1 /** 2 * aops.c - NTFS kernel address space operations and page cache handling. 3 * 4 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc. 5 * Copyright (c) 2002 Richard Russon 6 * 7 * This program/include file is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as published 9 * by the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program/include file is distributed in the hope that it will be 13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty 14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program (in the main directory of the Linux-NTFS 19 * distribution in the file COPYING); if not, write to the Free Software 20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 */ 22 23 #include <linux/errno.h> 24 #include <linux/fs.h> 25 #include <linux/gfp.h> 26 #include <linux/mm.h> 27 #include <linux/pagemap.h> 28 #include <linux/swap.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/bit_spinlock.h> 32 #include <linux/bio.h> 33 34 #include "aops.h" 35 #include "attrib.h" 36 #include "debug.h" 37 #include "inode.h" 38 #include "mft.h" 39 #include "runlist.h" 40 #include "types.h" 41 #include "ntfs.h" 42 43 /** 44 * ntfs_end_buffer_async_read - async io completion for reading attributes 45 * @bh: buffer head on which io is completed 46 * @uptodate: whether @bh is now uptodate or not 47 * 48 * Asynchronous I/O completion handler for reading pages belonging to the 49 * attribute address space of an inode. The inodes can either be files or 50 * directories or they can be fake inodes describing some attribute. 51 * 52 * If NInoMstProtected(), perform the post read mst fixups when all IO on the 53 * page has been completed and mark the page uptodate or set the error bit on 54 * the page. To determine the size of the records that need fixing up, we 55 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs 56 * record size, and index_block_size_bits, to the log(base 2) of the ntfs 57 * record size. 58 */ 59 static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate) 60 { 61 unsigned long flags; 62 struct buffer_head *first, *tmp; 63 struct page *page; 64 struct inode *vi; 65 ntfs_inode *ni; 66 int page_uptodate = 1; 67 68 page = bh->b_page; 69 vi = page->mapping->host; 70 ni = NTFS_I(vi); 71 72 if (likely(uptodate)) { 73 loff_t i_size; 74 s64 file_ofs, init_size; 75 76 set_buffer_uptodate(bh); 77 78 file_ofs = ((s64)page->index << PAGE_SHIFT) + 79 bh_offset(bh); 80 read_lock_irqsave(&ni->size_lock, flags); 81 init_size = ni->initialized_size; 82 i_size = i_size_read(vi); 83 read_unlock_irqrestore(&ni->size_lock, flags); 84 if (unlikely(init_size > i_size)) { 85 /* Race with shrinking truncate. */ 86 init_size = i_size; 87 } 88 /* Check for the current buffer head overflowing. */ 89 if (unlikely(file_ofs + bh->b_size > init_size)) { 90 int ofs; 91 void *kaddr; 92 93 ofs = 0; 94 if (file_ofs < init_size) 95 ofs = init_size - file_ofs; 96 kaddr = kmap_atomic(page); 97 memset(kaddr + bh_offset(bh) + ofs, 0, 98 bh->b_size - ofs); 99 flush_dcache_page(page); 100 kunmap_atomic(kaddr); 101 } 102 } else { 103 clear_buffer_uptodate(bh); 104 SetPageError(page); 105 ntfs_error(ni->vol->sb, "Buffer I/O error, logical block " 106 "0x%llx.", (unsigned long long)bh->b_blocknr); 107 } 108 first = page_buffers(page); 109 local_irq_save(flags); 110 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 111 clear_buffer_async_read(bh); 112 unlock_buffer(bh); 113 tmp = bh; 114 do { 115 if (!buffer_uptodate(tmp)) 116 page_uptodate = 0; 117 if (buffer_async_read(tmp)) { 118 if (likely(buffer_locked(tmp))) 119 goto still_busy; 120 /* Async buffers must be locked. */ 121 BUG(); 122 } 123 tmp = tmp->b_this_page; 124 } while (tmp != bh); 125 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 126 local_irq_restore(flags); 127 /* 128 * If none of the buffers had errors then we can set the page uptodate, 129 * but we first have to perform the post read mst fixups, if the 130 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true. 131 * Note we ignore fixup errors as those are detected when 132 * map_mft_record() is called which gives us per record granularity 133 * rather than per page granularity. 134 */ 135 if (!NInoMstProtected(ni)) { 136 if (likely(page_uptodate && !PageError(page))) 137 SetPageUptodate(page); 138 } else { 139 u8 *kaddr; 140 unsigned int i, recs; 141 u32 rec_size; 142 143 rec_size = ni->itype.index.block_size; 144 recs = PAGE_SIZE / rec_size; 145 /* Should have been verified before we got here... */ 146 BUG_ON(!recs); 147 kaddr = kmap_atomic(page); 148 for (i = 0; i < recs; i++) 149 post_read_mst_fixup((NTFS_RECORD*)(kaddr + 150 i * rec_size), rec_size); 151 kunmap_atomic(kaddr); 152 flush_dcache_page(page); 153 if (likely(page_uptodate && !PageError(page))) 154 SetPageUptodate(page); 155 } 156 unlock_page(page); 157 return; 158 still_busy: 159 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 160 local_irq_restore(flags); 161 return; 162 } 163 164 /** 165 * ntfs_read_block - fill a @page of an address space with data 166 * @page: page cache page to fill with data 167 * 168 * Fill the page @page of the address space belonging to the @page->host inode. 169 * We read each buffer asynchronously and when all buffers are read in, our io 170 * completion handler ntfs_end_buffer_read_async(), if required, automatically 171 * applies the mst fixups to the page before finally marking it uptodate and 172 * unlocking it. 173 * 174 * We only enforce allocated_size limit because i_size is checked for in 175 * generic_file_read(). 176 * 177 * Return 0 on success and -errno on error. 178 * 179 * Contains an adapted version of fs/buffer.c::block_read_full_page(). 180 */ 181 static int ntfs_read_block(struct page *page) 182 { 183 loff_t i_size; 184 VCN vcn; 185 LCN lcn; 186 s64 init_size; 187 struct inode *vi; 188 ntfs_inode *ni; 189 ntfs_volume *vol; 190 runlist_element *rl; 191 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 192 sector_t iblock, lblock, zblock; 193 unsigned long flags; 194 unsigned int blocksize, vcn_ofs; 195 int i, nr; 196 unsigned char blocksize_bits; 197 198 vi = page->mapping->host; 199 ni = NTFS_I(vi); 200 vol = ni->vol; 201 202 /* $MFT/$DATA must have its complete runlist in memory at all times. */ 203 BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni)); 204 205 blocksize = vol->sb->s_blocksize; 206 blocksize_bits = vol->sb->s_blocksize_bits; 207 208 if (!page_has_buffers(page)) { 209 create_empty_buffers(page, blocksize, 0); 210 if (unlikely(!page_has_buffers(page))) { 211 unlock_page(page); 212 return -ENOMEM; 213 } 214 } 215 bh = head = page_buffers(page); 216 BUG_ON(!bh); 217 218 /* 219 * We may be racing with truncate. To avoid some of the problems we 220 * now take a snapshot of the various sizes and use those for the whole 221 * of the function. In case of an extending truncate it just means we 222 * may leave some buffers unmapped which are now allocated. This is 223 * not a problem since these buffers will just get mapped when a write 224 * occurs. In case of a shrinking truncate, we will detect this later 225 * on due to the runlist being incomplete and if the page is being 226 * fully truncated, truncate will throw it away as soon as we unlock 227 * it so no need to worry what we do with it. 228 */ 229 iblock = (s64)page->index << (PAGE_SHIFT - blocksize_bits); 230 read_lock_irqsave(&ni->size_lock, flags); 231 lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits; 232 init_size = ni->initialized_size; 233 i_size = i_size_read(vi); 234 read_unlock_irqrestore(&ni->size_lock, flags); 235 if (unlikely(init_size > i_size)) { 236 /* Race with shrinking truncate. */ 237 init_size = i_size; 238 } 239 zblock = (init_size + blocksize - 1) >> blocksize_bits; 240 241 /* Loop through all the buffers in the page. */ 242 rl = NULL; 243 nr = i = 0; 244 do { 245 int err = 0; 246 247 if (unlikely(buffer_uptodate(bh))) 248 continue; 249 if (unlikely(buffer_mapped(bh))) { 250 arr[nr++] = bh; 251 continue; 252 } 253 bh->b_bdev = vol->sb->s_bdev; 254 /* Is the block within the allowed limits? */ 255 if (iblock < lblock) { 256 bool is_retry = false; 257 258 /* Convert iblock into corresponding vcn and offset. */ 259 vcn = (VCN)iblock << blocksize_bits >> 260 vol->cluster_size_bits; 261 vcn_ofs = ((VCN)iblock << blocksize_bits) & 262 vol->cluster_size_mask; 263 if (!rl) { 264 lock_retry_remap: 265 down_read(&ni->runlist.lock); 266 rl = ni->runlist.rl; 267 } 268 if (likely(rl != NULL)) { 269 /* Seek to element containing target vcn. */ 270 while (rl->length && rl[1].vcn <= vcn) 271 rl++; 272 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 273 } else 274 lcn = LCN_RL_NOT_MAPPED; 275 /* Successful remap. */ 276 if (lcn >= 0) { 277 /* Setup buffer head to correct block. */ 278 bh->b_blocknr = ((lcn << vol->cluster_size_bits) 279 + vcn_ofs) >> blocksize_bits; 280 set_buffer_mapped(bh); 281 /* Only read initialized data blocks. */ 282 if (iblock < zblock) { 283 arr[nr++] = bh; 284 continue; 285 } 286 /* Fully non-initialized data block, zero it. */ 287 goto handle_zblock; 288 } 289 /* It is a hole, need to zero it. */ 290 if (lcn == LCN_HOLE) 291 goto handle_hole; 292 /* If first try and runlist unmapped, map and retry. */ 293 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) { 294 is_retry = true; 295 /* 296 * Attempt to map runlist, dropping lock for 297 * the duration. 298 */ 299 up_read(&ni->runlist.lock); 300 err = ntfs_map_runlist(ni, vcn); 301 if (likely(!err)) 302 goto lock_retry_remap; 303 rl = NULL; 304 } else if (!rl) 305 up_read(&ni->runlist.lock); 306 /* 307 * If buffer is outside the runlist, treat it as a 308 * hole. This can happen due to concurrent truncate 309 * for example. 310 */ 311 if (err == -ENOENT || lcn == LCN_ENOENT) { 312 err = 0; 313 goto handle_hole; 314 } 315 /* Hard error, zero out region. */ 316 if (!err) 317 err = -EIO; 318 bh->b_blocknr = -1; 319 SetPageError(page); 320 ntfs_error(vol->sb, "Failed to read from inode 0x%lx, " 321 "attribute type 0x%x, vcn 0x%llx, " 322 "offset 0x%x because its location on " 323 "disk could not be determined%s " 324 "(error code %i).", ni->mft_no, 325 ni->type, (unsigned long long)vcn, 326 vcn_ofs, is_retry ? " even after " 327 "retrying" : "", err); 328 } 329 /* 330 * Either iblock was outside lblock limits or 331 * ntfs_rl_vcn_to_lcn() returned error. Just zero that portion 332 * of the page and set the buffer uptodate. 333 */ 334 handle_hole: 335 bh->b_blocknr = -1UL; 336 clear_buffer_mapped(bh); 337 handle_zblock: 338 zero_user(page, i * blocksize, blocksize); 339 if (likely(!err)) 340 set_buffer_uptodate(bh); 341 } while (i++, iblock++, (bh = bh->b_this_page) != head); 342 343 /* Release the lock if we took it. */ 344 if (rl) 345 up_read(&ni->runlist.lock); 346 347 /* Check we have at least one buffer ready for i/o. */ 348 if (nr) { 349 struct buffer_head *tbh; 350 351 /* Lock the buffers. */ 352 for (i = 0; i < nr; i++) { 353 tbh = arr[i]; 354 lock_buffer(tbh); 355 tbh->b_end_io = ntfs_end_buffer_async_read; 356 set_buffer_async_read(tbh); 357 } 358 /* Finally, start i/o on the buffers. */ 359 for (i = 0; i < nr; i++) { 360 tbh = arr[i]; 361 if (likely(!buffer_uptodate(tbh))) 362 submit_bh(REQ_OP_READ, 0, tbh); 363 else 364 ntfs_end_buffer_async_read(tbh, 1); 365 } 366 return 0; 367 } 368 /* No i/o was scheduled on any of the buffers. */ 369 if (likely(!PageError(page))) 370 SetPageUptodate(page); 371 else /* Signal synchronous i/o error. */ 372 nr = -EIO; 373 unlock_page(page); 374 return nr; 375 } 376 377 /** 378 * ntfs_readpage - fill a @page of a @file with data from the device 379 * @file: open file to which the page @page belongs or NULL 380 * @page: page cache page to fill with data 381 * 382 * For non-resident attributes, ntfs_readpage() fills the @page of the open 383 * file @file by calling the ntfs version of the generic block_read_full_page() 384 * function, ntfs_read_block(), which in turn creates and reads in the buffers 385 * associated with the page asynchronously. 386 * 387 * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the 388 * data from the mft record (which at this stage is most likely in memory) and 389 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as 390 * even if the mft record is not cached at this point in time, we need to wait 391 * for it to be read in before we can do the copy. 392 * 393 * Return 0 on success and -errno on error. 394 */ 395 static int ntfs_readpage(struct file *file, struct page *page) 396 { 397 loff_t i_size; 398 struct inode *vi; 399 ntfs_inode *ni, *base_ni; 400 u8 *addr; 401 ntfs_attr_search_ctx *ctx; 402 MFT_RECORD *mrec; 403 unsigned long flags; 404 u32 attr_len; 405 int err = 0; 406 407 retry_readpage: 408 BUG_ON(!PageLocked(page)); 409 vi = page->mapping->host; 410 i_size = i_size_read(vi); 411 /* Is the page fully outside i_size? (truncate in progress) */ 412 if (unlikely(page->index >= (i_size + PAGE_SIZE - 1) >> 413 PAGE_SHIFT)) { 414 zero_user(page, 0, PAGE_SIZE); 415 ntfs_debug("Read outside i_size - truncated?"); 416 goto done; 417 } 418 /* 419 * This can potentially happen because we clear PageUptodate() during 420 * ntfs_writepage() of MstProtected() attributes. 421 */ 422 if (PageUptodate(page)) { 423 unlock_page(page); 424 return 0; 425 } 426 ni = NTFS_I(vi); 427 /* 428 * Only $DATA attributes can be encrypted and only unnamed $DATA 429 * attributes can be compressed. Index root can have the flags set but 430 * this means to create compressed/encrypted files, not that the 431 * attribute is compressed/encrypted. Note we need to check for 432 * AT_INDEX_ALLOCATION since this is the type of both directory and 433 * index inodes. 434 */ 435 if (ni->type != AT_INDEX_ALLOCATION) { 436 /* If attribute is encrypted, deny access, just like NT4. */ 437 if (NInoEncrypted(ni)) { 438 BUG_ON(ni->type != AT_DATA); 439 err = -EACCES; 440 goto err_out; 441 } 442 /* Compressed data streams are handled in compress.c. */ 443 if (NInoNonResident(ni) && NInoCompressed(ni)) { 444 BUG_ON(ni->type != AT_DATA); 445 BUG_ON(ni->name_len); 446 return ntfs_read_compressed_block(page); 447 } 448 } 449 /* NInoNonResident() == NInoIndexAllocPresent() */ 450 if (NInoNonResident(ni)) { 451 /* Normal, non-resident data stream. */ 452 return ntfs_read_block(page); 453 } 454 /* 455 * Attribute is resident, implying it is not compressed or encrypted. 456 * This also means the attribute is smaller than an mft record and 457 * hence smaller than a page, so can simply zero out any pages with 458 * index above 0. Note the attribute can actually be marked compressed 459 * but if it is resident the actual data is not compressed so we are 460 * ok to ignore the compressed flag here. 461 */ 462 if (unlikely(page->index > 0)) { 463 zero_user(page, 0, PAGE_SIZE); 464 goto done; 465 } 466 if (!NInoAttr(ni)) 467 base_ni = ni; 468 else 469 base_ni = ni->ext.base_ntfs_ino; 470 /* Map, pin, and lock the mft record. */ 471 mrec = map_mft_record(base_ni); 472 if (IS_ERR(mrec)) { 473 err = PTR_ERR(mrec); 474 goto err_out; 475 } 476 /* 477 * If a parallel write made the attribute non-resident, drop the mft 478 * record and retry the readpage. 479 */ 480 if (unlikely(NInoNonResident(ni))) { 481 unmap_mft_record(base_ni); 482 goto retry_readpage; 483 } 484 ctx = ntfs_attr_get_search_ctx(base_ni, mrec); 485 if (unlikely(!ctx)) { 486 err = -ENOMEM; 487 goto unm_err_out; 488 } 489 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 490 CASE_SENSITIVE, 0, NULL, 0, ctx); 491 if (unlikely(err)) 492 goto put_unm_err_out; 493 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length); 494 read_lock_irqsave(&ni->size_lock, flags); 495 if (unlikely(attr_len > ni->initialized_size)) 496 attr_len = ni->initialized_size; 497 i_size = i_size_read(vi); 498 read_unlock_irqrestore(&ni->size_lock, flags); 499 if (unlikely(attr_len > i_size)) { 500 /* Race with shrinking truncate. */ 501 attr_len = i_size; 502 } 503 addr = kmap_atomic(page); 504 /* Copy the data to the page. */ 505 memcpy(addr, (u8*)ctx->attr + 506 le16_to_cpu(ctx->attr->data.resident.value_offset), 507 attr_len); 508 /* Zero the remainder of the page. */ 509 memset(addr + attr_len, 0, PAGE_SIZE - attr_len); 510 flush_dcache_page(page); 511 kunmap_atomic(addr); 512 put_unm_err_out: 513 ntfs_attr_put_search_ctx(ctx); 514 unm_err_out: 515 unmap_mft_record(base_ni); 516 done: 517 SetPageUptodate(page); 518 err_out: 519 unlock_page(page); 520 return err; 521 } 522 523 #ifdef NTFS_RW 524 525 /** 526 * ntfs_write_block - write a @page to the backing store 527 * @page: page cache page to write out 528 * @wbc: writeback control structure 529 * 530 * This function is for writing pages belonging to non-resident, non-mst 531 * protected attributes to their backing store. 532 * 533 * For a page with buffers, map and write the dirty buffers asynchronously 534 * under page writeback. For a page without buffers, create buffers for the 535 * page, then proceed as above. 536 * 537 * If a page doesn't have buffers the page dirty state is definitive. If a page 538 * does have buffers, the page dirty state is just a hint, and the buffer dirty 539 * state is definitive. (A hint which has rules: dirty buffers against a clean 540 * page is illegal. Other combinations are legal and need to be handled. In 541 * particular a dirty page containing clean buffers for example.) 542 * 543 * Return 0 on success and -errno on error. 544 * 545 * Based on ntfs_read_block() and __block_write_full_page(). 546 */ 547 static int ntfs_write_block(struct page *page, struct writeback_control *wbc) 548 { 549 VCN vcn; 550 LCN lcn; 551 s64 initialized_size; 552 loff_t i_size; 553 sector_t block, dblock, iblock; 554 struct inode *vi; 555 ntfs_inode *ni; 556 ntfs_volume *vol; 557 runlist_element *rl; 558 struct buffer_head *bh, *head; 559 unsigned long flags; 560 unsigned int blocksize, vcn_ofs; 561 int err; 562 bool need_end_writeback; 563 unsigned char blocksize_bits; 564 565 vi = page->mapping->host; 566 ni = NTFS_I(vi); 567 vol = ni->vol; 568 569 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " 570 "0x%lx.", ni->mft_no, ni->type, page->index); 571 572 BUG_ON(!NInoNonResident(ni)); 573 BUG_ON(NInoMstProtected(ni)); 574 blocksize = vol->sb->s_blocksize; 575 blocksize_bits = vol->sb->s_blocksize_bits; 576 if (!page_has_buffers(page)) { 577 BUG_ON(!PageUptodate(page)); 578 create_empty_buffers(page, blocksize, 579 (1 << BH_Uptodate) | (1 << BH_Dirty)); 580 if (unlikely(!page_has_buffers(page))) { 581 ntfs_warning(vol->sb, "Error allocating page " 582 "buffers. Redirtying page so we try " 583 "again later."); 584 /* 585 * Put the page back on mapping->dirty_pages, but leave 586 * its buffers' dirty state as-is. 587 */ 588 redirty_page_for_writepage(wbc, page); 589 unlock_page(page); 590 return 0; 591 } 592 } 593 bh = head = page_buffers(page); 594 BUG_ON(!bh); 595 596 /* NOTE: Different naming scheme to ntfs_read_block()! */ 597 598 /* The first block in the page. */ 599 block = (s64)page->index << (PAGE_SHIFT - blocksize_bits); 600 601 read_lock_irqsave(&ni->size_lock, flags); 602 i_size = i_size_read(vi); 603 initialized_size = ni->initialized_size; 604 read_unlock_irqrestore(&ni->size_lock, flags); 605 606 /* The first out of bounds block for the data size. */ 607 dblock = (i_size + blocksize - 1) >> blocksize_bits; 608 609 /* The last (fully or partially) initialized block. */ 610 iblock = initialized_size >> blocksize_bits; 611 612 /* 613 * Be very careful. We have no exclusion from __set_page_dirty_buffers 614 * here, and the (potentially unmapped) buffers may become dirty at 615 * any time. If a buffer becomes dirty here after we've inspected it 616 * then we just miss that fact, and the page stays dirty. 617 * 618 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 619 * handle that here by just cleaning them. 620 */ 621 622 /* 623 * Loop through all the buffers in the page, mapping all the dirty 624 * buffers to disk addresses and handling any aliases from the 625 * underlying block device's mapping. 626 */ 627 rl = NULL; 628 err = 0; 629 do { 630 bool is_retry = false; 631 632 if (unlikely(block >= dblock)) { 633 /* 634 * Mapped buffers outside i_size will occur, because 635 * this page can be outside i_size when there is a 636 * truncate in progress. The contents of such buffers 637 * were zeroed by ntfs_writepage(). 638 * 639 * FIXME: What about the small race window where 640 * ntfs_writepage() has not done any clearing because 641 * the page was within i_size but before we get here, 642 * vmtruncate() modifies i_size? 643 */ 644 clear_buffer_dirty(bh); 645 set_buffer_uptodate(bh); 646 continue; 647 } 648 649 /* Clean buffers are not written out, so no need to map them. */ 650 if (!buffer_dirty(bh)) 651 continue; 652 653 /* Make sure we have enough initialized size. */ 654 if (unlikely((block >= iblock) && 655 (initialized_size < i_size))) { 656 /* 657 * If this page is fully outside initialized size, zero 658 * out all pages between the current initialized size 659 * and the current page. Just use ntfs_readpage() to do 660 * the zeroing transparently. 661 */ 662 if (block > iblock) { 663 // TODO: 664 // For each page do: 665 // - read_cache_page() 666 // Again for each page do: 667 // - wait_on_page_locked() 668 // - Check (PageUptodate(page) && 669 // !PageError(page)) 670 // Update initialized size in the attribute and 671 // in the inode. 672 // Again, for each page do: 673 // __set_page_dirty_buffers(); 674 // put_page() 675 // We don't need to wait on the writes. 676 // Update iblock. 677 } 678 /* 679 * The current page straddles initialized size. Zero 680 * all non-uptodate buffers and set them uptodate (and 681 * dirty?). Note, there aren't any non-uptodate buffers 682 * if the page is uptodate. 683 * FIXME: For an uptodate page, the buffers may need to 684 * be written out because they were not initialized on 685 * disk before. 686 */ 687 if (!PageUptodate(page)) { 688 // TODO: 689 // Zero any non-uptodate buffers up to i_size. 690 // Set them uptodate and dirty. 691 } 692 // TODO: 693 // Update initialized size in the attribute and in the 694 // inode (up to i_size). 695 // Update iblock. 696 // FIXME: This is inefficient. Try to batch the two 697 // size changes to happen in one go. 698 ntfs_error(vol->sb, "Writing beyond initialized size " 699 "is not supported yet. Sorry."); 700 err = -EOPNOTSUPP; 701 break; 702 // Do NOT set_buffer_new() BUT DO clear buffer range 703 // outside write request range. 704 // set_buffer_uptodate() on complete buffers as well as 705 // set_buffer_dirty(). 706 } 707 708 /* No need to map buffers that are already mapped. */ 709 if (buffer_mapped(bh)) 710 continue; 711 712 /* Unmapped, dirty buffer. Need to map it. */ 713 bh->b_bdev = vol->sb->s_bdev; 714 715 /* Convert block into corresponding vcn and offset. */ 716 vcn = (VCN)block << blocksize_bits; 717 vcn_ofs = vcn & vol->cluster_size_mask; 718 vcn >>= vol->cluster_size_bits; 719 if (!rl) { 720 lock_retry_remap: 721 down_read(&ni->runlist.lock); 722 rl = ni->runlist.rl; 723 } 724 if (likely(rl != NULL)) { 725 /* Seek to element containing target vcn. */ 726 while (rl->length && rl[1].vcn <= vcn) 727 rl++; 728 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 729 } else 730 lcn = LCN_RL_NOT_MAPPED; 731 /* Successful remap. */ 732 if (lcn >= 0) { 733 /* Setup buffer head to point to correct block. */ 734 bh->b_blocknr = ((lcn << vol->cluster_size_bits) + 735 vcn_ofs) >> blocksize_bits; 736 set_buffer_mapped(bh); 737 continue; 738 } 739 /* It is a hole, need to instantiate it. */ 740 if (lcn == LCN_HOLE) { 741 u8 *kaddr; 742 unsigned long *bpos, *bend; 743 744 /* Check if the buffer is zero. */ 745 kaddr = kmap_atomic(page); 746 bpos = (unsigned long *)(kaddr + bh_offset(bh)); 747 bend = (unsigned long *)((u8*)bpos + blocksize); 748 do { 749 if (unlikely(*bpos)) 750 break; 751 } while (likely(++bpos < bend)); 752 kunmap_atomic(kaddr); 753 if (bpos == bend) { 754 /* 755 * Buffer is zero and sparse, no need to write 756 * it. 757 */ 758 bh->b_blocknr = -1; 759 clear_buffer_dirty(bh); 760 continue; 761 } 762 // TODO: Instantiate the hole. 763 // clear_buffer_new(bh); 764 // clean_bdev_bh_alias(bh); 765 ntfs_error(vol->sb, "Writing into sparse regions is " 766 "not supported yet. Sorry."); 767 err = -EOPNOTSUPP; 768 break; 769 } 770 /* If first try and runlist unmapped, map and retry. */ 771 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) { 772 is_retry = true; 773 /* 774 * Attempt to map runlist, dropping lock for 775 * the duration. 776 */ 777 up_read(&ni->runlist.lock); 778 err = ntfs_map_runlist(ni, vcn); 779 if (likely(!err)) 780 goto lock_retry_remap; 781 rl = NULL; 782 } else if (!rl) 783 up_read(&ni->runlist.lock); 784 /* 785 * If buffer is outside the runlist, truncate has cut it out 786 * of the runlist. Just clean and clear the buffer and set it 787 * uptodate so it can get discarded by the VM. 788 */ 789 if (err == -ENOENT || lcn == LCN_ENOENT) { 790 bh->b_blocknr = -1; 791 clear_buffer_dirty(bh); 792 zero_user(page, bh_offset(bh), blocksize); 793 set_buffer_uptodate(bh); 794 err = 0; 795 continue; 796 } 797 /* Failed to map the buffer, even after retrying. */ 798 if (!err) 799 err = -EIO; 800 bh->b_blocknr = -1; 801 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, " 802 "attribute type 0x%x, vcn 0x%llx, offset 0x%x " 803 "because its location on disk could not be " 804 "determined%s (error code %i).", ni->mft_no, 805 ni->type, (unsigned long long)vcn, 806 vcn_ofs, is_retry ? " even after " 807 "retrying" : "", err); 808 break; 809 } while (block++, (bh = bh->b_this_page) != head); 810 811 /* Release the lock if we took it. */ 812 if (rl) 813 up_read(&ni->runlist.lock); 814 815 /* For the error case, need to reset bh to the beginning. */ 816 bh = head; 817 818 /* Just an optimization, so ->readpage() is not called later. */ 819 if (unlikely(!PageUptodate(page))) { 820 int uptodate = 1; 821 do { 822 if (!buffer_uptodate(bh)) { 823 uptodate = 0; 824 bh = head; 825 break; 826 } 827 } while ((bh = bh->b_this_page) != head); 828 if (uptodate) 829 SetPageUptodate(page); 830 } 831 832 /* Setup all mapped, dirty buffers for async write i/o. */ 833 do { 834 if (buffer_mapped(bh) && buffer_dirty(bh)) { 835 lock_buffer(bh); 836 if (test_clear_buffer_dirty(bh)) { 837 BUG_ON(!buffer_uptodate(bh)); 838 mark_buffer_async_write(bh); 839 } else 840 unlock_buffer(bh); 841 } else if (unlikely(err)) { 842 /* 843 * For the error case. The buffer may have been set 844 * dirty during attachment to a dirty page. 845 */ 846 if (err != -ENOMEM) 847 clear_buffer_dirty(bh); 848 } 849 } while ((bh = bh->b_this_page) != head); 850 851 if (unlikely(err)) { 852 // TODO: Remove the -EOPNOTSUPP check later on... 853 if (unlikely(err == -EOPNOTSUPP)) 854 err = 0; 855 else if (err == -ENOMEM) { 856 ntfs_warning(vol->sb, "Error allocating memory. " 857 "Redirtying page so we try again " 858 "later."); 859 /* 860 * Put the page back on mapping->dirty_pages, but 861 * leave its buffer's dirty state as-is. 862 */ 863 redirty_page_for_writepage(wbc, page); 864 err = 0; 865 } else 866 SetPageError(page); 867 } 868 869 BUG_ON(PageWriteback(page)); 870 set_page_writeback(page); /* Keeps try_to_free_buffers() away. */ 871 872 /* Submit the prepared buffers for i/o. */ 873 need_end_writeback = true; 874 do { 875 struct buffer_head *next = bh->b_this_page; 876 if (buffer_async_write(bh)) { 877 submit_bh(REQ_OP_WRITE, 0, bh); 878 need_end_writeback = false; 879 } 880 bh = next; 881 } while (bh != head); 882 unlock_page(page); 883 884 /* If no i/o was started, need to end_page_writeback(). */ 885 if (unlikely(need_end_writeback)) 886 end_page_writeback(page); 887 888 ntfs_debug("Done."); 889 return err; 890 } 891 892 /** 893 * ntfs_write_mst_block - write a @page to the backing store 894 * @page: page cache page to write out 895 * @wbc: writeback control structure 896 * 897 * This function is for writing pages belonging to non-resident, mst protected 898 * attributes to their backing store. The only supported attributes are index 899 * allocation and $MFT/$DATA. Both directory inodes and index inodes are 900 * supported for the index allocation case. 901 * 902 * The page must remain locked for the duration of the write because we apply 903 * the mst fixups, write, and then undo the fixups, so if we were to unlock the 904 * page before undoing the fixups, any other user of the page will see the 905 * page contents as corrupt. 906 * 907 * We clear the page uptodate flag for the duration of the function to ensure 908 * exclusion for the $MFT/$DATA case against someone mapping an mft record we 909 * are about to apply the mst fixups to. 910 * 911 * Return 0 on success and -errno on error. 912 * 913 * Based on ntfs_write_block(), ntfs_mft_writepage(), and 914 * write_mft_record_nolock(). 915 */ 916 static int ntfs_write_mst_block(struct page *page, 917 struct writeback_control *wbc) 918 { 919 sector_t block, dblock, rec_block; 920 struct inode *vi = page->mapping->host; 921 ntfs_inode *ni = NTFS_I(vi); 922 ntfs_volume *vol = ni->vol; 923 u8 *kaddr; 924 unsigned int rec_size = ni->itype.index.block_size; 925 ntfs_inode *locked_nis[PAGE_SIZE / NTFS_BLOCK_SIZE]; 926 struct buffer_head *bh, *head, *tbh, *rec_start_bh; 927 struct buffer_head *bhs[MAX_BUF_PER_PAGE]; 928 runlist_element *rl; 929 int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2; 930 unsigned bh_size, rec_size_bits; 931 bool sync, is_mft, page_is_dirty, rec_is_dirty; 932 unsigned char bh_size_bits; 933 934 if (WARN_ON(rec_size < NTFS_BLOCK_SIZE)) 935 return -EINVAL; 936 937 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " 938 "0x%lx.", vi->i_ino, ni->type, page->index); 939 BUG_ON(!NInoNonResident(ni)); 940 BUG_ON(!NInoMstProtected(ni)); 941 is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino); 942 /* 943 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page 944 * in its page cache were to be marked dirty. However this should 945 * never happen with the current driver and considering we do not 946 * handle this case here we do want to BUG(), at least for now. 947 */ 948 BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) || 949 (NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION))); 950 bh_size = vol->sb->s_blocksize; 951 bh_size_bits = vol->sb->s_blocksize_bits; 952 max_bhs = PAGE_SIZE / bh_size; 953 BUG_ON(!max_bhs); 954 BUG_ON(max_bhs > MAX_BUF_PER_PAGE); 955 956 /* Were we called for sync purposes? */ 957 sync = (wbc->sync_mode == WB_SYNC_ALL); 958 959 /* Make sure we have mapped buffers. */ 960 bh = head = page_buffers(page); 961 BUG_ON(!bh); 962 963 rec_size_bits = ni->itype.index.block_size_bits; 964 BUG_ON(!(PAGE_SIZE >> rec_size_bits)); 965 bhs_per_rec = rec_size >> bh_size_bits; 966 BUG_ON(!bhs_per_rec); 967 968 /* The first block in the page. */ 969 rec_block = block = (sector_t)page->index << 970 (PAGE_SHIFT - bh_size_bits); 971 972 /* The first out of bounds block for the data size. */ 973 dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits; 974 975 rl = NULL; 976 err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0; 977 page_is_dirty = rec_is_dirty = false; 978 rec_start_bh = NULL; 979 do { 980 bool is_retry = false; 981 982 if (likely(block < rec_block)) { 983 if (unlikely(block >= dblock)) { 984 clear_buffer_dirty(bh); 985 set_buffer_uptodate(bh); 986 continue; 987 } 988 /* 989 * This block is not the first one in the record. We 990 * ignore the buffer's dirty state because we could 991 * have raced with a parallel mark_ntfs_record_dirty(). 992 */ 993 if (!rec_is_dirty) 994 continue; 995 if (unlikely(err2)) { 996 if (err2 != -ENOMEM) 997 clear_buffer_dirty(bh); 998 continue; 999 } 1000 } else /* if (block == rec_block) */ { 1001 BUG_ON(block > rec_block); 1002 /* This block is the first one in the record. */ 1003 rec_block += bhs_per_rec; 1004 err2 = 0; 1005 if (unlikely(block >= dblock)) { 1006 clear_buffer_dirty(bh); 1007 continue; 1008 } 1009 if (!buffer_dirty(bh)) { 1010 /* Clean records are not written out. */ 1011 rec_is_dirty = false; 1012 continue; 1013 } 1014 rec_is_dirty = true; 1015 rec_start_bh = bh; 1016 } 1017 /* Need to map the buffer if it is not mapped already. */ 1018 if (unlikely(!buffer_mapped(bh))) { 1019 VCN vcn; 1020 LCN lcn; 1021 unsigned int vcn_ofs; 1022 1023 bh->b_bdev = vol->sb->s_bdev; 1024 /* Obtain the vcn and offset of the current block. */ 1025 vcn = (VCN)block << bh_size_bits; 1026 vcn_ofs = vcn & vol->cluster_size_mask; 1027 vcn >>= vol->cluster_size_bits; 1028 if (!rl) { 1029 lock_retry_remap: 1030 down_read(&ni->runlist.lock); 1031 rl = ni->runlist.rl; 1032 } 1033 if (likely(rl != NULL)) { 1034 /* Seek to element containing target vcn. */ 1035 while (rl->length && rl[1].vcn <= vcn) 1036 rl++; 1037 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 1038 } else 1039 lcn = LCN_RL_NOT_MAPPED; 1040 /* Successful remap. */ 1041 if (likely(lcn >= 0)) { 1042 /* Setup buffer head to correct block. */ 1043 bh->b_blocknr = ((lcn << 1044 vol->cluster_size_bits) + 1045 vcn_ofs) >> bh_size_bits; 1046 set_buffer_mapped(bh); 1047 } else { 1048 /* 1049 * Remap failed. Retry to map the runlist once 1050 * unless we are working on $MFT which always 1051 * has the whole of its runlist in memory. 1052 */ 1053 if (!is_mft && !is_retry && 1054 lcn == LCN_RL_NOT_MAPPED) { 1055 is_retry = true; 1056 /* 1057 * Attempt to map runlist, dropping 1058 * lock for the duration. 1059 */ 1060 up_read(&ni->runlist.lock); 1061 err2 = ntfs_map_runlist(ni, vcn); 1062 if (likely(!err2)) 1063 goto lock_retry_remap; 1064 if (err2 == -ENOMEM) 1065 page_is_dirty = true; 1066 lcn = err2; 1067 } else { 1068 err2 = -EIO; 1069 if (!rl) 1070 up_read(&ni->runlist.lock); 1071 } 1072 /* Hard error. Abort writing this record. */ 1073 if (!err || err == -ENOMEM) 1074 err = err2; 1075 bh->b_blocknr = -1; 1076 ntfs_error(vol->sb, "Cannot write ntfs record " 1077 "0x%llx (inode 0x%lx, " 1078 "attribute type 0x%x) because " 1079 "its location on disk could " 1080 "not be determined (error " 1081 "code %lli).", 1082 (long long)block << 1083 bh_size_bits >> 1084 vol->mft_record_size_bits, 1085 ni->mft_no, ni->type, 1086 (long long)lcn); 1087 /* 1088 * If this is not the first buffer, remove the 1089 * buffers in this record from the list of 1090 * buffers to write and clear their dirty bit 1091 * if not error -ENOMEM. 1092 */ 1093 if (rec_start_bh != bh) { 1094 while (bhs[--nr_bhs] != rec_start_bh) 1095 ; 1096 if (err2 != -ENOMEM) { 1097 do { 1098 clear_buffer_dirty( 1099 rec_start_bh); 1100 } while ((rec_start_bh = 1101 rec_start_bh-> 1102 b_this_page) != 1103 bh); 1104 } 1105 } 1106 continue; 1107 } 1108 } 1109 BUG_ON(!buffer_uptodate(bh)); 1110 BUG_ON(nr_bhs >= max_bhs); 1111 bhs[nr_bhs++] = bh; 1112 } while (block++, (bh = bh->b_this_page) != head); 1113 if (unlikely(rl)) 1114 up_read(&ni->runlist.lock); 1115 /* If there were no dirty buffers, we are done. */ 1116 if (!nr_bhs) 1117 goto done; 1118 /* Map the page so we can access its contents. */ 1119 kaddr = kmap(page); 1120 /* Clear the page uptodate flag whilst the mst fixups are applied. */ 1121 BUG_ON(!PageUptodate(page)); 1122 ClearPageUptodate(page); 1123 for (i = 0; i < nr_bhs; i++) { 1124 unsigned int ofs; 1125 1126 /* Skip buffers which are not at the beginning of records. */ 1127 if (i % bhs_per_rec) 1128 continue; 1129 tbh = bhs[i]; 1130 ofs = bh_offset(tbh); 1131 if (is_mft) { 1132 ntfs_inode *tni; 1133 unsigned long mft_no; 1134 1135 /* Get the mft record number. */ 1136 mft_no = (((s64)page->index << PAGE_SHIFT) + ofs) 1137 >> rec_size_bits; 1138 /* Check whether to write this mft record. */ 1139 tni = NULL; 1140 if (!ntfs_may_write_mft_record(vol, mft_no, 1141 (MFT_RECORD*)(kaddr + ofs), &tni)) { 1142 /* 1143 * The record should not be written. This 1144 * means we need to redirty the page before 1145 * returning. 1146 */ 1147 page_is_dirty = true; 1148 /* 1149 * Remove the buffers in this mft record from 1150 * the list of buffers to write. 1151 */ 1152 do { 1153 bhs[i] = NULL; 1154 } while (++i % bhs_per_rec); 1155 continue; 1156 } 1157 /* 1158 * The record should be written. If a locked ntfs 1159 * inode was returned, add it to the array of locked 1160 * ntfs inodes. 1161 */ 1162 if (tni) 1163 locked_nis[nr_locked_nis++] = tni; 1164 } 1165 /* Apply the mst protection fixups. */ 1166 err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs), 1167 rec_size); 1168 if (unlikely(err2)) { 1169 if (!err || err == -ENOMEM) 1170 err = -EIO; 1171 ntfs_error(vol->sb, "Failed to apply mst fixups " 1172 "(inode 0x%lx, attribute type 0x%x, " 1173 "page index 0x%lx, page offset 0x%x)!" 1174 " Unmount and run chkdsk.", vi->i_ino, 1175 ni->type, page->index, ofs); 1176 /* 1177 * Mark all the buffers in this record clean as we do 1178 * not want to write corrupt data to disk. 1179 */ 1180 do { 1181 clear_buffer_dirty(bhs[i]); 1182 bhs[i] = NULL; 1183 } while (++i % bhs_per_rec); 1184 continue; 1185 } 1186 nr_recs++; 1187 } 1188 /* If no records are to be written out, we are done. */ 1189 if (!nr_recs) 1190 goto unm_done; 1191 flush_dcache_page(page); 1192 /* Lock buffers and start synchronous write i/o on them. */ 1193 for (i = 0; i < nr_bhs; i++) { 1194 tbh = bhs[i]; 1195 if (!tbh) 1196 continue; 1197 if (!trylock_buffer(tbh)) 1198 BUG(); 1199 /* The buffer dirty state is now irrelevant, just clean it. */ 1200 clear_buffer_dirty(tbh); 1201 BUG_ON(!buffer_uptodate(tbh)); 1202 BUG_ON(!buffer_mapped(tbh)); 1203 get_bh(tbh); 1204 tbh->b_end_io = end_buffer_write_sync; 1205 submit_bh(REQ_OP_WRITE, 0, tbh); 1206 } 1207 /* Synchronize the mft mirror now if not @sync. */ 1208 if (is_mft && !sync) 1209 goto do_mirror; 1210 do_wait: 1211 /* Wait on i/o completion of buffers. */ 1212 for (i = 0; i < nr_bhs; i++) { 1213 tbh = bhs[i]; 1214 if (!tbh) 1215 continue; 1216 wait_on_buffer(tbh); 1217 if (unlikely(!buffer_uptodate(tbh))) { 1218 ntfs_error(vol->sb, "I/O error while writing ntfs " 1219 "record buffer (inode 0x%lx, " 1220 "attribute type 0x%x, page index " 1221 "0x%lx, page offset 0x%lx)! Unmount " 1222 "and run chkdsk.", vi->i_ino, ni->type, 1223 page->index, bh_offset(tbh)); 1224 if (!err || err == -ENOMEM) 1225 err = -EIO; 1226 /* 1227 * Set the buffer uptodate so the page and buffer 1228 * states do not become out of sync. 1229 */ 1230 set_buffer_uptodate(tbh); 1231 } 1232 } 1233 /* If @sync, now synchronize the mft mirror. */ 1234 if (is_mft && sync) { 1235 do_mirror: 1236 for (i = 0; i < nr_bhs; i++) { 1237 unsigned long mft_no; 1238 unsigned int ofs; 1239 1240 /* 1241 * Skip buffers which are not at the beginning of 1242 * records. 1243 */ 1244 if (i % bhs_per_rec) 1245 continue; 1246 tbh = bhs[i]; 1247 /* Skip removed buffers (and hence records). */ 1248 if (!tbh) 1249 continue; 1250 ofs = bh_offset(tbh); 1251 /* Get the mft record number. */ 1252 mft_no = (((s64)page->index << PAGE_SHIFT) + ofs) 1253 >> rec_size_bits; 1254 if (mft_no < vol->mftmirr_size) 1255 ntfs_sync_mft_mirror(vol, mft_no, 1256 (MFT_RECORD*)(kaddr + ofs), 1257 sync); 1258 } 1259 if (!sync) 1260 goto do_wait; 1261 } 1262 /* Remove the mst protection fixups again. */ 1263 for (i = 0; i < nr_bhs; i++) { 1264 if (!(i % bhs_per_rec)) { 1265 tbh = bhs[i]; 1266 if (!tbh) 1267 continue; 1268 post_write_mst_fixup((NTFS_RECORD*)(kaddr + 1269 bh_offset(tbh))); 1270 } 1271 } 1272 flush_dcache_page(page); 1273 unm_done: 1274 /* Unlock any locked inodes. */ 1275 while (nr_locked_nis-- > 0) { 1276 ntfs_inode *tni, *base_tni; 1277 1278 tni = locked_nis[nr_locked_nis]; 1279 /* Get the base inode. */ 1280 mutex_lock(&tni->extent_lock); 1281 if (tni->nr_extents >= 0) 1282 base_tni = tni; 1283 else { 1284 base_tni = tni->ext.base_ntfs_ino; 1285 BUG_ON(!base_tni); 1286 } 1287 mutex_unlock(&tni->extent_lock); 1288 ntfs_debug("Unlocking %s inode 0x%lx.", 1289 tni == base_tni ? "base" : "extent", 1290 tni->mft_no); 1291 mutex_unlock(&tni->mrec_lock); 1292 atomic_dec(&tni->count); 1293 iput(VFS_I(base_tni)); 1294 } 1295 SetPageUptodate(page); 1296 kunmap(page); 1297 done: 1298 if (unlikely(err && err != -ENOMEM)) { 1299 /* 1300 * Set page error if there is only one ntfs record in the page. 1301 * Otherwise we would loose per-record granularity. 1302 */ 1303 if (ni->itype.index.block_size == PAGE_SIZE) 1304 SetPageError(page); 1305 NVolSetErrors(vol); 1306 } 1307 if (page_is_dirty) { 1308 ntfs_debug("Page still contains one or more dirty ntfs " 1309 "records. Redirtying the page starting at " 1310 "record 0x%lx.", page->index << 1311 (PAGE_SHIFT - rec_size_bits)); 1312 redirty_page_for_writepage(wbc, page); 1313 unlock_page(page); 1314 } else { 1315 /* 1316 * Keep the VM happy. This must be done otherwise the 1317 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though 1318 * the page is clean. 1319 */ 1320 BUG_ON(PageWriteback(page)); 1321 set_page_writeback(page); 1322 unlock_page(page); 1323 end_page_writeback(page); 1324 } 1325 if (likely(!err)) 1326 ntfs_debug("Done."); 1327 return err; 1328 } 1329 1330 /** 1331 * ntfs_writepage - write a @page to the backing store 1332 * @page: page cache page to write out 1333 * @wbc: writeback control structure 1334 * 1335 * This is called from the VM when it wants to have a dirty ntfs page cache 1336 * page cleaned. The VM has already locked the page and marked it clean. 1337 * 1338 * For non-resident attributes, ntfs_writepage() writes the @page by calling 1339 * the ntfs version of the generic block_write_full_page() function, 1340 * ntfs_write_block(), which in turn if necessary creates and writes the 1341 * buffers associated with the page asynchronously. 1342 * 1343 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying 1344 * the data to the mft record (which at this stage is most likely in memory). 1345 * The mft record is then marked dirty and written out asynchronously via the 1346 * vfs inode dirty code path for the inode the mft record belongs to or via the 1347 * vm page dirty code path for the page the mft record is in. 1348 * 1349 * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page(). 1350 * 1351 * Return 0 on success and -errno on error. 1352 */ 1353 static int ntfs_writepage(struct page *page, struct writeback_control *wbc) 1354 { 1355 loff_t i_size; 1356 struct inode *vi = page->mapping->host; 1357 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi); 1358 char *addr; 1359 ntfs_attr_search_ctx *ctx = NULL; 1360 MFT_RECORD *m = NULL; 1361 u32 attr_len; 1362 int err; 1363 1364 retry_writepage: 1365 BUG_ON(!PageLocked(page)); 1366 i_size = i_size_read(vi); 1367 /* Is the page fully outside i_size? (truncate in progress) */ 1368 if (unlikely(page->index >= (i_size + PAGE_SIZE - 1) >> 1369 PAGE_SHIFT)) { 1370 /* 1371 * The page may have dirty, unmapped buffers. Make them 1372 * freeable here, so the page does not leak. 1373 */ 1374 block_invalidatepage(page, 0, PAGE_SIZE); 1375 unlock_page(page); 1376 ntfs_debug("Write outside i_size - truncated?"); 1377 return 0; 1378 } 1379 /* 1380 * Only $DATA attributes can be encrypted and only unnamed $DATA 1381 * attributes can be compressed. Index root can have the flags set but 1382 * this means to create compressed/encrypted files, not that the 1383 * attribute is compressed/encrypted. Note we need to check for 1384 * AT_INDEX_ALLOCATION since this is the type of both directory and 1385 * index inodes. 1386 */ 1387 if (ni->type != AT_INDEX_ALLOCATION) { 1388 /* If file is encrypted, deny access, just like NT4. */ 1389 if (NInoEncrypted(ni)) { 1390 unlock_page(page); 1391 BUG_ON(ni->type != AT_DATA); 1392 ntfs_debug("Denying write access to encrypted file."); 1393 return -EACCES; 1394 } 1395 /* Compressed data streams are handled in compress.c. */ 1396 if (NInoNonResident(ni) && NInoCompressed(ni)) { 1397 BUG_ON(ni->type != AT_DATA); 1398 BUG_ON(ni->name_len); 1399 // TODO: Implement and replace this with 1400 // return ntfs_write_compressed_block(page); 1401 unlock_page(page); 1402 ntfs_error(vi->i_sb, "Writing to compressed files is " 1403 "not supported yet. Sorry."); 1404 return -EOPNOTSUPP; 1405 } 1406 // TODO: Implement and remove this check. 1407 if (NInoNonResident(ni) && NInoSparse(ni)) { 1408 unlock_page(page); 1409 ntfs_error(vi->i_sb, "Writing to sparse files is not " 1410 "supported yet. Sorry."); 1411 return -EOPNOTSUPP; 1412 } 1413 } 1414 /* NInoNonResident() == NInoIndexAllocPresent() */ 1415 if (NInoNonResident(ni)) { 1416 /* We have to zero every time due to mmap-at-end-of-file. */ 1417 if (page->index >= (i_size >> PAGE_SHIFT)) { 1418 /* The page straddles i_size. */ 1419 unsigned int ofs = i_size & ~PAGE_MASK; 1420 zero_user_segment(page, ofs, PAGE_SIZE); 1421 } 1422 /* Handle mst protected attributes. */ 1423 if (NInoMstProtected(ni)) 1424 return ntfs_write_mst_block(page, wbc); 1425 /* Normal, non-resident data stream. */ 1426 return ntfs_write_block(page, wbc); 1427 } 1428 /* 1429 * Attribute is resident, implying it is not compressed, encrypted, or 1430 * mst protected. This also means the attribute is smaller than an mft 1431 * record and hence smaller than a page, so can simply return error on 1432 * any pages with index above 0. Note the attribute can actually be 1433 * marked compressed but if it is resident the actual data is not 1434 * compressed so we are ok to ignore the compressed flag here. 1435 */ 1436 BUG_ON(page_has_buffers(page)); 1437 BUG_ON(!PageUptodate(page)); 1438 if (unlikely(page->index > 0)) { 1439 ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0. " 1440 "Aborting write.", page->index); 1441 BUG_ON(PageWriteback(page)); 1442 set_page_writeback(page); 1443 unlock_page(page); 1444 end_page_writeback(page); 1445 return -EIO; 1446 } 1447 if (!NInoAttr(ni)) 1448 base_ni = ni; 1449 else 1450 base_ni = ni->ext.base_ntfs_ino; 1451 /* Map, pin, and lock the mft record. */ 1452 m = map_mft_record(base_ni); 1453 if (IS_ERR(m)) { 1454 err = PTR_ERR(m); 1455 m = NULL; 1456 ctx = NULL; 1457 goto err_out; 1458 } 1459 /* 1460 * If a parallel write made the attribute non-resident, drop the mft 1461 * record and retry the writepage. 1462 */ 1463 if (unlikely(NInoNonResident(ni))) { 1464 unmap_mft_record(base_ni); 1465 goto retry_writepage; 1466 } 1467 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1468 if (unlikely(!ctx)) { 1469 err = -ENOMEM; 1470 goto err_out; 1471 } 1472 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1473 CASE_SENSITIVE, 0, NULL, 0, ctx); 1474 if (unlikely(err)) 1475 goto err_out; 1476 /* 1477 * Keep the VM happy. This must be done otherwise the radix-tree tag 1478 * PAGECACHE_TAG_DIRTY remains set even though the page is clean. 1479 */ 1480 BUG_ON(PageWriteback(page)); 1481 set_page_writeback(page); 1482 unlock_page(page); 1483 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length); 1484 i_size = i_size_read(vi); 1485 if (unlikely(attr_len > i_size)) { 1486 /* Race with shrinking truncate or a failed truncate. */ 1487 attr_len = i_size; 1488 /* 1489 * If the truncate failed, fix it up now. If a concurrent 1490 * truncate, we do its job, so it does not have to do anything. 1491 */ 1492 err = ntfs_resident_attr_value_resize(ctx->mrec, ctx->attr, 1493 attr_len); 1494 /* Shrinking cannot fail. */ 1495 BUG_ON(err); 1496 } 1497 addr = kmap_atomic(page); 1498 /* Copy the data from the page to the mft record. */ 1499 memcpy((u8*)ctx->attr + 1500 le16_to_cpu(ctx->attr->data.resident.value_offset), 1501 addr, attr_len); 1502 /* Zero out of bounds area in the page cache page. */ 1503 memset(addr + attr_len, 0, PAGE_SIZE - attr_len); 1504 kunmap_atomic(addr); 1505 flush_dcache_page(page); 1506 flush_dcache_mft_record_page(ctx->ntfs_ino); 1507 /* We are done with the page. */ 1508 end_page_writeback(page); 1509 /* Finally, mark the mft record dirty, so it gets written back. */ 1510 mark_mft_record_dirty(ctx->ntfs_ino); 1511 ntfs_attr_put_search_ctx(ctx); 1512 unmap_mft_record(base_ni); 1513 return 0; 1514 err_out: 1515 if (err == -ENOMEM) { 1516 ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying " 1517 "page so we try again later."); 1518 /* 1519 * Put the page back on mapping->dirty_pages, but leave its 1520 * buffers' dirty state as-is. 1521 */ 1522 redirty_page_for_writepage(wbc, page); 1523 err = 0; 1524 } else { 1525 ntfs_error(vi->i_sb, "Resident attribute write failed with " 1526 "error %i.", err); 1527 SetPageError(page); 1528 NVolSetErrors(ni->vol); 1529 } 1530 unlock_page(page); 1531 if (ctx) 1532 ntfs_attr_put_search_ctx(ctx); 1533 if (m) 1534 unmap_mft_record(base_ni); 1535 return err; 1536 } 1537 1538 #endif /* NTFS_RW */ 1539 1540 /** 1541 * ntfs_bmap - map logical file block to physical device block 1542 * @mapping: address space mapping to which the block to be mapped belongs 1543 * @block: logical block to map to its physical device block 1544 * 1545 * For regular, non-resident files (i.e. not compressed and not encrypted), map 1546 * the logical @block belonging to the file described by the address space 1547 * mapping @mapping to its physical device block. 1548 * 1549 * The size of the block is equal to the @s_blocksize field of the super block 1550 * of the mounted file system which is guaranteed to be smaller than or equal 1551 * to the cluster size thus the block is guaranteed to fit entirely inside the 1552 * cluster which means we do not need to care how many contiguous bytes are 1553 * available after the beginning of the block. 1554 * 1555 * Return the physical device block if the mapping succeeded or 0 if the block 1556 * is sparse or there was an error. 1557 * 1558 * Note: This is a problem if someone tries to run bmap() on $Boot system file 1559 * as that really is in block zero but there is nothing we can do. bmap() is 1560 * just broken in that respect (just like it cannot distinguish sparse from 1561 * not available or error). 1562 */ 1563 static sector_t ntfs_bmap(struct address_space *mapping, sector_t block) 1564 { 1565 s64 ofs, size; 1566 loff_t i_size; 1567 LCN lcn; 1568 unsigned long blocksize, flags; 1569 ntfs_inode *ni = NTFS_I(mapping->host); 1570 ntfs_volume *vol = ni->vol; 1571 unsigned delta; 1572 unsigned char blocksize_bits, cluster_size_shift; 1573 1574 ntfs_debug("Entering for mft_no 0x%lx, logical block 0x%llx.", 1575 ni->mft_no, (unsigned long long)block); 1576 if (ni->type != AT_DATA || !NInoNonResident(ni) || NInoEncrypted(ni)) { 1577 ntfs_error(vol->sb, "BMAP does not make sense for %s " 1578 "attributes, returning 0.", 1579 (ni->type != AT_DATA) ? "non-data" : 1580 (!NInoNonResident(ni) ? "resident" : 1581 "encrypted")); 1582 return 0; 1583 } 1584 /* None of these can happen. */ 1585 BUG_ON(NInoCompressed(ni)); 1586 BUG_ON(NInoMstProtected(ni)); 1587 blocksize = vol->sb->s_blocksize; 1588 blocksize_bits = vol->sb->s_blocksize_bits; 1589 ofs = (s64)block << blocksize_bits; 1590 read_lock_irqsave(&ni->size_lock, flags); 1591 size = ni->initialized_size; 1592 i_size = i_size_read(VFS_I(ni)); 1593 read_unlock_irqrestore(&ni->size_lock, flags); 1594 /* 1595 * If the offset is outside the initialized size or the block straddles 1596 * the initialized size then pretend it is a hole unless the 1597 * initialized size equals the file size. 1598 */ 1599 if (unlikely(ofs >= size || (ofs + blocksize > size && size < i_size))) 1600 goto hole; 1601 cluster_size_shift = vol->cluster_size_bits; 1602 down_read(&ni->runlist.lock); 1603 lcn = ntfs_attr_vcn_to_lcn_nolock(ni, ofs >> cluster_size_shift, false); 1604 up_read(&ni->runlist.lock); 1605 if (unlikely(lcn < LCN_HOLE)) { 1606 /* 1607 * Step down to an integer to avoid gcc doing a long long 1608 * comparision in the switch when we know @lcn is between 1609 * LCN_HOLE and LCN_EIO (i.e. -1 to -5). 1610 * 1611 * Otherwise older gcc (at least on some architectures) will 1612 * try to use __cmpdi2() which is of course not available in 1613 * the kernel. 1614 */ 1615 switch ((int)lcn) { 1616 case LCN_ENOENT: 1617 /* 1618 * If the offset is out of bounds then pretend it is a 1619 * hole. 1620 */ 1621 goto hole; 1622 case LCN_ENOMEM: 1623 ntfs_error(vol->sb, "Not enough memory to complete " 1624 "mapping for inode 0x%lx. " 1625 "Returning 0.", ni->mft_no); 1626 break; 1627 default: 1628 ntfs_error(vol->sb, "Failed to complete mapping for " 1629 "inode 0x%lx. Run chkdsk. " 1630 "Returning 0.", ni->mft_no); 1631 break; 1632 } 1633 return 0; 1634 } 1635 if (lcn < 0) { 1636 /* It is a hole. */ 1637 hole: 1638 ntfs_debug("Done (returning hole)."); 1639 return 0; 1640 } 1641 /* 1642 * The block is really allocated and fullfils all our criteria. 1643 * Convert the cluster to units of block size and return the result. 1644 */ 1645 delta = ofs & vol->cluster_size_mask; 1646 if (unlikely(sizeof(block) < sizeof(lcn))) { 1647 block = lcn = ((lcn << cluster_size_shift) + delta) >> 1648 blocksize_bits; 1649 /* If the block number was truncated return 0. */ 1650 if (unlikely(block != lcn)) { 1651 ntfs_error(vol->sb, "Physical block 0x%llx is too " 1652 "large to be returned, returning 0.", 1653 (long long)lcn); 1654 return 0; 1655 } 1656 } else 1657 block = ((lcn << cluster_size_shift) + delta) >> 1658 blocksize_bits; 1659 ntfs_debug("Done (returning block 0x%llx).", (unsigned long long)lcn); 1660 return block; 1661 } 1662 1663 /** 1664 * ntfs_normal_aops - address space operations for normal inodes and attributes 1665 * 1666 * Note these are not used for compressed or mst protected inodes and 1667 * attributes. 1668 */ 1669 const struct address_space_operations ntfs_normal_aops = { 1670 .readpage = ntfs_readpage, 1671 #ifdef NTFS_RW 1672 .writepage = ntfs_writepage, 1673 .set_page_dirty = __set_page_dirty_buffers, 1674 #endif /* NTFS_RW */ 1675 .bmap = ntfs_bmap, 1676 .migratepage = buffer_migrate_page, 1677 .is_partially_uptodate = block_is_partially_uptodate, 1678 .error_remove_page = generic_error_remove_page, 1679 }; 1680 1681 /** 1682 * ntfs_compressed_aops - address space operations for compressed inodes 1683 */ 1684 const struct address_space_operations ntfs_compressed_aops = { 1685 .readpage = ntfs_readpage, 1686 #ifdef NTFS_RW 1687 .writepage = ntfs_writepage, 1688 .set_page_dirty = __set_page_dirty_buffers, 1689 #endif /* NTFS_RW */ 1690 .migratepage = buffer_migrate_page, 1691 .is_partially_uptodate = block_is_partially_uptodate, 1692 .error_remove_page = generic_error_remove_page, 1693 }; 1694 1695 /** 1696 * ntfs_mst_aops - general address space operations for mst protecteed inodes 1697 * and attributes 1698 */ 1699 const struct address_space_operations ntfs_mst_aops = { 1700 .readpage = ntfs_readpage, /* Fill page with data. */ 1701 #ifdef NTFS_RW 1702 .writepage = ntfs_writepage, /* Write dirty page to disk. */ 1703 .set_page_dirty = __set_page_dirty_nobuffers, /* Set the page dirty 1704 without touching the buffers 1705 belonging to the page. */ 1706 #endif /* NTFS_RW */ 1707 .migratepage = buffer_migrate_page, 1708 .is_partially_uptodate = block_is_partially_uptodate, 1709 .error_remove_page = generic_error_remove_page, 1710 }; 1711 1712 #ifdef NTFS_RW 1713 1714 /** 1715 * mark_ntfs_record_dirty - mark an ntfs record dirty 1716 * @page: page containing the ntfs record to mark dirty 1717 * @ofs: byte offset within @page at which the ntfs record begins 1718 * 1719 * Set the buffers and the page in which the ntfs record is located dirty. 1720 * 1721 * The latter also marks the vfs inode the ntfs record belongs to dirty 1722 * (I_DIRTY_PAGES only). 1723 * 1724 * If the page does not have buffers, we create them and set them uptodate. 1725 * The page may not be locked which is why we need to handle the buffers under 1726 * the mapping->private_lock. Once the buffers are marked dirty we no longer 1727 * need the lock since try_to_free_buffers() does not free dirty buffers. 1728 */ 1729 void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) { 1730 struct address_space *mapping = page->mapping; 1731 ntfs_inode *ni = NTFS_I(mapping->host); 1732 struct buffer_head *bh, *head, *buffers_to_free = NULL; 1733 unsigned int end, bh_size, bh_ofs; 1734 1735 BUG_ON(!PageUptodate(page)); 1736 end = ofs + ni->itype.index.block_size; 1737 bh_size = VFS_I(ni)->i_sb->s_blocksize; 1738 spin_lock(&mapping->private_lock); 1739 if (unlikely(!page_has_buffers(page))) { 1740 spin_unlock(&mapping->private_lock); 1741 bh = head = alloc_page_buffers(page, bh_size, true); 1742 spin_lock(&mapping->private_lock); 1743 if (likely(!page_has_buffers(page))) { 1744 struct buffer_head *tail; 1745 1746 do { 1747 set_buffer_uptodate(bh); 1748 tail = bh; 1749 bh = bh->b_this_page; 1750 } while (bh); 1751 tail->b_this_page = head; 1752 attach_page_buffers(page, head); 1753 } else 1754 buffers_to_free = bh; 1755 } 1756 bh = head = page_buffers(page); 1757 BUG_ON(!bh); 1758 do { 1759 bh_ofs = bh_offset(bh); 1760 if (bh_ofs + bh_size <= ofs) 1761 continue; 1762 if (unlikely(bh_ofs >= end)) 1763 break; 1764 set_buffer_dirty(bh); 1765 } while ((bh = bh->b_this_page) != head); 1766 spin_unlock(&mapping->private_lock); 1767 __set_page_dirty_nobuffers(page); 1768 if (unlikely(buffers_to_free)) { 1769 do { 1770 bh = buffers_to_free->b_this_page; 1771 free_buffer_head(buffers_to_free); 1772 buffers_to_free = bh; 1773 } while (buffers_to_free); 1774 } 1775 } 1776 1777 #endif /* NTFS_RW */ 1778