xref: /openbmc/linux/fs/ntfs/aops.c (revision 64c70b1c)
1 /**
2  * aops.c - NTFS kernel address space operations and page cache handling.
3  *	    Part of the Linux-NTFS project.
4  *
5  * Copyright (c) 2001-2006 Anton Altaparmakov
6  * Copyright (c) 2002 Richard Russon
7  *
8  * This program/include file is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as published
10  * by the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program/include file is distributed in the hope that it will be
14  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program (in the main directory of the Linux-NTFS
20  * distribution in the file COPYING); if not, write to the Free Software
21  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23 
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/pagemap.h>
28 #include <linux/swap.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/bit_spinlock.h>
32 
33 #include "aops.h"
34 #include "attrib.h"
35 #include "debug.h"
36 #include "inode.h"
37 #include "mft.h"
38 #include "runlist.h"
39 #include "types.h"
40 #include "ntfs.h"
41 
42 /**
43  * ntfs_end_buffer_async_read - async io completion for reading attributes
44  * @bh:		buffer head on which io is completed
45  * @uptodate:	whether @bh is now uptodate or not
46  *
47  * Asynchronous I/O completion handler for reading pages belonging to the
48  * attribute address space of an inode.  The inodes can either be files or
49  * directories or they can be fake inodes describing some attribute.
50  *
51  * If NInoMstProtected(), perform the post read mst fixups when all IO on the
52  * page has been completed and mark the page uptodate or set the error bit on
53  * the page.  To determine the size of the records that need fixing up, we
54  * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
55  * record size, and index_block_size_bits, to the log(base 2) of the ntfs
56  * record size.
57  */
58 static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
59 {
60 	unsigned long flags;
61 	struct buffer_head *first, *tmp;
62 	struct page *page;
63 	struct inode *vi;
64 	ntfs_inode *ni;
65 	int page_uptodate = 1;
66 
67 	page = bh->b_page;
68 	vi = page->mapping->host;
69 	ni = NTFS_I(vi);
70 
71 	if (likely(uptodate)) {
72 		loff_t i_size;
73 		s64 file_ofs, init_size;
74 
75 		set_buffer_uptodate(bh);
76 
77 		file_ofs = ((s64)page->index << PAGE_CACHE_SHIFT) +
78 				bh_offset(bh);
79 		read_lock_irqsave(&ni->size_lock, flags);
80 		init_size = ni->initialized_size;
81 		i_size = i_size_read(vi);
82 		read_unlock_irqrestore(&ni->size_lock, flags);
83 		if (unlikely(init_size > i_size)) {
84 			/* Race with shrinking truncate. */
85 			init_size = i_size;
86 		}
87 		/* Check for the current buffer head overflowing. */
88 		if (unlikely(file_ofs + bh->b_size > init_size)) {
89 			int ofs;
90 
91 			ofs = 0;
92 			if (file_ofs < init_size)
93 				ofs = init_size - file_ofs;
94 			local_irq_save(flags);
95 			zero_user_page(page, bh_offset(bh) + ofs,
96 					 bh->b_size - ofs, KM_BIO_SRC_IRQ);
97 			local_irq_restore(flags);
98 		}
99 	} else {
100 		clear_buffer_uptodate(bh);
101 		SetPageError(page);
102 		ntfs_error(ni->vol->sb, "Buffer I/O error, logical block "
103 				"0x%llx.", (unsigned long long)bh->b_blocknr);
104 	}
105 	first = page_buffers(page);
106 	local_irq_save(flags);
107 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
108 	clear_buffer_async_read(bh);
109 	unlock_buffer(bh);
110 	tmp = bh;
111 	do {
112 		if (!buffer_uptodate(tmp))
113 			page_uptodate = 0;
114 		if (buffer_async_read(tmp)) {
115 			if (likely(buffer_locked(tmp)))
116 				goto still_busy;
117 			/* Async buffers must be locked. */
118 			BUG();
119 		}
120 		tmp = tmp->b_this_page;
121 	} while (tmp != bh);
122 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
123 	local_irq_restore(flags);
124 	/*
125 	 * If none of the buffers had errors then we can set the page uptodate,
126 	 * but we first have to perform the post read mst fixups, if the
127 	 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
128 	 * Note we ignore fixup errors as those are detected when
129 	 * map_mft_record() is called which gives us per record granularity
130 	 * rather than per page granularity.
131 	 */
132 	if (!NInoMstProtected(ni)) {
133 		if (likely(page_uptodate && !PageError(page)))
134 			SetPageUptodate(page);
135 	} else {
136 		u8 *kaddr;
137 		unsigned int i, recs;
138 		u32 rec_size;
139 
140 		rec_size = ni->itype.index.block_size;
141 		recs = PAGE_CACHE_SIZE / rec_size;
142 		/* Should have been verified before we got here... */
143 		BUG_ON(!recs);
144 		local_irq_save(flags);
145 		kaddr = kmap_atomic(page, KM_BIO_SRC_IRQ);
146 		for (i = 0; i < recs; i++)
147 			post_read_mst_fixup((NTFS_RECORD*)(kaddr +
148 					i * rec_size), rec_size);
149 		kunmap_atomic(kaddr, KM_BIO_SRC_IRQ);
150 		local_irq_restore(flags);
151 		flush_dcache_page(page);
152 		if (likely(page_uptodate && !PageError(page)))
153 			SetPageUptodate(page);
154 	}
155 	unlock_page(page);
156 	return;
157 still_busy:
158 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
159 	local_irq_restore(flags);
160 	return;
161 }
162 
163 /**
164  * ntfs_read_block - fill a @page of an address space with data
165  * @page:	page cache page to fill with data
166  *
167  * Fill the page @page of the address space belonging to the @page->host inode.
168  * We read each buffer asynchronously and when all buffers are read in, our io
169  * completion handler ntfs_end_buffer_read_async(), if required, automatically
170  * applies the mst fixups to the page before finally marking it uptodate and
171  * unlocking it.
172  *
173  * We only enforce allocated_size limit because i_size is checked for in
174  * generic_file_read().
175  *
176  * Return 0 on success and -errno on error.
177  *
178  * Contains an adapted version of fs/buffer.c::block_read_full_page().
179  */
180 static int ntfs_read_block(struct page *page)
181 {
182 	loff_t i_size;
183 	VCN vcn;
184 	LCN lcn;
185 	s64 init_size;
186 	struct inode *vi;
187 	ntfs_inode *ni;
188 	ntfs_volume *vol;
189 	runlist_element *rl;
190 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
191 	sector_t iblock, lblock, zblock;
192 	unsigned long flags;
193 	unsigned int blocksize, vcn_ofs;
194 	int i, nr;
195 	unsigned char blocksize_bits;
196 
197 	vi = page->mapping->host;
198 	ni = NTFS_I(vi);
199 	vol = ni->vol;
200 
201 	/* $MFT/$DATA must have its complete runlist in memory at all times. */
202 	BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
203 
204 	blocksize = vol->sb->s_blocksize;
205 	blocksize_bits = vol->sb->s_blocksize_bits;
206 
207 	if (!page_has_buffers(page)) {
208 		create_empty_buffers(page, blocksize, 0);
209 		if (unlikely(!page_has_buffers(page))) {
210 			unlock_page(page);
211 			return -ENOMEM;
212 		}
213 	}
214 	bh = head = page_buffers(page);
215 	BUG_ON(!bh);
216 
217 	/*
218 	 * We may be racing with truncate.  To avoid some of the problems we
219 	 * now take a snapshot of the various sizes and use those for the whole
220 	 * of the function.  In case of an extending truncate it just means we
221 	 * may leave some buffers unmapped which are now allocated.  This is
222 	 * not a problem since these buffers will just get mapped when a write
223 	 * occurs.  In case of a shrinking truncate, we will detect this later
224 	 * on due to the runlist being incomplete and if the page is being
225 	 * fully truncated, truncate will throw it away as soon as we unlock
226 	 * it so no need to worry what we do with it.
227 	 */
228 	iblock = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
229 	read_lock_irqsave(&ni->size_lock, flags);
230 	lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
231 	init_size = ni->initialized_size;
232 	i_size = i_size_read(vi);
233 	read_unlock_irqrestore(&ni->size_lock, flags);
234 	if (unlikely(init_size > i_size)) {
235 		/* Race with shrinking truncate. */
236 		init_size = i_size;
237 	}
238 	zblock = (init_size + blocksize - 1) >> blocksize_bits;
239 
240 	/* Loop through all the buffers in the page. */
241 	rl = NULL;
242 	nr = i = 0;
243 	do {
244 		int err = 0;
245 
246 		if (unlikely(buffer_uptodate(bh)))
247 			continue;
248 		if (unlikely(buffer_mapped(bh))) {
249 			arr[nr++] = bh;
250 			continue;
251 		}
252 		bh->b_bdev = vol->sb->s_bdev;
253 		/* Is the block within the allowed limits? */
254 		if (iblock < lblock) {
255 			bool is_retry = false;
256 
257 			/* Convert iblock into corresponding vcn and offset. */
258 			vcn = (VCN)iblock << blocksize_bits >>
259 					vol->cluster_size_bits;
260 			vcn_ofs = ((VCN)iblock << blocksize_bits) &
261 					vol->cluster_size_mask;
262 			if (!rl) {
263 lock_retry_remap:
264 				down_read(&ni->runlist.lock);
265 				rl = ni->runlist.rl;
266 			}
267 			if (likely(rl != NULL)) {
268 				/* Seek to element containing target vcn. */
269 				while (rl->length && rl[1].vcn <= vcn)
270 					rl++;
271 				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
272 			} else
273 				lcn = LCN_RL_NOT_MAPPED;
274 			/* Successful remap. */
275 			if (lcn >= 0) {
276 				/* Setup buffer head to correct block. */
277 				bh->b_blocknr = ((lcn << vol->cluster_size_bits)
278 						+ vcn_ofs) >> blocksize_bits;
279 				set_buffer_mapped(bh);
280 				/* Only read initialized data blocks. */
281 				if (iblock < zblock) {
282 					arr[nr++] = bh;
283 					continue;
284 				}
285 				/* Fully non-initialized data block, zero it. */
286 				goto handle_zblock;
287 			}
288 			/* It is a hole, need to zero it. */
289 			if (lcn == LCN_HOLE)
290 				goto handle_hole;
291 			/* If first try and runlist unmapped, map and retry. */
292 			if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
293 				is_retry = true;
294 				/*
295 				 * Attempt to map runlist, dropping lock for
296 				 * the duration.
297 				 */
298 				up_read(&ni->runlist.lock);
299 				err = ntfs_map_runlist(ni, vcn);
300 				if (likely(!err))
301 					goto lock_retry_remap;
302 				rl = NULL;
303 			} else if (!rl)
304 				up_read(&ni->runlist.lock);
305 			/*
306 			 * If buffer is outside the runlist, treat it as a
307 			 * hole.  This can happen due to concurrent truncate
308 			 * for example.
309 			 */
310 			if (err == -ENOENT || lcn == LCN_ENOENT) {
311 				err = 0;
312 				goto handle_hole;
313 			}
314 			/* Hard error, zero out region. */
315 			if (!err)
316 				err = -EIO;
317 			bh->b_blocknr = -1;
318 			SetPageError(page);
319 			ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
320 					"attribute type 0x%x, vcn 0x%llx, "
321 					"offset 0x%x because its location on "
322 					"disk could not be determined%s "
323 					"(error code %i).", ni->mft_no,
324 					ni->type, (unsigned long long)vcn,
325 					vcn_ofs, is_retry ? " even after "
326 					"retrying" : "", err);
327 		}
328 		/*
329 		 * Either iblock was outside lblock limits or
330 		 * ntfs_rl_vcn_to_lcn() returned error.  Just zero that portion
331 		 * of the page and set the buffer uptodate.
332 		 */
333 handle_hole:
334 		bh->b_blocknr = -1UL;
335 		clear_buffer_mapped(bh);
336 handle_zblock:
337 		zero_user_page(page, i * blocksize, blocksize, KM_USER0);
338 		if (likely(!err))
339 			set_buffer_uptodate(bh);
340 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
341 
342 	/* Release the lock if we took it. */
343 	if (rl)
344 		up_read(&ni->runlist.lock);
345 
346 	/* Check we have at least one buffer ready for i/o. */
347 	if (nr) {
348 		struct buffer_head *tbh;
349 
350 		/* Lock the buffers. */
351 		for (i = 0; i < nr; i++) {
352 			tbh = arr[i];
353 			lock_buffer(tbh);
354 			tbh->b_end_io = ntfs_end_buffer_async_read;
355 			set_buffer_async_read(tbh);
356 		}
357 		/* Finally, start i/o on the buffers. */
358 		for (i = 0; i < nr; i++) {
359 			tbh = arr[i];
360 			if (likely(!buffer_uptodate(tbh)))
361 				submit_bh(READ, tbh);
362 			else
363 				ntfs_end_buffer_async_read(tbh, 1);
364 		}
365 		return 0;
366 	}
367 	/* No i/o was scheduled on any of the buffers. */
368 	if (likely(!PageError(page)))
369 		SetPageUptodate(page);
370 	else /* Signal synchronous i/o error. */
371 		nr = -EIO;
372 	unlock_page(page);
373 	return nr;
374 }
375 
376 /**
377  * ntfs_readpage - fill a @page of a @file with data from the device
378  * @file:	open file to which the page @page belongs or NULL
379  * @page:	page cache page to fill with data
380  *
381  * For non-resident attributes, ntfs_readpage() fills the @page of the open
382  * file @file by calling the ntfs version of the generic block_read_full_page()
383  * function, ntfs_read_block(), which in turn creates and reads in the buffers
384  * associated with the page asynchronously.
385  *
386  * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
387  * data from the mft record (which at this stage is most likely in memory) and
388  * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
389  * even if the mft record is not cached at this point in time, we need to wait
390  * for it to be read in before we can do the copy.
391  *
392  * Return 0 on success and -errno on error.
393  */
394 static int ntfs_readpage(struct file *file, struct page *page)
395 {
396 	loff_t i_size;
397 	struct inode *vi;
398 	ntfs_inode *ni, *base_ni;
399 	u8 *kaddr;
400 	ntfs_attr_search_ctx *ctx;
401 	MFT_RECORD *mrec;
402 	unsigned long flags;
403 	u32 attr_len;
404 	int err = 0;
405 
406 retry_readpage:
407 	BUG_ON(!PageLocked(page));
408 	/*
409 	 * This can potentially happen because we clear PageUptodate() during
410 	 * ntfs_writepage() of MstProtected() attributes.
411 	 */
412 	if (PageUptodate(page)) {
413 		unlock_page(page);
414 		return 0;
415 	}
416 	vi = page->mapping->host;
417 	ni = NTFS_I(vi);
418 	/*
419 	 * Only $DATA attributes can be encrypted and only unnamed $DATA
420 	 * attributes can be compressed.  Index root can have the flags set but
421 	 * this means to create compressed/encrypted files, not that the
422 	 * attribute is compressed/encrypted.  Note we need to check for
423 	 * AT_INDEX_ALLOCATION since this is the type of both directory and
424 	 * index inodes.
425 	 */
426 	if (ni->type != AT_INDEX_ALLOCATION) {
427 		/* If attribute is encrypted, deny access, just like NT4. */
428 		if (NInoEncrypted(ni)) {
429 			BUG_ON(ni->type != AT_DATA);
430 			err = -EACCES;
431 			goto err_out;
432 		}
433 		/* Compressed data streams are handled in compress.c. */
434 		if (NInoNonResident(ni) && NInoCompressed(ni)) {
435 			BUG_ON(ni->type != AT_DATA);
436 			BUG_ON(ni->name_len);
437 			return ntfs_read_compressed_block(page);
438 		}
439 	}
440 	/* NInoNonResident() == NInoIndexAllocPresent() */
441 	if (NInoNonResident(ni)) {
442 		/* Normal, non-resident data stream. */
443 		return ntfs_read_block(page);
444 	}
445 	/*
446 	 * Attribute is resident, implying it is not compressed or encrypted.
447 	 * This also means the attribute is smaller than an mft record and
448 	 * hence smaller than a page, so can simply zero out any pages with
449 	 * index above 0.  Note the attribute can actually be marked compressed
450 	 * but if it is resident the actual data is not compressed so we are
451 	 * ok to ignore the compressed flag here.
452 	 */
453 	if (unlikely(page->index > 0)) {
454 		zero_user_page(page, 0, PAGE_CACHE_SIZE, KM_USER0);
455 		goto done;
456 	}
457 	if (!NInoAttr(ni))
458 		base_ni = ni;
459 	else
460 		base_ni = ni->ext.base_ntfs_ino;
461 	/* Map, pin, and lock the mft record. */
462 	mrec = map_mft_record(base_ni);
463 	if (IS_ERR(mrec)) {
464 		err = PTR_ERR(mrec);
465 		goto err_out;
466 	}
467 	/*
468 	 * If a parallel write made the attribute non-resident, drop the mft
469 	 * record and retry the readpage.
470 	 */
471 	if (unlikely(NInoNonResident(ni))) {
472 		unmap_mft_record(base_ni);
473 		goto retry_readpage;
474 	}
475 	ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
476 	if (unlikely(!ctx)) {
477 		err = -ENOMEM;
478 		goto unm_err_out;
479 	}
480 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
481 			CASE_SENSITIVE, 0, NULL, 0, ctx);
482 	if (unlikely(err))
483 		goto put_unm_err_out;
484 	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
485 	read_lock_irqsave(&ni->size_lock, flags);
486 	if (unlikely(attr_len > ni->initialized_size))
487 		attr_len = ni->initialized_size;
488 	i_size = i_size_read(vi);
489 	read_unlock_irqrestore(&ni->size_lock, flags);
490 	if (unlikely(attr_len > i_size)) {
491 		/* Race with shrinking truncate. */
492 		attr_len = i_size;
493 	}
494 	kaddr = kmap_atomic(page, KM_USER0);
495 	/* Copy the data to the page. */
496 	memcpy(kaddr, (u8*)ctx->attr +
497 			le16_to_cpu(ctx->attr->data.resident.value_offset),
498 			attr_len);
499 	/* Zero the remainder of the page. */
500 	memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
501 	flush_dcache_page(page);
502 	kunmap_atomic(kaddr, KM_USER0);
503 put_unm_err_out:
504 	ntfs_attr_put_search_ctx(ctx);
505 unm_err_out:
506 	unmap_mft_record(base_ni);
507 done:
508 	SetPageUptodate(page);
509 err_out:
510 	unlock_page(page);
511 	return err;
512 }
513 
514 #ifdef NTFS_RW
515 
516 /**
517  * ntfs_write_block - write a @page to the backing store
518  * @page:	page cache page to write out
519  * @wbc:	writeback control structure
520  *
521  * This function is for writing pages belonging to non-resident, non-mst
522  * protected attributes to their backing store.
523  *
524  * For a page with buffers, map and write the dirty buffers asynchronously
525  * under page writeback. For a page without buffers, create buffers for the
526  * page, then proceed as above.
527  *
528  * If a page doesn't have buffers the page dirty state is definitive. If a page
529  * does have buffers, the page dirty state is just a hint, and the buffer dirty
530  * state is definitive. (A hint which has rules: dirty buffers against a clean
531  * page is illegal. Other combinations are legal and need to be handled. In
532  * particular a dirty page containing clean buffers for example.)
533  *
534  * Return 0 on success and -errno on error.
535  *
536  * Based on ntfs_read_block() and __block_write_full_page().
537  */
538 static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
539 {
540 	VCN vcn;
541 	LCN lcn;
542 	s64 initialized_size;
543 	loff_t i_size;
544 	sector_t block, dblock, iblock;
545 	struct inode *vi;
546 	ntfs_inode *ni;
547 	ntfs_volume *vol;
548 	runlist_element *rl;
549 	struct buffer_head *bh, *head;
550 	unsigned long flags;
551 	unsigned int blocksize, vcn_ofs;
552 	int err;
553 	bool need_end_writeback;
554 	unsigned char blocksize_bits;
555 
556 	vi = page->mapping->host;
557 	ni = NTFS_I(vi);
558 	vol = ni->vol;
559 
560 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
561 			"0x%lx.", ni->mft_no, ni->type, page->index);
562 
563 	BUG_ON(!NInoNonResident(ni));
564 	BUG_ON(NInoMstProtected(ni));
565 	blocksize = vol->sb->s_blocksize;
566 	blocksize_bits = vol->sb->s_blocksize_bits;
567 	if (!page_has_buffers(page)) {
568 		BUG_ON(!PageUptodate(page));
569 		create_empty_buffers(page, blocksize,
570 				(1 << BH_Uptodate) | (1 << BH_Dirty));
571 		if (unlikely(!page_has_buffers(page))) {
572 			ntfs_warning(vol->sb, "Error allocating page "
573 					"buffers.  Redirtying page so we try "
574 					"again later.");
575 			/*
576 			 * Put the page back on mapping->dirty_pages, but leave
577 			 * its buffers' dirty state as-is.
578 			 */
579 			redirty_page_for_writepage(wbc, page);
580 			unlock_page(page);
581 			return 0;
582 		}
583 	}
584 	bh = head = page_buffers(page);
585 	BUG_ON(!bh);
586 
587 	/* NOTE: Different naming scheme to ntfs_read_block()! */
588 
589 	/* The first block in the page. */
590 	block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
591 
592 	read_lock_irqsave(&ni->size_lock, flags);
593 	i_size = i_size_read(vi);
594 	initialized_size = ni->initialized_size;
595 	read_unlock_irqrestore(&ni->size_lock, flags);
596 
597 	/* The first out of bounds block for the data size. */
598 	dblock = (i_size + blocksize - 1) >> blocksize_bits;
599 
600 	/* The last (fully or partially) initialized block. */
601 	iblock = initialized_size >> blocksize_bits;
602 
603 	/*
604 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
605 	 * here, and the (potentially unmapped) buffers may become dirty at
606 	 * any time.  If a buffer becomes dirty here after we've inspected it
607 	 * then we just miss that fact, and the page stays dirty.
608 	 *
609 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
610 	 * handle that here by just cleaning them.
611 	 */
612 
613 	/*
614 	 * Loop through all the buffers in the page, mapping all the dirty
615 	 * buffers to disk addresses and handling any aliases from the
616 	 * underlying block device's mapping.
617 	 */
618 	rl = NULL;
619 	err = 0;
620 	do {
621 		bool is_retry = false;
622 
623 		if (unlikely(block >= dblock)) {
624 			/*
625 			 * Mapped buffers outside i_size will occur, because
626 			 * this page can be outside i_size when there is a
627 			 * truncate in progress. The contents of such buffers
628 			 * were zeroed by ntfs_writepage().
629 			 *
630 			 * FIXME: What about the small race window where
631 			 * ntfs_writepage() has not done any clearing because
632 			 * the page was within i_size but before we get here,
633 			 * vmtruncate() modifies i_size?
634 			 */
635 			clear_buffer_dirty(bh);
636 			set_buffer_uptodate(bh);
637 			continue;
638 		}
639 
640 		/* Clean buffers are not written out, so no need to map them. */
641 		if (!buffer_dirty(bh))
642 			continue;
643 
644 		/* Make sure we have enough initialized size. */
645 		if (unlikely((block >= iblock) &&
646 				(initialized_size < i_size))) {
647 			/*
648 			 * If this page is fully outside initialized size, zero
649 			 * out all pages between the current initialized size
650 			 * and the current page. Just use ntfs_readpage() to do
651 			 * the zeroing transparently.
652 			 */
653 			if (block > iblock) {
654 				// TODO:
655 				// For each page do:
656 				// - read_cache_page()
657 				// Again for each page do:
658 				// - wait_on_page_locked()
659 				// - Check (PageUptodate(page) &&
660 				//			!PageError(page))
661 				// Update initialized size in the attribute and
662 				// in the inode.
663 				// Again, for each page do:
664 				//	__set_page_dirty_buffers();
665 				// page_cache_release()
666 				// We don't need to wait on the writes.
667 				// Update iblock.
668 			}
669 			/*
670 			 * The current page straddles initialized size. Zero
671 			 * all non-uptodate buffers and set them uptodate (and
672 			 * dirty?). Note, there aren't any non-uptodate buffers
673 			 * if the page is uptodate.
674 			 * FIXME: For an uptodate page, the buffers may need to
675 			 * be written out because they were not initialized on
676 			 * disk before.
677 			 */
678 			if (!PageUptodate(page)) {
679 				// TODO:
680 				// Zero any non-uptodate buffers up to i_size.
681 				// Set them uptodate and dirty.
682 			}
683 			// TODO:
684 			// Update initialized size in the attribute and in the
685 			// inode (up to i_size).
686 			// Update iblock.
687 			// FIXME: This is inefficient. Try to batch the two
688 			// size changes to happen in one go.
689 			ntfs_error(vol->sb, "Writing beyond initialized size "
690 					"is not supported yet. Sorry.");
691 			err = -EOPNOTSUPP;
692 			break;
693 			// Do NOT set_buffer_new() BUT DO clear buffer range
694 			// outside write request range.
695 			// set_buffer_uptodate() on complete buffers as well as
696 			// set_buffer_dirty().
697 		}
698 
699 		/* No need to map buffers that are already mapped. */
700 		if (buffer_mapped(bh))
701 			continue;
702 
703 		/* Unmapped, dirty buffer. Need to map it. */
704 		bh->b_bdev = vol->sb->s_bdev;
705 
706 		/* Convert block into corresponding vcn and offset. */
707 		vcn = (VCN)block << blocksize_bits;
708 		vcn_ofs = vcn & vol->cluster_size_mask;
709 		vcn >>= vol->cluster_size_bits;
710 		if (!rl) {
711 lock_retry_remap:
712 			down_read(&ni->runlist.lock);
713 			rl = ni->runlist.rl;
714 		}
715 		if (likely(rl != NULL)) {
716 			/* Seek to element containing target vcn. */
717 			while (rl->length && rl[1].vcn <= vcn)
718 				rl++;
719 			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
720 		} else
721 			lcn = LCN_RL_NOT_MAPPED;
722 		/* Successful remap. */
723 		if (lcn >= 0) {
724 			/* Setup buffer head to point to correct block. */
725 			bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
726 					vcn_ofs) >> blocksize_bits;
727 			set_buffer_mapped(bh);
728 			continue;
729 		}
730 		/* It is a hole, need to instantiate it. */
731 		if (lcn == LCN_HOLE) {
732 			u8 *kaddr;
733 			unsigned long *bpos, *bend;
734 
735 			/* Check if the buffer is zero. */
736 			kaddr = kmap_atomic(page, KM_USER0);
737 			bpos = (unsigned long *)(kaddr + bh_offset(bh));
738 			bend = (unsigned long *)((u8*)bpos + blocksize);
739 			do {
740 				if (unlikely(*bpos))
741 					break;
742 			} while (likely(++bpos < bend));
743 			kunmap_atomic(kaddr, KM_USER0);
744 			if (bpos == bend) {
745 				/*
746 				 * Buffer is zero and sparse, no need to write
747 				 * it.
748 				 */
749 				bh->b_blocknr = -1;
750 				clear_buffer_dirty(bh);
751 				continue;
752 			}
753 			// TODO: Instantiate the hole.
754 			// clear_buffer_new(bh);
755 			// unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
756 			ntfs_error(vol->sb, "Writing into sparse regions is "
757 					"not supported yet. Sorry.");
758 			err = -EOPNOTSUPP;
759 			break;
760 		}
761 		/* If first try and runlist unmapped, map and retry. */
762 		if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
763 			is_retry = true;
764 			/*
765 			 * Attempt to map runlist, dropping lock for
766 			 * the duration.
767 			 */
768 			up_read(&ni->runlist.lock);
769 			err = ntfs_map_runlist(ni, vcn);
770 			if (likely(!err))
771 				goto lock_retry_remap;
772 			rl = NULL;
773 		} else if (!rl)
774 			up_read(&ni->runlist.lock);
775 		/*
776 		 * If buffer is outside the runlist, truncate has cut it out
777 		 * of the runlist.  Just clean and clear the buffer and set it
778 		 * uptodate so it can get discarded by the VM.
779 		 */
780 		if (err == -ENOENT || lcn == LCN_ENOENT) {
781 			bh->b_blocknr = -1;
782 			clear_buffer_dirty(bh);
783 			zero_user_page(page, bh_offset(bh), blocksize,
784 					KM_USER0);
785 			set_buffer_uptodate(bh);
786 			err = 0;
787 			continue;
788 		}
789 		/* Failed to map the buffer, even after retrying. */
790 		if (!err)
791 			err = -EIO;
792 		bh->b_blocknr = -1;
793 		ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
794 				"attribute type 0x%x, vcn 0x%llx, offset 0x%x "
795 				"because its location on disk could not be "
796 				"determined%s (error code %i).", ni->mft_no,
797 				ni->type, (unsigned long long)vcn,
798 				vcn_ofs, is_retry ? " even after "
799 				"retrying" : "", err);
800 		break;
801 	} while (block++, (bh = bh->b_this_page) != head);
802 
803 	/* Release the lock if we took it. */
804 	if (rl)
805 		up_read(&ni->runlist.lock);
806 
807 	/* For the error case, need to reset bh to the beginning. */
808 	bh = head;
809 
810 	/* Just an optimization, so ->readpage() is not called later. */
811 	if (unlikely(!PageUptodate(page))) {
812 		int uptodate = 1;
813 		do {
814 			if (!buffer_uptodate(bh)) {
815 				uptodate = 0;
816 				bh = head;
817 				break;
818 			}
819 		} while ((bh = bh->b_this_page) != head);
820 		if (uptodate)
821 			SetPageUptodate(page);
822 	}
823 
824 	/* Setup all mapped, dirty buffers for async write i/o. */
825 	do {
826 		if (buffer_mapped(bh) && buffer_dirty(bh)) {
827 			lock_buffer(bh);
828 			if (test_clear_buffer_dirty(bh)) {
829 				BUG_ON(!buffer_uptodate(bh));
830 				mark_buffer_async_write(bh);
831 			} else
832 				unlock_buffer(bh);
833 		} else if (unlikely(err)) {
834 			/*
835 			 * For the error case. The buffer may have been set
836 			 * dirty during attachment to a dirty page.
837 			 */
838 			if (err != -ENOMEM)
839 				clear_buffer_dirty(bh);
840 		}
841 	} while ((bh = bh->b_this_page) != head);
842 
843 	if (unlikely(err)) {
844 		// TODO: Remove the -EOPNOTSUPP check later on...
845 		if (unlikely(err == -EOPNOTSUPP))
846 			err = 0;
847 		else if (err == -ENOMEM) {
848 			ntfs_warning(vol->sb, "Error allocating memory. "
849 					"Redirtying page so we try again "
850 					"later.");
851 			/*
852 			 * Put the page back on mapping->dirty_pages, but
853 			 * leave its buffer's dirty state as-is.
854 			 */
855 			redirty_page_for_writepage(wbc, page);
856 			err = 0;
857 		} else
858 			SetPageError(page);
859 	}
860 
861 	BUG_ON(PageWriteback(page));
862 	set_page_writeback(page);	/* Keeps try_to_free_buffers() away. */
863 
864 	/* Submit the prepared buffers for i/o. */
865 	need_end_writeback = true;
866 	do {
867 		struct buffer_head *next = bh->b_this_page;
868 		if (buffer_async_write(bh)) {
869 			submit_bh(WRITE, bh);
870 			need_end_writeback = false;
871 		}
872 		bh = next;
873 	} while (bh != head);
874 	unlock_page(page);
875 
876 	/* If no i/o was started, need to end_page_writeback(). */
877 	if (unlikely(need_end_writeback))
878 		end_page_writeback(page);
879 
880 	ntfs_debug("Done.");
881 	return err;
882 }
883 
884 /**
885  * ntfs_write_mst_block - write a @page to the backing store
886  * @page:	page cache page to write out
887  * @wbc:	writeback control structure
888  *
889  * This function is for writing pages belonging to non-resident, mst protected
890  * attributes to their backing store.  The only supported attributes are index
891  * allocation and $MFT/$DATA.  Both directory inodes and index inodes are
892  * supported for the index allocation case.
893  *
894  * The page must remain locked for the duration of the write because we apply
895  * the mst fixups, write, and then undo the fixups, so if we were to unlock the
896  * page before undoing the fixups, any other user of the page will see the
897  * page contents as corrupt.
898  *
899  * We clear the page uptodate flag for the duration of the function to ensure
900  * exclusion for the $MFT/$DATA case against someone mapping an mft record we
901  * are about to apply the mst fixups to.
902  *
903  * Return 0 on success and -errno on error.
904  *
905  * Based on ntfs_write_block(), ntfs_mft_writepage(), and
906  * write_mft_record_nolock().
907  */
908 static int ntfs_write_mst_block(struct page *page,
909 		struct writeback_control *wbc)
910 {
911 	sector_t block, dblock, rec_block;
912 	struct inode *vi = page->mapping->host;
913 	ntfs_inode *ni = NTFS_I(vi);
914 	ntfs_volume *vol = ni->vol;
915 	u8 *kaddr;
916 	unsigned int rec_size = ni->itype.index.block_size;
917 	ntfs_inode *locked_nis[PAGE_CACHE_SIZE / rec_size];
918 	struct buffer_head *bh, *head, *tbh, *rec_start_bh;
919 	struct buffer_head *bhs[MAX_BUF_PER_PAGE];
920 	runlist_element *rl;
921 	int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2;
922 	unsigned bh_size, rec_size_bits;
923 	bool sync, is_mft, page_is_dirty, rec_is_dirty;
924 	unsigned char bh_size_bits;
925 
926 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
927 			"0x%lx.", vi->i_ino, ni->type, page->index);
928 	BUG_ON(!NInoNonResident(ni));
929 	BUG_ON(!NInoMstProtected(ni));
930 	is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
931 	/*
932 	 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
933 	 * in its page cache were to be marked dirty.  However this should
934 	 * never happen with the current driver and considering we do not
935 	 * handle this case here we do want to BUG(), at least for now.
936 	 */
937 	BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
938 			(NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
939 	bh_size = vol->sb->s_blocksize;
940 	bh_size_bits = vol->sb->s_blocksize_bits;
941 	max_bhs = PAGE_CACHE_SIZE / bh_size;
942 	BUG_ON(!max_bhs);
943 	BUG_ON(max_bhs > MAX_BUF_PER_PAGE);
944 
945 	/* Were we called for sync purposes? */
946 	sync = (wbc->sync_mode == WB_SYNC_ALL);
947 
948 	/* Make sure we have mapped buffers. */
949 	bh = head = page_buffers(page);
950 	BUG_ON(!bh);
951 
952 	rec_size_bits = ni->itype.index.block_size_bits;
953 	BUG_ON(!(PAGE_CACHE_SIZE >> rec_size_bits));
954 	bhs_per_rec = rec_size >> bh_size_bits;
955 	BUG_ON(!bhs_per_rec);
956 
957 	/* The first block in the page. */
958 	rec_block = block = (sector_t)page->index <<
959 			(PAGE_CACHE_SHIFT - bh_size_bits);
960 
961 	/* The first out of bounds block for the data size. */
962 	dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits;
963 
964 	rl = NULL;
965 	err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
966 	page_is_dirty = rec_is_dirty = false;
967 	rec_start_bh = NULL;
968 	do {
969 		bool is_retry = false;
970 
971 		if (likely(block < rec_block)) {
972 			if (unlikely(block >= dblock)) {
973 				clear_buffer_dirty(bh);
974 				set_buffer_uptodate(bh);
975 				continue;
976 			}
977 			/*
978 			 * This block is not the first one in the record.  We
979 			 * ignore the buffer's dirty state because we could
980 			 * have raced with a parallel mark_ntfs_record_dirty().
981 			 */
982 			if (!rec_is_dirty)
983 				continue;
984 			if (unlikely(err2)) {
985 				if (err2 != -ENOMEM)
986 					clear_buffer_dirty(bh);
987 				continue;
988 			}
989 		} else /* if (block == rec_block) */ {
990 			BUG_ON(block > rec_block);
991 			/* This block is the first one in the record. */
992 			rec_block += bhs_per_rec;
993 			err2 = 0;
994 			if (unlikely(block >= dblock)) {
995 				clear_buffer_dirty(bh);
996 				continue;
997 			}
998 			if (!buffer_dirty(bh)) {
999 				/* Clean records are not written out. */
1000 				rec_is_dirty = false;
1001 				continue;
1002 			}
1003 			rec_is_dirty = true;
1004 			rec_start_bh = bh;
1005 		}
1006 		/* Need to map the buffer if it is not mapped already. */
1007 		if (unlikely(!buffer_mapped(bh))) {
1008 			VCN vcn;
1009 			LCN lcn;
1010 			unsigned int vcn_ofs;
1011 
1012 			bh->b_bdev = vol->sb->s_bdev;
1013 			/* Obtain the vcn and offset of the current block. */
1014 			vcn = (VCN)block << bh_size_bits;
1015 			vcn_ofs = vcn & vol->cluster_size_mask;
1016 			vcn >>= vol->cluster_size_bits;
1017 			if (!rl) {
1018 lock_retry_remap:
1019 				down_read(&ni->runlist.lock);
1020 				rl = ni->runlist.rl;
1021 			}
1022 			if (likely(rl != NULL)) {
1023 				/* Seek to element containing target vcn. */
1024 				while (rl->length && rl[1].vcn <= vcn)
1025 					rl++;
1026 				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
1027 			} else
1028 				lcn = LCN_RL_NOT_MAPPED;
1029 			/* Successful remap. */
1030 			if (likely(lcn >= 0)) {
1031 				/* Setup buffer head to correct block. */
1032 				bh->b_blocknr = ((lcn <<
1033 						vol->cluster_size_bits) +
1034 						vcn_ofs) >> bh_size_bits;
1035 				set_buffer_mapped(bh);
1036 			} else {
1037 				/*
1038 				 * Remap failed.  Retry to map the runlist once
1039 				 * unless we are working on $MFT which always
1040 				 * has the whole of its runlist in memory.
1041 				 */
1042 				if (!is_mft && !is_retry &&
1043 						lcn == LCN_RL_NOT_MAPPED) {
1044 					is_retry = true;
1045 					/*
1046 					 * Attempt to map runlist, dropping
1047 					 * lock for the duration.
1048 					 */
1049 					up_read(&ni->runlist.lock);
1050 					err2 = ntfs_map_runlist(ni, vcn);
1051 					if (likely(!err2))
1052 						goto lock_retry_remap;
1053 					if (err2 == -ENOMEM)
1054 						page_is_dirty = true;
1055 					lcn = err2;
1056 				} else {
1057 					err2 = -EIO;
1058 					if (!rl)
1059 						up_read(&ni->runlist.lock);
1060 				}
1061 				/* Hard error.  Abort writing this record. */
1062 				if (!err || err == -ENOMEM)
1063 					err = err2;
1064 				bh->b_blocknr = -1;
1065 				ntfs_error(vol->sb, "Cannot write ntfs record "
1066 						"0x%llx (inode 0x%lx, "
1067 						"attribute type 0x%x) because "
1068 						"its location on disk could "
1069 						"not be determined (error "
1070 						"code %lli).",
1071 						(long long)block <<
1072 						bh_size_bits >>
1073 						vol->mft_record_size_bits,
1074 						ni->mft_no, ni->type,
1075 						(long long)lcn);
1076 				/*
1077 				 * If this is not the first buffer, remove the
1078 				 * buffers in this record from the list of
1079 				 * buffers to write and clear their dirty bit
1080 				 * if not error -ENOMEM.
1081 				 */
1082 				if (rec_start_bh != bh) {
1083 					while (bhs[--nr_bhs] != rec_start_bh)
1084 						;
1085 					if (err2 != -ENOMEM) {
1086 						do {
1087 							clear_buffer_dirty(
1088 								rec_start_bh);
1089 						} while ((rec_start_bh =
1090 								rec_start_bh->
1091 								b_this_page) !=
1092 								bh);
1093 					}
1094 				}
1095 				continue;
1096 			}
1097 		}
1098 		BUG_ON(!buffer_uptodate(bh));
1099 		BUG_ON(nr_bhs >= max_bhs);
1100 		bhs[nr_bhs++] = bh;
1101 	} while (block++, (bh = bh->b_this_page) != head);
1102 	if (unlikely(rl))
1103 		up_read(&ni->runlist.lock);
1104 	/* If there were no dirty buffers, we are done. */
1105 	if (!nr_bhs)
1106 		goto done;
1107 	/* Map the page so we can access its contents. */
1108 	kaddr = kmap(page);
1109 	/* Clear the page uptodate flag whilst the mst fixups are applied. */
1110 	BUG_ON(!PageUptodate(page));
1111 	ClearPageUptodate(page);
1112 	for (i = 0; i < nr_bhs; i++) {
1113 		unsigned int ofs;
1114 
1115 		/* Skip buffers which are not at the beginning of records. */
1116 		if (i % bhs_per_rec)
1117 			continue;
1118 		tbh = bhs[i];
1119 		ofs = bh_offset(tbh);
1120 		if (is_mft) {
1121 			ntfs_inode *tni;
1122 			unsigned long mft_no;
1123 
1124 			/* Get the mft record number. */
1125 			mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1126 					>> rec_size_bits;
1127 			/* Check whether to write this mft record. */
1128 			tni = NULL;
1129 			if (!ntfs_may_write_mft_record(vol, mft_no,
1130 					(MFT_RECORD*)(kaddr + ofs), &tni)) {
1131 				/*
1132 				 * The record should not be written.  This
1133 				 * means we need to redirty the page before
1134 				 * returning.
1135 				 */
1136 				page_is_dirty = true;
1137 				/*
1138 				 * Remove the buffers in this mft record from
1139 				 * the list of buffers to write.
1140 				 */
1141 				do {
1142 					bhs[i] = NULL;
1143 				} while (++i % bhs_per_rec);
1144 				continue;
1145 			}
1146 			/*
1147 			 * The record should be written.  If a locked ntfs
1148 			 * inode was returned, add it to the array of locked
1149 			 * ntfs inodes.
1150 			 */
1151 			if (tni)
1152 				locked_nis[nr_locked_nis++] = tni;
1153 		}
1154 		/* Apply the mst protection fixups. */
1155 		err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
1156 				rec_size);
1157 		if (unlikely(err2)) {
1158 			if (!err || err == -ENOMEM)
1159 				err = -EIO;
1160 			ntfs_error(vol->sb, "Failed to apply mst fixups "
1161 					"(inode 0x%lx, attribute type 0x%x, "
1162 					"page index 0x%lx, page offset 0x%x)!"
1163 					"  Unmount and run chkdsk.", vi->i_ino,
1164 					ni->type, page->index, ofs);
1165 			/*
1166 			 * Mark all the buffers in this record clean as we do
1167 			 * not want to write corrupt data to disk.
1168 			 */
1169 			do {
1170 				clear_buffer_dirty(bhs[i]);
1171 				bhs[i] = NULL;
1172 			} while (++i % bhs_per_rec);
1173 			continue;
1174 		}
1175 		nr_recs++;
1176 	}
1177 	/* If no records are to be written out, we are done. */
1178 	if (!nr_recs)
1179 		goto unm_done;
1180 	flush_dcache_page(page);
1181 	/* Lock buffers and start synchronous write i/o on them. */
1182 	for (i = 0; i < nr_bhs; i++) {
1183 		tbh = bhs[i];
1184 		if (!tbh)
1185 			continue;
1186 		if (unlikely(test_set_buffer_locked(tbh)))
1187 			BUG();
1188 		/* The buffer dirty state is now irrelevant, just clean it. */
1189 		clear_buffer_dirty(tbh);
1190 		BUG_ON(!buffer_uptodate(tbh));
1191 		BUG_ON(!buffer_mapped(tbh));
1192 		get_bh(tbh);
1193 		tbh->b_end_io = end_buffer_write_sync;
1194 		submit_bh(WRITE, tbh);
1195 	}
1196 	/* Synchronize the mft mirror now if not @sync. */
1197 	if (is_mft && !sync)
1198 		goto do_mirror;
1199 do_wait:
1200 	/* Wait on i/o completion of buffers. */
1201 	for (i = 0; i < nr_bhs; i++) {
1202 		tbh = bhs[i];
1203 		if (!tbh)
1204 			continue;
1205 		wait_on_buffer(tbh);
1206 		if (unlikely(!buffer_uptodate(tbh))) {
1207 			ntfs_error(vol->sb, "I/O error while writing ntfs "
1208 					"record buffer (inode 0x%lx, "
1209 					"attribute type 0x%x, page index "
1210 					"0x%lx, page offset 0x%lx)!  Unmount "
1211 					"and run chkdsk.", vi->i_ino, ni->type,
1212 					page->index, bh_offset(tbh));
1213 			if (!err || err == -ENOMEM)
1214 				err = -EIO;
1215 			/*
1216 			 * Set the buffer uptodate so the page and buffer
1217 			 * states do not become out of sync.
1218 			 */
1219 			set_buffer_uptodate(tbh);
1220 		}
1221 	}
1222 	/* If @sync, now synchronize the mft mirror. */
1223 	if (is_mft && sync) {
1224 do_mirror:
1225 		for (i = 0; i < nr_bhs; i++) {
1226 			unsigned long mft_no;
1227 			unsigned int ofs;
1228 
1229 			/*
1230 			 * Skip buffers which are not at the beginning of
1231 			 * records.
1232 			 */
1233 			if (i % bhs_per_rec)
1234 				continue;
1235 			tbh = bhs[i];
1236 			/* Skip removed buffers (and hence records). */
1237 			if (!tbh)
1238 				continue;
1239 			ofs = bh_offset(tbh);
1240 			/* Get the mft record number. */
1241 			mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1242 					>> rec_size_bits;
1243 			if (mft_no < vol->mftmirr_size)
1244 				ntfs_sync_mft_mirror(vol, mft_no,
1245 						(MFT_RECORD*)(kaddr + ofs),
1246 						sync);
1247 		}
1248 		if (!sync)
1249 			goto do_wait;
1250 	}
1251 	/* Remove the mst protection fixups again. */
1252 	for (i = 0; i < nr_bhs; i++) {
1253 		if (!(i % bhs_per_rec)) {
1254 			tbh = bhs[i];
1255 			if (!tbh)
1256 				continue;
1257 			post_write_mst_fixup((NTFS_RECORD*)(kaddr +
1258 					bh_offset(tbh)));
1259 		}
1260 	}
1261 	flush_dcache_page(page);
1262 unm_done:
1263 	/* Unlock any locked inodes. */
1264 	while (nr_locked_nis-- > 0) {
1265 		ntfs_inode *tni, *base_tni;
1266 
1267 		tni = locked_nis[nr_locked_nis];
1268 		/* Get the base inode. */
1269 		mutex_lock(&tni->extent_lock);
1270 		if (tni->nr_extents >= 0)
1271 			base_tni = tni;
1272 		else {
1273 			base_tni = tni->ext.base_ntfs_ino;
1274 			BUG_ON(!base_tni);
1275 		}
1276 		mutex_unlock(&tni->extent_lock);
1277 		ntfs_debug("Unlocking %s inode 0x%lx.",
1278 				tni == base_tni ? "base" : "extent",
1279 				tni->mft_no);
1280 		mutex_unlock(&tni->mrec_lock);
1281 		atomic_dec(&tni->count);
1282 		iput(VFS_I(base_tni));
1283 	}
1284 	SetPageUptodate(page);
1285 	kunmap(page);
1286 done:
1287 	if (unlikely(err && err != -ENOMEM)) {
1288 		/*
1289 		 * Set page error if there is only one ntfs record in the page.
1290 		 * Otherwise we would loose per-record granularity.
1291 		 */
1292 		if (ni->itype.index.block_size == PAGE_CACHE_SIZE)
1293 			SetPageError(page);
1294 		NVolSetErrors(vol);
1295 	}
1296 	if (page_is_dirty) {
1297 		ntfs_debug("Page still contains one or more dirty ntfs "
1298 				"records.  Redirtying the page starting at "
1299 				"record 0x%lx.", page->index <<
1300 				(PAGE_CACHE_SHIFT - rec_size_bits));
1301 		redirty_page_for_writepage(wbc, page);
1302 		unlock_page(page);
1303 	} else {
1304 		/*
1305 		 * Keep the VM happy.  This must be done otherwise the
1306 		 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1307 		 * the page is clean.
1308 		 */
1309 		BUG_ON(PageWriteback(page));
1310 		set_page_writeback(page);
1311 		unlock_page(page);
1312 		end_page_writeback(page);
1313 	}
1314 	if (likely(!err))
1315 		ntfs_debug("Done.");
1316 	return err;
1317 }
1318 
1319 /**
1320  * ntfs_writepage - write a @page to the backing store
1321  * @page:	page cache page to write out
1322  * @wbc:	writeback control structure
1323  *
1324  * This is called from the VM when it wants to have a dirty ntfs page cache
1325  * page cleaned.  The VM has already locked the page and marked it clean.
1326  *
1327  * For non-resident attributes, ntfs_writepage() writes the @page by calling
1328  * the ntfs version of the generic block_write_full_page() function,
1329  * ntfs_write_block(), which in turn if necessary creates and writes the
1330  * buffers associated with the page asynchronously.
1331  *
1332  * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1333  * the data to the mft record (which at this stage is most likely in memory).
1334  * The mft record is then marked dirty and written out asynchronously via the
1335  * vfs inode dirty code path for the inode the mft record belongs to or via the
1336  * vm page dirty code path for the page the mft record is in.
1337  *
1338  * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1339  *
1340  * Return 0 on success and -errno on error.
1341  */
1342 static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
1343 {
1344 	loff_t i_size;
1345 	struct inode *vi = page->mapping->host;
1346 	ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1347 	char *kaddr;
1348 	ntfs_attr_search_ctx *ctx = NULL;
1349 	MFT_RECORD *m = NULL;
1350 	u32 attr_len;
1351 	int err;
1352 
1353 retry_writepage:
1354 	BUG_ON(!PageLocked(page));
1355 	i_size = i_size_read(vi);
1356 	/* Is the page fully outside i_size? (truncate in progress) */
1357 	if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >>
1358 			PAGE_CACHE_SHIFT)) {
1359 		/*
1360 		 * The page may have dirty, unmapped buffers.  Make them
1361 		 * freeable here, so the page does not leak.
1362 		 */
1363 		block_invalidatepage(page, 0);
1364 		unlock_page(page);
1365 		ntfs_debug("Write outside i_size - truncated?");
1366 		return 0;
1367 	}
1368 	/*
1369 	 * Only $DATA attributes can be encrypted and only unnamed $DATA
1370 	 * attributes can be compressed.  Index root can have the flags set but
1371 	 * this means to create compressed/encrypted files, not that the
1372 	 * attribute is compressed/encrypted.  Note we need to check for
1373 	 * AT_INDEX_ALLOCATION since this is the type of both directory and
1374 	 * index inodes.
1375 	 */
1376 	if (ni->type != AT_INDEX_ALLOCATION) {
1377 		/* If file is encrypted, deny access, just like NT4. */
1378 		if (NInoEncrypted(ni)) {
1379 			unlock_page(page);
1380 			BUG_ON(ni->type != AT_DATA);
1381 			ntfs_debug("Denying write access to encrypted file.");
1382 			return -EACCES;
1383 		}
1384 		/* Compressed data streams are handled in compress.c. */
1385 		if (NInoNonResident(ni) && NInoCompressed(ni)) {
1386 			BUG_ON(ni->type != AT_DATA);
1387 			BUG_ON(ni->name_len);
1388 			// TODO: Implement and replace this with
1389 			// return ntfs_write_compressed_block(page);
1390 			unlock_page(page);
1391 			ntfs_error(vi->i_sb, "Writing to compressed files is "
1392 					"not supported yet.  Sorry.");
1393 			return -EOPNOTSUPP;
1394 		}
1395 		// TODO: Implement and remove this check.
1396 		if (NInoNonResident(ni) && NInoSparse(ni)) {
1397 			unlock_page(page);
1398 			ntfs_error(vi->i_sb, "Writing to sparse files is not "
1399 					"supported yet.  Sorry.");
1400 			return -EOPNOTSUPP;
1401 		}
1402 	}
1403 	/* NInoNonResident() == NInoIndexAllocPresent() */
1404 	if (NInoNonResident(ni)) {
1405 		/* We have to zero every time due to mmap-at-end-of-file. */
1406 		if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) {
1407 			/* The page straddles i_size. */
1408 			unsigned int ofs = i_size & ~PAGE_CACHE_MASK;
1409 			zero_user_page(page, ofs, PAGE_CACHE_SIZE - ofs,
1410 					KM_USER0);
1411 		}
1412 		/* Handle mst protected attributes. */
1413 		if (NInoMstProtected(ni))
1414 			return ntfs_write_mst_block(page, wbc);
1415 		/* Normal, non-resident data stream. */
1416 		return ntfs_write_block(page, wbc);
1417 	}
1418 	/*
1419 	 * Attribute is resident, implying it is not compressed, encrypted, or
1420 	 * mst protected.  This also means the attribute is smaller than an mft
1421 	 * record and hence smaller than a page, so can simply return error on
1422 	 * any pages with index above 0.  Note the attribute can actually be
1423 	 * marked compressed but if it is resident the actual data is not
1424 	 * compressed so we are ok to ignore the compressed flag here.
1425 	 */
1426 	BUG_ON(page_has_buffers(page));
1427 	BUG_ON(!PageUptodate(page));
1428 	if (unlikely(page->index > 0)) {
1429 		ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0.  "
1430 				"Aborting write.", page->index);
1431 		BUG_ON(PageWriteback(page));
1432 		set_page_writeback(page);
1433 		unlock_page(page);
1434 		end_page_writeback(page);
1435 		return -EIO;
1436 	}
1437 	if (!NInoAttr(ni))
1438 		base_ni = ni;
1439 	else
1440 		base_ni = ni->ext.base_ntfs_ino;
1441 	/* Map, pin, and lock the mft record. */
1442 	m = map_mft_record(base_ni);
1443 	if (IS_ERR(m)) {
1444 		err = PTR_ERR(m);
1445 		m = NULL;
1446 		ctx = NULL;
1447 		goto err_out;
1448 	}
1449 	/*
1450 	 * If a parallel write made the attribute non-resident, drop the mft
1451 	 * record and retry the writepage.
1452 	 */
1453 	if (unlikely(NInoNonResident(ni))) {
1454 		unmap_mft_record(base_ni);
1455 		goto retry_writepage;
1456 	}
1457 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1458 	if (unlikely(!ctx)) {
1459 		err = -ENOMEM;
1460 		goto err_out;
1461 	}
1462 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1463 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1464 	if (unlikely(err))
1465 		goto err_out;
1466 	/*
1467 	 * Keep the VM happy.  This must be done otherwise the radix-tree tag
1468 	 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1469 	 */
1470 	BUG_ON(PageWriteback(page));
1471 	set_page_writeback(page);
1472 	unlock_page(page);
1473 	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
1474 	i_size = i_size_read(vi);
1475 	if (unlikely(attr_len > i_size)) {
1476 		/* Race with shrinking truncate or a failed truncate. */
1477 		attr_len = i_size;
1478 		/*
1479 		 * If the truncate failed, fix it up now.  If a concurrent
1480 		 * truncate, we do its job, so it does not have to do anything.
1481 		 */
1482 		err = ntfs_resident_attr_value_resize(ctx->mrec, ctx->attr,
1483 				attr_len);
1484 		/* Shrinking cannot fail. */
1485 		BUG_ON(err);
1486 	}
1487 	kaddr = kmap_atomic(page, KM_USER0);
1488 	/* Copy the data from the page to the mft record. */
1489 	memcpy((u8*)ctx->attr +
1490 			le16_to_cpu(ctx->attr->data.resident.value_offset),
1491 			kaddr, attr_len);
1492 	/* Zero out of bounds area in the page cache page. */
1493 	memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1494 	kunmap_atomic(kaddr, KM_USER0);
1495 	flush_dcache_page(page);
1496 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1497 	/* We are done with the page. */
1498 	end_page_writeback(page);
1499 	/* Finally, mark the mft record dirty, so it gets written back. */
1500 	mark_mft_record_dirty(ctx->ntfs_ino);
1501 	ntfs_attr_put_search_ctx(ctx);
1502 	unmap_mft_record(base_ni);
1503 	return 0;
1504 err_out:
1505 	if (err == -ENOMEM) {
1506 		ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
1507 				"page so we try again later.");
1508 		/*
1509 		 * Put the page back on mapping->dirty_pages, but leave its
1510 		 * buffers' dirty state as-is.
1511 		 */
1512 		redirty_page_for_writepage(wbc, page);
1513 		err = 0;
1514 	} else {
1515 		ntfs_error(vi->i_sb, "Resident attribute write failed with "
1516 				"error %i.", err);
1517 		SetPageError(page);
1518 		NVolSetErrors(ni->vol);
1519 	}
1520 	unlock_page(page);
1521 	if (ctx)
1522 		ntfs_attr_put_search_ctx(ctx);
1523 	if (m)
1524 		unmap_mft_record(base_ni);
1525 	return err;
1526 }
1527 
1528 #endif	/* NTFS_RW */
1529 
1530 /**
1531  * ntfs_aops - general address space operations for inodes and attributes
1532  */
1533 const struct address_space_operations ntfs_aops = {
1534 	.readpage	= ntfs_readpage,	/* Fill page with data. */
1535 	.sync_page	= block_sync_page,	/* Currently, just unplugs the
1536 						   disk request queue. */
1537 #ifdef NTFS_RW
1538 	.writepage	= ntfs_writepage,	/* Write dirty page to disk. */
1539 #endif /* NTFS_RW */
1540 	.migratepage	= buffer_migrate_page,	/* Move a page cache page from
1541 						   one physical page to an
1542 						   other. */
1543 };
1544 
1545 /**
1546  * ntfs_mst_aops - general address space operations for mst protecteed inodes
1547  *		   and attributes
1548  */
1549 const struct address_space_operations ntfs_mst_aops = {
1550 	.readpage	= ntfs_readpage,	/* Fill page with data. */
1551 	.sync_page	= block_sync_page,	/* Currently, just unplugs the
1552 						   disk request queue. */
1553 #ifdef NTFS_RW
1554 	.writepage	= ntfs_writepage,	/* Write dirty page to disk. */
1555 	.set_page_dirty	= __set_page_dirty_nobuffers,	/* Set the page dirty
1556 						   without touching the buffers
1557 						   belonging to the page. */
1558 #endif /* NTFS_RW */
1559 	.migratepage	= buffer_migrate_page,	/* Move a page cache page from
1560 						   one physical page to an
1561 						   other. */
1562 };
1563 
1564 #ifdef NTFS_RW
1565 
1566 /**
1567  * mark_ntfs_record_dirty - mark an ntfs record dirty
1568  * @page:	page containing the ntfs record to mark dirty
1569  * @ofs:	byte offset within @page at which the ntfs record begins
1570  *
1571  * Set the buffers and the page in which the ntfs record is located dirty.
1572  *
1573  * The latter also marks the vfs inode the ntfs record belongs to dirty
1574  * (I_DIRTY_PAGES only).
1575  *
1576  * If the page does not have buffers, we create them and set them uptodate.
1577  * The page may not be locked which is why we need to handle the buffers under
1578  * the mapping->private_lock.  Once the buffers are marked dirty we no longer
1579  * need the lock since try_to_free_buffers() does not free dirty buffers.
1580  */
1581 void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
1582 	struct address_space *mapping = page->mapping;
1583 	ntfs_inode *ni = NTFS_I(mapping->host);
1584 	struct buffer_head *bh, *head, *buffers_to_free = NULL;
1585 	unsigned int end, bh_size, bh_ofs;
1586 
1587 	BUG_ON(!PageUptodate(page));
1588 	end = ofs + ni->itype.index.block_size;
1589 	bh_size = VFS_I(ni)->i_sb->s_blocksize;
1590 	spin_lock(&mapping->private_lock);
1591 	if (unlikely(!page_has_buffers(page))) {
1592 		spin_unlock(&mapping->private_lock);
1593 		bh = head = alloc_page_buffers(page, bh_size, 1);
1594 		spin_lock(&mapping->private_lock);
1595 		if (likely(!page_has_buffers(page))) {
1596 			struct buffer_head *tail;
1597 
1598 			do {
1599 				set_buffer_uptodate(bh);
1600 				tail = bh;
1601 				bh = bh->b_this_page;
1602 			} while (bh);
1603 			tail->b_this_page = head;
1604 			attach_page_buffers(page, head);
1605 		} else
1606 			buffers_to_free = bh;
1607 	}
1608 	bh = head = page_buffers(page);
1609 	BUG_ON(!bh);
1610 	do {
1611 		bh_ofs = bh_offset(bh);
1612 		if (bh_ofs + bh_size <= ofs)
1613 			continue;
1614 		if (unlikely(bh_ofs >= end))
1615 			break;
1616 		set_buffer_dirty(bh);
1617 	} while ((bh = bh->b_this_page) != head);
1618 	spin_unlock(&mapping->private_lock);
1619 	__set_page_dirty_nobuffers(page);
1620 	if (unlikely(buffers_to_free)) {
1621 		do {
1622 			bh = buffers_to_free->b_this_page;
1623 			free_buffer_head(buffers_to_free);
1624 			buffers_to_free = bh;
1625 		} while (buffers_to_free);
1626 	}
1627 }
1628 
1629 #endif /* NTFS_RW */
1630