				submit_bh(READ, tbh);
366 			else
367 				ntfs_end_buffer_async_read(tbh, 1);
368 		}
369 		return 0;
370 	}
371 	/* No i/o was scheduled on any of the buffers. */
372 	if (likely(!PageError(page)))
373 		SetPageUptodate(page);
374 	else /* Signal synchronous i/o error. */
375 		nr = -EIO;
376 	unlock_page(page);
377 	return nr;
378 }
379 
380 /**
381  * ntfs_readpage - fill a @page of a @file with data from the device
382  * @file:	open file to which the page @page belongs or NULL
383  * @page:	page cache page to fill with data
384  *
385  * For non-resident attributes, ntfs_readpage() fills the @page of the open
386  * file @file by calling the ntfs version of the generic block_read_full_page()
387  * function, ntfs_read_block(), which in turn creates and reads in the buffers
388  * associated with the page asynchronously.
389  *
390  * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
391  * data from the mft record (which at this stage is most likely in memory) and
392  * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
393  * even if the mft record is not cached at this point in time, we need to wait
394  * for it to be read in before we can do the copy.
395  *
396  * Return 0 on success and -errno on error.
397  */
398 static int ntfs_readpage(struct file *file, struct page *page)
399 {
400 	loff_t i_size;
401 	struct inode *vi;
402 	ntfs_inode *ni, *base_ni;
403 	u8 *kaddr;
404 	ntfs_attr_search_ctx *ctx;
405 	MFT_RECORD *mrec;
406 	unsigned long flags;
407 	u32 attr_len;
408 	int err = 0;
409 
410 retry_readpage:
411 	BUG_ON(!PageLocked(page));
412 	/*
413 	 * This can potentially happen because we clear PageUptodate() during
414 	 * ntfs_writepage() of MstProtected() attributes.
415 	 */
416 	if (PageUptodate(page)) {
417 		unlock_page(page);
418 		return 0;
419 	}
420 	vi = page->mapping->host;
421 	ni = NTFS_I(vi);
422 	/*
423 	 * Only $DATA attributes can be encrypted and only unnamed $DATA
424 	 * attributes can be compressed.  Index root can have the flags set but
425 	 * this means to create compressed/encrypted files, not that the
426 	 * attribute is compressed/encrypted.  Note we need to check for
427 	 * AT_INDEX_ALLOCATION since this is the type of both directory and
428 	 * index inodes.
429 	 */
430 	if (ni->type != AT_INDEX_ALLOCATION) {
431 		/* If attribute is encrypted, deny access, just like NT4. */
432 		if (NInoEncrypted(ni)) {
433 			BUG_ON(ni->type != AT_DATA);
434 			err = -EACCES;
435 			goto err_out;
436 		}
437 		/* Compressed data streams are handled in compress.c. */
438 		if (NInoNonResident(ni) && NInoCompressed(ni)) {
439 			BUG_ON(ni->type != AT_DATA);
440 			BUG_ON(ni->name_len);
441 			return ntfs_read_compressed_block(page);
442 		}
443 	}
444 	/* NInoNonResident() == NInoIndexAllocPresent() */
445 	if (NInoNonResident(ni)) {
446 		/* Normal, non-resident data stream. */
447 		return ntfs_read_block(page);
448 	}
449 	/*
450 	 * Attribute is resident, implying it is not compressed or encrypted.
451 	 * This also means the attribute is smaller than an mft record and
452 	 * hence smaller than a page, so can simply zero out any pages with
453 	 * index above 0.  Note the attribute can actually be marked compressed
454 	 * but if it is resident the actual data is not compressed so we are
455 	 * ok to ignore the compressed flag here.
456 	 */
457 	if (unlikely(page->index > 0)) {
458 		kaddr = kmap_atomic(page, KM_USER0);
459 		memset(kaddr, 0, PAGE_CACHE_SIZE);
460 		flush_dcache_page(page);
461 		kunmap_atomic(kaddr, KM_USER0);
462 		goto done;
463 	}
464 	if (!NInoAttr(ni))
465 		base_ni = ni;
466 	else
467 		base_ni = ni->ext.base_ntfs_ino;
468 	/* Map, pin, and lock the mft record. */
469 	mrec = map_mft_record(base_ni);
470 	if (IS_ERR(mrec)) {
471 		err = PTR_ERR(mrec);
472 		goto err_out;
473 	}
474 	/*
475 	 * If a parallel write made the attribute non-resident, drop the mft
476 	 * record and retry the readpage.
477 	 */
478 	if (unlikely(NInoNonResident(ni))) {
479 		unmap_mft_record(base_ni);
480 		goto retry_readpage;
481 	}
482 	ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
483 	if (unlikely(!ctx)) {
484 		err = -ENOMEM;
485 		goto unm_err_out;
486 	}
487 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
488 			CASE_SENSITIVE, 0, NULL, 0, ctx);
489 	if (unlikely(err))
490 		goto put_unm_err_out;
491 	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
492 	read_lock_irqsave(&ni->size_lock, flags);
493 	if (unlikely(attr_len > ni->initialized_size))
494 		attr_len = ni->initialized_size;
495 	i_size = i_size_read(vi);
496 	read_unlock_irqrestore(&ni->size_lock, flags);
497 	if (unlikely(attr_len > i_size)) {
498 		/* Race with shrinking truncate. */
499 		attr_len = i_size;
500 	}
501 	kaddr = kmap_atomic(page, KM_USER0);
502 	/* Copy the data to the page. */
503 	memcpy(kaddr, (u8*)ctx->attr +
504 			le16_to_cpu(ctx->attr->data.resident.value_offset),
505 			attr_len);
506 	/* Zero the remainder of the page. */
507 	memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
508 	flush_dcache_page(page);
509 	kunmap_atomic(kaddr, KM_USER0);
510 put_unm_err_out:
511 	ntfs_attr_put_search_ctx(ctx);
512 unm_err_out:
513 	unmap_mft_record(base_ni);
514 done:
515 	SetPageUptodate(page);
516 err_out:
517 	unlock_page(page);
518 	return err;
519 }
520 
521 #ifdef NTFS_RW
522 
523 /**
524  * ntfs_write_block - write a @page to the backing store
525  * @page:	page cache page to write out
526  * @wbc:	writeback control structure
527  *
528  * This function is for writing pages belonging to non-resident, non-mst
529  * protected attributes to their backing store.
530  *
531  * For a page with buffers, map and write the dirty buffers asynchronously
532  * under page writeback. For a page without buffers, create buffers for the
533  * page, then proceed as above.
534  *
535  * If a page doesn't have buffers the page dirty state is definitive. If a page
536  * does have buffers, the page dirty state is just a hint, and the buffer dirty
537  * state is definitive. (A hint which has rules: dirty buffers against a clean
538  * page is illegal. Other combinations are legal and need to be handled. In
539  * particular a dirty page containing clean buffers for example.)
540  *
541  * Return 0 on success and -errno on error.
542  *
543  * Based on ntfs_read_block() and __block_write_full_page().
544  */
545 static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
546 {
547 	VCN vcn;
548 	LCN lcn;
549 	s64 initialized_size;
550 	loff_t i_size;
551 	sector_t block, dblock, iblock;
552 	struct inode *vi;
553 	ntfs_inode *ni;
554 	ntfs_volume *vol;
555 	runlist_element *rl;
556 	struct buffer_head *bh, *head;
557 	unsigned long flags;
558 	unsigned int blocksize, vcn_ofs;
559 	int err;
560 	BOOL need_end_writeback;
561 	unsigned char blocksize_bits;
562 
563 	vi = page->mapping->host;
564 	ni = NTFS_I(vi);
565 	vol = ni->vol;
566 
567 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
568 			"0x%lx.", ni->mft_no, ni->type, page->index);
569 
570 	BUG_ON(!NInoNonResident(ni));
571 	BUG_ON(NInoMstProtected(ni));
572 
573 	blocksize_bits = vi->i_blkbits;
574 	blocksize = 1 << blocksize_bits;
575 
576 	if (!page_has_buffers(page)) {
577 		BUG_ON(!PageUptodate(page));
578 		create_empty_buffers(page, blocksize,
579 				(1 << BH_Uptodate) | (1 << BH_Dirty));
580 		if (unlikely(!page_has_buffers(page))) {
581 			ntfs_warning(vol->sb, "Error allocating page "
582 					"buffers.  Redirtying page so we try "
583 					"again later.");
584 			/*
585 			 * Put the page back on mapping->dirty_pages, but leave
586 			 * its buffers' dirty state as-is.
587 			 */
588 			redirty_page_for_writepage(wbc, page);
589 			unlock_page(page);
590 			return 0;
591 		}
592 	}
593 	bh = head = page_buffers(page);
594 	BUG_ON(!bh);
595 
596 	/* NOTE: Different naming scheme to ntfs_read_block()! */
597 
598 	/* The first block in the page. */
599 	block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
600 
601 	read_lock_irqsave(&ni->size_lock, flags);
602 	i_size = i_size_read(vi);
603 	initialized_size = ni->initialized_size;
604 	read_unlock_irqrestore(&ni->size_lock, flags);
605 
606 	/* The first out of bounds block for the data size. */
607 	dblock = (i_size + blocksize - 1) >> blocksize_bits;
608 
609 	/* The last (fully or partially) initialized block. */
610 	iblock = initialized_size >> blocksize_bits;
611 
612 	/*
613 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
614 	 * here, and the (potentially unmapped) buffers may become dirty at
615 	 * any time.  If a buffer becomes dirty here after we've inspected it
616 	 * then we just miss that fact, and the page stays dirty.
617 	 *
618 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
619 	 * handle that here by just cleaning them.
620 	 */
621 
622 	/*
623 	 * Loop through all the buffers in the page, mapping all the dirty
624 	 * buffers to disk addresses and handling any aliases from the
625 	 * underlying block device's mapping.
626 	 */
627 	rl = NULL;
628 	err = 0;
629 	do {
630 		BOOL is_retry = FALSE;
631 
632 		if (unlikely(block >= dblock)) {
633 			/*
634 			 * Mapped buffers outside i_size will occur, because
635 			 * this page can be outside i_size when there is a
636 			 * truncate in progress. The contents of such buffers
637 			 * were zeroed by ntfs_writepage().
638 			 *
639 			 * FIXME: What about the small race window where
640 			 * ntfs_writepage() has not done any clearing because
641 			 * the page was within i_size but before we get here,
642 			 * vmtruncate() modifies i_size?
643 			 */
644 			clear_buffer_dirty(bh);
645 			set_buffer_uptodate(bh);
646 			continue;
647 		}
648 
649 		/* Clean buffers are not written out, so no need to map them. */
650 		if (!buffer_dirty(bh))
651 			continue;
652 
653 		/* Make sure we have enough initialized size. */
654 		if (unlikely((block >= iblock) &&
655 				(initialized_size < i_size))) {
656 			/*
657 			 * If this page is fully outside initialized size, zero
658 			 * out all pages between the current initialized size
659 			 * and the current page. Just use ntfs_readpage() to do
660 			 * the zeroing transparently.
661 			 */
662 			if (block > iblock) {
663 				// TODO:
664 				// For each page do:
665 				// - read_cache_page()
666 				// Again for each page do:
667 				// - wait_on_page_locked()
668 				// - Check (PageUptodate(page) &&
669 				//			!PageError(page))
670 				// Update initialized size in the attribute and
671 				// in the inode.
672 				// Again, for each page do:
673 				//	__set_page_dirty_buffers();
674 				// page_cache_release()
675 				// We don't need to wait on the writes.
676 				// Update iblock.
677 			}
678 			/*
679 			 * The current page straddles initialized size. Zero
680 			 * all non-uptodate buffers and set them uptodate (and
681 			 * dirty?). Note, there aren't any non-uptodate buffers
682 			 * if the page is uptodate.
683 			 * FIXME: For an uptodate page, the buffers may need to
684 			 * be written out because they were not initialized on
685 			 * disk before.
686 			 */
687 			if (!PageUptodate(page)) {
688 				// TODO:
689 				// Zero any non-uptodate buffers up to i_size.
690 				// Set them uptodate and dirty.
691 			}
692 			// TODO:
693 			// Update initialized size in the attribute and in the
694 			// inode (up to i_size).
695 			// Update iblock.
696 			// FIXME: This is inefficient. Try to batch the two
697 			// size changes to happen in one go.
698 			ntfs_error(vol->sb, "Writing beyond initialized size "
699 					"is not supported yet. Sorry.");
700 			err = -EOPNOTSUPP;
701 			break;
702 			// Do NOT set_buffer_new() BUT DO clear buffer range
703 			// outside write request range.
704 			// set_buffer_uptodate() on complete buffers as well as
705 			// set_buffer_dirty().
706 		}
707 
708 		/* No need to map buffers that are already mapped. */
709 		if (buffer_mapped(bh))
710 			continue;
711 
712 		/* Unmapped, dirty buffer. Need to map it. */
713 		bh->b_bdev = vol->sb->s_bdev;
714 
715 		/* Convert block into corresponding vcn and offset. */
716 		vcn = (VCN)block << blocksize_bits;
717 		vcn_ofs = vcn & vol->cluster_size_mask;
718 		vcn >>= vol->cluster_size_bits;
719 		if (!rl) {
720 lock_retry_remap:
721 			down_read(&ni->runlist.lock);
722 			rl = ni->runlist.rl;
723 		}
724 		if (likely(rl != NULL)) {
725 			/* Seek to element containing target vcn. */
726 			while (rl->length && rl[1].vcn <= vcn)
727 				rl++;
728 			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
729 		} else
730 			lcn = LCN_RL_NOT_MAPPED;
731 		/* Successful remap. */
732 		if (lcn >= 0) {
733 			/* Setup buffer head to point to correct block. */
734 			bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
735 					vcn_ofs) >> blocksize_bits;
736 			set_buffer_mapped(bh);
737 			continue;
738 		}
739 		/* It is a hole, need to instantiate it. */
740 		if (lcn == LCN_HOLE) {
741 			u8 *kaddr;
742 			unsigned long *bpos, *bend;
743 
744 			/* Check if the buffer is zero. */
745 			kaddr = kmap_atomic(page, KM_USER0);
746 			bpos = (unsigned long *)(kaddr + bh_offset(bh));
747 			bend = (unsigned long *)((u8*)bpos + blocksize);
748 			do {
749 				if (unlikely(*bpos))
750 					break;
751 			} while (likely(++bpos < bend));
752 			kunmap_atomic(kaddr, KM_USER0);
753 			if (bpos == bend) {
754 				/*
755 				 * Buffer is zero and sparse, no need to write
756 				 * it.
757 				 */
758 				bh->b_blocknr = -1;
759 				clear_buffer_dirty(bh);
760 				continue;
761 			}
762 			// TODO: Instantiate the hole.
763 			// clear_buffer_new(bh);
764 			// unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
765 			ntfs_error(vol->sb, "Writing into sparse regions is "
766 					"not supported yet. Sorry.");
767 			err = -EOPNOTSUPP;
768 			break;
769 		}
770 		/* If first try and runlist unmapped, map and retry. */
771 		if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
772 			is_retry = TRUE;
773 			/*
774 			 * Attempt to map runlist, dropping lock for
775 			 * the duration.
776 			 */
777 			up_read(&ni->runlist.lock);
778 			err = ntfs_map_runlist(ni, vcn);
779 			if (likely(!err))
780 				goto lock_retry_remap;
781 			rl = NULL;
782 		} else if (!rl)
783 			up_read(&ni->runlist.lock);
784 		/*
785 		 * If buffer is outside the runlist, truncate has cut it out
786 		 * of the runlist.  Just clean and clear the buffer and set it
787 		 * uptodate so it can get discarded by the VM.
788 		 */
789 		if (err == -ENOENT || lcn == LCN_ENOENT) {
790 			u8 *kaddr;
791 
792 			bh->b_blocknr = -1;
793 			clear_buffer_dirty(bh);
794 			kaddr = kmap_atomic(page, KM_USER0);
795 			memset(kaddr + bh_offset(bh), 0, blocksize);
796 			kunmap_atomic(kaddr, KM_USER0);
797 			flush_dcache_page(page);
798 			set_buffer_uptodate(bh);
799 			err = 0;
800 			continue;
801 		}
802 		/* Failed to map the buffer, even after retrying. */
803 		if (!err)
804 			err = -EIO;
805 		bh->b_blocknr = -1;
806 		ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
807 				"attribute type 0x%x, vcn 0x%llx, offset 0x%x "
808 				"because its location on disk could not be "
809 				"determined%s (error code %i).", ni->mft_no,
810 				ni->type, (unsigned long long)vcn,
811 				vcn_ofs, is_retry ? " even after "
812 				"retrying" : "", err);
813 		break;
814 	} while (block++, (bh = bh->b_this_page) != head);
815 
816 	/* Release the lock if we took it. */
817 	if (rl)
818 		up_read(&ni->runlist.lock);
819 
820 	/* For the error case, need to reset bh to the beginning. */
821 	bh = head;
822 
823 	/* Just an optimization, so ->readpage() is not called later. */
824 	if (unlikely(!PageUptodate(page))) {
825 		int uptodate = 1;
826 		do {
827 			if (!buffer_uptodate(bh)) {
828 				uptodate = 0;
829 				bh = head;
830 				break;
831 			}
832 		} while ((bh = bh->b_this_page) != head);
833 		if (uptodate)
834 			SetPageUptodate(page);
835 	}
836 
837 	/* Setup all mapped, dirty buffers for async write i/o. */
838 	do {
839 		if (buffer_mapped(bh) && buffer_dirty(bh)) {
840 			lock_buffer(bh);
841 			if (test_clear_buffer_dirty(bh)) {
842 				BUG_ON(!buffer_uptodate(bh));
843 				mark_buffer_async_write(bh);
844 			} else
845 				unlock_buffer(bh);
846 		} else if (unlikely(err)) {
847 			/*
848 			 * For the error case. The buffer may have been set
849 			 * dirty during attachment to a dirty page.
850 			 */
851 			if (err != -ENOMEM)
852 				clear_buffer_dirty(bh);
853 		}
854 	} while ((bh = bh->b_this_page) != head);
855 
856 	if (unlikely(err)) {
857 		// TODO: Remove the -EOPNOTSUPP check later on...
858 		if (unlikely(err == -EOPNOTSUPP))
859 			err = 0;
860 		else if (err == -ENOMEM) {
861 			ntfs_warning(vol->sb, "Error allocating memory. "
862 					"Redirtying page so we try again "
863 					"later.");
864 			/*
865 			 * Put the page back on mapping->dirty_pages, but
866 			 * leave its buffer's dirty state as-is.
867 			 */
868 			redirty_page_for_writepage(wbc, page);
869 			err = 0;
870 		} else
871 			SetPageError(page);
872 	}
873 
874 	BUG_ON(PageWriteback(page));
875 	set_page_writeback(page);	/* Keeps try_to_free_buffers() away. */
876 
877 	/* Submit the prepared buffers for i/o. */
878 	need_end_writeback = TRUE;
879 	do {
880 		struct buffer_head *next = bh->b_this_page;
881 		if (buffer_async_write(bh)) {
882 			submit_bh(WRITE, bh);
883 			need_end_writeback = FALSE;
884 		}
885 		bh = next;
886 	} while (bh != head);
887 	unlock_page(page);
888 
889 	/* If no i/o was started, need to end_page_writeback(). */
890 	if (unlikely(need_end_writeback))
891 		end_page_writeback(page);
892 
893 	ntfs_debug("Done.");
894 	return err;
895 }
896 
897 /**
898  * ntfs_write_mst_block - write a @page to the backing store
899  * @page:	page cache page to write out
900  * @wbc:	writeback control structure
901  *
902  * This function is for writing pages belonging to non-resident, mst protected
903  * attributes to their backing store.  The only supported attributes are index
904  * allocation and $MFT/$DATA.  Both directory inodes and index inodes are
905  * supported for the index allocation case.
906  *
907  * The page must remain locked for the duration of the write because we apply
908  * the mst fixups, write, and then undo the fixups, so if we were to unlock the
909  * page before undoing the fixups, any other user of the page will see the
910  * page contents as corrupt.
911  *
912  * We clear the page uptodate flag for the duration of the function to ensure
913  * exclusion for the $MFT/$DATA case against someone mapping an mft record we
914  * are about to apply the mst fixups to.
915  *
916  * Return 0 on success and -errno on error.
917  *
918  * Based on ntfs_write_block(), ntfs_mft_writepage(), and
919  * write_mft_record_nolock().
920  */
921 static int ntfs_write_mst_block(struct page *page,
922 		struct writeback_control *wbc)
923 {
924 	sector_t block, dblock, rec_block;
925 	struct inode *vi = page->mapping->host;
926 	ntfs_inode *ni = NTFS_I(vi);
927 	ntfs_volume *vol = ni->vol;
928 	u8 *kaddr;
929 	unsigned int rec_size = ni->itype.index.block_size;
930 	ntfs_inode *locked_nis[PAGE_CACHE_SIZE / rec_size];
931 	struct buffer_head *bh, *head, *tbh, *rec_start_bh;
932 	struct buffer_head *bhs[MAX_BUF_PER_PAGE];
933 	runlist_element *rl;
934 	int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2;
935 	unsigned bh_size, rec_size_bits;
936 	BOOL sync, is_mft, page_is_dirty, rec_is_dirty;
937 	unsigned char bh_size_bits;
938 
939 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
940 			"0x%lx.", vi->i_ino, ni->type, page->index);
941 	BUG_ON(!NInoNonResident(ni));
942 	BUG_ON(!NInoMstProtected(ni));
943 	is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
944 	/*
945 	 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
946 	 * in its page cache were to be marked dirty.  However this should
947 	 * never happen with the current driver and considering we do not
948 	 * handle this case here we do want to BUG(), at least for now.
949 	 */
950 	BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
951 			(NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
952 	bh_size_bits = vi->i_blkbits;
953 	bh_size = 1 << bh_size_bits;
954 	max_bhs = PAGE_CACHE_SIZE / bh_size;
955 	BUG_ON(!max_bhs);
956 	BUG_ON(max_bhs > MAX_BUF_PER_PAGE);
957 
958 	/* Were we called for sync purposes? */
959 	sync = (wbc->sync_mode == WB_SYNC_ALL);
960 
961 	/* Make sure we have mapped buffers. */
962 	bh = head = page_buffers(page);
963 	BUG_ON(!bh);
964 
965 	rec_size_bits = ni->itype.index.block_size_bits;
966 	BUG_ON(!(PAGE_CACHE_SIZE >> rec_size_bits));
967 	bhs_per_rec = rec_size >> bh_size_bits;
968 	BUG_ON(!bhs_per_rec);
969 
970 	/* The first block in the page. */
971 	rec_block = block = (sector_t)page->index <<
972 			(PAGE_CACHE_SHIFT - bh_size_bits);
973 
974 	/* The first out of bounds block for the data size. */
975 	dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits;
976 
977 	rl = NULL;
978 	err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
979 	page_is_dirty = rec_is_dirty = FALSE;
980 	rec_start_bh = NULL;
981 	do {
982 		BOOL is_retry = FALSE;
983 
984 		if (likely(block < rec_block)) {
985 			if (unlikely(block >= dblock)) {
986 				clear_buffer_dirty(bh);
987 				set_buffer_uptodate(bh);
988 				continue;
989 			}
990 			/*
991 			 * This block is not the first one in the record.  We
992 			 * ignore the buffer's dirty state because we could
993 			 * have raced with a parallel mark_ntfs_record_dirty().
994 			 */
995 			if (!rec_is_dirty)
996 				continue;
997 			if (unlikely(err2)) {
998 				if (err2 != -ENOMEM)
999 					clear_buffer_dirty(bh);
1000 				continue;
1001 			}
1002 		} else /* if (block == rec_block) */ {
1003 			BUG_ON(block > rec_block);
1004 			/* This block is the first one in the record. */
1005 			rec_block += bhs_per_rec;
1006 			err2 = 0;
1007 			if (unlikely(block >= dblock)) {
1008 				clear_buffer_dirty(bh);
1009 				continue;
1010 			}
1011 			if (!buffer_dirty(bh)) {
1012 				/* Clean records are not written out. */
1013 				rec_is_dirty = FALSE;
1014 				continue;
1015 			}
1016 			rec_is_dirty = TRUE;
1017 			rec_start_bh = bh;
1018 		}
1019 		/* Need to map the buffer if it is not mapped already. */
1020 		if (unlikely(!buffer_mapped(bh))) {
1021 			VCN vcn;
1022 			LCN lcn;
1023 			unsigned int vcn_ofs;
1024 
1025 			bh->b_bdev = vol->sb->s_bdev;
1026 			/* Obtain the vcn and offset of the current block. */
1027 			vcn = (VCN)block << bh_size_bits;
1028 			vcn_ofs = vcn & vol->cluster_size_mask;
1029 			vcn >>= vol->cluster_size_bits;
1030 			if (!rl) {
1031 lock_retry_remap:
1032 				down_read(&ni->runlist.lock);
1033 				rl = ni->runlist.rl;
1034 			}
1035 			if (likely(rl != NULL)) {
1036 				/* Seek to element containing target vcn. */
1037 				while (rl->length && rl[1].vcn <= vcn)
1038 					rl++;
1039 				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
1040 			} else
1041 				lcn = LCN_RL_NOT_MAPPED;
1042 			/* Successful remap. */
1043 			if (likely(lcn >= 0)) {
1044 				/* Setup buffer head to correct block. */
1045 				bh->b_blocknr = ((lcn <<
1046 						vol->cluster_size_bits) +
1047 						vcn_ofs) >> bh_size_bits;
1048 				set_buffer_mapped(bh);
1049 			} else {
1050 				/*
1051 				 * Remap failed.  Retry to map the runlist once
1052 				 * unless we are working on $MFT which always
1053 				 * has the whole of its runlist in memory.
1054 				 */
1055 				if (!is_mft && !is_retry &&
1056 						lcn == LCN_RL_NOT_MAPPED) {
1057 					is_retry = TRUE;
1058 					/*
1059 					 * Attempt to map runlist, dropping
1060 					 * lock for the duration.
1061 					 */
1062 					up_read(&ni->runlist.lock);
1063 					err2 = ntfs_map_runlist(ni, vcn);
1064 					if (likely(!err2))
1065 						goto lock_retry_remap;
1066 					if (err2 == -ENOMEM)
1067 						page_is_dirty = TRUE;
1068 					lcn = err2;
1069 				} else {
1070 					err2 = -EIO;
1071 					if (!rl)
1072 						up_read(&ni->runlist.lock);
1073 				}
1074 				/* Hard error.  Abort writing this record. */
1075 				if (!err || err == -ENOMEM)
1076 					err = err2;
1077 				bh->b_blocknr = -1;
1078 				ntfs_error(vol->sb, "Cannot write ntfs record "
1079 						"0x%llx (inode 0x%lx, "
1080 						"attribute type 0x%x) because "
1081 						"its location on disk could "
1082 						"not be determined (error "
1083 						"code %lli).",
1084 						(long long)block <<
1085 						bh_size_bits >>
1086 						vol->mft_record_size_bits,
1087 						ni->mft_no, ni->type,
1088 						(long long)lcn);
1089 				/*
1090 				 * If this is not the first buffer, remove the
1091 				 * buffers in this record from the list of
1092 				 * buffers to write and clear their dirty bit
1093 				 * if not error -ENOMEM.
1094 				 */
1095 				if (rec_start_bh != bh) {
1096 					while (bhs[--nr_bhs] != rec_start_bh)
1097 						;
1098 					if (err2 != -ENOMEM) {
1099 						do {
1100 							clear_buffer_dirty(
1101 								rec_start_bh);
1102 						} while ((rec_start_bh =
1103 								rec_start_bh->
1104 								b_this_page) !=
1105 								bh);
1106 					}
1107 				}
1108 				continue;
1109 			}
1110 		}
1111 		BUG_ON(!buffer_uptodate(bh));
1112 		BUG_ON(nr_bhs >= max_bhs);
1113 		bhs[nr_bhs++] = bh;
1114 	} while (block++, (bh = bh->b_this_page) != head);
1115 	if (unlikely(rl))
1116 		up_read(&ni->runlist.lock);
1117 	/* If there were no dirty buffers, we are done. */
1118 	if (!nr_bhs)
1119 		goto done;
1120 	/* Map the page so we can access its contents. */
1121 	kaddr = kmap(page);
1122 	/* Clear the page uptodate flag whilst the mst fixups are applied. */
1123 	BUG_ON(!PageUptodate(page));
1124 	ClearPageUptodate(page);
1125 	for (i = 0; i < nr_bhs; i++) {
1126 		unsigned int ofs;
1127 
1128 		/* Skip buffers which are not at the beginning of records. */
1129 		if (i % bhs_per_rec)
1130 			continue;
1131 		tbh = bhs[i];
1132 		ofs = bh_offset(tbh);
1133 		if (is_mft) {
1134 			ntfs_inode *tni;
1135 			unsigned long mft_no;
1136 
1137 			/* Get the mft record number. */
1138 			mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1139 					>> rec_size_bits;
1140 			/* Check whether to write this mft record. */
1141 			tni = NULL;
1142 			if (!ntfs_may_write_mft_record(vol, mft_no,
1143 					(MFT_RECORD*)(kaddr + ofs), &tni)) {
1144 				/*
1145 				 * The record should not be written.  This
1146 				 * means we need to redirty the page before
1147 				 * returning.
1148 				 */
1149 				page_is_dirty = TRUE;
1150 				/*
1151 				 * Remove the buffers in this mft record from
1152 				 * the list of buffers to write.
1153 				 */
1154 				do {
1155 					bhs[i] = NULL;
1156 				} while (++i % bhs_per_rec);
1157 				continue;
1158 			}
1159 			/*
1160 			 * The record should be written.  If a locked ntfs
1161 			 * inode was returned, add it to the array of locked
1162 			 * ntfs inodes.
1163 			 */
1164 			if (tni)
1165 				locked_nis[nr_locked_nis++] = tni;
1166 		}
1167 		/* Apply the mst protection fixups. */
1168 		err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
1169 				rec_size);
1170 		if (unlikely(err2)) {
1171 			if (!err || err == -ENOMEM)
1172 				err = -EIO;
1173 			ntfs_error(vol->sb, "Failed to apply mst fixups "
1174 					"(inode 0x%lx, attribute type 0x%x, "
1175 					"page index 0x%lx, page offset 0x%x)!"
1176 					"  Unmount and run chkdsk.", vi->i_ino,
1177 					ni->type, page->index, ofs);
1178 			/*
1179 			 * Mark all the buffers in this record clean as we do
1180 			 * not want to write corrupt data to disk.
1181 			 */
1182 			do {
1183 				clear_buffer_dirty(bhs[i]);
1184 				bhs[i] = NULL;
1185 			} while (++i % bhs_per_rec);
1186 			continue;
1187 		}
1188 		nr_recs++;
1189 	}
1190 	/* If no records are to be written out, we are done. */
1191 	if (!nr_recs)
1192 		goto unm_done;
1193 	flush_dcache_page(page);
1194 	/* Lock buffers and start synchronous write i/o on them. */
1195 	for (i = 0; i < nr_bhs; i++) {
1196 		tbh = bhs[i];
1197 		if (!tbh)
1198 			continue;
1199 		if (unlikely(test_set_buffer_locked(tbh)))
1200 			BUG();
1201 		/* The buffer dirty state is now irrelevant, just clean it. */
1202 		clear_buffer_dirty(tbh);
1203 		BUG_ON(!buffer_uptodate(tbh));
1204 		BUG_ON(!buffer_mapped(tbh));
1205 		get_bh(tbh);
1206 		tbh->b_end_io = end_buffer_write_sync;
1207 		submit_bh(WRITE, tbh);
1208 	}
1209 	/* Synchronize the mft mirror now if not @sync. */
1210 	if (is_mft && !sync)
1211 		goto do_mirror;
1212 do_wait:
1213 	/* Wait on i/o completion of buffers. */
1214 	for (i = 0; i < nr_bhs; i++) {
1215 		tbh = bhs[i];
1216 		if (!tbh)
1217 			continue;
1218 		wait_on_buffer(tbh);
1219 		if (unlikely(!buffer_uptodate(tbh))) {
1220 			ntfs_error(vol->sb, "I/O error while writing ntfs "
1221 					"record buffer (inode 0x%lx, "
1222 					"attribute type 0x%x, page index "
1223 					"0x%lx, page offset 0x%lx)!  Unmount "
1224 					"and run chkdsk.", vi->i_ino, ni->type,
1225 					page->index, bh_offset(tbh));
1226 			if (!err || err == -ENOMEM)
1227 				err = -EIO;
1228 			/*
1229 			 * Set the buffer uptodate so the page and buffer
1230 			 * states do not become out of sync.
1231 			 */
1232 			set_buffer_uptodate(tbh);
1233 		}
1234 	}
1235 	/* If @sync, now synchronize the mft mirror. */
1236 	if (is_mft && sync) {
1237 do_mirror:
1238 		for (i = 0; i < nr_bhs; i++) {
1239 			unsigned long mft_no;
1240 			unsigned int ofs;
1241 
1242 			/*
1243 			 * Skip buffers which are not at the beginning of
1244 			 * records.
1245 			 */
1246 			if (i % bhs_per_rec)
1247 				continue;
1248 			tbh = bhs[i];
1249 			/* Skip removed buffers (and hence records). */
1250 			if (!tbh)
1251 				continue;
1252 			ofs = bh_offset(tbh);
1253 			/* Get the mft record number. */
1254 			mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1255 					>> rec_size_bits;
1256 			if (mft_no < vol->mftmirr_size)
1257 				ntfs_sync_mft_mirror(vol, mft_no,
1258 						(MFT_RECORD*)(kaddr + ofs),
1259 						sync);
1260 		}
1261 		if (!sync)
1262 			goto do_wait;
1263 	}
1264 	/* Remove the mst protection fixups again. */
1265 	for (i = 0; i < nr_bhs; i++) {
1266 		if (!(i % bhs_per_rec)) {
1267 			tbh = bhs[i];
1268 			if (!tbh)
1269 				continue;
1270 			post_write_mst_fixup((NTFS_RECORD*)(kaddr +
1271 					bh_offset(tbh)));
1272 		}
1273 	}
1274 	flush_dcache_page(page);
1275 unm_done:
1276 	/* Unlock any locked inodes. */
1277 	while (nr_locked_nis-- > 0) {
1278 		ntfs_inode *tni, *base_tni;
1279 
1280 		tni = locked_nis[nr_locked_nis];
1281 		/* Get the base inode. */
1282 		down(&tni->extent_lock);
1283 		if (tni->nr_extents >= 0)
1284 			base_tni = tni;
1285 		else {
1286 			base_tni = tni->ext.base_ntfs_ino;
1287 			BUG_ON(!base_tni);
1288 		}
1289 		up(&tni->extent_lock);
1290 		ntfs_debug("Unlocking %s inode 0x%lx.",
1291 				tni == base_tni ? "base" : "extent",
1292 				tni->mft_no);
1293 		up(&tni->mrec_lock);
1294 		atomic_dec(&tni->count);
1295 		iput(VFS_I(base_tni));
1296 	}
1297 	SetPageUptodate(page);
1298 	kunmap(page);
1299 done:
1300 	if (unlikely(err && err != -ENOMEM)) {
1301 		/*
1302 		 * Set page error if there is only one ntfs record in the page.
1303 		 * Otherwise we would loose per-record granularity.
1304 		 */
1305 		if (ni->itype.index.block_size == PAGE_CACHE_SIZE)
1306 			SetPageError(page);
1307 		NVolSetErrors(vol);
1308 	}
1309 	if (page_is_dirty) {
1310 		ntfs_debug("Page still contains one or more dirty ntfs "
1311 				"records.  Redirtying the page starting at "
1312 				"record 0x%lx.", page->index <<
1313 				(PAGE_CACHE_SHIFT - rec_size_bits));
1314 		redirty_page_for_writepage(wbc, page);
1315 		unlock_page(page);
1316 	} else {
1317 		/*
1318 		 * Keep the VM happy.  This must be done otherwise the
1319 		 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1320 		 * the page is clean.
1321 		 */
1322 		BUG_ON(PageWriteback(page));
1323 		set_page_writeback(page);
1324 		unlock_page(page);
1325 		end_page_writeback(page);
1326 	}
1327 	if (likely(!err))
1328 		ntfs_debug("Done.");
1329 	return err;
1330 }
1331 
1332 /**
1333  * ntfs_writepage - write a @page to the backing store
1334  * @page:	page cache page to write out
1335  * @wbc:	writeback control structure
1336  *
1337  * This is called from the VM when it wants to have a dirty ntfs page cache
1338  * page cleaned.  The VM has already locked the page and marked it clean.
1339  *
1340  * For non-resident attributes, ntfs_writepage() writes the @page by calling
1341  * the ntfs version of the generic block_write_full_page() function,
1342  * ntfs_write_block(), which in turn if necessary creates and writes the
1343  * buffers associated with the page asynchronously.
1344  *
1345  * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1346  * the data to the mft record (which at this stage is most likely in memory).
1347  * The mft record is then marked dirty and written out asynchronously via the
1348  * vfs inode dirty code path for the inode the mft record belongs to or via the
1349  * vm page dirty code path for the page the mft record is in.
1350  *
1351  * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1352  *
1353  * Return 0 on success and -errno on error.
1354  */
1355 static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
1356 {
1357 	loff_t i_size;
1358 	struct inode *vi = page->mapping->host;
1359 	ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1360 	char *kaddr;
1361 	ntfs_attr_search_ctx *ctx = NULL;
1362 	MFT_RECORD *m = NULL;
1363 	u32 attr_len;
1364 	int err;
1365 
1366 retry_writepage:
1367 	BUG_ON(!PageLocked(page));
1368 	i_size = i_size_read(vi);
1369 	/* Is the page fully outside i_size? (truncate in progress) */
1370 	if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >>
1371 			PAGE_CACHE_SHIFT)) {
1372 		/*
1373 		 * The page may have dirty, unmapped buffers.  Make them
1374 		 * freeable here, so the page does not leak.
1375 		 */
1376 		block_invalidatepage(page, 0);
1377 		unlock_page(page);
1378 		ntfs_debug("Write outside i_size - truncated?");
1379 		return 0;
1380 	}
1381 	/*
1382 	 * Only $DATA attributes can be encrypted and only unnamed $DATA
1383 	 * attributes can be compressed.  Index root can have the flags set but
1384 	 * this means to create compressed/encrypted files, not that the
1385 	 * attribute is compressed/encrypted.  Note we need to check for
1386 	 * AT_INDEX_ALLOCATION since this is the type of both directory and
1387 	 * index inodes.
1388 	 */
1389 	if (ni->type != AT_INDEX_ALLOCATION) {
1390 		/* If file is encrypted, deny access, just like NT4. */
1391 		if (NInoEncrypted(ni)) {
1392 			unlock_page(page);
1393 			BUG_ON(ni->type != AT_DATA);
1394 			ntfs_debug("Denying write access to encrypted file.");
1395 			return -EACCES;
1396 		}
1397 		/* Compressed data streams are handled in compress.c. */
1398 		if (NInoNonResident(ni) && NInoCompressed(ni)) {
1399 			BUG_ON(ni->type != AT_DATA);
1400 			BUG_ON(ni->name_len);
1401 			// TODO: Implement and replace this with
1402 			// return ntfs_write_compressed_block(page);
1403 			unlock_page(page);
1404 			ntfs_error(vi->i_sb, "Writing to compressed files is "
1405 					"not supported yet.  Sorry.");
1406 			return -EOPNOTSUPP;
1407 		}
1408 		// TODO: Implement and remove this check.
1409 		if (NInoNonResident(ni) && NInoSparse(ni)) {
1410 			unlock_page(page);
1411 			ntfs_error(vi->i_sb, "Writing to sparse files is not "
1412 					"supported yet.  Sorry.");
1413 			return -EOPNOTSUPP;
1414 		}
1415 	}
1416 	/* NInoNonResident() == NInoIndexAllocPresent() */
1417 	if (NInoNonResident(ni)) {
1418 		/* We have to zero every time due to mmap-at-end-of-file. */
1419 		if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) {
1420 			/* The page straddles i_size. */
1421 			unsigned int ofs = i_size & ~PAGE_CACHE_MASK;
1422 			kaddr = kmap_atomic(page, KM_USER0);
1423 			memset(kaddr + ofs, 0, PAGE_CACHE_SIZE - ofs);
1424 			kunmap_atomic(kaddr, KM_USER0);
1425 			flush_dcache_page(page);
1426 		}
1427 		/* Handle mst protected attributes. */
1428 		if (NInoMstProtected(ni))
1429 			return ntfs_write_mst_block(page, wbc);
1430 		/* Normal, non-resident data stream. */
1431 		return ntfs_write_block(page, wbc);
1432 	}
1433 	/*
1434 	 * Attribute is resident, implying it is not compressed, encrypted, or
1435 	 * mst protected.  This also means the attribute is smaller than an mft
1436 	 * record and hence smaller than a page, so can simply return error on
1437 	 * any pages with index above 0.  Note the attribute can actually be
1438 	 * marked compressed but if it is resident the actual data is not
1439 	 * compressed so we are ok to ignore the compressed flag here.
1440 	 */
1441 	BUG_ON(page_has_buffers(page));
1442 	BUG_ON(!PageUptodate(page));
1443 	if (unlikely(page->index > 0)) {
1444 		ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0.  "
1445 				"Aborting write.", page->index);
1446 		BUG_ON(PageWriteback(page));
1447 		set_page_writeback(page);
1448 		unlock_page(page);
1449 		end_page_writeback(page);
1450 		return -EIO;
1451 	}
1452 	if (!NInoAttr(ni))
1453 		base_ni = ni;
1454 	else
1455 		base_ni = ni->ext.base_ntfs_ino;
1456 	/* Map, pin, and lock the mft record. */
1457 	m = map_mft_record(base_ni);
1458 	if (IS_ERR(m)) {
1459 		err = PTR_ERR(m);
1460 		m = NULL;
1461 		ctx = NULL;
1462 		goto err_out;
1463 	}
1464 	/*
1465 	 * If a parallel write made the attribute non-resident, drop the mft
1466 	 * record and retry the writepage.
1467 	 */
1468 	if (unlikely(NInoNonResident(ni))) {
1469 		unmap_mft_record(base_ni);
1470 		goto retry_writepage;
1471 	}
1472 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1473 	if (unlikely(!ctx)) {
1474 		err = -ENOMEM;
1475 		goto err_out;
1476 	}
1477 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1478 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1479 	if (unlikely(err))
1480 		goto err_out;
1481 	/*
1482 	 * Keep the VM happy.  This must be done otherwise the radix-tree tag
1483 	 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1484 	 */
1485 	BUG_ON(PageWriteback(page));
1486 	set_page_writeback(page);
1487 	unlock_page(page);
1488 	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
1489 	i_size = i_size_read(vi);
1490 	if (unlikely(attr_len > i_size)) {
1491 		/* Race with shrinking truncate or a failed truncate. */
1492 		attr_len = i_size;
1493 		/*
1494 		 * If the truncate failed, fix it up now.  If a concurrent
1495 		 * truncate, we do its job, so it does not have to do anything.
1496 		 */
1497 		err = ntfs_resident_attr_value_resize(ctx->mrec, ctx->attr,
1498 				attr_len);
1499 		/* Shrinking cannot fail. */
1500 		BUG_ON(err);
1501 	}
1502 	kaddr = kmap_atomic(page, KM_USER0);
1503 	/* Copy the data from the page to the mft record. */
1504 	memcpy((u8*)ctx->attr +
1505 			le16_to_cpu(ctx->attr->data.resident.value_offset),
1506 			kaddr, attr_len);
1507 	/* Zero out of bounds area in the page cache page. */
1508 	memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1509 	kunmap_atomic(kaddr, KM_USER0);
1510 	flush_dcache_page(page);
1511 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1512 	/* We are done with the page. */
1513 	end_page_writeback(page);
1514 	/* Finally, mark the mft record dirty, so it gets written back. */
1515 	mark_mft_record_dirty(ctx->ntfs_ino);
1516 	ntfs_attr_put_search_ctx(ctx);
1517 	unmap_mft_record(base_ni);
1518 	return 0;
1519 err_out:
1520 	if (err == -ENOMEM) {
1521 		ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
1522 				"page so we try again later.");
1523 		/*
1524 		 * Put the page back on mapping->dirty_pages, but leave its
1525 		 * buffers' dirty state as-is.
1526 		 */
1527 		redirty_page_for_writepage(wbc, page);
1528 		err = 0;
1529 	} else {
1530 		ntfs_error(vi->i_sb, "Resident attribute write failed with "
1531 				"error %i.", err);
1532 		SetPageError(page);
1533 		NVolSetErrors(ni->vol);
1534 		make_bad_inode(vi);
1535 	}
1536 	unlock_page(page);
1537 	if (ctx)
1538 		ntfs_attr_put_search_ctx(ctx);
1539 	if (m)
1540 		unmap_mft_record(base_ni);
1541 	return err;
1542 }
1543 
1544 #endif	/* NTFS_RW */
1545 
1546 /**
1547  * ntfs_aops - general address space operations for inodes and attributes
1548  */
1549 struct address_space_operations ntfs_aops = {
1550 	.readpage	= ntfs_readpage,	/* Fill page with data. */
1551 	.sync_page	= block_sync_page,	/* Currently, just unplugs the
1552 						   disk request queue. */
1553 #ifdef NTFS_RW
1554 	.writepage	= ntfs_writepage,	/* Write dirty page to disk. */
1555 #endif /* NTFS_RW */
1556 };
1557 
1558 /**
1559  * ntfs_mst_aops - general address space operations for mst protecteed inodes
1560  *		   and attributes
1561  */
1562 struct address_space_operations ntfs_mst_aops = {
1563 	.readpage	= ntfs_readpage,	/* Fill page with data. */
1564 	.sync_page	= block_sync_page,	/* Currently, just unplugs the
1565 						   disk request queue. */
1566 #ifdef NTFS_RW
1567 	.writepage	= ntfs_writepage,	/* Write dirty page to disk. */
1568 	.set_page_dirty	= __set_page_dirty_nobuffers,	/* Set the page dirty
1569 						   without touching the buffers
1570 						   belonging to the page. */
1571 #endif /* NTFS_RW */
1572 };
1573 
1574 #ifdef NTFS_RW
1575 
1576 /**
1577  * mark_ntfs_record_dirty - mark an ntfs record dirty
1578  * @page:	page containing the ntfs record to mark dirty
1579  * @ofs:	byte offset within @page at which the ntfs record begins
1580  *
1581  * Set the buffers and the page in which the ntfs record is located dirty.
1582  *
1583  * The latter also marks the vfs inode the ntfs record belongs to dirty
1584  * (I_DIRTY_PAGES only).
1585  *
1586  * If the page does not have buffers, we create them and set them uptodate.
1587  * The page may not be locked which is why we need to handle the buffers under
1588  * the mapping->private_lock.  Once the buffers are marked dirty we no longer
1589  * need the lock since try_to_free_buffers() does not free dirty buffers.
1590  */
1591 void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
1592 	struct address_space *mapping = page->mapping;
1593 	ntfs_inode *ni = NTFS_I(mapping->host);
1594 	struct buffer_head *bh, *head, *buffers_to_free = NULL;
1595 	unsigned int end, bh_size, bh_ofs;
1596 
1597 	BUG_ON(!PageUptodate(page));
1598 	end = ofs + ni->itype.index.block_size;
1599 	bh_size = 1 << VFS_I(ni)->i_blkbits;
1600 	spin_lock(&mapping->private_lock);
1601 	if (unlikely(!page_has_buffers(page))) {
1602 		spin_unlock(&mapping->private_lock);
1603 		bh = head = alloc_page_buffers(page, bh_size, 1);
1604 		spin_lock(&mapping->private_lock);
1605 		if (likely(!page_has_buffers(page))) {
1606 			struct buffer_head *tail;
1607 
1608 			do {
1609 				set_buffer_uptodate(bh);
1610 				tail = bh;
1611 				bh = bh->b_this_page;
1612 			} while (bh);
1613 			tail->b_this_page = head;
1614 			attach_page_buffers(page, head);
1615 		} else
1616 			buffers_to_free = bh;
1617 	}
1618 	bh = head = page_buffers(page);
1619 	BUG_ON(!bh);
1620 	do {
1621 		bh_ofs = bh_offset(bh);
1622 		if (bh_ofs + bh_size <= ofs)
1623 			continue;
1624 		if (unlikely(bh_ofs >= end))
1625 			break;
1626 		set_buffer_dirty(bh);
1627 	} while ((bh = bh->b_this_page) != head);
1628 	spin_unlock(&mapping->private_lock);
1629 	__set_page_dirty_nobuffers(page);
1630 	if (unlikely(buffers_to_free)) {
1631 		do {
1632 			bh = buffers_to_free->b_this_page;
1633 			free_buffer_head(buffers_to_free);
1634 			buffers_to_free = bh;
1635 		} while (buffers_to_free);
1636 	}
1637 }
1638 
1639 #endif /* NTFS_RW */
1640