xref: /openbmc/linux/fs/ntfs/aops.c (revision 12eb4683)
1 /**
2  * aops.c - NTFS kernel address space operations and page cache handling.
3  *	    Part of the Linux-NTFS project.
4  *
5  * Copyright (c) 2001-2007 Anton Altaparmakov
6  * Copyright (c) 2002 Richard Russon
7  *
8  * This program/include file is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as published
10  * by the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program/include file is distributed in the hope that it will be
14  * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program (in the main directory of the Linux-NTFS
20  * distribution in the file COPYING); if not, write to the Free Software
21  * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23 
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/gfp.h>
27 #include <linux/mm.h>
28 #include <linux/pagemap.h>
29 #include <linux/swap.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/bit_spinlock.h>
33 
34 #include "aops.h"
35 #include "attrib.h"
36 #include "debug.h"
37 #include "inode.h"
38 #include "mft.h"
39 #include "runlist.h"
40 #include "types.h"
41 #include "ntfs.h"
42 
43 /**
44  * ntfs_end_buffer_async_read - async io completion for reading attributes
45  * @bh:		buffer head on which io is completed
46  * @uptodate:	whether @bh is now uptodate or not
47  *
48  * Asynchronous I/O completion handler for reading pages belonging to the
49  * attribute address space of an inode.  The inodes can either be files or
50  * directories or they can be fake inodes describing some attribute.
51  *
52  * If NInoMstProtected(), perform the post read mst fixups when all IO on the
53  * page has been completed and mark the page uptodate or set the error bit on
54  * the page.  To determine the size of the records that need fixing up, we
55  * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
56  * record size, and index_block_size_bits, to the log(base 2) of the ntfs
57  * record size.
58  */
59 static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
60 {
61 	unsigned long flags;
62 	struct buffer_head *first, *tmp;
63 	struct page *page;
64 	struct inode *vi;
65 	ntfs_inode *ni;
66 	int page_uptodate = 1;
67 
68 	page = bh->b_page;
69 	vi = page->mapping->host;
70 	ni = NTFS_I(vi);
71 
72 	if (likely(uptodate)) {
73 		loff_t i_size;
74 		s64 file_ofs, init_size;
75 
76 		set_buffer_uptodate(bh);
77 
78 		file_ofs = ((s64)page->index << PAGE_CACHE_SHIFT) +
79 				bh_offset(bh);
80 		read_lock_irqsave(&ni->size_lock, flags);
81 		init_size = ni->initialized_size;
82 		i_size = i_size_read(vi);
83 		read_unlock_irqrestore(&ni->size_lock, flags);
84 		if (unlikely(init_size > i_size)) {
85 			/* Race with shrinking truncate. */
86 			init_size = i_size;
87 		}
88 		/* Check for the current buffer head overflowing. */
89 		if (unlikely(file_ofs + bh->b_size > init_size)) {
90 			int ofs;
91 			void *kaddr;
92 
93 			ofs = 0;
94 			if (file_ofs < init_size)
95 				ofs = init_size - file_ofs;
96 			local_irq_save(flags);
97 			kaddr = kmap_atomic(page);
98 			memset(kaddr + bh_offset(bh) + ofs, 0,
99 					bh->b_size - ofs);
100 			flush_dcache_page(page);
101 			kunmap_atomic(kaddr);
102 			local_irq_restore(flags);
103 		}
104 	} else {
105 		clear_buffer_uptodate(bh);
106 		SetPageError(page);
107 		ntfs_error(ni->vol->sb, "Buffer I/O error, logical block "
108 				"0x%llx.", (unsigned long long)bh->b_blocknr);
109 	}
110 	first = page_buffers(page);
111 	local_irq_save(flags);
112 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
113 	clear_buffer_async_read(bh);
114 	unlock_buffer(bh);
115 	tmp = bh;
116 	do {
117 		if (!buffer_uptodate(tmp))
118 			page_uptodate = 0;
119 		if (buffer_async_read(tmp)) {
120 			if (likely(buffer_locked(tmp)))
121 				goto still_busy;
122 			/* Async buffers must be locked. */
123 			BUG();
124 		}
125 		tmp = tmp->b_this_page;
126 	} while (tmp != bh);
127 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
128 	local_irq_restore(flags);
129 	/*
130 	 * If none of the buffers had errors then we can set the page uptodate,
131 	 * but we first have to perform the post read mst fixups, if the
132 	 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
133 	 * Note we ignore fixup errors as those are detected when
134 	 * map_mft_record() is called which gives us per record granularity
135 	 * rather than per page granularity.
136 	 */
137 	if (!NInoMstProtected(ni)) {
138 		if (likely(page_uptodate && !PageError(page)))
139 			SetPageUptodate(page);
140 	} else {
141 		u8 *kaddr;
142 		unsigned int i, recs;
143 		u32 rec_size;
144 
145 		rec_size = ni->itype.index.block_size;
146 		recs = PAGE_CACHE_SIZE / rec_size;
147 		/* Should have been verified before we got here... */
148 		BUG_ON(!recs);
149 		local_irq_save(flags);
150 		kaddr = kmap_atomic(page);
151 		for (i = 0; i < recs; i++)
152 			post_read_mst_fixup((NTFS_RECORD*)(kaddr +
153 					i * rec_size), rec_size);
154 		kunmap_atomic(kaddr);
155 		local_irq_restore(flags);
156 		flush_dcache_page(page);
157 		if (likely(page_uptodate && !PageError(page)))
158 			SetPageUptodate(page);
159 	}
160 	unlock_page(page);
161 	return;
162 still_busy:
163 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
164 	local_irq_restore(flags);
165 	return;
166 }
167 
168 /**
169  * ntfs_read_block - fill a @page of an address space with data
170  * @page:	page cache page to fill with data
171  *
172  * Fill the page @page of the address space belonging to the @page->host inode.
173  * We read each buffer asynchronously and when all buffers are read in, our io
174  * completion handler ntfs_end_buffer_read_async(), if required, automatically
175  * applies the mst fixups to the page before finally marking it uptodate and
176  * unlocking it.
177  *
178  * We only enforce allocated_size limit because i_size is checked for in
179  * generic_file_read().
180  *
181  * Return 0 on success and -errno on error.
182  *
183  * Contains an adapted version of fs/buffer.c::block_read_full_page().
184  */
185 static int ntfs_read_block(struct page *page)
186 {
187 	loff_t i_size;
188 	VCN vcn;
189 	LCN lcn;
190 	s64 init_size;
191 	struct inode *vi;
192 	ntfs_inode *ni;
193 	ntfs_volume *vol;
194 	runlist_element *rl;
195 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
196 	sector_t iblock, lblock, zblock;
197 	unsigned long flags;
198 	unsigned int blocksize, vcn_ofs;
199 	int i, nr;
200 	unsigned char blocksize_bits;
201 
202 	vi = page->mapping->host;
203 	ni = NTFS_I(vi);
204 	vol = ni->vol;
205 
206 	/* $MFT/$DATA must have its complete runlist in memory at all times. */
207 	BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
208 
209 	blocksize = vol->sb->s_blocksize;
210 	blocksize_bits = vol->sb->s_blocksize_bits;
211 
212 	if (!page_has_buffers(page)) {
213 		create_empty_buffers(page, blocksize, 0);
214 		if (unlikely(!page_has_buffers(page))) {
215 			unlock_page(page);
216 			return -ENOMEM;
217 		}
218 	}
219 	bh = head = page_buffers(page);
220 	BUG_ON(!bh);
221 
222 	/*
223 	 * We may be racing with truncate.  To avoid some of the problems we
224 	 * now take a snapshot of the various sizes and use those for the whole
225 	 * of the function.  In case of an extending truncate it just means we
226 	 * may leave some buffers unmapped which are now allocated.  This is
227 	 * not a problem since these buffers will just get mapped when a write
228 	 * occurs.  In case of a shrinking truncate, we will detect this later
229 	 * on due to the runlist being incomplete and if the page is being
230 	 * fully truncated, truncate will throw it away as soon as we unlock
231 	 * it so no need to worry what we do with it.
232 	 */
233 	iblock = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
234 	read_lock_irqsave(&ni->size_lock, flags);
235 	lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
236 	init_size = ni->initialized_size;
237 	i_size = i_size_read(vi);
238 	read_unlock_irqrestore(&ni->size_lock, flags);
239 	if (unlikely(init_size > i_size)) {
240 		/* Race with shrinking truncate. */
241 		init_size = i_size;
242 	}
243 	zblock = (init_size + blocksize - 1) >> blocksize_bits;
244 
245 	/* Loop through all the buffers in the page. */
246 	rl = NULL;
247 	nr = i = 0;
248 	do {
249 		int err = 0;
250 
251 		if (unlikely(buffer_uptodate(bh)))
252 			continue;
253 		if (unlikely(buffer_mapped(bh))) {
254 			arr[nr++] = bh;
255 			continue;
256 		}
257 		bh->b_bdev = vol->sb->s_bdev;
258 		/* Is the block within the allowed limits? */
259 		if (iblock < lblock) {
260 			bool is_retry = false;
261 
262 			/* Convert iblock into corresponding vcn and offset. */
263 			vcn = (VCN)iblock << blocksize_bits >>
264 					vol->cluster_size_bits;
265 			vcn_ofs = ((VCN)iblock << blocksize_bits) &
266 					vol->cluster_size_mask;
267 			if (!rl) {
268 lock_retry_remap:
269 				down_read(&ni->runlist.lock);
270 				rl = ni->runlist.rl;
271 			}
272 			if (likely(rl != NULL)) {
273 				/* Seek to element containing target vcn. */
274 				while (rl->length && rl[1].vcn <= vcn)
275 					rl++;
276 				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
277 			} else
278 				lcn = LCN_RL_NOT_MAPPED;
279 			/* Successful remap. */
280 			if (lcn >= 0) {
281 				/* Setup buffer head to correct block. */
282 				bh->b_blocknr = ((lcn << vol->cluster_size_bits)
283 						+ vcn_ofs) >> blocksize_bits;
284 				set_buffer_mapped(bh);
285 				/* Only read initialized data blocks. */
286 				if (iblock < zblock) {
287 					arr[nr++] = bh;
288 					continue;
289 				}
290 				/* Fully non-initialized data block, zero it. */
291 				goto handle_zblock;
292 			}
293 			/* It is a hole, need to zero it. */
294 			if (lcn == LCN_HOLE)
295 				goto handle_hole;
296 			/* If first try and runlist unmapped, map and retry. */
297 			if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
298 				is_retry = true;
299 				/*
300 				 * Attempt to map runlist, dropping lock for
301 				 * the duration.
302 				 */
303 				up_read(&ni->runlist.lock);
304 				err = ntfs_map_runlist(ni, vcn);
305 				if (likely(!err))
306 					goto lock_retry_remap;
307 				rl = NULL;
308 			} else if (!rl)
309 				up_read(&ni->runlist.lock);
310 			/*
311 			 * If buffer is outside the runlist, treat it as a
312 			 * hole.  This can happen due to concurrent truncate
313 			 * for example.
314 			 */
315 			if (err == -ENOENT || lcn == LCN_ENOENT) {
316 				err = 0;
317 				goto handle_hole;
318 			}
319 			/* Hard error, zero out region. */
320 			if (!err)
321 				err = -EIO;
322 			bh->b_blocknr = -1;
323 			SetPageError(page);
324 			ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
325 					"attribute type 0x%x, vcn 0x%llx, "
326 					"offset 0x%x because its location on "
327 					"disk could not be determined%s "
328 					"(error code %i).", ni->mft_no,
329 					ni->type, (unsigned long long)vcn,
330 					vcn_ofs, is_retry ? " even after "
331 					"retrying" : "", err);
332 		}
333 		/*
334 		 * Either iblock was outside lblock limits or
335 		 * ntfs_rl_vcn_to_lcn() returned error.  Just zero that portion
336 		 * of the page and set the buffer uptodate.
337 		 */
338 handle_hole:
339 		bh->b_blocknr = -1UL;
340 		clear_buffer_mapped(bh);
341 handle_zblock:
342 		zero_user(page, i * blocksize, blocksize);
343 		if (likely(!err))
344 			set_buffer_uptodate(bh);
345 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
346 
347 	/* Release the lock if we took it. */
348 	if (rl)
349 		up_read(&ni->runlist.lock);
350 
351 	/* Check we have at least one buffer ready for i/o. */
352 	if (nr) {
353 		struct buffer_head *tbh;
354 
355 		/* Lock the buffers. */
356 		for (i = 0; i < nr; i++) {
357 			tbh = arr[i];
358 			lock_buffer(tbh);
359 			tbh->b_end_io = ntfs_end_buffer_async_read;
360 			set_buffer_async_read(tbh);
361 		}
362 		/* Finally, start i/o on the buffers. */
363 		for (i = 0; i < nr; i++) {
364 			tbh = arr[i];
365 			if (likely(!buffer_uptodate(tbh)))
366 				submit_bh(READ, tbh);
367 			else
368 				ntfs_end_buffer_async_read(tbh, 1);
369 		}
370 		return 0;
371 	}
372 	/* No i/o was scheduled on any of the buffers. */
373 	if (likely(!PageError(page)))
374 		SetPageUptodate(page);
375 	else /* Signal synchronous i/o error. */
376 		nr = -EIO;
377 	unlock_page(page);
378 	return nr;
379 }
380 
381 /**
382  * ntfs_readpage - fill a @page of a @file with data from the device
383  * @file:	open file to which the page @page belongs or NULL
384  * @page:	page cache page to fill with data
385  *
386  * For non-resident attributes, ntfs_readpage() fills the @page of the open
387  * file @file by calling the ntfs version of the generic block_read_full_page()
388  * function, ntfs_read_block(), which in turn creates and reads in the buffers
389  * associated with the page asynchronously.
390  *
391  * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
392  * data from the mft record (which at this stage is most likely in memory) and
393  * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
394  * even if the mft record is not cached at this point in time, we need to wait
395  * for it to be read in before we can do the copy.
396  *
397  * Return 0 on success and -errno on error.
398  */
399 static int ntfs_readpage(struct file *file, struct page *page)
400 {
401 	loff_t i_size;
402 	struct inode *vi;
403 	ntfs_inode *ni, *base_ni;
404 	u8 *addr;
405 	ntfs_attr_search_ctx *ctx;
406 	MFT_RECORD *mrec;
407 	unsigned long flags;
408 	u32 attr_len;
409 	int err = 0;
410 
411 retry_readpage:
412 	BUG_ON(!PageLocked(page));
413 	vi = page->mapping->host;
414 	i_size = i_size_read(vi);
415 	/* Is the page fully outside i_size? (truncate in progress) */
416 	if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >>
417 			PAGE_CACHE_SHIFT)) {
418 		zero_user(page, 0, PAGE_CACHE_SIZE);
419 		ntfs_debug("Read outside i_size - truncated?");
420 		goto done;
421 	}
422 	/*
423 	 * This can potentially happen because we clear PageUptodate() during
424 	 * ntfs_writepage() of MstProtected() attributes.
425 	 */
426 	if (PageUptodate(page)) {
427 		unlock_page(page);
428 		return 0;
429 	}
430 	ni = NTFS_I(vi);
431 	/*
432 	 * Only $DATA attributes can be encrypted and only unnamed $DATA
433 	 * attributes can be compressed.  Index root can have the flags set but
434 	 * this means to create compressed/encrypted files, not that the
435 	 * attribute is compressed/encrypted.  Note we need to check for
436 	 * AT_INDEX_ALLOCATION since this is the type of both directory and
437 	 * index inodes.
438 	 */
439 	if (ni->type != AT_INDEX_ALLOCATION) {
440 		/* If attribute is encrypted, deny access, just like NT4. */
441 		if (NInoEncrypted(ni)) {
442 			BUG_ON(ni->type != AT_DATA);
443 			err = -EACCES;
444 			goto err_out;
445 		}
446 		/* Compressed data streams are handled in compress.c. */
447 		if (NInoNonResident(ni) && NInoCompressed(ni)) {
448 			BUG_ON(ni->type != AT_DATA);
449 			BUG_ON(ni->name_len);
450 			return ntfs_read_compressed_block(page);
451 		}
452 	}
453 	/* NInoNonResident() == NInoIndexAllocPresent() */
454 	if (NInoNonResident(ni)) {
455 		/* Normal, non-resident data stream. */
456 		return ntfs_read_block(page);
457 	}
458 	/*
459 	 * Attribute is resident, implying it is not compressed or encrypted.
460 	 * This also means the attribute is smaller than an mft record and
461 	 * hence smaller than a page, so can simply zero out any pages with
462 	 * index above 0.  Note the attribute can actually be marked compressed
463 	 * but if it is resident the actual data is not compressed so we are
464 	 * ok to ignore the compressed flag here.
465 	 */
466 	if (unlikely(page->index > 0)) {
467 		zero_user(page, 0, PAGE_CACHE_SIZE);
468 		goto done;
469 	}
470 	if (!NInoAttr(ni))
471 		base_ni = ni;
472 	else
473 		base_ni = ni->ext.base_ntfs_ino;
474 	/* Map, pin, and lock the mft record. */
475 	mrec = map_mft_record(base_ni);
476 	if (IS_ERR(mrec)) {
477 		err = PTR_ERR(mrec);
478 		goto err_out;
479 	}
480 	/*
481 	 * If a parallel write made the attribute non-resident, drop the mft
482 	 * record and retry the readpage.
483 	 */
484 	if (unlikely(NInoNonResident(ni))) {
485 		unmap_mft_record(base_ni);
486 		goto retry_readpage;
487 	}
488 	ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
489 	if (unlikely(!ctx)) {
490 		err = -ENOMEM;
491 		goto unm_err_out;
492 	}
493 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
494 			CASE_SENSITIVE, 0, NULL, 0, ctx);
495 	if (unlikely(err))
496 		goto put_unm_err_out;
497 	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
498 	read_lock_irqsave(&ni->size_lock, flags);
499 	if (unlikely(attr_len > ni->initialized_size))
500 		attr_len = ni->initialized_size;
501 	i_size = i_size_read(vi);
502 	read_unlock_irqrestore(&ni->size_lock, flags);
503 	if (unlikely(attr_len > i_size)) {
504 		/* Race with shrinking truncate. */
505 		attr_len = i_size;
506 	}
507 	addr = kmap_atomic(page);
508 	/* Copy the data to the page. */
509 	memcpy(addr, (u8*)ctx->attr +
510 			le16_to_cpu(ctx->attr->data.resident.value_offset),
511 			attr_len);
512 	/* Zero the remainder of the page. */
513 	memset(addr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
514 	flush_dcache_page(page);
515 	kunmap_atomic(addr);
516 put_unm_err_out:
517 	ntfs_attr_put_search_ctx(ctx);
518 unm_err_out:
519 	unmap_mft_record(base_ni);
520 done:
521 	SetPageUptodate(page);
522 err_out:
523 	unlock_page(page);
524 	return err;
525 }
526 
527 #ifdef NTFS_RW
528 
529 /**
530  * ntfs_write_block - write a @page to the backing store
531  * @page:	page cache page to write out
532  * @wbc:	writeback control structure
533  *
534  * This function is for writing pages belonging to non-resident, non-mst
535  * protected attributes to their backing store.
536  *
537  * For a page with buffers, map and write the dirty buffers asynchronously
538  * under page writeback. For a page without buffers, create buffers for the
539  * page, then proceed as above.
540  *
541  * If a page doesn't have buffers the page dirty state is definitive. If a page
542  * does have buffers, the page dirty state is just a hint, and the buffer dirty
543  * state is definitive. (A hint which has rules: dirty buffers against a clean
544  * page is illegal. Other combinations are legal and need to be handled. In
545  * particular a dirty page containing clean buffers for example.)
546  *
547  * Return 0 on success and -errno on error.
548  *
549  * Based on ntfs_read_block() and __block_write_full_page().
550  */
551 static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
552 {
553 	VCN vcn;
554 	LCN lcn;
555 	s64 initialized_size;
556 	loff_t i_size;
557 	sector_t block, dblock, iblock;
558 	struct inode *vi;
559 	ntfs_inode *ni;
560 	ntfs_volume *vol;
561 	runlist_element *rl;
562 	struct buffer_head *bh, *head;
563 	unsigned long flags;
564 	unsigned int blocksize, vcn_ofs;
565 	int err;
566 	bool need_end_writeback;
567 	unsigned char blocksize_bits;
568 
569 	vi = page->mapping->host;
570 	ni = NTFS_I(vi);
571 	vol = ni->vol;
572 
573 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
574 			"0x%lx.", ni->mft_no, ni->type, page->index);
575 
576 	BUG_ON(!NInoNonResident(ni));
577 	BUG_ON(NInoMstProtected(ni));
578 	blocksize = vol->sb->s_blocksize;
579 	blocksize_bits = vol->sb->s_blocksize_bits;
580 	if (!page_has_buffers(page)) {
581 		BUG_ON(!PageUptodate(page));
582 		create_empty_buffers(page, blocksize,
583 				(1 << BH_Uptodate) | (1 << BH_Dirty));
584 		if (unlikely(!page_has_buffers(page))) {
585 			ntfs_warning(vol->sb, "Error allocating page "
586 					"buffers.  Redirtying page so we try "
587 					"again later.");
588 			/*
589 			 * Put the page back on mapping->dirty_pages, but leave
590 			 * its buffers' dirty state as-is.
591 			 */
592 			redirty_page_for_writepage(wbc, page);
593 			unlock_page(page);
594 			return 0;
595 		}
596 	}
597 	bh = head = page_buffers(page);
598 	BUG_ON(!bh);
599 
600 	/* NOTE: Different naming scheme to ntfs_read_block()! */
601 
602 	/* The first block in the page. */
603 	block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
604 
605 	read_lock_irqsave(&ni->size_lock, flags);
606 	i_size = i_size_read(vi);
607 	initialized_size = ni->initialized_size;
608 	read_unlock_irqrestore(&ni->size_lock, flags);
609 
610 	/* The first out of bounds block for the data size. */
611 	dblock = (i_size + blocksize - 1) >> blocksize_bits;
612 
613 	/* The last (fully or partially) initialized block. */
614 	iblock = initialized_size >> blocksize_bits;
615 
616 	/*
617 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
618 	 * here, and the (potentially unmapped) buffers may become dirty at
619 	 * any time.  If a buffer becomes dirty here after we've inspected it
620 	 * then we just miss that fact, and the page stays dirty.
621 	 *
622 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
623 	 * handle that here by just cleaning them.
624 	 */
625 
626 	/*
627 	 * Loop through all the buffers in the page, mapping all the dirty
628 	 * buffers to disk addresses and handling any aliases from the
629 	 * underlying block device's mapping.
630 	 */
631 	rl = NULL;
632 	err = 0;
633 	do {
634 		bool is_retry = false;
635 
636 		if (unlikely(block >= dblock)) {
637 			/*
638 			 * Mapped buffers outside i_size will occur, because
639 			 * this page can be outside i_size when there is a
640 			 * truncate in progress. The contents of such buffers
641 			 * were zeroed by ntfs_writepage().
642 			 *
643 			 * FIXME: What about the small race window where
644 			 * ntfs_writepage() has not done any clearing because
645 			 * the page was within i_size but before we get here,
646 			 * vmtruncate() modifies i_size?
647 			 */
648 			clear_buffer_dirty(bh);
649 			set_buffer_uptodate(bh);
650 			continue;
651 		}
652 
653 		/* Clean buffers are not written out, so no need to map them. */
654 		if (!buffer_dirty(bh))
655 			continue;
656 
657 		/* Make sure we have enough initialized size. */
658 		if (unlikely((block >= iblock) &&
659 				(initialized_size < i_size))) {
660 			/*
661 			 * If this page is fully outside initialized size, zero
662 			 * out all pages between the current initialized size
663 			 * and the current page. Just use ntfs_readpage() to do
664 			 * the zeroing transparently.
665 			 */
666 			if (block > iblock) {
667 				// TODO:
668 				// For each page do:
669 				// - read_cache_page()
670 				// Again for each page do:
671 				// - wait_on_page_locked()
672 				// - Check (PageUptodate(page) &&
673 				//			!PageError(page))
674 				// Update initialized size in the attribute and
675 				// in the inode.
676 				// Again, for each page do:
677 				//	__set_page_dirty_buffers();
678 				// page_cache_release()
679 				// We don't need to wait on the writes.
680 				// Update iblock.
681 			}
682 			/*
683 			 * The current page straddles initialized size. Zero
684 			 * all non-uptodate buffers and set them uptodate (and
685 			 * dirty?). Note, there aren't any non-uptodate buffers
686 			 * if the page is uptodate.
687 			 * FIXME: For an uptodate page, the buffers may need to
688 			 * be written out because they were not initialized on
689 			 * disk before.
690 			 */
691 			if (!PageUptodate(page)) {
692 				// TODO:
693 				// Zero any non-uptodate buffers up to i_size.
694 				// Set them uptodate and dirty.
695 			}
696 			// TODO:
697 			// Update initialized size in the attribute and in the
698 			// inode (up to i_size).
699 			// Update iblock.
700 			// FIXME: This is inefficient. Try to batch the two
701 			// size changes to happen in one go.
702 			ntfs_error(vol->sb, "Writing beyond initialized size "
703 					"is not supported yet. Sorry.");
704 			err = -EOPNOTSUPP;
705 			break;
706 			// Do NOT set_buffer_new() BUT DO clear buffer range
707 			// outside write request range.
708 			// set_buffer_uptodate() on complete buffers as well as
709 			// set_buffer_dirty().
710 		}
711 
712 		/* No need to map buffers that are already mapped. */
713 		if (buffer_mapped(bh))
714 			continue;
715 
716 		/* Unmapped, dirty buffer. Need to map it. */
717 		bh->b_bdev = vol->sb->s_bdev;
718 
719 		/* Convert block into corresponding vcn and offset. */
720 		vcn = (VCN)block << blocksize_bits;
721 		vcn_ofs = vcn & vol->cluster_size_mask;
722 		vcn >>= vol->cluster_size_bits;
723 		if (!rl) {
724 lock_retry_remap:
725 			down_read(&ni->runlist.lock);
726 			rl = ni->runlist.rl;
727 		}
728 		if (likely(rl != NULL)) {
729 			/* Seek to element containing target vcn. */
730 			while (rl->length && rl[1].vcn <= vcn)
731 				rl++;
732 			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
733 		} else
734 			lcn = LCN_RL_NOT_MAPPED;
735 		/* Successful remap. */
736 		if (lcn >= 0) {
737 			/* Setup buffer head to point to correct block. */
738 			bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
739 					vcn_ofs) >> blocksize_bits;
740 			set_buffer_mapped(bh);
741 			continue;
742 		}
743 		/* It is a hole, need to instantiate it. */
744 		if (lcn == LCN_HOLE) {
745 			u8 *kaddr;
746 			unsigned long *bpos, *bend;
747 
748 			/* Check if the buffer is zero. */
749 			kaddr = kmap_atomic(page);
750 			bpos = (unsigned long *)(kaddr + bh_offset(bh));
751 			bend = (unsigned long *)((u8*)bpos + blocksize);
752 			do {
753 				if (unlikely(*bpos))
754 					break;
755 			} while (likely(++bpos < bend));
756 			kunmap_atomic(kaddr);
757 			if (bpos == bend) {
758 				/*
759 				 * Buffer is zero and sparse, no need to write
760 				 * it.
761 				 */
762 				bh->b_blocknr = -1;
763 				clear_buffer_dirty(bh);
764 				continue;
765 			}
766 			// TODO: Instantiate the hole.
767 			// clear_buffer_new(bh);
768 			// unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
769 			ntfs_error(vol->sb, "Writing into sparse regions is "
770 					"not supported yet. Sorry.");
771 			err = -EOPNOTSUPP;
772 			break;
773 		}
774 		/* If first try and runlist unmapped, map and retry. */
775 		if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
776 			is_retry = true;
777 			/*
778 			 * Attempt to map runlist, dropping lock for
779 			 * the duration.
780 			 */
781 			up_read(&ni->runlist.lock);
782 			err = ntfs_map_runlist(ni, vcn);
783 			if (likely(!err))
784 				goto lock_retry_remap;
785 			rl = NULL;
786 		} else if (!rl)
787 			up_read(&ni->runlist.lock);
788 		/*
789 		 * If buffer is outside the runlist, truncate has cut it out
790 		 * of the runlist.  Just clean and clear the buffer and set it
791 		 * uptodate so it can get discarded by the VM.
792 		 */
793 		if (err == -ENOENT || lcn == LCN_ENOENT) {
794 			bh->b_blocknr = -1;
795 			clear_buffer_dirty(bh);
796 			zero_user(page, bh_offset(bh), blocksize);
797 			set_buffer_uptodate(bh);
798 			err = 0;
799 			continue;
800 		}
801 		/* Failed to map the buffer, even after retrying. */
802 		if (!err)
803 			err = -EIO;
804 		bh->b_blocknr = -1;
805 		ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
806 				"attribute type 0x%x, vcn 0x%llx, offset 0x%x "
807 				"because its location on disk could not be "
808 				"determined%s (error code %i).", ni->mft_no,
809 				ni->type, (unsigned long long)vcn,
810 				vcn_ofs, is_retry ? " even after "
811 				"retrying" : "", err);
812 		break;
813 	} while (block++, (bh = bh->b_this_page) != head);
814 
815 	/* Release the lock if we took it. */
816 	if (rl)
817 		up_read(&ni->runlist.lock);
818 
819 	/* For the error case, need to reset bh to the beginning. */
820 	bh = head;
821 
822 	/* Just an optimization, so ->readpage() is not called later. */
823 	if (unlikely(!PageUptodate(page))) {
824 		int uptodate = 1;
825 		do {
826 			if (!buffer_uptodate(bh)) {
827 				uptodate = 0;
828 				bh = head;
829 				break;
830 			}
831 		} while ((bh = bh->b_this_page) != head);
832 		if (uptodate)
833 			SetPageUptodate(page);
834 	}
835 
836 	/* Setup all mapped, dirty buffers for async write i/o. */
837 	do {
838 		if (buffer_mapped(bh) && buffer_dirty(bh)) {
839 			lock_buffer(bh);
840 			if (test_clear_buffer_dirty(bh)) {
841 				BUG_ON(!buffer_uptodate(bh));
842 				mark_buffer_async_write(bh);
843 			} else
844 				unlock_buffer(bh);
845 		} else if (unlikely(err)) {
846 			/*
847 			 * For the error case. The buffer may have been set
848 			 * dirty during attachment to a dirty page.
849 			 */
850 			if (err != -ENOMEM)
851 				clear_buffer_dirty(bh);
852 		}
853 	} while ((bh = bh->b_this_page) != head);
854 
855 	if (unlikely(err)) {
856 		// TODO: Remove the -EOPNOTSUPP check later on...
857 		if (unlikely(err == -EOPNOTSUPP))
858 			err = 0;
859 		else if (err == -ENOMEM) {
860 			ntfs_warning(vol->sb, "Error allocating memory. "
861 					"Redirtying page so we try again "
862 					"later.");
863 			/*
864 			 * Put the page back on mapping->dirty_pages, but
865 			 * leave its buffer's dirty state as-is.
866 			 */
867 			redirty_page_for_writepage(wbc, page);
868 			err = 0;
869 		} else
870 			SetPageError(page);
871 	}
872 
873 	BUG_ON(PageWriteback(page));
874 	set_page_writeback(page);	/* Keeps try_to_free_buffers() away. */
875 
876 	/* Submit the prepared buffers for i/o. */
877 	need_end_writeback = true;
878 	do {
879 		struct buffer_head *next = bh->b_this_page;
880 		if (buffer_async_write(bh)) {
881 			submit_bh(WRITE, bh);
882 			need_end_writeback = false;
883 		}
884 		bh = next;
885 	} while (bh != head);
886 	unlock_page(page);
887 
888 	/* If no i/o was started, need to end_page_writeback(). */
889 	if (unlikely(need_end_writeback))
890 		end_page_writeback(page);
891 
892 	ntfs_debug("Done.");
893 	return err;
894 }
895 
896 /**
897  * ntfs_write_mst_block - write a @page to the backing store
898  * @page:	page cache page to write out
899  * @wbc:	writeback control structure
900  *
901  * This function is for writing pages belonging to non-resident, mst protected
902  * attributes to their backing store.  The only supported attributes are index
903  * allocation and $MFT/$DATA.  Both directory inodes and index inodes are
904  * supported for the index allocation case.
905  *
906  * The page must remain locked for the duration of the write because we apply
907  * the mst fixups, write, and then undo the fixups, so if we were to unlock the
908  * page before undoing the fixups, any other user of the page will see the
909  * page contents as corrupt.
910  *
911  * We clear the page uptodate flag for the duration of the function to ensure
912  * exclusion for the $MFT/$DATA case against someone mapping an mft record we
913  * are about to apply the mst fixups to.
914  *
915  * Return 0 on success and -errno on error.
916  *
917  * Based on ntfs_write_block(), ntfs_mft_writepage(), and
918  * write_mft_record_nolock().
919  */
920 static int ntfs_write_mst_block(struct page *page,
921 		struct writeback_control *wbc)
922 {
923 	sector_t block, dblock, rec_block;
924 	struct inode *vi = page->mapping->host;
925 	ntfs_inode *ni = NTFS_I(vi);
926 	ntfs_volume *vol = ni->vol;
927 	u8 *kaddr;
928 	unsigned int rec_size = ni->itype.index.block_size;
929 	ntfs_inode *locked_nis[PAGE_CACHE_SIZE / rec_size];
930 	struct buffer_head *bh, *head, *tbh, *rec_start_bh;
931 	struct buffer_head *bhs[MAX_BUF_PER_PAGE];
932 	runlist_element *rl;
933 	int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2;
934 	unsigned bh_size, rec_size_bits;
935 	bool sync, is_mft, page_is_dirty, rec_is_dirty;
936 	unsigned char bh_size_bits;
937 
938 	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
939 			"0x%lx.", vi->i_ino, ni->type, page->index);
940 	BUG_ON(!NInoNonResident(ni));
941 	BUG_ON(!NInoMstProtected(ni));
942 	is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
943 	/*
944 	 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
945 	 * in its page cache were to be marked dirty.  However this should
946 	 * never happen with the current driver and considering we do not
947 	 * handle this case here we do want to BUG(), at least for now.
948 	 */
949 	BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
950 			(NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
951 	bh_size = vol->sb->s_blocksize;
952 	bh_size_bits = vol->sb->s_blocksize_bits;
953 	max_bhs = PAGE_CACHE_SIZE / bh_size;
954 	BUG_ON(!max_bhs);
955 	BUG_ON(max_bhs > MAX_BUF_PER_PAGE);
956 
957 	/* Were we called for sync purposes? */
958 	sync = (wbc->sync_mode == WB_SYNC_ALL);
959 
960 	/* Make sure we have mapped buffers. */
961 	bh = head = page_buffers(page);
962 	BUG_ON(!bh);
963 
964 	rec_size_bits = ni->itype.index.block_size_bits;
965 	BUG_ON(!(PAGE_CACHE_SIZE >> rec_size_bits));
966 	bhs_per_rec = rec_size >> bh_size_bits;
967 	BUG_ON(!bhs_per_rec);
968 
969 	/* The first block in the page. */
970 	rec_block = block = (sector_t)page->index <<
971 			(PAGE_CACHE_SHIFT - bh_size_bits);
972 
973 	/* The first out of bounds block for the data size. */
974 	dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits;
975 
976 	rl = NULL;
977 	err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
978 	page_is_dirty = rec_is_dirty = false;
979 	rec_start_bh = NULL;
980 	do {
981 		bool is_retry = false;
982 
983 		if (likely(block < rec_block)) {
984 			if (unlikely(block >= dblock)) {
985 				clear_buffer_dirty(bh);
986 				set_buffer_uptodate(bh);
987 				continue;
988 			}
989 			/*
990 			 * This block is not the first one in the record.  We
991 			 * ignore the buffer's dirty state because we could
992 			 * have raced with a parallel mark_ntfs_record_dirty().
993 			 */
994 			if (!rec_is_dirty)
995 				continue;
996 			if (unlikely(err2)) {
997 				if (err2 != -ENOMEM)
998 					clear_buffer_dirty(bh);
999 				continue;
1000 			}
1001 		} else /* if (block == rec_block) */ {
1002 			BUG_ON(block > rec_block);
1003 			/* This block is the first one in the record. */
1004 			rec_block += bhs_per_rec;
1005 			err2 = 0;
1006 			if (unlikely(block >= dblock)) {
1007 				clear_buffer_dirty(bh);
1008 				continue;
1009 			}
1010 			if (!buffer_dirty(bh)) {
1011 				/* Clean records are not written out. */
1012 				rec_is_dirty = false;
1013 				continue;
1014 			}
1015 			rec_is_dirty = true;
1016 			rec_start_bh = bh;
1017 		}
1018 		/* Need to map the buffer if it is not mapped already. */
1019 		if (unlikely(!buffer_mapped(bh))) {
1020 			VCN vcn;
1021 			LCN lcn;
1022 			unsigned int vcn_ofs;
1023 
1024 			bh->b_bdev = vol->sb->s_bdev;
1025 			/* Obtain the vcn and offset of the current block. */
1026 			vcn = (VCN)block << bh_size_bits;
1027 			vcn_ofs = vcn & vol->cluster_size_mask;
1028 			vcn >>= vol->cluster_size_bits;
1029 			if (!rl) {
1030 lock_retry_remap:
1031 				down_read(&ni->runlist.lock);
1032 				rl = ni->runlist.rl;
1033 			}
1034 			if (likely(rl != NULL)) {
1035 				/* Seek to element containing target vcn. */
1036 				while (rl->length && rl[1].vcn <= vcn)
1037 					rl++;
1038 				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
1039 			} else
1040 				lcn = LCN_RL_NOT_MAPPED;
1041 			/* Successful remap. */
1042 			if (likely(lcn >= 0)) {
1043 				/* Setup buffer head to correct block. */
1044 				bh->b_blocknr = ((lcn <<
1045 						vol->cluster_size_bits) +
1046 						vcn_ofs) >> bh_size_bits;
1047 				set_buffer_mapped(bh);
1048 			} else {
1049 				/*
1050 				 * Remap failed.  Retry to map the runlist once
1051 				 * unless we are working on $MFT which always
1052 				 * has the whole of its runlist in memory.
1053 				 */
1054 				if (!is_mft && !is_retry &&
1055 						lcn == LCN_RL_NOT_MAPPED) {
1056 					is_retry = true;
1057 					/*
1058 					 * Attempt to map runlist, dropping
1059 					 * lock for the duration.
1060 					 */
1061 					up_read(&ni->runlist.lock);
1062 					err2 = ntfs_map_runlist(ni, vcn);
1063 					if (likely(!err2))
1064 						goto lock_retry_remap;
1065 					if (err2 == -ENOMEM)
1066 						page_is_dirty = true;
1067 					lcn = err2;
1068 				} else {
1069 					err2 = -EIO;
1070 					if (!rl)
1071 						up_read(&ni->runlist.lock);
1072 				}
1073 				/* Hard error.  Abort writing this record. */
1074 				if (!err || err == -ENOMEM)
1075 					err = err2;
1076 				bh->b_blocknr = -1;
1077 				ntfs_error(vol->sb, "Cannot write ntfs record "
1078 						"0x%llx (inode 0x%lx, "
1079 						"attribute type 0x%x) because "
1080 						"its location on disk could "
1081 						"not be determined (error "
1082 						"code %lli).",
1083 						(long long)block <<
1084 						bh_size_bits >>
1085 						vol->mft_record_size_bits,
1086 						ni->mft_no, ni->type,
1087 						(long long)lcn);
1088 				/*
1089 				 * If this is not the first buffer, remove the
1090 				 * buffers in this record from the list of
1091 				 * buffers to write and clear their dirty bit
1092 				 * if not error -ENOMEM.
1093 				 */
1094 				if (rec_start_bh != bh) {
1095 					while (bhs[--nr_bhs] != rec_start_bh)
1096 						;
1097 					if (err2 != -ENOMEM) {
1098 						do {
1099 							clear_buffer_dirty(
1100 								rec_start_bh);
1101 						} while ((rec_start_bh =
1102 								rec_start_bh->
1103 								b_this_page) !=
1104 								bh);
1105 					}
1106 				}
1107 				continue;
1108 			}
1109 		}
1110 		BUG_ON(!buffer_uptodate(bh));
1111 		BUG_ON(nr_bhs >= max_bhs);
1112 		bhs[nr_bhs++] = bh;
1113 	} while (block++, (bh = bh->b_this_page) != head);
1114 	if (unlikely(rl))
1115 		up_read(&ni->runlist.lock);
1116 	/* If there were no dirty buffers, we are done. */
1117 	if (!nr_bhs)
1118 		goto done;
1119 	/* Map the page so we can access its contents. */
1120 	kaddr = kmap(page);
1121 	/* Clear the page uptodate flag whilst the mst fixups are applied. */
1122 	BUG_ON(!PageUptodate(page));
1123 	ClearPageUptodate(page);
1124 	for (i = 0; i < nr_bhs; i++) {
1125 		unsigned int ofs;
1126 
1127 		/* Skip buffers which are not at the beginning of records. */
1128 		if (i % bhs_per_rec)
1129 			continue;
1130 		tbh = bhs[i];
1131 		ofs = bh_offset(tbh);
1132 		if (is_mft) {
1133 			ntfs_inode *tni;
1134 			unsigned long mft_no;
1135 
1136 			/* Get the mft record number. */
1137 			mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1138 					>> rec_size_bits;
1139 			/* Check whether to write this mft record. */
1140 			tni = NULL;
1141 			if (!ntfs_may_write_mft_record(vol, mft_no,
1142 					(MFT_RECORD*)(kaddr + ofs), &tni)) {
1143 				/*
1144 				 * The record should not be written.  This
1145 				 * means we need to redirty the page before
1146 				 * returning.
1147 				 */
1148 				page_is_dirty = true;
1149 				/*
1150 				 * Remove the buffers in this mft record from
1151 				 * the list of buffers to write.
1152 				 */
1153 				do {
1154 					bhs[i] = NULL;
1155 				} while (++i % bhs_per_rec);
1156 				continue;
1157 			}
1158 			/*
1159 			 * The record should be written.  If a locked ntfs
1160 			 * inode was returned, add it to the array of locked
1161 			 * ntfs inodes.
1162 			 */
1163 			if (tni)
1164 				locked_nis[nr_locked_nis++] = tni;
1165 		}
1166 		/* Apply the mst protection fixups. */
1167 		err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
1168 				rec_size);
1169 		if (unlikely(err2)) {
1170 			if (!err || err == -ENOMEM)
1171 				err = -EIO;
1172 			ntfs_error(vol->sb, "Failed to apply mst fixups "
1173 					"(inode 0x%lx, attribute type 0x%x, "
1174 					"page index 0x%lx, page offset 0x%x)!"
1175 					"  Unmount and run chkdsk.", vi->i_ino,
1176 					ni->type, page->index, ofs);
1177 			/*
1178 			 * Mark all the buffers in this record clean as we do
1179 			 * not want to write corrupt data to disk.
1180 			 */
1181 			do {
1182 				clear_buffer_dirty(bhs[i]);
1183 				bhs[i] = NULL;
1184 			} while (++i % bhs_per_rec);
1185 			continue;
1186 		}
1187 		nr_recs++;
1188 	}
1189 	/* If no records are to be written out, we are done. */
1190 	if (!nr_recs)
1191 		goto unm_done;
1192 	flush_dcache_page(page);
1193 	/* Lock buffers and start synchronous write i/o on them. */
1194 	for (i = 0; i < nr_bhs; i++) {
1195 		tbh = bhs[i];
1196 		if (!tbh)
1197 			continue;
1198 		if (!trylock_buffer(tbh))
1199 			BUG();
1200 		/* The buffer dirty state is now irrelevant, just clean it. */
1201 		clear_buffer_dirty(tbh);
1202 		BUG_ON(!buffer_uptodate(tbh));
1203 		BUG_ON(!buffer_mapped(tbh));
1204 		get_bh(tbh);
1205 		tbh->b_end_io = end_buffer_write_sync;
1206 		submit_bh(WRITE, tbh);
1207 	}
1208 	/* Synchronize the mft mirror now if not @sync. */
1209 	if (is_mft && !sync)
1210 		goto do_mirror;
1211 do_wait:
1212 	/* Wait on i/o completion of buffers. */
1213 	for (i = 0; i < nr_bhs; i++) {
1214 		tbh = bhs[i];
1215 		if (!tbh)
1216 			continue;
1217 		wait_on_buffer(tbh);
1218 		if (unlikely(!buffer_uptodate(tbh))) {
1219 			ntfs_error(vol->sb, "I/O error while writing ntfs "
1220 					"record buffer (inode 0x%lx, "
1221 					"attribute type 0x%x, page index "
1222 					"0x%lx, page offset 0x%lx)!  Unmount "
1223 					"and run chkdsk.", vi->i_ino, ni->type,
1224 					page->index, bh_offset(tbh));
1225 			if (!err || err == -ENOMEM)
1226 				err = -EIO;
1227 			/*
1228 			 * Set the buffer uptodate so the page and buffer
1229 			 * states do not become out of sync.
1230 			 */
1231 			set_buffer_uptodate(tbh);
1232 		}
1233 	}
1234 	/* If @sync, now synchronize the mft mirror. */
1235 	if (is_mft && sync) {
1236 do_mirror:
1237 		for (i = 0; i < nr_bhs; i++) {
1238 			unsigned long mft_no;
1239 			unsigned int ofs;
1240 
1241 			/*
1242 			 * Skip buffers which are not at the beginning of
1243 			 * records.
1244 			 */
1245 			if (i % bhs_per_rec)
1246 				continue;
1247 			tbh = bhs[i];
1248 			/* Skip removed buffers (and hence records). */
1249 			if (!tbh)
1250 				continue;
1251 			ofs = bh_offset(tbh);
1252 			/* Get the mft record number. */
1253 			mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1254 					>> rec_size_bits;
1255 			if (mft_no < vol->mftmirr_size)
1256 				ntfs_sync_mft_mirror(vol, mft_no,
1257 						(MFT_RECORD*)(kaddr + ofs),
1258 						sync);
1259 		}
1260 		if (!sync)
1261 			goto do_wait;
1262 	}
1263 	/* Remove the mst protection fixups again. */
1264 	for (i = 0; i < nr_bhs; i++) {
1265 		if (!(i % bhs_per_rec)) {
1266 			tbh = bhs[i];
1267 			if (!tbh)
1268 				continue;
1269 			post_write_mst_fixup((NTFS_RECORD*)(kaddr +
1270 					bh_offset(tbh)));
1271 		}
1272 	}
1273 	flush_dcache_page(page);
1274 unm_done:
1275 	/* Unlock any locked inodes. */
1276 	while (nr_locked_nis-- > 0) {
1277 		ntfs_inode *tni, *base_tni;
1278 
1279 		tni = locked_nis[nr_locked_nis];
1280 		/* Get the base inode. */
1281 		mutex_lock(&tni->extent_lock);
1282 		if (tni->nr_extents >= 0)
1283 			base_tni = tni;
1284 		else {
1285 			base_tni = tni->ext.base_ntfs_ino;
1286 			BUG_ON(!base_tni);
1287 		}
1288 		mutex_unlock(&tni->extent_lock);
1289 		ntfs_debug("Unlocking %s inode 0x%lx.",
1290 				tni == base_tni ? "base" : "extent",
1291 				tni->mft_no);
1292 		mutex_unlock(&tni->mrec_lock);
1293 		atomic_dec(&tni->count);
1294 		iput(VFS_I(base_tni));
1295 	}
1296 	SetPageUptodate(page);
1297 	kunmap(page);
1298 done:
1299 	if (unlikely(err && err != -ENOMEM)) {
1300 		/*
1301 		 * Set page error if there is only one ntfs record in the page.
1302 		 * Otherwise we would loose per-record granularity.
1303 		 */
1304 		if (ni->itype.index.block_size == PAGE_CACHE_SIZE)
1305 			SetPageError(page);
1306 		NVolSetErrors(vol);
1307 	}
1308 	if (page_is_dirty) {
1309 		ntfs_debug("Page still contains one or more dirty ntfs "
1310 				"records.  Redirtying the page starting at "
1311 				"record 0x%lx.", page->index <<
1312 				(PAGE_CACHE_SHIFT - rec_size_bits));
1313 		redirty_page_for_writepage(wbc, page);
1314 		unlock_page(page);
1315 	} else {
1316 		/*
1317 		 * Keep the VM happy.  This must be done otherwise the
1318 		 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1319 		 * the page is clean.
1320 		 */
1321 		BUG_ON(PageWriteback(page));
1322 		set_page_writeback(page);
1323 		unlock_page(page);
1324 		end_page_writeback(page);
1325 	}
1326 	if (likely(!err))
1327 		ntfs_debug("Done.");
1328 	return err;
1329 }
1330 
1331 /**
1332  * ntfs_writepage - write a @page to the backing store
1333  * @page:	page cache page to write out
1334  * @wbc:	writeback control structure
1335  *
1336  * This is called from the VM when it wants to have a dirty ntfs page cache
1337  * page cleaned.  The VM has already locked the page and marked it clean.
1338  *
1339  * For non-resident attributes, ntfs_writepage() writes the @page by calling
1340  * the ntfs version of the generic block_write_full_page() function,
1341  * ntfs_write_block(), which in turn if necessary creates and writes the
1342  * buffers associated with the page asynchronously.
1343  *
1344  * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1345  * the data to the mft record (which at this stage is most likely in memory).
1346  * The mft record is then marked dirty and written out asynchronously via the
1347  * vfs inode dirty code path for the inode the mft record belongs to or via the
1348  * vm page dirty code path for the page the mft record is in.
1349  *
1350  * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1351  *
1352  * Return 0 on success and -errno on error.
1353  */
1354 static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
1355 {
1356 	loff_t i_size;
1357 	struct inode *vi = page->mapping->host;
1358 	ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1359 	char *addr;
1360 	ntfs_attr_search_ctx *ctx = NULL;
1361 	MFT_RECORD *m = NULL;
1362 	u32 attr_len;
1363 	int err;
1364 
1365 retry_writepage:
1366 	BUG_ON(!PageLocked(page));
1367 	i_size = i_size_read(vi);
1368 	/* Is the page fully outside i_size? (truncate in progress) */
1369 	if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >>
1370 			PAGE_CACHE_SHIFT)) {
1371 		/*
1372 		 * The page may have dirty, unmapped buffers.  Make them
1373 		 * freeable here, so the page does not leak.
1374 		 */
1375 		block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1376 		unlock_page(page);
1377 		ntfs_debug("Write outside i_size - truncated?");
1378 		return 0;
1379 	}
1380 	/*
1381 	 * Only $DATA attributes can be encrypted and only unnamed $DATA
1382 	 * attributes can be compressed.  Index root can have the flags set but
1383 	 * this means to create compressed/encrypted files, not that the
1384 	 * attribute is compressed/encrypted.  Note we need to check for
1385 	 * AT_INDEX_ALLOCATION since this is the type of both directory and
1386 	 * index inodes.
1387 	 */
1388 	if (ni->type != AT_INDEX_ALLOCATION) {
1389 		/* If file is encrypted, deny access, just like NT4. */
1390 		if (NInoEncrypted(ni)) {
1391 			unlock_page(page);
1392 			BUG_ON(ni->type != AT_DATA);
1393 			ntfs_debug("Denying write access to encrypted file.");
1394 			return -EACCES;
1395 		}
1396 		/* Compressed data streams are handled in compress.c. */
1397 		if (NInoNonResident(ni) && NInoCompressed(ni)) {
1398 			BUG_ON(ni->type != AT_DATA);
1399 			BUG_ON(ni->name_len);
1400 			// TODO: Implement and replace this with
1401 			// return ntfs_write_compressed_block(page);
1402 			unlock_page(page);
1403 			ntfs_error(vi->i_sb, "Writing to compressed files is "
1404 					"not supported yet.  Sorry.");
1405 			return -EOPNOTSUPP;
1406 		}
1407 		// TODO: Implement and remove this check.
1408 		if (NInoNonResident(ni) && NInoSparse(ni)) {
1409 			unlock_page(page);
1410 			ntfs_error(vi->i_sb, "Writing to sparse files is not "
1411 					"supported yet.  Sorry.");
1412 			return -EOPNOTSUPP;
1413 		}
1414 	}
1415 	/* NInoNonResident() == NInoIndexAllocPresent() */
1416 	if (NInoNonResident(ni)) {
1417 		/* We have to zero every time due to mmap-at-end-of-file. */
1418 		if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) {
1419 			/* The page straddles i_size. */
1420 			unsigned int ofs = i_size & ~PAGE_CACHE_MASK;
1421 			zero_user_segment(page, ofs, PAGE_CACHE_SIZE);
1422 		}
1423 		/* Handle mst protected attributes. */
1424 		if (NInoMstProtected(ni))
1425 			return ntfs_write_mst_block(page, wbc);
1426 		/* Normal, non-resident data stream. */
1427 		return ntfs_write_block(page, wbc);
1428 	}
1429 	/*
1430 	 * Attribute is resident, implying it is not compressed, encrypted, or
1431 	 * mst protected.  This also means the attribute is smaller than an mft
1432 	 * record and hence smaller than a page, so can simply return error on
1433 	 * any pages with index above 0.  Note the attribute can actually be
1434 	 * marked compressed but if it is resident the actual data is not
1435 	 * compressed so we are ok to ignore the compressed flag here.
1436 	 */
1437 	BUG_ON(page_has_buffers(page));
1438 	BUG_ON(!PageUptodate(page));
1439 	if (unlikely(page->index > 0)) {
1440 		ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0.  "
1441 				"Aborting write.", page->index);
1442 		BUG_ON(PageWriteback(page));
1443 		set_page_writeback(page);
1444 		unlock_page(page);
1445 		end_page_writeback(page);
1446 		return -EIO;
1447 	}
1448 	if (!NInoAttr(ni))
1449 		base_ni = ni;
1450 	else
1451 		base_ni = ni->ext.base_ntfs_ino;
1452 	/* Map, pin, and lock the mft record. */
1453 	m = map_mft_record(base_ni);
1454 	if (IS_ERR(m)) {
1455 		err = PTR_ERR(m);
1456 		m = NULL;
1457 		ctx = NULL;
1458 		goto err_out;
1459 	}
1460 	/*
1461 	 * If a parallel write made the attribute non-resident, drop the mft
1462 	 * record and retry the writepage.
1463 	 */
1464 	if (unlikely(NInoNonResident(ni))) {
1465 		unmap_mft_record(base_ni);
1466 		goto retry_writepage;
1467 	}
1468 	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1469 	if (unlikely(!ctx)) {
1470 		err = -ENOMEM;
1471 		goto err_out;
1472 	}
1473 	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1474 			CASE_SENSITIVE, 0, NULL, 0, ctx);
1475 	if (unlikely(err))
1476 		goto err_out;
1477 	/*
1478 	 * Keep the VM happy.  This must be done otherwise the radix-tree tag
1479 	 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1480 	 */
1481 	BUG_ON(PageWriteback(page));
1482 	set_page_writeback(page);
1483 	unlock_page(page);
1484 	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
1485 	i_size = i_size_read(vi);
1486 	if (unlikely(attr_len > i_size)) {
1487 		/* Race with shrinking truncate or a failed truncate. */
1488 		attr_len = i_size;
1489 		/*
1490 		 * If the truncate failed, fix it up now.  If a concurrent
1491 		 * truncate, we do its job, so it does not have to do anything.
1492 		 */
1493 		err = ntfs_resident_attr_value_resize(ctx->mrec, ctx->attr,
1494 				attr_len);
1495 		/* Shrinking cannot fail. */
1496 		BUG_ON(err);
1497 	}
1498 	addr = kmap_atomic(page);
1499 	/* Copy the data from the page to the mft record. */
1500 	memcpy((u8*)ctx->attr +
1501 			le16_to_cpu(ctx->attr->data.resident.value_offset),
1502 			addr, attr_len);
1503 	/* Zero out of bounds area in the page cache page. */
1504 	memset(addr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1505 	kunmap_atomic(addr);
1506 	flush_dcache_page(page);
1507 	flush_dcache_mft_record_page(ctx->ntfs_ino);
1508 	/* We are done with the page. */
1509 	end_page_writeback(page);
1510 	/* Finally, mark the mft record dirty, so it gets written back. */
1511 	mark_mft_record_dirty(ctx->ntfs_ino);
1512 	ntfs_attr_put_search_ctx(ctx);
1513 	unmap_mft_record(base_ni);
1514 	return 0;
1515 err_out:
1516 	if (err == -ENOMEM) {
1517 		ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
1518 				"page so we try again later.");
1519 		/*
1520 		 * Put the page back on mapping->dirty_pages, but leave its
1521 		 * buffers' dirty state as-is.
1522 		 */
1523 		redirty_page_for_writepage(wbc, page);
1524 		err = 0;
1525 	} else {
1526 		ntfs_error(vi->i_sb, "Resident attribute write failed with "
1527 				"error %i.", err);
1528 		SetPageError(page);
1529 		NVolSetErrors(ni->vol);
1530 	}
1531 	unlock_page(page);
1532 	if (ctx)
1533 		ntfs_attr_put_search_ctx(ctx);
1534 	if (m)
1535 		unmap_mft_record(base_ni);
1536 	return err;
1537 }
1538 
1539 #endif	/* NTFS_RW */
1540 
1541 /**
1542  * ntfs_aops - general address space operations for inodes and attributes
1543  */
1544 const struct address_space_operations ntfs_aops = {
1545 	.readpage	= ntfs_readpage,	/* Fill page with data. */
1546 #ifdef NTFS_RW
1547 	.writepage	= ntfs_writepage,	/* Write dirty page to disk. */
1548 #endif /* NTFS_RW */
1549 	.migratepage	= buffer_migrate_page,	/* Move a page cache page from
1550 						   one physical page to an
1551 						   other. */
1552 	.error_remove_page = generic_error_remove_page,
1553 };
1554 
1555 /**
1556  * ntfs_mst_aops - general address space operations for mst protecteed inodes
1557  *		   and attributes
1558  */
1559 const struct address_space_operations ntfs_mst_aops = {
1560 	.readpage	= ntfs_readpage,	/* Fill page with data. */
1561 #ifdef NTFS_RW
1562 	.writepage	= ntfs_writepage,	/* Write dirty page to disk. */
1563 	.set_page_dirty	= __set_page_dirty_nobuffers,	/* Set the page dirty
1564 						   without touching the buffers
1565 						   belonging to the page. */
1566 #endif /* NTFS_RW */
1567 	.migratepage	= buffer_migrate_page,	/* Move a page cache page from
1568 						   one physical page to an
1569 						   other. */
1570 	.error_remove_page = generic_error_remove_page,
1571 };
1572 
1573 #ifdef NTFS_RW
1574 
1575 /**
1576  * mark_ntfs_record_dirty - mark an ntfs record dirty
1577  * @page:	page containing the ntfs record to mark dirty
1578  * @ofs:	byte offset within @page at which the ntfs record begins
1579  *
1580  * Set the buffers and the page in which the ntfs record is located dirty.
1581  *
1582  * The latter also marks the vfs inode the ntfs record belongs to dirty
1583  * (I_DIRTY_PAGES only).
1584  *
1585  * If the page does not have buffers, we create them and set them uptodate.
1586  * The page may not be locked which is why we need to handle the buffers under
1587  * the mapping->private_lock.  Once the buffers are marked dirty we no longer
1588  * need the lock since try_to_free_buffers() does not free dirty buffers.
1589  */
1590 void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
1591 	struct address_space *mapping = page->mapping;
1592 	ntfs_inode *ni = NTFS_I(mapping->host);
1593 	struct buffer_head *bh, *head, *buffers_to_free = NULL;
1594 	unsigned int end, bh_size, bh_ofs;
1595 
1596 	BUG_ON(!PageUptodate(page));
1597 	end = ofs + ni->itype.index.block_size;
1598 	bh_size = VFS_I(ni)->i_sb->s_blocksize;
1599 	spin_lock(&mapping->private_lock);
1600 	if (unlikely(!page_has_buffers(page))) {
1601 		spin_unlock(&mapping->private_lock);
1602 		bh = head = alloc_page_buffers(page, bh_size, 1);
1603 		spin_lock(&mapping->private_lock);
1604 		if (likely(!page_has_buffers(page))) {
1605 			struct buffer_head *tail;
1606 
1607 			do {
1608 				set_buffer_uptodate(bh);
1609 				tail = bh;
1610 				bh = bh->b_this_page;
1611 			} while (bh);
1612 			tail->b_this_page = head;
1613 			attach_page_buffers(page, head);
1614 		} else
1615 			buffers_to_free = bh;
1616 	}
1617 	bh = head = page_buffers(page);
1618 	BUG_ON(!bh);
1619 	do {
1620 		bh_ofs = bh_offset(bh);
1621 		if (bh_ofs + bh_size <= ofs)
1622 			continue;
1623 		if (unlikely(bh_ofs >= end))
1624 			break;
1625 		set_buffer_dirty(bh);
1626 	} while ((bh = bh->b_this_page) != head);
1627 	spin_unlock(&mapping->private_lock);
1628 	__set_page_dirty_nobuffers(page);
1629 	if (unlikely(buffers_to_free)) {
1630 		do {
1631 			bh = buffers_to_free->b_this_page;
1632 			free_buffer_head(buffers_to_free);
1633 			buffers_to_free = bh;
1634 		} while (buffers_to_free);
1635 	}
1636 }
1637 
1638 #endif /* NTFS_RW */
1639