1 /** 2 * aops.c - NTFS kernel address space operations and page cache handling. 3 * Part of the Linux-NTFS project. 4 * 5 * Copyright (c) 2001-2006 Anton Altaparmakov 6 * Copyright (c) 2002 Richard Russon 7 * 8 * This program/include file is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as published 10 * by the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program/include file is distributed in the hope that it will be 14 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program (in the main directory of the Linux-NTFS 20 * distribution in the file COPYING); if not, write to the Free Software 21 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 */ 23 24 #include <linux/errno.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/pagemap.h> 28 #include <linux/swap.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/bit_spinlock.h> 32 33 #include "aops.h" 34 #include "attrib.h" 35 #include "debug.h" 36 #include "inode.h" 37 #include "mft.h" 38 #include "runlist.h" 39 #include "types.h" 40 #include "ntfs.h" 41 42 /** 43 * ntfs_end_buffer_async_read - async io completion for reading attributes 44 * @bh: buffer head on which io is completed 45 * @uptodate: whether @bh is now uptodate or not 46 * 47 * Asynchronous I/O completion handler for reading pages belonging to the 48 * attribute address space of an inode. The inodes can either be files or 49 * directories or they can be fake inodes describing some attribute. 50 * 51 * If NInoMstProtected(), perform the post read mst fixups when all IO on the 52 * page has been completed and mark the page uptodate or set the error bit on 53 * the page. To determine the size of the records that need fixing up, we 54 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs 55 * record size, and index_block_size_bits, to the log(base 2) of the ntfs 56 * record size. 57 */ 58 static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate) 59 { 60 unsigned long flags; 61 struct buffer_head *first, *tmp; 62 struct page *page; 63 struct inode *vi; 64 ntfs_inode *ni; 65 int page_uptodate = 1; 66 67 page = bh->b_page; 68 vi = page->mapping->host; 69 ni = NTFS_I(vi); 70 71 if (likely(uptodate)) { 72 loff_t i_size; 73 s64 file_ofs, init_size; 74 75 set_buffer_uptodate(bh); 76 77 file_ofs = ((s64)page->index << PAGE_CACHE_SHIFT) + 78 bh_offset(bh); 79 read_lock_irqsave(&ni->size_lock, flags); 80 init_size = ni->initialized_size; 81 i_size = i_size_read(vi); 82 read_unlock_irqrestore(&ni->size_lock, flags); 83 if (unlikely(init_size > i_size)) { 84 /* Race with shrinking truncate. */ 85 init_size = i_size; 86 } 87 /* Check for the current buffer head overflowing. */ 88 if (unlikely(file_ofs + bh->b_size > init_size)) { 89 int ofs; 90 91 ofs = 0; 92 if (file_ofs < init_size) 93 ofs = init_size - file_ofs; 94 local_irq_save(flags); 95 zero_user_page(page, bh_offset(bh) + ofs, 96 bh->b_size - ofs, KM_BIO_SRC_IRQ); 97 local_irq_restore(flags); 98 } 99 } else { 100 clear_buffer_uptodate(bh); 101 SetPageError(page); 102 ntfs_error(ni->vol->sb, "Buffer I/O error, logical block " 103 "0x%llx.", (unsigned long long)bh->b_blocknr); 104 } 105 first = page_buffers(page); 106 local_irq_save(flags); 107 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 108 clear_buffer_async_read(bh); 109 unlock_buffer(bh); 110 tmp = bh; 111 do { 112 if (!buffer_uptodate(tmp)) 113 page_uptodate = 0; 114 if (buffer_async_read(tmp)) { 115 if (likely(buffer_locked(tmp))) 116 goto still_busy; 117 /* Async buffers must be locked. */ 118 BUG(); 119 } 120 tmp = tmp->b_this_page; 121 } while (tmp != bh); 122 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 123 local_irq_restore(flags); 124 /* 125 * If none of the buffers had errors then we can set the page uptodate, 126 * but we first have to perform the post read mst fixups, if the 127 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true. 128 * Note we ignore fixup errors as those are detected when 129 * map_mft_record() is called which gives us per record granularity 130 * rather than per page granularity. 131 */ 132 if (!NInoMstProtected(ni)) { 133 if (likely(page_uptodate && !PageError(page))) 134 SetPageUptodate(page); 135 } else { 136 u8 *kaddr; 137 unsigned int i, recs; 138 u32 rec_size; 139 140 rec_size = ni->itype.index.block_size; 141 recs = PAGE_CACHE_SIZE / rec_size; 142 /* Should have been verified before we got here... */ 143 BUG_ON(!recs); 144 local_irq_save(flags); 145 kaddr = kmap_atomic(page, KM_BIO_SRC_IRQ); 146 for (i = 0; i < recs; i++) 147 post_read_mst_fixup((NTFS_RECORD*)(kaddr + 148 i * rec_size), rec_size); 149 kunmap_atomic(kaddr, KM_BIO_SRC_IRQ); 150 local_irq_restore(flags); 151 flush_dcache_page(page); 152 if (likely(page_uptodate && !PageError(page))) 153 SetPageUptodate(page); 154 } 155 unlock_page(page); 156 return; 157 still_busy: 158 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 159 local_irq_restore(flags); 160 return; 161 } 162 163 /** 164 * ntfs_read_block - fill a @page of an address space with data 165 * @page: page cache page to fill with data 166 * 167 * Fill the page @page of the address space belonging to the @page->host inode. 168 * We read each buffer asynchronously and when all buffers are read in, our io 169 * completion handler ntfs_end_buffer_read_async(), if required, automatically 170 * applies the mst fixups to the page before finally marking it uptodate and 171 * unlocking it. 172 * 173 * We only enforce allocated_size limit because i_size is checked for in 174 * generic_file_read(). 175 * 176 * Return 0 on success and -errno on error. 177 * 178 * Contains an adapted version of fs/buffer.c::block_read_full_page(). 179 */ 180 static int ntfs_read_block(struct page *page) 181 { 182 loff_t i_size; 183 VCN vcn; 184 LCN lcn; 185 s64 init_size; 186 struct inode *vi; 187 ntfs_inode *ni; 188 ntfs_volume *vol; 189 runlist_element *rl; 190 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 191 sector_t iblock, lblock, zblock; 192 unsigned long flags; 193 unsigned int blocksize, vcn_ofs; 194 int i, nr; 195 unsigned char blocksize_bits; 196 197 vi = page->mapping->host; 198 ni = NTFS_I(vi); 199 vol = ni->vol; 200 201 /* $MFT/$DATA must have its complete runlist in memory at all times. */ 202 BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni)); 203 204 blocksize = vol->sb->s_blocksize; 205 blocksize_bits = vol->sb->s_blocksize_bits; 206 207 if (!page_has_buffers(page)) { 208 create_empty_buffers(page, blocksize, 0); 209 if (unlikely(!page_has_buffers(page))) { 210 unlock_page(page); 211 return -ENOMEM; 212 } 213 } 214 bh = head = page_buffers(page); 215 BUG_ON(!bh); 216 217 /* 218 * We may be racing with truncate. To avoid some of the problems we 219 * now take a snapshot of the various sizes and use those for the whole 220 * of the function. In case of an extending truncate it just means we 221 * may leave some buffers unmapped which are now allocated. This is 222 * not a problem since these buffers will just get mapped when a write 223 * occurs. In case of a shrinking truncate, we will detect this later 224 * on due to the runlist being incomplete and if the page is being 225 * fully truncated, truncate will throw it away as soon as we unlock 226 * it so no need to worry what we do with it. 227 */ 228 iblock = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits); 229 read_lock_irqsave(&ni->size_lock, flags); 230 lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits; 231 init_size = ni->initialized_size; 232 i_size = i_size_read(vi); 233 read_unlock_irqrestore(&ni->size_lock, flags); 234 if (unlikely(init_size > i_size)) { 235 /* Race with shrinking truncate. */ 236 init_size = i_size; 237 } 238 zblock = (init_size + blocksize - 1) >> blocksize_bits; 239 240 /* Loop through all the buffers in the page. */ 241 rl = NULL; 242 nr = i = 0; 243 do { 244 int err = 0; 245 246 if (unlikely(buffer_uptodate(bh))) 247 continue; 248 if (unlikely(buffer_mapped(bh))) { 249 arr[nr++] = bh; 250 continue; 251 } 252 bh->b_bdev = vol->sb->s_bdev; 253 /* Is the block within the allowed limits? */ 254 if (iblock < lblock) { 255 bool is_retry = false; 256 257 /* Convert iblock into corresponding vcn and offset. */ 258 vcn = (VCN)iblock << blocksize_bits >> 259 vol->cluster_size_bits; 260 vcn_ofs = ((VCN)iblock << blocksize_bits) & 261 vol->cluster_size_mask; 262 if (!rl) { 263 lock_retry_remap: 264 down_read(&ni->runlist.lock); 265 rl = ni->runlist.rl; 266 } 267 if (likely(rl != NULL)) { 268 /* Seek to element containing target vcn. */ 269 while (rl->length && rl[1].vcn <= vcn) 270 rl++; 271 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 272 } else 273 lcn = LCN_RL_NOT_MAPPED; 274 /* Successful remap. */ 275 if (lcn >= 0) { 276 /* Setup buffer head to correct block. */ 277 bh->b_blocknr = ((lcn << vol->cluster_size_bits) 278 + vcn_ofs) >> blocksize_bits; 279 set_buffer_mapped(bh); 280 /* Only read initialized data blocks. */ 281 if (iblock < zblock) { 282 arr[nr++] = bh; 283 continue; 284 } 285 /* Fully non-initialized data block, zero it. */ 286 goto handle_zblock; 287 } 288 /* It is a hole, need to zero it. */ 289 if (lcn == LCN_HOLE) 290 goto handle_hole; 291 /* If first try and runlist unmapped, map and retry. */ 292 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) { 293 is_retry = true; 294 /* 295 * Attempt to map runlist, dropping lock for 296 * the duration. 297 */ 298 up_read(&ni->runlist.lock); 299 err = ntfs_map_runlist(ni, vcn); 300 if (likely(!err)) 301 goto lock_retry_remap; 302 rl = NULL; 303 } else if (!rl) 304 up_read(&ni->runlist.lock); 305 /* 306 * If buffer is outside the runlist, treat it as a 307 * hole. This can happen due to concurrent truncate 308 * for example. 309 */ 310 if (err == -ENOENT || lcn == LCN_ENOENT) { 311 err = 0; 312 goto handle_hole; 313 } 314 /* Hard error, zero out region. */ 315 if (!err) 316 err = -EIO; 317 bh->b_blocknr = -1; 318 SetPageError(page); 319 ntfs_error(vol->sb, "Failed to read from inode 0x%lx, " 320 "attribute type 0x%x, vcn 0x%llx, " 321 "offset 0x%x because its location on " 322 "disk could not be determined%s " 323 "(error code %i).", ni->mft_no, 324 ni->type, (unsigned long long)vcn, 325 vcn_ofs, is_retry ? " even after " 326 "retrying" : "", err); 327 } 328 /* 329 * Either iblock was outside lblock limits or 330 * ntfs_rl_vcn_to_lcn() returned error. Just zero that portion 331 * of the page and set the buffer uptodate. 332 */ 333 handle_hole: 334 bh->b_blocknr = -1UL; 335 clear_buffer_mapped(bh); 336 handle_zblock: 337 zero_user_page(page, i * blocksize, blocksize, KM_USER0); 338 if (likely(!err)) 339 set_buffer_uptodate(bh); 340 } while (i++, iblock++, (bh = bh->b_this_page) != head); 341 342 /* Release the lock if we took it. */ 343 if (rl) 344 up_read(&ni->runlist.lock); 345 346 /* Check we have at least one buffer ready for i/o. */ 347 if (nr) { 348 struct buffer_head *tbh; 349 350 /* Lock the buffers. */ 351 for (i = 0; i < nr; i++) { 352 tbh = arr[i]; 353 lock_buffer(tbh); 354 tbh->b_end_io = ntfs_end_buffer_async_read; 355 set_buffer_async_read(tbh); 356 } 357 /* Finally, start i/o on the buffers. */ 358 for (i = 0; i < nr; i++) { 359 tbh = arr[i]; 360 if (likely(!buffer_uptodate(tbh))) 361 submit_bh(READ, tbh); 362 else 363 ntfs_end_buffer_async_read(tbh, 1); 364 } 365 return 0; 366 } 367 /* No i/o was scheduled on any of the buffers. */ 368 if (likely(!PageError(page))) 369 SetPageUptodate(page); 370 else /* Signal synchronous i/o error. */ 371 nr = -EIO; 372 unlock_page(page); 373 return nr; 374 } 375 376 /** 377 * ntfs_readpage - fill a @page of a @file with data from the device 378 * @file: open file to which the page @page belongs or NULL 379 * @page: page cache page to fill with data 380 * 381 * For non-resident attributes, ntfs_readpage() fills the @page of the open 382 * file @file by calling the ntfs version of the generic block_read_full_page() 383 * function, ntfs_read_block(), which in turn creates and reads in the buffers 384 * associated with the page asynchronously. 385 * 386 * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the 387 * data from the mft record (which at this stage is most likely in memory) and 388 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as 389 * even if the mft record is not cached at this point in time, we need to wait 390 * for it to be read in before we can do the copy. 391 * 392 * Return 0 on success and -errno on error. 393 */ 394 static int ntfs_readpage(struct file *file, struct page *page) 395 { 396 loff_t i_size; 397 struct inode *vi; 398 ntfs_inode *ni, *base_ni; 399 u8 *kaddr; 400 ntfs_attr_search_ctx *ctx; 401 MFT_RECORD *mrec; 402 unsigned long flags; 403 u32 attr_len; 404 int err = 0; 405 406 retry_readpage: 407 BUG_ON(!PageLocked(page)); 408 /* 409 * This can potentially happen because we clear PageUptodate() during 410 * ntfs_writepage() of MstProtected() attributes. 411 */ 412 if (PageUptodate(page)) { 413 unlock_page(page); 414 return 0; 415 } 416 vi = page->mapping->host; 417 ni = NTFS_I(vi); 418 /* 419 * Only $DATA attributes can be encrypted and only unnamed $DATA 420 * attributes can be compressed. Index root can have the flags set but 421 * this means to create compressed/encrypted files, not that the 422 * attribute is compressed/encrypted. Note we need to check for 423 * AT_INDEX_ALLOCATION since this is the type of both directory and 424 * index inodes. 425 */ 426 if (ni->type != AT_INDEX_ALLOCATION) { 427 /* If attribute is encrypted, deny access, just like NT4. */ 428 if (NInoEncrypted(ni)) { 429 BUG_ON(ni->type != AT_DATA); 430 err = -EACCES; 431 goto err_out; 432 } 433 /* Compressed data streams are handled in compress.c. */ 434 if (NInoNonResident(ni) && NInoCompressed(ni)) { 435 BUG_ON(ni->type != AT_DATA); 436 BUG_ON(ni->name_len); 437 return ntfs_read_compressed_block(page); 438 } 439 } 440 /* NInoNonResident() == NInoIndexAllocPresent() */ 441 if (NInoNonResident(ni)) { 442 /* Normal, non-resident data stream. */ 443 return ntfs_read_block(page); 444 } 445 /* 446 * Attribute is resident, implying it is not compressed or encrypted. 447 * This also means the attribute is smaller than an mft record and 448 * hence smaller than a page, so can simply zero out any pages with 449 * index above 0. Note the attribute can actually be marked compressed 450 * but if it is resident the actual data is not compressed so we are 451 * ok to ignore the compressed flag here. 452 */ 453 if (unlikely(page->index > 0)) { 454 zero_user_page(page, 0, PAGE_CACHE_SIZE, KM_USER0); 455 goto done; 456 } 457 if (!NInoAttr(ni)) 458 base_ni = ni; 459 else 460 base_ni = ni->ext.base_ntfs_ino; 461 /* Map, pin, and lock the mft record. */ 462 mrec = map_mft_record(base_ni); 463 if (IS_ERR(mrec)) { 464 err = PTR_ERR(mrec); 465 goto err_out; 466 } 467 /* 468 * If a parallel write made the attribute non-resident, drop the mft 469 * record and retry the readpage. 470 */ 471 if (unlikely(NInoNonResident(ni))) { 472 unmap_mft_record(base_ni); 473 goto retry_readpage; 474 } 475 ctx = ntfs_attr_get_search_ctx(base_ni, mrec); 476 if (unlikely(!ctx)) { 477 err = -ENOMEM; 478 goto unm_err_out; 479 } 480 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 481 CASE_SENSITIVE, 0, NULL, 0, ctx); 482 if (unlikely(err)) 483 goto put_unm_err_out; 484 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length); 485 read_lock_irqsave(&ni->size_lock, flags); 486 if (unlikely(attr_len > ni->initialized_size)) 487 attr_len = ni->initialized_size; 488 i_size = i_size_read(vi); 489 read_unlock_irqrestore(&ni->size_lock, flags); 490 if (unlikely(attr_len > i_size)) { 491 /* Race with shrinking truncate. */ 492 attr_len = i_size; 493 } 494 kaddr = kmap_atomic(page, KM_USER0); 495 /* Copy the data to the page. */ 496 memcpy(kaddr, (u8*)ctx->attr + 497 le16_to_cpu(ctx->attr->data.resident.value_offset), 498 attr_len); 499 /* Zero the remainder of the page. */ 500 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); 501 flush_dcache_page(page); 502 kunmap_atomic(kaddr, KM_USER0); 503 put_unm_err_out: 504 ntfs_attr_put_search_ctx(ctx); 505 unm_err_out: 506 unmap_mft_record(base_ni); 507 done: 508 SetPageUptodate(page); 509 err_out: 510 unlock_page(page); 511 return err; 512 } 513 514 #ifdef NTFS_RW 515 516 /** 517 * ntfs_write_block - write a @page to the backing store 518 * @page: page cache page to write out 519 * @wbc: writeback control structure 520 * 521 * This function is for writing pages belonging to non-resident, non-mst 522 * protected attributes to their backing store. 523 * 524 * For a page with buffers, map and write the dirty buffers asynchronously 525 * under page writeback. For a page without buffers, create buffers for the 526 * page, then proceed as above. 527 * 528 * If a page doesn't have buffers the page dirty state is definitive. If a page 529 * does have buffers, the page dirty state is just a hint, and the buffer dirty 530 * state is definitive. (A hint which has rules: dirty buffers against a clean 531 * page is illegal. Other combinations are legal and need to be handled. In 532 * particular a dirty page containing clean buffers for example.) 533 * 534 * Return 0 on success and -errno on error. 535 * 536 * Based on ntfs_read_block() and __block_write_full_page(). 537 */ 538 static int ntfs_write_block(struct page *page, struct writeback_control *wbc) 539 { 540 VCN vcn; 541 LCN lcn; 542 s64 initialized_size; 543 loff_t i_size; 544 sector_t block, dblock, iblock; 545 struct inode *vi; 546 ntfs_inode *ni; 547 ntfs_volume *vol; 548 runlist_element *rl; 549 struct buffer_head *bh, *head; 550 unsigned long flags; 551 unsigned int blocksize, vcn_ofs; 552 int err; 553 bool need_end_writeback; 554 unsigned char blocksize_bits; 555 556 vi = page->mapping->host; 557 ni = NTFS_I(vi); 558 vol = ni->vol; 559 560 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " 561 "0x%lx.", ni->mft_no, ni->type, page->index); 562 563 BUG_ON(!NInoNonResident(ni)); 564 BUG_ON(NInoMstProtected(ni)); 565 blocksize = vol->sb->s_blocksize; 566 blocksize_bits = vol->sb->s_blocksize_bits; 567 if (!page_has_buffers(page)) { 568 BUG_ON(!PageUptodate(page)); 569 create_empty_buffers(page, blocksize, 570 (1 << BH_Uptodate) | (1 << BH_Dirty)); 571 if (unlikely(!page_has_buffers(page))) { 572 ntfs_warning(vol->sb, "Error allocating page " 573 "buffers. Redirtying page so we try " 574 "again later."); 575 /* 576 * Put the page back on mapping->dirty_pages, but leave 577 * its buffers' dirty state as-is. 578 */ 579 redirty_page_for_writepage(wbc, page); 580 unlock_page(page); 581 return 0; 582 } 583 } 584 bh = head = page_buffers(page); 585 BUG_ON(!bh); 586 587 /* NOTE: Different naming scheme to ntfs_read_block()! */ 588 589 /* The first block in the page. */ 590 block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits); 591 592 read_lock_irqsave(&ni->size_lock, flags); 593 i_size = i_size_read(vi); 594 initialized_size = ni->initialized_size; 595 read_unlock_irqrestore(&ni->size_lock, flags); 596 597 /* The first out of bounds block for the data size. */ 598 dblock = (i_size + blocksize - 1) >> blocksize_bits; 599 600 /* The last (fully or partially) initialized block. */ 601 iblock = initialized_size >> blocksize_bits; 602 603 /* 604 * Be very careful. We have no exclusion from __set_page_dirty_buffers 605 * here, and the (potentially unmapped) buffers may become dirty at 606 * any time. If a buffer becomes dirty here after we've inspected it 607 * then we just miss that fact, and the page stays dirty. 608 * 609 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 610 * handle that here by just cleaning them. 611 */ 612 613 /* 614 * Loop through all the buffers in the page, mapping all the dirty 615 * buffers to disk addresses and handling any aliases from the 616 * underlying block device's mapping. 617 */ 618 rl = NULL; 619 err = 0; 620 do { 621 bool is_retry = false; 622 623 if (unlikely(block >= dblock)) { 624 /* 625 * Mapped buffers outside i_size will occur, because 626 * this page can be outside i_size when there is a 627 * truncate in progress. The contents of such buffers 628 * were zeroed by ntfs_writepage(). 629 * 630 * FIXME: What about the small race window where 631 * ntfs_writepage() has not done any clearing because 632 * the page was within i_size but before we get here, 633 * vmtruncate() modifies i_size? 634 */ 635 clear_buffer_dirty(bh); 636 set_buffer_uptodate(bh); 637 continue; 638 } 639 640 /* Clean buffers are not written out, so no need to map them. */ 641 if (!buffer_dirty(bh)) 642 continue; 643 644 /* Make sure we have enough initialized size. */ 645 if (unlikely((block >= iblock) && 646 (initialized_size < i_size))) { 647 /* 648 * If this page is fully outside initialized size, zero 649 * out all pages between the current initialized size 650 * and the current page. Just use ntfs_readpage() to do 651 * the zeroing transparently. 652 */ 653 if (block > iblock) { 654 // TODO: 655 // For each page do: 656 // - read_cache_page() 657 // Again for each page do: 658 // - wait_on_page_locked() 659 // - Check (PageUptodate(page) && 660 // !PageError(page)) 661 // Update initialized size in the attribute and 662 // in the inode. 663 // Again, for each page do: 664 // __set_page_dirty_buffers(); 665 // page_cache_release() 666 // We don't need to wait on the writes. 667 // Update iblock. 668 } 669 /* 670 * The current page straddles initialized size. Zero 671 * all non-uptodate buffers and set them uptodate (and 672 * dirty?). Note, there aren't any non-uptodate buffers 673 * if the page is uptodate. 674 * FIXME: For an uptodate page, the buffers may need to 675 * be written out because they were not initialized on 676 * disk before. 677 */ 678 if (!PageUptodate(page)) { 679 // TODO: 680 // Zero any non-uptodate buffers up to i_size. 681 // Set them uptodate and dirty. 682 } 683 // TODO: 684 // Update initialized size in the attribute and in the 685 // inode (up to i_size). 686 // Update iblock. 687 // FIXME: This is inefficient. Try to batch the two 688 // size changes to happen in one go. 689 ntfs_error(vol->sb, "Writing beyond initialized size " 690 "is not supported yet. Sorry."); 691 err = -EOPNOTSUPP; 692 break; 693 // Do NOT set_buffer_new() BUT DO clear buffer range 694 // outside write request range. 695 // set_buffer_uptodate() on complete buffers as well as 696 // set_buffer_dirty(). 697 } 698 699 /* No need to map buffers that are already mapped. */ 700 if (buffer_mapped(bh)) 701 continue; 702 703 /* Unmapped, dirty buffer. Need to map it. */ 704 bh->b_bdev = vol->sb->s_bdev; 705 706 /* Convert block into corresponding vcn and offset. */ 707 vcn = (VCN)block << blocksize_bits; 708 vcn_ofs = vcn & vol->cluster_size_mask; 709 vcn >>= vol->cluster_size_bits; 710 if (!rl) { 711 lock_retry_remap: 712 down_read(&ni->runlist.lock); 713 rl = ni->runlist.rl; 714 } 715 if (likely(rl != NULL)) { 716 /* Seek to element containing target vcn. */ 717 while (rl->length && rl[1].vcn <= vcn) 718 rl++; 719 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 720 } else 721 lcn = LCN_RL_NOT_MAPPED; 722 /* Successful remap. */ 723 if (lcn >= 0) { 724 /* Setup buffer head to point to correct block. */ 725 bh->b_blocknr = ((lcn << vol->cluster_size_bits) + 726 vcn_ofs) >> blocksize_bits; 727 set_buffer_mapped(bh); 728 continue; 729 } 730 /* It is a hole, need to instantiate it. */ 731 if (lcn == LCN_HOLE) { 732 u8 *kaddr; 733 unsigned long *bpos, *bend; 734 735 /* Check if the buffer is zero. */ 736 kaddr = kmap_atomic(page, KM_USER0); 737 bpos = (unsigned long *)(kaddr + bh_offset(bh)); 738 bend = (unsigned long *)((u8*)bpos + blocksize); 739 do { 740 if (unlikely(*bpos)) 741 break; 742 } while (likely(++bpos < bend)); 743 kunmap_atomic(kaddr, KM_USER0); 744 if (bpos == bend) { 745 /* 746 * Buffer is zero and sparse, no need to write 747 * it. 748 */ 749 bh->b_blocknr = -1; 750 clear_buffer_dirty(bh); 751 continue; 752 } 753 // TODO: Instantiate the hole. 754 // clear_buffer_new(bh); 755 // unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 756 ntfs_error(vol->sb, "Writing into sparse regions is " 757 "not supported yet. Sorry."); 758 err = -EOPNOTSUPP; 759 break; 760 } 761 /* If first try and runlist unmapped, map and retry. */ 762 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) { 763 is_retry = true; 764 /* 765 * Attempt to map runlist, dropping lock for 766 * the duration. 767 */ 768 up_read(&ni->runlist.lock); 769 err = ntfs_map_runlist(ni, vcn); 770 if (likely(!err)) 771 goto lock_retry_remap; 772 rl = NULL; 773 } else if (!rl) 774 up_read(&ni->runlist.lock); 775 /* 776 * If buffer is outside the runlist, truncate has cut it out 777 * of the runlist. Just clean and clear the buffer and set it 778 * uptodate so it can get discarded by the VM. 779 */ 780 if (err == -ENOENT || lcn == LCN_ENOENT) { 781 bh->b_blocknr = -1; 782 clear_buffer_dirty(bh); 783 zero_user_page(page, bh_offset(bh), blocksize, 784 KM_USER0); 785 set_buffer_uptodate(bh); 786 err = 0; 787 continue; 788 } 789 /* Failed to map the buffer, even after retrying. */ 790 if (!err) 791 err = -EIO; 792 bh->b_blocknr = -1; 793 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, " 794 "attribute type 0x%x, vcn 0x%llx, offset 0x%x " 795 "because its location on disk could not be " 796 "determined%s (error code %i).", ni->mft_no, 797 ni->type, (unsigned long long)vcn, 798 vcn_ofs, is_retry ? " even after " 799 "retrying" : "", err); 800 break; 801 } while (block++, (bh = bh->b_this_page) != head); 802 803 /* Release the lock if we took it. */ 804 if (rl) 805 up_read(&ni->runlist.lock); 806 807 /* For the error case, need to reset bh to the beginning. */ 808 bh = head; 809 810 /* Just an optimization, so ->readpage() is not called later. */ 811 if (unlikely(!PageUptodate(page))) { 812 int uptodate = 1; 813 do { 814 if (!buffer_uptodate(bh)) { 815 uptodate = 0; 816 bh = head; 817 break; 818 } 819 } while ((bh = bh->b_this_page) != head); 820 if (uptodate) 821 SetPageUptodate(page); 822 } 823 824 /* Setup all mapped, dirty buffers for async write i/o. */ 825 do { 826 if (buffer_mapped(bh) && buffer_dirty(bh)) { 827 lock_buffer(bh); 828 if (test_clear_buffer_dirty(bh)) { 829 BUG_ON(!buffer_uptodate(bh)); 830 mark_buffer_async_write(bh); 831 } else 832 unlock_buffer(bh); 833 } else if (unlikely(err)) { 834 /* 835 * For the error case. The buffer may have been set 836 * dirty during attachment to a dirty page. 837 */ 838 if (err != -ENOMEM) 839 clear_buffer_dirty(bh); 840 } 841 } while ((bh = bh->b_this_page) != head); 842 843 if (unlikely(err)) { 844 // TODO: Remove the -EOPNOTSUPP check later on... 845 if (unlikely(err == -EOPNOTSUPP)) 846 err = 0; 847 else if (err == -ENOMEM) { 848 ntfs_warning(vol->sb, "Error allocating memory. " 849 "Redirtying page so we try again " 850 "later."); 851 /* 852 * Put the page back on mapping->dirty_pages, but 853 * leave its buffer's dirty state as-is. 854 */ 855 redirty_page_for_writepage(wbc, page); 856 err = 0; 857 } else 858 SetPageError(page); 859 } 860 861 BUG_ON(PageWriteback(page)); 862 set_page_writeback(page); /* Keeps try_to_free_buffers() away. */ 863 864 /* Submit the prepared buffers for i/o. */ 865 need_end_writeback = true; 866 do { 867 struct buffer_head *next = bh->b_this_page; 868 if (buffer_async_write(bh)) { 869 submit_bh(WRITE, bh); 870 need_end_writeback = false; 871 } 872 bh = next; 873 } while (bh != head); 874 unlock_page(page); 875 876 /* If no i/o was started, need to end_page_writeback(). */ 877 if (unlikely(need_end_writeback)) 878 end_page_writeback(page); 879 880 ntfs_debug("Done."); 881 return err; 882 } 883 884 /** 885 * ntfs_write_mst_block - write a @page to the backing store 886 * @page: page cache page to write out 887 * @wbc: writeback control structure 888 * 889 * This function is for writing pages belonging to non-resident, mst protected 890 * attributes to their backing store. The only supported attributes are index 891 * allocation and $MFT/$DATA. Both directory inodes and index inodes are 892 * supported for the index allocation case. 893 * 894 * The page must remain locked for the duration of the write because we apply 895 * the mst fixups, write, and then undo the fixups, so if we were to unlock the 896 * page before undoing the fixups, any other user of the page will see the 897 * page contents as corrupt. 898 * 899 * We clear the page uptodate flag for the duration of the function to ensure 900 * exclusion for the $MFT/$DATA case against someone mapping an mft record we 901 * are about to apply the mst fixups to. 902 * 903 * Return 0 on success and -errno on error. 904 * 905 * Based on ntfs_write_block(), ntfs_mft_writepage(), and 906 * write_mft_record_nolock(). 907 */ 908 static int ntfs_write_mst_block(struct page *page, 909 struct writeback_control *wbc) 910 { 911 sector_t block, dblock, rec_block; 912 struct inode *vi = page->mapping->host; 913 ntfs_inode *ni = NTFS_I(vi); 914 ntfs_volume *vol = ni->vol; 915 u8 *kaddr; 916 unsigned int rec_size = ni->itype.index.block_size; 917 ntfs_inode *locked_nis[PAGE_CACHE_SIZE / rec_size]; 918 struct buffer_head *bh, *head, *tbh, *rec_start_bh; 919 struct buffer_head *bhs[MAX_BUF_PER_PAGE]; 920 runlist_element *rl; 921 int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2; 922 unsigned bh_size, rec_size_bits; 923 bool sync, is_mft, page_is_dirty, rec_is_dirty; 924 unsigned char bh_size_bits; 925 926 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " 927 "0x%lx.", vi->i_ino, ni->type, page->index); 928 BUG_ON(!NInoNonResident(ni)); 929 BUG_ON(!NInoMstProtected(ni)); 930 is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino); 931 /* 932 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page 933 * in its page cache were to be marked dirty. However this should 934 * never happen with the current driver and considering we do not 935 * handle this case here we do want to BUG(), at least for now. 936 */ 937 BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) || 938 (NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION))); 939 bh_size = vol->sb->s_blocksize; 940 bh_size_bits = vol->sb->s_blocksize_bits; 941 max_bhs = PAGE_CACHE_SIZE / bh_size; 942 BUG_ON(!max_bhs); 943 BUG_ON(max_bhs > MAX_BUF_PER_PAGE); 944 945 /* Were we called for sync purposes? */ 946 sync = (wbc->sync_mode == WB_SYNC_ALL); 947 948 /* Make sure we have mapped buffers. */ 949 bh = head = page_buffers(page); 950 BUG_ON(!bh); 951 952 rec_size_bits = ni->itype.index.block_size_bits; 953 BUG_ON(!(PAGE_CACHE_SIZE >> rec_size_bits)); 954 bhs_per_rec = rec_size >> bh_size_bits; 955 BUG_ON(!bhs_per_rec); 956 957 /* The first block in the page. */ 958 rec_block = block = (sector_t)page->index << 959 (PAGE_CACHE_SHIFT - bh_size_bits); 960 961 /* The first out of bounds block for the data size. */ 962 dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits; 963 964 rl = NULL; 965 err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0; 966 page_is_dirty = rec_is_dirty = false; 967 rec_start_bh = NULL; 968 do { 969 bool is_retry = false; 970 971 if (likely(block < rec_block)) { 972 if (unlikely(block >= dblock)) { 973 clear_buffer_dirty(bh); 974 set_buffer_uptodate(bh); 975 continue; 976 } 977 /* 978 * This block is not the first one in the record. We 979 * ignore the buffer's dirty state because we could 980 * have raced with a parallel mark_ntfs_record_dirty(). 981 */ 982 if (!rec_is_dirty) 983 continue; 984 if (unlikely(err2)) { 985 if (err2 != -ENOMEM) 986 clear_buffer_dirty(bh); 987 continue; 988 } 989 } else /* if (block == rec_block) */ { 990 BUG_ON(block > rec_block); 991 /* This block is the first one in the record. */ 992 rec_block += bhs_per_rec; 993 err2 = 0; 994 if (unlikely(block >= dblock)) { 995 clear_buffer_dirty(bh); 996 continue; 997 } 998 if (!buffer_dirty(bh)) { 999 /* Clean records are not written out. */ 1000 rec_is_dirty = false; 1001 continue; 1002 } 1003 rec_is_dirty = true; 1004 rec_start_bh = bh; 1005 } 1006 /* Need to map the buffer if it is not mapped already. */ 1007 if (unlikely(!buffer_mapped(bh))) { 1008 VCN vcn; 1009 LCN lcn; 1010 unsigned int vcn_ofs; 1011 1012 bh->b_bdev = vol->sb->s_bdev; 1013 /* Obtain the vcn and offset of the current block. */ 1014 vcn = (VCN)block << bh_size_bits; 1015 vcn_ofs = vcn & vol->cluster_size_mask; 1016 vcn >>= vol->cluster_size_bits; 1017 if (!rl) { 1018 lock_retry_remap: 1019 down_read(&ni->runlist.lock); 1020 rl = ni->runlist.rl; 1021 } 1022 if (likely(rl != NULL)) { 1023 /* Seek to element containing target vcn. */ 1024 while (rl->length && rl[1].vcn <= vcn) 1025 rl++; 1026 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 1027 } else 1028 lcn = LCN_RL_NOT_MAPPED; 1029 /* Successful remap. */ 1030 if (likely(lcn >= 0)) { 1031 /* Setup buffer head to correct block. */ 1032 bh->b_blocknr = ((lcn << 1033 vol->cluster_size_bits) + 1034 vcn_ofs) >> bh_size_bits; 1035 set_buffer_mapped(bh); 1036 } else { 1037 /* 1038 * Remap failed. Retry to map the runlist once 1039 * unless we are working on $MFT which always 1040 * has the whole of its runlist in memory. 1041 */ 1042 if (!is_mft && !is_retry && 1043 lcn == LCN_RL_NOT_MAPPED) { 1044 is_retry = true; 1045 /* 1046 * Attempt to map runlist, dropping 1047 * lock for the duration. 1048 */ 1049 up_read(&ni->runlist.lock); 1050 err2 = ntfs_map_runlist(ni, vcn); 1051 if (likely(!err2)) 1052 goto lock_retry_remap; 1053 if (err2 == -ENOMEM) 1054 page_is_dirty = true; 1055 lcn = err2; 1056 } else { 1057 err2 = -EIO; 1058 if (!rl) 1059 up_read(&ni->runlist.lock); 1060 } 1061 /* Hard error. Abort writing this record. */ 1062 if (!err || err == -ENOMEM) 1063 err = err2; 1064 bh->b_blocknr = -1; 1065 ntfs_error(vol->sb, "Cannot write ntfs record " 1066 "0x%llx (inode 0x%lx, " 1067 "attribute type 0x%x) because " 1068 "its location on disk could " 1069 "not be determined (error " 1070 "code %lli).", 1071 (long long)block << 1072 bh_size_bits >> 1073 vol->mft_record_size_bits, 1074 ni->mft_no, ni->type, 1075 (long long)lcn); 1076 /* 1077 * If this is not the first buffer, remove the 1078 * buffers in this record from the list of 1079 * buffers to write and clear their dirty bit 1080 * if not error -ENOMEM. 1081 */ 1082 if (rec_start_bh != bh) { 1083 while (bhs[--nr_bhs] != rec_start_bh) 1084 ; 1085 if (err2 != -ENOMEM) { 1086 do { 1087 clear_buffer_dirty( 1088 rec_start_bh); 1089 } while ((rec_start_bh = 1090 rec_start_bh-> 1091 b_this_page) != 1092 bh); 1093 } 1094 } 1095 continue; 1096 } 1097 } 1098 BUG_ON(!buffer_uptodate(bh)); 1099 BUG_ON(nr_bhs >= max_bhs); 1100 bhs[nr_bhs++] = bh; 1101 } while (block++, (bh = bh->b_this_page) != head); 1102 if (unlikely(rl)) 1103 up_read(&ni->runlist.lock); 1104 /* If there were no dirty buffers, we are done. */ 1105 if (!nr_bhs) 1106 goto done; 1107 /* Map the page so we can access its contents. */ 1108 kaddr = kmap(page); 1109 /* Clear the page uptodate flag whilst the mst fixups are applied. */ 1110 BUG_ON(!PageUptodate(page)); 1111 ClearPageUptodate(page); 1112 for (i = 0; i < nr_bhs; i++) { 1113 unsigned int ofs; 1114 1115 /* Skip buffers which are not at the beginning of records. */ 1116 if (i % bhs_per_rec) 1117 continue; 1118 tbh = bhs[i]; 1119 ofs = bh_offset(tbh); 1120 if (is_mft) { 1121 ntfs_inode *tni; 1122 unsigned long mft_no; 1123 1124 /* Get the mft record number. */ 1125 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs) 1126 >> rec_size_bits; 1127 /* Check whether to write this mft record. */ 1128 tni = NULL; 1129 if (!ntfs_may_write_mft_record(vol, mft_no, 1130 (MFT_RECORD*)(kaddr + ofs), &tni)) { 1131 /* 1132 * The record should not be written. This 1133 * means we need to redirty the page before 1134 * returning. 1135 */ 1136 page_is_dirty = true; 1137 /* 1138 * Remove the buffers in this mft record from 1139 * the list of buffers to write. 1140 */ 1141 do { 1142 bhs[i] = NULL; 1143 } while (++i % bhs_per_rec); 1144 continue; 1145 } 1146 /* 1147 * The record should be written. If a locked ntfs 1148 * inode was returned, add it to the array of locked 1149 * ntfs inodes. 1150 */ 1151 if (tni) 1152 locked_nis[nr_locked_nis++] = tni; 1153 } 1154 /* Apply the mst protection fixups. */ 1155 err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs), 1156 rec_size); 1157 if (unlikely(err2)) { 1158 if (!err || err == -ENOMEM) 1159 err = -EIO; 1160 ntfs_error(vol->sb, "Failed to apply mst fixups " 1161 "(inode 0x%lx, attribute type 0x%x, " 1162 "page index 0x%lx, page offset 0x%x)!" 1163 " Unmount and run chkdsk.", vi->i_ino, 1164 ni->type, page->index, ofs); 1165 /* 1166 * Mark all the buffers in this record clean as we do 1167 * not want to write corrupt data to disk. 1168 */ 1169 do { 1170 clear_buffer_dirty(bhs[i]); 1171 bhs[i] = NULL; 1172 } while (++i % bhs_per_rec); 1173 continue; 1174 } 1175 nr_recs++; 1176 } 1177 /* If no records are to be written out, we are done. */ 1178 if (!nr_recs) 1179 goto unm_done; 1180 flush_dcache_page(page); 1181 /* Lock buffers and start synchronous write i/o on them. */ 1182 for (i = 0; i < nr_bhs; i++) { 1183 tbh = bhs[i]; 1184 if (!tbh) 1185 continue; 1186 if (unlikely(test_set_buffer_locked(tbh))) 1187 BUG(); 1188 /* The buffer dirty state is now irrelevant, just clean it. */ 1189 clear_buffer_dirty(tbh); 1190 BUG_ON(!buffer_uptodate(tbh)); 1191 BUG_ON(!buffer_mapped(tbh)); 1192 get_bh(tbh); 1193 tbh->b_end_io = end_buffer_write_sync; 1194 submit_bh(WRITE, tbh); 1195 } 1196 /* Synchronize the mft mirror now if not @sync. */ 1197 if (is_mft && !sync) 1198 goto do_mirror; 1199 do_wait: 1200 /* Wait on i/o completion of buffers. */ 1201 for (i = 0; i < nr_bhs; i++) { 1202 tbh = bhs[i]; 1203 if (!tbh) 1204 continue; 1205 wait_on_buffer(tbh); 1206 if (unlikely(!buffer_uptodate(tbh))) { 1207 ntfs_error(vol->sb, "I/O error while writing ntfs " 1208 "record buffer (inode 0x%lx, " 1209 "attribute type 0x%x, page index " 1210 "0x%lx, page offset 0x%lx)! Unmount " 1211 "and run chkdsk.", vi->i_ino, ni->type, 1212 page->index, bh_offset(tbh)); 1213 if (!err || err == -ENOMEM) 1214 err = -EIO; 1215 /* 1216 * Set the buffer uptodate so the page and buffer 1217 * states do not become out of sync. 1218 */ 1219 set_buffer_uptodate(tbh); 1220 } 1221 } 1222 /* If @sync, now synchronize the mft mirror. */ 1223 if (is_mft && sync) { 1224 do_mirror: 1225 for (i = 0; i < nr_bhs; i++) { 1226 unsigned long mft_no; 1227 unsigned int ofs; 1228 1229 /* 1230 * Skip buffers which are not at the beginning of 1231 * records. 1232 */ 1233 if (i % bhs_per_rec) 1234 continue; 1235 tbh = bhs[i]; 1236 /* Skip removed buffers (and hence records). */ 1237 if (!tbh) 1238 continue; 1239 ofs = bh_offset(tbh); 1240 /* Get the mft record number. */ 1241 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs) 1242 >> rec_size_bits; 1243 if (mft_no < vol->mftmirr_size) 1244 ntfs_sync_mft_mirror(vol, mft_no, 1245 (MFT_RECORD*)(kaddr + ofs), 1246 sync); 1247 } 1248 if (!sync) 1249 goto do_wait; 1250 } 1251 /* Remove the mst protection fixups again. */ 1252 for (i = 0; i < nr_bhs; i++) { 1253 if (!(i % bhs_per_rec)) { 1254 tbh = bhs[i]; 1255 if (!tbh) 1256 continue; 1257 post_write_mst_fixup((NTFS_RECORD*)(kaddr + 1258 bh_offset(tbh))); 1259 } 1260 } 1261 flush_dcache_page(page); 1262 unm_done: 1263 /* Unlock any locked inodes. */ 1264 while (nr_locked_nis-- > 0) { 1265 ntfs_inode *tni, *base_tni; 1266 1267 tni = locked_nis[nr_locked_nis]; 1268 /* Get the base inode. */ 1269 mutex_lock(&tni->extent_lock); 1270 if (tni->nr_extents >= 0) 1271 base_tni = tni; 1272 else { 1273 base_tni = tni->ext.base_ntfs_ino; 1274 BUG_ON(!base_tni); 1275 } 1276 mutex_unlock(&tni->extent_lock); 1277 ntfs_debug("Unlocking %s inode 0x%lx.", 1278 tni == base_tni ? "base" : "extent", 1279 tni->mft_no); 1280 mutex_unlock(&tni->mrec_lock); 1281 atomic_dec(&tni->count); 1282 iput(VFS_I(base_tni)); 1283 } 1284 SetPageUptodate(page); 1285 kunmap(page); 1286 done: 1287 if (unlikely(err && err != -ENOMEM)) { 1288 /* 1289 * Set page error if there is only one ntfs record in the page. 1290 * Otherwise we would loose per-record granularity. 1291 */ 1292 if (ni->itype.index.block_size == PAGE_CACHE_SIZE) 1293 SetPageError(page); 1294 NVolSetErrors(vol); 1295 } 1296 if (page_is_dirty) { 1297 ntfs_debug("Page still contains one or more dirty ntfs " 1298 "records. Redirtying the page starting at " 1299 "record 0x%lx.", page->index << 1300 (PAGE_CACHE_SHIFT - rec_size_bits)); 1301 redirty_page_for_writepage(wbc, page); 1302 unlock_page(page); 1303 } else { 1304 /* 1305 * Keep the VM happy. This must be done otherwise the 1306 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though 1307 * the page is clean. 1308 */ 1309 BUG_ON(PageWriteback(page)); 1310 set_page_writeback(page); 1311 unlock_page(page); 1312 end_page_writeback(page); 1313 } 1314 if (likely(!err)) 1315 ntfs_debug("Done."); 1316 return err; 1317 } 1318 1319 /** 1320 * ntfs_writepage - write a @page to the backing store 1321 * @page: page cache page to write out 1322 * @wbc: writeback control structure 1323 * 1324 * This is called from the VM when it wants to have a dirty ntfs page cache 1325 * page cleaned. The VM has already locked the page and marked it clean. 1326 * 1327 * For non-resident attributes, ntfs_writepage() writes the @page by calling 1328 * the ntfs version of the generic block_write_full_page() function, 1329 * ntfs_write_block(), which in turn if necessary creates and writes the 1330 * buffers associated with the page asynchronously. 1331 * 1332 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying 1333 * the data to the mft record (which at this stage is most likely in memory). 1334 * The mft record is then marked dirty and written out asynchronously via the 1335 * vfs inode dirty code path for the inode the mft record belongs to or via the 1336 * vm page dirty code path for the page the mft record is in. 1337 * 1338 * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page(). 1339 * 1340 * Return 0 on success and -errno on error. 1341 */ 1342 static int ntfs_writepage(struct page *page, struct writeback_control *wbc) 1343 { 1344 loff_t i_size; 1345 struct inode *vi = page->mapping->host; 1346 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi); 1347 char *kaddr; 1348 ntfs_attr_search_ctx *ctx = NULL; 1349 MFT_RECORD *m = NULL; 1350 u32 attr_len; 1351 int err; 1352 1353 retry_writepage: 1354 BUG_ON(!PageLocked(page)); 1355 i_size = i_size_read(vi); 1356 /* Is the page fully outside i_size? (truncate in progress) */ 1357 if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >> 1358 PAGE_CACHE_SHIFT)) { 1359 /* 1360 * The page may have dirty, unmapped buffers. Make them 1361 * freeable here, so the page does not leak. 1362 */ 1363 block_invalidatepage(page, 0); 1364 unlock_page(page); 1365 ntfs_debug("Write outside i_size - truncated?"); 1366 return 0; 1367 } 1368 /* 1369 * Only $DATA attributes can be encrypted and only unnamed $DATA 1370 * attributes can be compressed. Index root can have the flags set but 1371 * this means to create compressed/encrypted files, not that the 1372 * attribute is compressed/encrypted. Note we need to check for 1373 * AT_INDEX_ALLOCATION since this is the type of both directory and 1374 * index inodes. 1375 */ 1376 if (ni->type != AT_INDEX_ALLOCATION) { 1377 /* If file is encrypted, deny access, just like NT4. */ 1378 if (NInoEncrypted(ni)) { 1379 unlock_page(page); 1380 BUG_ON(ni->type != AT_DATA); 1381 ntfs_debug("Denying write access to encrypted file."); 1382 return -EACCES; 1383 } 1384 /* Compressed data streams are handled in compress.c. */ 1385 if (NInoNonResident(ni) && NInoCompressed(ni)) { 1386 BUG_ON(ni->type != AT_DATA); 1387 BUG_ON(ni->name_len); 1388 // TODO: Implement and replace this with 1389 // return ntfs_write_compressed_block(page); 1390 unlock_page(page); 1391 ntfs_error(vi->i_sb, "Writing to compressed files is " 1392 "not supported yet. Sorry."); 1393 return -EOPNOTSUPP; 1394 } 1395 // TODO: Implement and remove this check. 1396 if (NInoNonResident(ni) && NInoSparse(ni)) { 1397 unlock_page(page); 1398 ntfs_error(vi->i_sb, "Writing to sparse files is not " 1399 "supported yet. Sorry."); 1400 return -EOPNOTSUPP; 1401 } 1402 } 1403 /* NInoNonResident() == NInoIndexAllocPresent() */ 1404 if (NInoNonResident(ni)) { 1405 /* We have to zero every time due to mmap-at-end-of-file. */ 1406 if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) { 1407 /* The page straddles i_size. */ 1408 unsigned int ofs = i_size & ~PAGE_CACHE_MASK; 1409 zero_user_page(page, ofs, PAGE_CACHE_SIZE - ofs, 1410 KM_USER0); 1411 } 1412 /* Handle mst protected attributes. */ 1413 if (NInoMstProtected(ni)) 1414 return ntfs_write_mst_block(page, wbc); 1415 /* Normal, non-resident data stream. */ 1416 return ntfs_write_block(page, wbc); 1417 } 1418 /* 1419 * Attribute is resident, implying it is not compressed, encrypted, or 1420 * mst protected. This also means the attribute is smaller than an mft 1421 * record and hence smaller than a page, so can simply return error on 1422 * any pages with index above 0. Note the attribute can actually be 1423 * marked compressed but if it is resident the actual data is not 1424 * compressed so we are ok to ignore the compressed flag here. 1425 */ 1426 BUG_ON(page_has_buffers(page)); 1427 BUG_ON(!PageUptodate(page)); 1428 if (unlikely(page->index > 0)) { 1429 ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0. " 1430 "Aborting write.", page->index); 1431 BUG_ON(PageWriteback(page)); 1432 set_page_writeback(page); 1433 unlock_page(page); 1434 end_page_writeback(page); 1435 return -EIO; 1436 } 1437 if (!NInoAttr(ni)) 1438 base_ni = ni; 1439 else 1440 base_ni = ni->ext.base_ntfs_ino; 1441 /* Map, pin, and lock the mft record. */ 1442 m = map_mft_record(base_ni); 1443 if (IS_ERR(m)) { 1444 err = PTR_ERR(m); 1445 m = NULL; 1446 ctx = NULL; 1447 goto err_out; 1448 } 1449 /* 1450 * If a parallel write made the attribute non-resident, drop the mft 1451 * record and retry the writepage. 1452 */ 1453 if (unlikely(NInoNonResident(ni))) { 1454 unmap_mft_record(base_ni); 1455 goto retry_writepage; 1456 } 1457 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1458 if (unlikely(!ctx)) { 1459 err = -ENOMEM; 1460 goto err_out; 1461 } 1462 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1463 CASE_SENSITIVE, 0, NULL, 0, ctx); 1464 if (unlikely(err)) 1465 goto err_out; 1466 /* 1467 * Keep the VM happy. This must be done otherwise the radix-tree tag 1468 * PAGECACHE_TAG_DIRTY remains set even though the page is clean. 1469 */ 1470 BUG_ON(PageWriteback(page)); 1471 set_page_writeback(page); 1472 unlock_page(page); 1473 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length); 1474 i_size = i_size_read(vi); 1475 if (unlikely(attr_len > i_size)) { 1476 /* Race with shrinking truncate or a failed truncate. */ 1477 attr_len = i_size; 1478 /* 1479 * If the truncate failed, fix it up now. If a concurrent 1480 * truncate, we do its job, so it does not have to do anything. 1481 */ 1482 err = ntfs_resident_attr_value_resize(ctx->mrec, ctx->attr, 1483 attr_len); 1484 /* Shrinking cannot fail. */ 1485 BUG_ON(err); 1486 } 1487 kaddr = kmap_atomic(page, KM_USER0); 1488 /* Copy the data from the page to the mft record. */ 1489 memcpy((u8*)ctx->attr + 1490 le16_to_cpu(ctx->attr->data.resident.value_offset), 1491 kaddr, attr_len); 1492 /* Zero out of bounds area in the page cache page. */ 1493 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); 1494 kunmap_atomic(kaddr, KM_USER0); 1495 flush_dcache_page(page); 1496 flush_dcache_mft_record_page(ctx->ntfs_ino); 1497 /* We are done with the page. */ 1498 end_page_writeback(page); 1499 /* Finally, mark the mft record dirty, so it gets written back. */ 1500 mark_mft_record_dirty(ctx->ntfs_ino); 1501 ntfs_attr_put_search_ctx(ctx); 1502 unmap_mft_record(base_ni); 1503 return 0; 1504 err_out: 1505 if (err == -ENOMEM) { 1506 ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying " 1507 "page so we try again later."); 1508 /* 1509 * Put the page back on mapping->dirty_pages, but leave its 1510 * buffers' dirty state as-is. 1511 */ 1512 redirty_page_for_writepage(wbc, page); 1513 err = 0; 1514 } else { 1515 ntfs_error(vi->i_sb, "Resident attribute write failed with " 1516 "error %i.", err); 1517 SetPageError(page); 1518 NVolSetErrors(ni->vol); 1519 } 1520 unlock_page(page); 1521 if (ctx) 1522 ntfs_attr_put_search_ctx(ctx); 1523 if (m) 1524 unmap_mft_record(base_ni); 1525 return err; 1526 } 1527 1528 #endif /* NTFS_RW */ 1529 1530 /** 1531 * ntfs_aops - general address space operations for inodes and attributes 1532 */ 1533 const struct address_space_operations ntfs_aops = { 1534 .readpage = ntfs_readpage, /* Fill page with data. */ 1535 .sync_page = block_sync_page, /* Currently, just unplugs the 1536 disk request queue. */ 1537 #ifdef NTFS_RW 1538 .writepage = ntfs_writepage, /* Write dirty page to disk. */ 1539 #endif /* NTFS_RW */ 1540 .migratepage = buffer_migrate_page, /* Move a page cache page from 1541 one physical page to an 1542 other. */ 1543 }; 1544 1545 /** 1546 * ntfs_mst_aops - general address space operations for mst protecteed inodes 1547 * and attributes 1548 */ 1549 const struct address_space_operations ntfs_mst_aops = { 1550 .readpage = ntfs_readpage, /* Fill page with data. */ 1551 .sync_page = block_sync_page, /* Currently, just unplugs the 1552 disk request queue. */ 1553 #ifdef NTFS_RW 1554 .writepage = ntfs_writepage, /* Write dirty page to disk. */ 1555 .set_page_dirty = __set_page_dirty_nobuffers, /* Set the page dirty 1556 without touching the buffers 1557 belonging to the page. */ 1558 #endif /* NTFS_RW */ 1559 .migratepage = buffer_migrate_page, /* Move a page cache page from 1560 one physical page to an 1561 other. */ 1562 }; 1563 1564 #ifdef NTFS_RW 1565 1566 /** 1567 * mark_ntfs_record_dirty - mark an ntfs record dirty 1568 * @page: page containing the ntfs record to mark dirty 1569 * @ofs: byte offset within @page at which the ntfs record begins 1570 * 1571 * Set the buffers and the page in which the ntfs record is located dirty. 1572 * 1573 * The latter also marks the vfs inode the ntfs record belongs to dirty 1574 * (I_DIRTY_PAGES only). 1575 * 1576 * If the page does not have buffers, we create them and set them uptodate. 1577 * The page may not be locked which is why we need to handle the buffers under 1578 * the mapping->private_lock. Once the buffers are marked dirty we no longer 1579 * need the lock since try_to_free_buffers() does not free dirty buffers. 1580 */ 1581 void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) { 1582 struct address_space *mapping = page->mapping; 1583 ntfs_inode *ni = NTFS_I(mapping->host); 1584 struct buffer_head *bh, *head, *buffers_to_free = NULL; 1585 unsigned int end, bh_size, bh_ofs; 1586 1587 BUG_ON(!PageUptodate(page)); 1588 end = ofs + ni->itype.index.block_size; 1589 bh_size = VFS_I(ni)->i_sb->s_blocksize; 1590 spin_lock(&mapping->private_lock); 1591 if (unlikely(!page_has_buffers(page))) { 1592 spin_unlock(&mapping->private_lock); 1593 bh = head = alloc_page_buffers(page, bh_size, 1); 1594 spin_lock(&mapping->private_lock); 1595 if (likely(!page_has_buffers(page))) { 1596 struct buffer_head *tail; 1597 1598 do { 1599 set_buffer_uptodate(bh); 1600 tail = bh; 1601 bh = bh->b_this_page; 1602 } while (bh); 1603 tail->b_this_page = head; 1604 attach_page_buffers(page, head); 1605 } else 1606 buffers_to_free = bh; 1607 } 1608 bh = head = page_buffers(page); 1609 BUG_ON(!bh); 1610 do { 1611 bh_ofs = bh_offset(bh); 1612 if (bh_ofs + bh_size <= ofs) 1613 continue; 1614 if (unlikely(bh_ofs >= end)) 1615 break; 1616 set_buffer_dirty(bh); 1617 } while ((bh = bh->b_this_page) != head); 1618 spin_unlock(&mapping->private_lock); 1619 __set_page_dirty_nobuffers(page); 1620 if (unlikely(buffers_to_free)) { 1621 do { 1622 bh = buffers_to_free->b_this_page; 1623 free_buffer_head(buffers_to_free); 1624 buffers_to_free = bh; 1625 } while (buffers_to_free); 1626 } 1627 } 1628 1629 #endif /* NTFS_RW */ 1630