1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /** 3 * aops.c - NTFS kernel address space operations and page cache handling. 4 * 5 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc. 6 * Copyright (c) 2002 Richard Russon 7 */ 8 9 #include <linux/errno.h> 10 #include <linux/fs.h> 11 #include <linux/gfp.h> 12 #include <linux/mm.h> 13 #include <linux/pagemap.h> 14 #include <linux/swap.h> 15 #include <linux/buffer_head.h> 16 #include <linux/writeback.h> 17 #include <linux/bit_spinlock.h> 18 #include <linux/bio.h> 19 20 #include "aops.h" 21 #include "attrib.h" 22 #include "debug.h" 23 #include "inode.h" 24 #include "mft.h" 25 #include "runlist.h" 26 #include "types.h" 27 #include "ntfs.h" 28 29 /** 30 * ntfs_end_buffer_async_read - async io completion for reading attributes 31 * @bh: buffer head on which io is completed 32 * @uptodate: whether @bh is now uptodate or not 33 * 34 * Asynchronous I/O completion handler for reading pages belonging to the 35 * attribute address space of an inode. The inodes can either be files or 36 * directories or they can be fake inodes describing some attribute. 37 * 38 * If NInoMstProtected(), perform the post read mst fixups when all IO on the 39 * page has been completed and mark the page uptodate or set the error bit on 40 * the page. To determine the size of the records that need fixing up, we 41 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs 42 * record size, and index_block_size_bits, to the log(base 2) of the ntfs 43 * record size. 44 */ 45 static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate) 46 { 47 unsigned long flags; 48 struct buffer_head *first, *tmp; 49 struct page *page; 50 struct inode *vi; 51 ntfs_inode *ni; 52 int page_uptodate = 1; 53 54 page = bh->b_page; 55 vi = page->mapping->host; 56 ni = NTFS_I(vi); 57 58 if (likely(uptodate)) { 59 loff_t i_size; 60 s64 file_ofs, init_size; 61 62 set_buffer_uptodate(bh); 63 64 file_ofs = ((s64)page->index << PAGE_SHIFT) + 65 bh_offset(bh); 66 read_lock_irqsave(&ni->size_lock, flags); 67 init_size = ni->initialized_size; 68 i_size = i_size_read(vi); 69 read_unlock_irqrestore(&ni->size_lock, flags); 70 if (unlikely(init_size > i_size)) { 71 /* Race with shrinking truncate. */ 72 init_size = i_size; 73 } 74 /* Check for the current buffer head overflowing. */ 75 if (unlikely(file_ofs + bh->b_size > init_size)) { 76 int ofs; 77 void *kaddr; 78 79 ofs = 0; 80 if (file_ofs < init_size) 81 ofs = init_size - file_ofs; 82 kaddr = kmap_atomic(page); 83 memset(kaddr + bh_offset(bh) + ofs, 0, 84 bh->b_size - ofs); 85 flush_dcache_page(page); 86 kunmap_atomic(kaddr); 87 } 88 } else { 89 clear_buffer_uptodate(bh); 90 SetPageError(page); 91 ntfs_error(ni->vol->sb, "Buffer I/O error, logical block " 92 "0x%llx.", (unsigned long long)bh->b_blocknr); 93 } 94 first = page_buffers(page); 95 spin_lock_irqsave(&first->b_uptodate_lock, flags); 96 clear_buffer_async_read(bh); 97 unlock_buffer(bh); 98 tmp = bh; 99 do { 100 if (!buffer_uptodate(tmp)) 101 page_uptodate = 0; 102 if (buffer_async_read(tmp)) { 103 if (likely(buffer_locked(tmp))) 104 goto still_busy; 105 /* Async buffers must be locked. */ 106 BUG(); 107 } 108 tmp = tmp->b_this_page; 109 } while (tmp != bh); 110 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 111 /* 112 * If none of the buffers had errors then we can set the page uptodate, 113 * but we first have to perform the post read mst fixups, if the 114 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true. 115 * Note we ignore fixup errors as those are detected when 116 * map_mft_record() is called which gives us per record granularity 117 * rather than per page granularity. 118 */ 119 if (!NInoMstProtected(ni)) { 120 if (likely(page_uptodate && !PageError(page))) 121 SetPageUptodate(page); 122 } else { 123 u8 *kaddr; 124 unsigned int i, recs; 125 u32 rec_size; 126 127 rec_size = ni->itype.index.block_size; 128 recs = PAGE_SIZE / rec_size; 129 /* Should have been verified before we got here... */ 130 BUG_ON(!recs); 131 kaddr = kmap_atomic(page); 132 for (i = 0; i < recs; i++) 133 post_read_mst_fixup((NTFS_RECORD*)(kaddr + 134 i * rec_size), rec_size); 135 kunmap_atomic(kaddr); 136 flush_dcache_page(page); 137 if (likely(page_uptodate && !PageError(page))) 138 SetPageUptodate(page); 139 } 140 unlock_page(page); 141 return; 142 still_busy: 143 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 144 return; 145 } 146 147 /** 148 * ntfs_read_block - fill a @page of an address space with data 149 * @page: page cache page to fill with data 150 * 151 * Fill the page @page of the address space belonging to the @page->host inode. 152 * We read each buffer asynchronously and when all buffers are read in, our io 153 * completion handler ntfs_end_buffer_read_async(), if required, automatically 154 * applies the mst fixups to the page before finally marking it uptodate and 155 * unlocking it. 156 * 157 * We only enforce allocated_size limit because i_size is checked for in 158 * generic_file_read(). 159 * 160 * Return 0 on success and -errno on error. 161 * 162 * Contains an adapted version of fs/buffer.c::block_read_full_page(). 163 */ 164 static int ntfs_read_block(struct page *page) 165 { 166 loff_t i_size; 167 VCN vcn; 168 LCN lcn; 169 s64 init_size; 170 struct inode *vi; 171 ntfs_inode *ni; 172 ntfs_volume *vol; 173 runlist_element *rl; 174 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 175 sector_t iblock, lblock, zblock; 176 unsigned long flags; 177 unsigned int blocksize, vcn_ofs; 178 int i, nr; 179 unsigned char blocksize_bits; 180 181 vi = page->mapping->host; 182 ni = NTFS_I(vi); 183 vol = ni->vol; 184 185 /* $MFT/$DATA must have its complete runlist in memory at all times. */ 186 BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni)); 187 188 blocksize = vol->sb->s_blocksize; 189 blocksize_bits = vol->sb->s_blocksize_bits; 190 191 if (!page_has_buffers(page)) { 192 create_empty_buffers(page, blocksize, 0); 193 if (unlikely(!page_has_buffers(page))) { 194 unlock_page(page); 195 return -ENOMEM; 196 } 197 } 198 bh = head = page_buffers(page); 199 BUG_ON(!bh); 200 201 /* 202 * We may be racing with truncate. To avoid some of the problems we 203 * now take a snapshot of the various sizes and use those for the whole 204 * of the function. In case of an extending truncate it just means we 205 * may leave some buffers unmapped which are now allocated. This is 206 * not a problem since these buffers will just get mapped when a write 207 * occurs. In case of a shrinking truncate, we will detect this later 208 * on due to the runlist being incomplete and if the page is being 209 * fully truncated, truncate will throw it away as soon as we unlock 210 * it so no need to worry what we do with it. 211 */ 212 iblock = (s64)page->index << (PAGE_SHIFT - blocksize_bits); 213 read_lock_irqsave(&ni->size_lock, flags); 214 lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits; 215 init_size = ni->initialized_size; 216 i_size = i_size_read(vi); 217 read_unlock_irqrestore(&ni->size_lock, flags); 218 if (unlikely(init_size > i_size)) { 219 /* Race with shrinking truncate. */ 220 init_size = i_size; 221 } 222 zblock = (init_size + blocksize - 1) >> blocksize_bits; 223 224 /* Loop through all the buffers in the page. */ 225 rl = NULL; 226 nr = i = 0; 227 do { 228 int err = 0; 229 230 if (unlikely(buffer_uptodate(bh))) 231 continue; 232 if (unlikely(buffer_mapped(bh))) { 233 arr[nr++] = bh; 234 continue; 235 } 236 bh->b_bdev = vol->sb->s_bdev; 237 /* Is the block within the allowed limits? */ 238 if (iblock < lblock) { 239 bool is_retry = false; 240 241 /* Convert iblock into corresponding vcn and offset. */ 242 vcn = (VCN)iblock << blocksize_bits >> 243 vol->cluster_size_bits; 244 vcn_ofs = ((VCN)iblock << blocksize_bits) & 245 vol->cluster_size_mask; 246 if (!rl) { 247 lock_retry_remap: 248 down_read(&ni->runlist.lock); 249 rl = ni->runlist.rl; 250 } 251 if (likely(rl != NULL)) { 252 /* Seek to element containing target vcn. */ 253 while (rl->length && rl[1].vcn <= vcn) 254 rl++; 255 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 256 } else 257 lcn = LCN_RL_NOT_MAPPED; 258 /* Successful remap. */ 259 if (lcn >= 0) { 260 /* Setup buffer head to correct block. */ 261 bh->b_blocknr = ((lcn << vol->cluster_size_bits) 262 + vcn_ofs) >> blocksize_bits; 263 set_buffer_mapped(bh); 264 /* Only read initialized data blocks. */ 265 if (iblock < zblock) { 266 arr[nr++] = bh; 267 continue; 268 } 269 /* Fully non-initialized data block, zero it. */ 270 goto handle_zblock; 271 } 272 /* It is a hole, need to zero it. */ 273 if (lcn == LCN_HOLE) 274 goto handle_hole; 275 /* If first try and runlist unmapped, map and retry. */ 276 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) { 277 is_retry = true; 278 /* 279 * Attempt to map runlist, dropping lock for 280 * the duration. 281 */ 282 up_read(&ni->runlist.lock); 283 err = ntfs_map_runlist(ni, vcn); 284 if (likely(!err)) 285 goto lock_retry_remap; 286 rl = NULL; 287 } else if (!rl) 288 up_read(&ni->runlist.lock); 289 /* 290 * If buffer is outside the runlist, treat it as a 291 * hole. This can happen due to concurrent truncate 292 * for example. 293 */ 294 if (err == -ENOENT || lcn == LCN_ENOENT) { 295 err = 0; 296 goto handle_hole; 297 } 298 /* Hard error, zero out region. */ 299 if (!err) 300 err = -EIO; 301 bh->b_blocknr = -1; 302 SetPageError(page); 303 ntfs_error(vol->sb, "Failed to read from inode 0x%lx, " 304 "attribute type 0x%x, vcn 0x%llx, " 305 "offset 0x%x because its location on " 306 "disk could not be determined%s " 307 "(error code %i).", ni->mft_no, 308 ni->type, (unsigned long long)vcn, 309 vcn_ofs, is_retry ? " even after " 310 "retrying" : "", err); 311 } 312 /* 313 * Either iblock was outside lblock limits or 314 * ntfs_rl_vcn_to_lcn() returned error. Just zero that portion 315 * of the page and set the buffer uptodate. 316 */ 317 handle_hole: 318 bh->b_blocknr = -1UL; 319 clear_buffer_mapped(bh); 320 handle_zblock: 321 zero_user(page, i * blocksize, blocksize); 322 if (likely(!err)) 323 set_buffer_uptodate(bh); 324 } while (i++, iblock++, (bh = bh->b_this_page) != head); 325 326 /* Release the lock if we took it. */ 327 if (rl) 328 up_read(&ni->runlist.lock); 329 330 /* Check we have at least one buffer ready for i/o. */ 331 if (nr) { 332 struct buffer_head *tbh; 333 334 /* Lock the buffers. */ 335 for (i = 0; i < nr; i++) { 336 tbh = arr[i]; 337 lock_buffer(tbh); 338 tbh->b_end_io = ntfs_end_buffer_async_read; 339 set_buffer_async_read(tbh); 340 } 341 /* Finally, start i/o on the buffers. */ 342 for (i = 0; i < nr; i++) { 343 tbh = arr[i]; 344 if (likely(!buffer_uptodate(tbh))) 345 submit_bh(REQ_OP_READ, 0, tbh); 346 else 347 ntfs_end_buffer_async_read(tbh, 1); 348 } 349 return 0; 350 } 351 /* No i/o was scheduled on any of the buffers. */ 352 if (likely(!PageError(page))) 353 SetPageUptodate(page); 354 else /* Signal synchronous i/o error. */ 355 nr = -EIO; 356 unlock_page(page); 357 return nr; 358 } 359 360 /** 361 * ntfs_readpage - fill a @page of a @file with data from the device 362 * @file: open file to which the page @page belongs or NULL 363 * @page: page cache page to fill with data 364 * 365 * For non-resident attributes, ntfs_readpage() fills the @page of the open 366 * file @file by calling the ntfs version of the generic block_read_full_page() 367 * function, ntfs_read_block(), which in turn creates and reads in the buffers 368 * associated with the page asynchronously. 369 * 370 * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the 371 * data from the mft record (which at this stage is most likely in memory) and 372 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as 373 * even if the mft record is not cached at this point in time, we need to wait 374 * for it to be read in before we can do the copy. 375 * 376 * Return 0 on success and -errno on error. 377 */ 378 static int ntfs_readpage(struct file *file, struct page *page) 379 { 380 loff_t i_size; 381 struct inode *vi; 382 ntfs_inode *ni, *base_ni; 383 u8 *addr; 384 ntfs_attr_search_ctx *ctx; 385 MFT_RECORD *mrec; 386 unsigned long flags; 387 u32 attr_len; 388 int err = 0; 389 390 retry_readpage: 391 BUG_ON(!PageLocked(page)); 392 vi = page->mapping->host; 393 i_size = i_size_read(vi); 394 /* Is the page fully outside i_size? (truncate in progress) */ 395 if (unlikely(page->index >= (i_size + PAGE_SIZE - 1) >> 396 PAGE_SHIFT)) { 397 zero_user(page, 0, PAGE_SIZE); 398 ntfs_debug("Read outside i_size - truncated?"); 399 goto done; 400 } 401 /* 402 * This can potentially happen because we clear PageUptodate() during 403 * ntfs_writepage() of MstProtected() attributes. 404 */ 405 if (PageUptodate(page)) { 406 unlock_page(page); 407 return 0; 408 } 409 ni = NTFS_I(vi); 410 /* 411 * Only $DATA attributes can be encrypted and only unnamed $DATA 412 * attributes can be compressed. Index root can have the flags set but 413 * this means to create compressed/encrypted files, not that the 414 * attribute is compressed/encrypted. Note we need to check for 415 * AT_INDEX_ALLOCATION since this is the type of both directory and 416 * index inodes. 417 */ 418 if (ni->type != AT_INDEX_ALLOCATION) { 419 /* If attribute is encrypted, deny access, just like NT4. */ 420 if (NInoEncrypted(ni)) { 421 BUG_ON(ni->type != AT_DATA); 422 err = -EACCES; 423 goto err_out; 424 } 425 /* Compressed data streams are handled in compress.c. */ 426 if (NInoNonResident(ni) && NInoCompressed(ni)) { 427 BUG_ON(ni->type != AT_DATA); 428 BUG_ON(ni->name_len); 429 return ntfs_read_compressed_block(page); 430 } 431 } 432 /* NInoNonResident() == NInoIndexAllocPresent() */ 433 if (NInoNonResident(ni)) { 434 /* Normal, non-resident data stream. */ 435 return ntfs_read_block(page); 436 } 437 /* 438 * Attribute is resident, implying it is not compressed or encrypted. 439 * This also means the attribute is smaller than an mft record and 440 * hence smaller than a page, so can simply zero out any pages with 441 * index above 0. Note the attribute can actually be marked compressed 442 * but if it is resident the actual data is not compressed so we are 443 * ok to ignore the compressed flag here. 444 */ 445 if (unlikely(page->index > 0)) { 446 zero_user(page, 0, PAGE_SIZE); 447 goto done; 448 } 449 if (!NInoAttr(ni)) 450 base_ni = ni; 451 else 452 base_ni = ni->ext.base_ntfs_ino; 453 /* Map, pin, and lock the mft record. */ 454 mrec = map_mft_record(base_ni); 455 if (IS_ERR(mrec)) { 456 err = PTR_ERR(mrec); 457 goto err_out; 458 } 459 /* 460 * If a parallel write made the attribute non-resident, drop the mft 461 * record and retry the readpage. 462 */ 463 if (unlikely(NInoNonResident(ni))) { 464 unmap_mft_record(base_ni); 465 goto retry_readpage; 466 } 467 ctx = ntfs_attr_get_search_ctx(base_ni, mrec); 468 if (unlikely(!ctx)) { 469 err = -ENOMEM; 470 goto unm_err_out; 471 } 472 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 473 CASE_SENSITIVE, 0, NULL, 0, ctx); 474 if (unlikely(err)) 475 goto put_unm_err_out; 476 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length); 477 read_lock_irqsave(&ni->size_lock, flags); 478 if (unlikely(attr_len > ni->initialized_size)) 479 attr_len = ni->initialized_size; 480 i_size = i_size_read(vi); 481 read_unlock_irqrestore(&ni->size_lock, flags); 482 if (unlikely(attr_len > i_size)) { 483 /* Race with shrinking truncate. */ 484 attr_len = i_size; 485 } 486 addr = kmap_atomic(page); 487 /* Copy the data to the page. */ 488 memcpy(addr, (u8*)ctx->attr + 489 le16_to_cpu(ctx->attr->data.resident.value_offset), 490 attr_len); 491 /* Zero the remainder of the page. */ 492 memset(addr + attr_len, 0, PAGE_SIZE - attr_len); 493 flush_dcache_page(page); 494 kunmap_atomic(addr); 495 put_unm_err_out: 496 ntfs_attr_put_search_ctx(ctx); 497 unm_err_out: 498 unmap_mft_record(base_ni); 499 done: 500 SetPageUptodate(page); 501 err_out: 502 unlock_page(page); 503 return err; 504 } 505 506 #ifdef NTFS_RW 507 508 /** 509 * ntfs_write_block - write a @page to the backing store 510 * @page: page cache page to write out 511 * @wbc: writeback control structure 512 * 513 * This function is for writing pages belonging to non-resident, non-mst 514 * protected attributes to their backing store. 515 * 516 * For a page with buffers, map and write the dirty buffers asynchronously 517 * under page writeback. For a page without buffers, create buffers for the 518 * page, then proceed as above. 519 * 520 * If a page doesn't have buffers the page dirty state is definitive. If a page 521 * does have buffers, the page dirty state is just a hint, and the buffer dirty 522 * state is definitive. (A hint which has rules: dirty buffers against a clean 523 * page is illegal. Other combinations are legal and need to be handled. In 524 * particular a dirty page containing clean buffers for example.) 525 * 526 * Return 0 on success and -errno on error. 527 * 528 * Based on ntfs_read_block() and __block_write_full_page(). 529 */ 530 static int ntfs_write_block(struct page *page, struct writeback_control *wbc) 531 { 532 VCN vcn; 533 LCN lcn; 534 s64 initialized_size; 535 loff_t i_size; 536 sector_t block, dblock, iblock; 537 struct inode *vi; 538 ntfs_inode *ni; 539 ntfs_volume *vol; 540 runlist_element *rl; 541 struct buffer_head *bh, *head; 542 unsigned long flags; 543 unsigned int blocksize, vcn_ofs; 544 int err; 545 bool need_end_writeback; 546 unsigned char blocksize_bits; 547 548 vi = page->mapping->host; 549 ni = NTFS_I(vi); 550 vol = ni->vol; 551 552 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " 553 "0x%lx.", ni->mft_no, ni->type, page->index); 554 555 BUG_ON(!NInoNonResident(ni)); 556 BUG_ON(NInoMstProtected(ni)); 557 blocksize = vol->sb->s_blocksize; 558 blocksize_bits = vol->sb->s_blocksize_bits; 559 if (!page_has_buffers(page)) { 560 BUG_ON(!PageUptodate(page)); 561 create_empty_buffers(page, blocksize, 562 (1 << BH_Uptodate) | (1 << BH_Dirty)); 563 if (unlikely(!page_has_buffers(page))) { 564 ntfs_warning(vol->sb, "Error allocating page " 565 "buffers. Redirtying page so we try " 566 "again later."); 567 /* 568 * Put the page back on mapping->dirty_pages, but leave 569 * its buffers' dirty state as-is. 570 */ 571 redirty_page_for_writepage(wbc, page); 572 unlock_page(page); 573 return 0; 574 } 575 } 576 bh = head = page_buffers(page); 577 BUG_ON(!bh); 578 579 /* NOTE: Different naming scheme to ntfs_read_block()! */ 580 581 /* The first block in the page. */ 582 block = (s64)page->index << (PAGE_SHIFT - blocksize_bits); 583 584 read_lock_irqsave(&ni->size_lock, flags); 585 i_size = i_size_read(vi); 586 initialized_size = ni->initialized_size; 587 read_unlock_irqrestore(&ni->size_lock, flags); 588 589 /* The first out of bounds block for the data size. */ 590 dblock = (i_size + blocksize - 1) >> blocksize_bits; 591 592 /* The last (fully or partially) initialized block. */ 593 iblock = initialized_size >> blocksize_bits; 594 595 /* 596 * Be very careful. We have no exclusion from __set_page_dirty_buffers 597 * here, and the (potentially unmapped) buffers may become dirty at 598 * any time. If a buffer becomes dirty here after we've inspected it 599 * then we just miss that fact, and the page stays dirty. 600 * 601 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 602 * handle that here by just cleaning them. 603 */ 604 605 /* 606 * Loop through all the buffers in the page, mapping all the dirty 607 * buffers to disk addresses and handling any aliases from the 608 * underlying block device's mapping. 609 */ 610 rl = NULL; 611 err = 0; 612 do { 613 bool is_retry = false; 614 615 if (unlikely(block >= dblock)) { 616 /* 617 * Mapped buffers outside i_size will occur, because 618 * this page can be outside i_size when there is a 619 * truncate in progress. The contents of such buffers 620 * were zeroed by ntfs_writepage(). 621 * 622 * FIXME: What about the small race window where 623 * ntfs_writepage() has not done any clearing because 624 * the page was within i_size but before we get here, 625 * vmtruncate() modifies i_size? 626 */ 627 clear_buffer_dirty(bh); 628 set_buffer_uptodate(bh); 629 continue; 630 } 631 632 /* Clean buffers are not written out, so no need to map them. */ 633 if (!buffer_dirty(bh)) 634 continue; 635 636 /* Make sure we have enough initialized size. */ 637 if (unlikely((block >= iblock) && 638 (initialized_size < i_size))) { 639 /* 640 * If this page is fully outside initialized size, zero 641 * out all pages between the current initialized size 642 * and the current page. Just use ntfs_readpage() to do 643 * the zeroing transparently. 644 */ 645 if (block > iblock) { 646 // TODO: 647 // For each page do: 648 // - read_cache_page() 649 // Again for each page do: 650 // - wait_on_page_locked() 651 // - Check (PageUptodate(page) && 652 // !PageError(page)) 653 // Update initialized size in the attribute and 654 // in the inode. 655 // Again, for each page do: 656 // __set_page_dirty_buffers(); 657 // put_page() 658 // We don't need to wait on the writes. 659 // Update iblock. 660 } 661 /* 662 * The current page straddles initialized size. Zero 663 * all non-uptodate buffers and set them uptodate (and 664 * dirty?). Note, there aren't any non-uptodate buffers 665 * if the page is uptodate. 666 * FIXME: For an uptodate page, the buffers may need to 667 * be written out because they were not initialized on 668 * disk before. 669 */ 670 if (!PageUptodate(page)) { 671 // TODO: 672 // Zero any non-uptodate buffers up to i_size. 673 // Set them uptodate and dirty. 674 } 675 // TODO: 676 // Update initialized size in the attribute and in the 677 // inode (up to i_size). 678 // Update iblock. 679 // FIXME: This is inefficient. Try to batch the two 680 // size changes to happen in one go. 681 ntfs_error(vol->sb, "Writing beyond initialized size " 682 "is not supported yet. Sorry."); 683 err = -EOPNOTSUPP; 684 break; 685 // Do NOT set_buffer_new() BUT DO clear buffer range 686 // outside write request range. 687 // set_buffer_uptodate() on complete buffers as well as 688 // set_buffer_dirty(). 689 } 690 691 /* No need to map buffers that are already mapped. */ 692 if (buffer_mapped(bh)) 693 continue; 694 695 /* Unmapped, dirty buffer. Need to map it. */ 696 bh->b_bdev = vol->sb->s_bdev; 697 698 /* Convert block into corresponding vcn and offset. */ 699 vcn = (VCN)block << blocksize_bits; 700 vcn_ofs = vcn & vol->cluster_size_mask; 701 vcn >>= vol->cluster_size_bits; 702 if (!rl) { 703 lock_retry_remap: 704 down_read(&ni->runlist.lock); 705 rl = ni->runlist.rl; 706 } 707 if (likely(rl != NULL)) { 708 /* Seek to element containing target vcn. */ 709 while (rl->length && rl[1].vcn <= vcn) 710 rl++; 711 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 712 } else 713 lcn = LCN_RL_NOT_MAPPED; 714 /* Successful remap. */ 715 if (lcn >= 0) { 716 /* Setup buffer head to point to correct block. */ 717 bh->b_blocknr = ((lcn << vol->cluster_size_bits) + 718 vcn_ofs) >> blocksize_bits; 719 set_buffer_mapped(bh); 720 continue; 721 } 722 /* It is a hole, need to instantiate it. */ 723 if (lcn == LCN_HOLE) { 724 u8 *kaddr; 725 unsigned long *bpos, *bend; 726 727 /* Check if the buffer is zero. */ 728 kaddr = kmap_atomic(page); 729 bpos = (unsigned long *)(kaddr + bh_offset(bh)); 730 bend = (unsigned long *)((u8*)bpos + blocksize); 731 do { 732 if (unlikely(*bpos)) 733 break; 734 } while (likely(++bpos < bend)); 735 kunmap_atomic(kaddr); 736 if (bpos == bend) { 737 /* 738 * Buffer is zero and sparse, no need to write 739 * it. 740 */ 741 bh->b_blocknr = -1; 742 clear_buffer_dirty(bh); 743 continue; 744 } 745 // TODO: Instantiate the hole. 746 // clear_buffer_new(bh); 747 // clean_bdev_bh_alias(bh); 748 ntfs_error(vol->sb, "Writing into sparse regions is " 749 "not supported yet. Sorry."); 750 err = -EOPNOTSUPP; 751 break; 752 } 753 /* If first try and runlist unmapped, map and retry. */ 754 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) { 755 is_retry = true; 756 /* 757 * Attempt to map runlist, dropping lock for 758 * the duration. 759 */ 760 up_read(&ni->runlist.lock); 761 err = ntfs_map_runlist(ni, vcn); 762 if (likely(!err)) 763 goto lock_retry_remap; 764 rl = NULL; 765 } else if (!rl) 766 up_read(&ni->runlist.lock); 767 /* 768 * If buffer is outside the runlist, truncate has cut it out 769 * of the runlist. Just clean and clear the buffer and set it 770 * uptodate so it can get discarded by the VM. 771 */ 772 if (err == -ENOENT || lcn == LCN_ENOENT) { 773 bh->b_blocknr = -1; 774 clear_buffer_dirty(bh); 775 zero_user(page, bh_offset(bh), blocksize); 776 set_buffer_uptodate(bh); 777 err = 0; 778 continue; 779 } 780 /* Failed to map the buffer, even after retrying. */ 781 if (!err) 782 err = -EIO; 783 bh->b_blocknr = -1; 784 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, " 785 "attribute type 0x%x, vcn 0x%llx, offset 0x%x " 786 "because its location on disk could not be " 787 "determined%s (error code %i).", ni->mft_no, 788 ni->type, (unsigned long long)vcn, 789 vcn_ofs, is_retry ? " even after " 790 "retrying" : "", err); 791 break; 792 } while (block++, (bh = bh->b_this_page) != head); 793 794 /* Release the lock if we took it. */ 795 if (rl) 796 up_read(&ni->runlist.lock); 797 798 /* For the error case, need to reset bh to the beginning. */ 799 bh = head; 800 801 /* Just an optimization, so ->readpage() is not called later. */ 802 if (unlikely(!PageUptodate(page))) { 803 int uptodate = 1; 804 do { 805 if (!buffer_uptodate(bh)) { 806 uptodate = 0; 807 bh = head; 808 break; 809 } 810 } while ((bh = bh->b_this_page) != head); 811 if (uptodate) 812 SetPageUptodate(page); 813 } 814 815 /* Setup all mapped, dirty buffers for async write i/o. */ 816 do { 817 if (buffer_mapped(bh) && buffer_dirty(bh)) { 818 lock_buffer(bh); 819 if (test_clear_buffer_dirty(bh)) { 820 BUG_ON(!buffer_uptodate(bh)); 821 mark_buffer_async_write(bh); 822 } else 823 unlock_buffer(bh); 824 } else if (unlikely(err)) { 825 /* 826 * For the error case. The buffer may have been set 827 * dirty during attachment to a dirty page. 828 */ 829 if (err != -ENOMEM) 830 clear_buffer_dirty(bh); 831 } 832 } while ((bh = bh->b_this_page) != head); 833 834 if (unlikely(err)) { 835 // TODO: Remove the -EOPNOTSUPP check later on... 836 if (unlikely(err == -EOPNOTSUPP)) 837 err = 0; 838 else if (err == -ENOMEM) { 839 ntfs_warning(vol->sb, "Error allocating memory. " 840 "Redirtying page so we try again " 841 "later."); 842 /* 843 * Put the page back on mapping->dirty_pages, but 844 * leave its buffer's dirty state as-is. 845 */ 846 redirty_page_for_writepage(wbc, page); 847 err = 0; 848 } else 849 SetPageError(page); 850 } 851 852 BUG_ON(PageWriteback(page)); 853 set_page_writeback(page); /* Keeps try_to_free_buffers() away. */ 854 855 /* Submit the prepared buffers for i/o. */ 856 need_end_writeback = true; 857 do { 858 struct buffer_head *next = bh->b_this_page; 859 if (buffer_async_write(bh)) { 860 submit_bh(REQ_OP_WRITE, 0, bh); 861 need_end_writeback = false; 862 } 863 bh = next; 864 } while (bh != head); 865 unlock_page(page); 866 867 /* If no i/o was started, need to end_page_writeback(). */ 868 if (unlikely(need_end_writeback)) 869 end_page_writeback(page); 870 871 ntfs_debug("Done."); 872 return err; 873 } 874 875 /** 876 * ntfs_write_mst_block - write a @page to the backing store 877 * @page: page cache page to write out 878 * @wbc: writeback control structure 879 * 880 * This function is for writing pages belonging to non-resident, mst protected 881 * attributes to their backing store. The only supported attributes are index 882 * allocation and $MFT/$DATA. Both directory inodes and index inodes are 883 * supported for the index allocation case. 884 * 885 * The page must remain locked for the duration of the write because we apply 886 * the mst fixups, write, and then undo the fixups, so if we were to unlock the 887 * page before undoing the fixups, any other user of the page will see the 888 * page contents as corrupt. 889 * 890 * We clear the page uptodate flag for the duration of the function to ensure 891 * exclusion for the $MFT/$DATA case against someone mapping an mft record we 892 * are about to apply the mst fixups to. 893 * 894 * Return 0 on success and -errno on error. 895 * 896 * Based on ntfs_write_block(), ntfs_mft_writepage(), and 897 * write_mft_record_nolock(). 898 */ 899 static int ntfs_write_mst_block(struct page *page, 900 struct writeback_control *wbc) 901 { 902 sector_t block, dblock, rec_block; 903 struct inode *vi = page->mapping->host; 904 ntfs_inode *ni = NTFS_I(vi); 905 ntfs_volume *vol = ni->vol; 906 u8 *kaddr; 907 unsigned int rec_size = ni->itype.index.block_size; 908 ntfs_inode *locked_nis[PAGE_SIZE / NTFS_BLOCK_SIZE]; 909 struct buffer_head *bh, *head, *tbh, *rec_start_bh; 910 struct buffer_head *bhs[MAX_BUF_PER_PAGE]; 911 runlist_element *rl; 912 int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2; 913 unsigned bh_size, rec_size_bits; 914 bool sync, is_mft, page_is_dirty, rec_is_dirty; 915 unsigned char bh_size_bits; 916 917 if (WARN_ON(rec_size < NTFS_BLOCK_SIZE)) 918 return -EINVAL; 919 920 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " 921 "0x%lx.", vi->i_ino, ni->type, page->index); 922 BUG_ON(!NInoNonResident(ni)); 923 BUG_ON(!NInoMstProtected(ni)); 924 is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino); 925 /* 926 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page 927 * in its page cache were to be marked dirty. However this should 928 * never happen with the current driver and considering we do not 929 * handle this case here we do want to BUG(), at least for now. 930 */ 931 BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) || 932 (NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION))); 933 bh_size = vol->sb->s_blocksize; 934 bh_size_bits = vol->sb->s_blocksize_bits; 935 max_bhs = PAGE_SIZE / bh_size; 936 BUG_ON(!max_bhs); 937 BUG_ON(max_bhs > MAX_BUF_PER_PAGE); 938 939 /* Were we called for sync purposes? */ 940 sync = (wbc->sync_mode == WB_SYNC_ALL); 941 942 /* Make sure we have mapped buffers. */ 943 bh = head = page_buffers(page); 944 BUG_ON(!bh); 945 946 rec_size_bits = ni->itype.index.block_size_bits; 947 BUG_ON(!(PAGE_SIZE >> rec_size_bits)); 948 bhs_per_rec = rec_size >> bh_size_bits; 949 BUG_ON(!bhs_per_rec); 950 951 /* The first block in the page. */ 952 rec_block = block = (sector_t)page->index << 953 (PAGE_SHIFT - bh_size_bits); 954 955 /* The first out of bounds block for the data size. */ 956 dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits; 957 958 rl = NULL; 959 err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0; 960 page_is_dirty = rec_is_dirty = false; 961 rec_start_bh = NULL; 962 do { 963 bool is_retry = false; 964 965 if (likely(block < rec_block)) { 966 if (unlikely(block >= dblock)) { 967 clear_buffer_dirty(bh); 968 set_buffer_uptodate(bh); 969 continue; 970 } 971 /* 972 * This block is not the first one in the record. We 973 * ignore the buffer's dirty state because we could 974 * have raced with a parallel mark_ntfs_record_dirty(). 975 */ 976 if (!rec_is_dirty) 977 continue; 978 if (unlikely(err2)) { 979 if (err2 != -ENOMEM) 980 clear_buffer_dirty(bh); 981 continue; 982 } 983 } else /* if (block == rec_block) */ { 984 BUG_ON(block > rec_block); 985 /* This block is the first one in the record. */ 986 rec_block += bhs_per_rec; 987 err2 = 0; 988 if (unlikely(block >= dblock)) { 989 clear_buffer_dirty(bh); 990 continue; 991 } 992 if (!buffer_dirty(bh)) { 993 /* Clean records are not written out. */ 994 rec_is_dirty = false; 995 continue; 996 } 997 rec_is_dirty = true; 998 rec_start_bh = bh; 999 } 1000 /* Need to map the buffer if it is not mapped already. */ 1001 if (unlikely(!buffer_mapped(bh))) { 1002 VCN vcn; 1003 LCN lcn; 1004 unsigned int vcn_ofs; 1005 1006 bh->b_bdev = vol->sb->s_bdev; 1007 /* Obtain the vcn and offset of the current block. */ 1008 vcn = (VCN)block << bh_size_bits; 1009 vcn_ofs = vcn & vol->cluster_size_mask; 1010 vcn >>= vol->cluster_size_bits; 1011 if (!rl) { 1012 lock_retry_remap: 1013 down_read(&ni->runlist.lock); 1014 rl = ni->runlist.rl; 1015 } 1016 if (likely(rl != NULL)) { 1017 /* Seek to element containing target vcn. */ 1018 while (rl->length && rl[1].vcn <= vcn) 1019 rl++; 1020 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 1021 } else 1022 lcn = LCN_RL_NOT_MAPPED; 1023 /* Successful remap. */ 1024 if (likely(lcn >= 0)) { 1025 /* Setup buffer head to correct block. */ 1026 bh->b_blocknr = ((lcn << 1027 vol->cluster_size_bits) + 1028 vcn_ofs) >> bh_size_bits; 1029 set_buffer_mapped(bh); 1030 } else { 1031 /* 1032 * Remap failed. Retry to map the runlist once 1033 * unless we are working on $MFT which always 1034 * has the whole of its runlist in memory. 1035 */ 1036 if (!is_mft && !is_retry && 1037 lcn == LCN_RL_NOT_MAPPED) { 1038 is_retry = true; 1039 /* 1040 * Attempt to map runlist, dropping 1041 * lock for the duration. 1042 */ 1043 up_read(&ni->runlist.lock); 1044 err2 = ntfs_map_runlist(ni, vcn); 1045 if (likely(!err2)) 1046 goto lock_retry_remap; 1047 if (err2 == -ENOMEM) 1048 page_is_dirty = true; 1049 lcn = err2; 1050 } else { 1051 err2 = -EIO; 1052 if (!rl) 1053 up_read(&ni->runlist.lock); 1054 } 1055 /* Hard error. Abort writing this record. */ 1056 if (!err || err == -ENOMEM) 1057 err = err2; 1058 bh->b_blocknr = -1; 1059 ntfs_error(vol->sb, "Cannot write ntfs record " 1060 "0x%llx (inode 0x%lx, " 1061 "attribute type 0x%x) because " 1062 "its location on disk could " 1063 "not be determined (error " 1064 "code %lli).", 1065 (long long)block << 1066 bh_size_bits >> 1067 vol->mft_record_size_bits, 1068 ni->mft_no, ni->type, 1069 (long long)lcn); 1070 /* 1071 * If this is not the first buffer, remove the 1072 * buffers in this record from the list of 1073 * buffers to write and clear their dirty bit 1074 * if not error -ENOMEM. 1075 */ 1076 if (rec_start_bh != bh) { 1077 while (bhs[--nr_bhs] != rec_start_bh) 1078 ; 1079 if (err2 != -ENOMEM) { 1080 do { 1081 clear_buffer_dirty( 1082 rec_start_bh); 1083 } while ((rec_start_bh = 1084 rec_start_bh-> 1085 b_this_page) != 1086 bh); 1087 } 1088 } 1089 continue; 1090 } 1091 } 1092 BUG_ON(!buffer_uptodate(bh)); 1093 BUG_ON(nr_bhs >= max_bhs); 1094 bhs[nr_bhs++] = bh; 1095 } while (block++, (bh = bh->b_this_page) != head); 1096 if (unlikely(rl)) 1097 up_read(&ni->runlist.lock); 1098 /* If there were no dirty buffers, we are done. */ 1099 if (!nr_bhs) 1100 goto done; 1101 /* Map the page so we can access its contents. */ 1102 kaddr = kmap(page); 1103 /* Clear the page uptodate flag whilst the mst fixups are applied. */ 1104 BUG_ON(!PageUptodate(page)); 1105 ClearPageUptodate(page); 1106 for (i = 0; i < nr_bhs; i++) { 1107 unsigned int ofs; 1108 1109 /* Skip buffers which are not at the beginning of records. */ 1110 if (i % bhs_per_rec) 1111 continue; 1112 tbh = bhs[i]; 1113 ofs = bh_offset(tbh); 1114 if (is_mft) { 1115 ntfs_inode *tni; 1116 unsigned long mft_no; 1117 1118 /* Get the mft record number. */ 1119 mft_no = (((s64)page->index << PAGE_SHIFT) + ofs) 1120 >> rec_size_bits; 1121 /* Check whether to write this mft record. */ 1122 tni = NULL; 1123 if (!ntfs_may_write_mft_record(vol, mft_no, 1124 (MFT_RECORD*)(kaddr + ofs), &tni)) { 1125 /* 1126 * The record should not be written. This 1127 * means we need to redirty the page before 1128 * returning. 1129 */ 1130 page_is_dirty = true; 1131 /* 1132 * Remove the buffers in this mft record from 1133 * the list of buffers to write. 1134 */ 1135 do { 1136 bhs[i] = NULL; 1137 } while (++i % bhs_per_rec); 1138 continue; 1139 } 1140 /* 1141 * The record should be written. If a locked ntfs 1142 * inode was returned, add it to the array of locked 1143 * ntfs inodes. 1144 */ 1145 if (tni) 1146 locked_nis[nr_locked_nis++] = tni; 1147 } 1148 /* Apply the mst protection fixups. */ 1149 err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs), 1150 rec_size); 1151 if (unlikely(err2)) { 1152 if (!err || err == -ENOMEM) 1153 err = -EIO; 1154 ntfs_error(vol->sb, "Failed to apply mst fixups " 1155 "(inode 0x%lx, attribute type 0x%x, " 1156 "page index 0x%lx, page offset 0x%x)!" 1157 " Unmount and run chkdsk.", vi->i_ino, 1158 ni->type, page->index, ofs); 1159 /* 1160 * Mark all the buffers in this record clean as we do 1161 * not want to write corrupt data to disk. 1162 */ 1163 do { 1164 clear_buffer_dirty(bhs[i]); 1165 bhs[i] = NULL; 1166 } while (++i % bhs_per_rec); 1167 continue; 1168 } 1169 nr_recs++; 1170 } 1171 /* If no records are to be written out, we are done. */ 1172 if (!nr_recs) 1173 goto unm_done; 1174 flush_dcache_page(page); 1175 /* Lock buffers and start synchronous write i/o on them. */ 1176 for (i = 0; i < nr_bhs; i++) { 1177 tbh = bhs[i]; 1178 if (!tbh) 1179 continue; 1180 if (!trylock_buffer(tbh)) 1181 BUG(); 1182 /* The buffer dirty state is now irrelevant, just clean it. */ 1183 clear_buffer_dirty(tbh); 1184 BUG_ON(!buffer_uptodate(tbh)); 1185 BUG_ON(!buffer_mapped(tbh)); 1186 get_bh(tbh); 1187 tbh->b_end_io = end_buffer_write_sync; 1188 submit_bh(REQ_OP_WRITE, 0, tbh); 1189 } 1190 /* Synchronize the mft mirror now if not @sync. */ 1191 if (is_mft && !sync) 1192 goto do_mirror; 1193 do_wait: 1194 /* Wait on i/o completion of buffers. */ 1195 for (i = 0; i < nr_bhs; i++) { 1196 tbh = bhs[i]; 1197 if (!tbh) 1198 continue; 1199 wait_on_buffer(tbh); 1200 if (unlikely(!buffer_uptodate(tbh))) { 1201 ntfs_error(vol->sb, "I/O error while writing ntfs " 1202 "record buffer (inode 0x%lx, " 1203 "attribute type 0x%x, page index " 1204 "0x%lx, page offset 0x%lx)! Unmount " 1205 "and run chkdsk.", vi->i_ino, ni->type, 1206 page->index, bh_offset(tbh)); 1207 if (!err || err == -ENOMEM) 1208 err = -EIO; 1209 /* 1210 * Set the buffer uptodate so the page and buffer 1211 * states do not become out of sync. 1212 */ 1213 set_buffer_uptodate(tbh); 1214 } 1215 } 1216 /* If @sync, now synchronize the mft mirror. */ 1217 if (is_mft && sync) { 1218 do_mirror: 1219 for (i = 0; i < nr_bhs; i++) { 1220 unsigned long mft_no; 1221 unsigned int ofs; 1222 1223 /* 1224 * Skip buffers which are not at the beginning of 1225 * records. 1226 */ 1227 if (i % bhs_per_rec) 1228 continue; 1229 tbh = bhs[i]; 1230 /* Skip removed buffers (and hence records). */ 1231 if (!tbh) 1232 continue; 1233 ofs = bh_offset(tbh); 1234 /* Get the mft record number. */ 1235 mft_no = (((s64)page->index << PAGE_SHIFT) + ofs) 1236 >> rec_size_bits; 1237 if (mft_no < vol->mftmirr_size) 1238 ntfs_sync_mft_mirror(vol, mft_no, 1239 (MFT_RECORD*)(kaddr + ofs), 1240 sync); 1241 } 1242 if (!sync) 1243 goto do_wait; 1244 } 1245 /* Remove the mst protection fixups again. */ 1246 for (i = 0; i < nr_bhs; i++) { 1247 if (!(i % bhs_per_rec)) { 1248 tbh = bhs[i]; 1249 if (!tbh) 1250 continue; 1251 post_write_mst_fixup((NTFS_RECORD*)(kaddr + 1252 bh_offset(tbh))); 1253 } 1254 } 1255 flush_dcache_page(page); 1256 unm_done: 1257 /* Unlock any locked inodes. */ 1258 while (nr_locked_nis-- > 0) { 1259 ntfs_inode *tni, *base_tni; 1260 1261 tni = locked_nis[nr_locked_nis]; 1262 /* Get the base inode. */ 1263 mutex_lock(&tni->extent_lock); 1264 if (tni->nr_extents >= 0) 1265 base_tni = tni; 1266 else { 1267 base_tni = tni->ext.base_ntfs_ino; 1268 BUG_ON(!base_tni); 1269 } 1270 mutex_unlock(&tni->extent_lock); 1271 ntfs_debug("Unlocking %s inode 0x%lx.", 1272 tni == base_tni ? "base" : "extent", 1273 tni->mft_no); 1274 mutex_unlock(&tni->mrec_lock); 1275 atomic_dec(&tni->count); 1276 iput(VFS_I(base_tni)); 1277 } 1278 SetPageUptodate(page); 1279 kunmap(page); 1280 done: 1281 if (unlikely(err && err != -ENOMEM)) { 1282 /* 1283 * Set page error if there is only one ntfs record in the page. 1284 * Otherwise we would loose per-record granularity. 1285 */ 1286 if (ni->itype.index.block_size == PAGE_SIZE) 1287 SetPageError(page); 1288 NVolSetErrors(vol); 1289 } 1290 if (page_is_dirty) { 1291 ntfs_debug("Page still contains one or more dirty ntfs " 1292 "records. Redirtying the page starting at " 1293 "record 0x%lx.", page->index << 1294 (PAGE_SHIFT - rec_size_bits)); 1295 redirty_page_for_writepage(wbc, page); 1296 unlock_page(page); 1297 } else { 1298 /* 1299 * Keep the VM happy. This must be done otherwise the 1300 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though 1301 * the page is clean. 1302 */ 1303 BUG_ON(PageWriteback(page)); 1304 set_page_writeback(page); 1305 unlock_page(page); 1306 end_page_writeback(page); 1307 } 1308 if (likely(!err)) 1309 ntfs_debug("Done."); 1310 return err; 1311 } 1312 1313 /** 1314 * ntfs_writepage - write a @page to the backing store 1315 * @page: page cache page to write out 1316 * @wbc: writeback control structure 1317 * 1318 * This is called from the VM when it wants to have a dirty ntfs page cache 1319 * page cleaned. The VM has already locked the page and marked it clean. 1320 * 1321 * For non-resident attributes, ntfs_writepage() writes the @page by calling 1322 * the ntfs version of the generic block_write_full_page() function, 1323 * ntfs_write_block(), which in turn if necessary creates and writes the 1324 * buffers associated with the page asynchronously. 1325 * 1326 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying 1327 * the data to the mft record (which at this stage is most likely in memory). 1328 * The mft record is then marked dirty and written out asynchronously via the 1329 * vfs inode dirty code path for the inode the mft record belongs to or via the 1330 * vm page dirty code path for the page the mft record is in. 1331 * 1332 * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page(). 1333 * 1334 * Return 0 on success and -errno on error. 1335 */ 1336 static int ntfs_writepage(struct page *page, struct writeback_control *wbc) 1337 { 1338 loff_t i_size; 1339 struct inode *vi = page->mapping->host; 1340 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi); 1341 char *addr; 1342 ntfs_attr_search_ctx *ctx = NULL; 1343 MFT_RECORD *m = NULL; 1344 u32 attr_len; 1345 int err; 1346 1347 retry_writepage: 1348 BUG_ON(!PageLocked(page)); 1349 i_size = i_size_read(vi); 1350 /* Is the page fully outside i_size? (truncate in progress) */ 1351 if (unlikely(page->index >= (i_size + PAGE_SIZE - 1) >> 1352 PAGE_SHIFT)) { 1353 /* 1354 * The page may have dirty, unmapped buffers. Make them 1355 * freeable here, so the page does not leak. 1356 */ 1357 block_invalidatepage(page, 0, PAGE_SIZE); 1358 unlock_page(page); 1359 ntfs_debug("Write outside i_size - truncated?"); 1360 return 0; 1361 } 1362 /* 1363 * Only $DATA attributes can be encrypted and only unnamed $DATA 1364 * attributes can be compressed. Index root can have the flags set but 1365 * this means to create compressed/encrypted files, not that the 1366 * attribute is compressed/encrypted. Note we need to check for 1367 * AT_INDEX_ALLOCATION since this is the type of both directory and 1368 * index inodes. 1369 */ 1370 if (ni->type != AT_INDEX_ALLOCATION) { 1371 /* If file is encrypted, deny access, just like NT4. */ 1372 if (NInoEncrypted(ni)) { 1373 unlock_page(page); 1374 BUG_ON(ni->type != AT_DATA); 1375 ntfs_debug("Denying write access to encrypted file."); 1376 return -EACCES; 1377 } 1378 /* Compressed data streams are handled in compress.c. */ 1379 if (NInoNonResident(ni) && NInoCompressed(ni)) { 1380 BUG_ON(ni->type != AT_DATA); 1381 BUG_ON(ni->name_len); 1382 // TODO: Implement and replace this with 1383 // return ntfs_write_compressed_block(page); 1384 unlock_page(page); 1385 ntfs_error(vi->i_sb, "Writing to compressed files is " 1386 "not supported yet. Sorry."); 1387 return -EOPNOTSUPP; 1388 } 1389 // TODO: Implement and remove this check. 1390 if (NInoNonResident(ni) && NInoSparse(ni)) { 1391 unlock_page(page); 1392 ntfs_error(vi->i_sb, "Writing to sparse files is not " 1393 "supported yet. Sorry."); 1394 return -EOPNOTSUPP; 1395 } 1396 } 1397 /* NInoNonResident() == NInoIndexAllocPresent() */ 1398 if (NInoNonResident(ni)) { 1399 /* We have to zero every time due to mmap-at-end-of-file. */ 1400 if (page->index >= (i_size >> PAGE_SHIFT)) { 1401 /* The page straddles i_size. */ 1402 unsigned int ofs = i_size & ~PAGE_MASK; 1403 zero_user_segment(page, ofs, PAGE_SIZE); 1404 } 1405 /* Handle mst protected attributes. */ 1406 if (NInoMstProtected(ni)) 1407 return ntfs_write_mst_block(page, wbc); 1408 /* Normal, non-resident data stream. */ 1409 return ntfs_write_block(page, wbc); 1410 } 1411 /* 1412 * Attribute is resident, implying it is not compressed, encrypted, or 1413 * mst protected. This also means the attribute is smaller than an mft 1414 * record and hence smaller than a page, so can simply return error on 1415 * any pages with index above 0. Note the attribute can actually be 1416 * marked compressed but if it is resident the actual data is not 1417 * compressed so we are ok to ignore the compressed flag here. 1418 */ 1419 BUG_ON(page_has_buffers(page)); 1420 BUG_ON(!PageUptodate(page)); 1421 if (unlikely(page->index > 0)) { 1422 ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0. " 1423 "Aborting write.", page->index); 1424 BUG_ON(PageWriteback(page)); 1425 set_page_writeback(page); 1426 unlock_page(page); 1427 end_page_writeback(page); 1428 return -EIO; 1429 } 1430 if (!NInoAttr(ni)) 1431 base_ni = ni; 1432 else 1433 base_ni = ni->ext.base_ntfs_ino; 1434 /* Map, pin, and lock the mft record. */ 1435 m = map_mft_record(base_ni); 1436 if (IS_ERR(m)) { 1437 err = PTR_ERR(m); 1438 m = NULL; 1439 ctx = NULL; 1440 goto err_out; 1441 } 1442 /* 1443 * If a parallel write made the attribute non-resident, drop the mft 1444 * record and retry the writepage. 1445 */ 1446 if (unlikely(NInoNonResident(ni))) { 1447 unmap_mft_record(base_ni); 1448 goto retry_writepage; 1449 } 1450 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1451 if (unlikely(!ctx)) { 1452 err = -ENOMEM; 1453 goto err_out; 1454 } 1455 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1456 CASE_SENSITIVE, 0, NULL, 0, ctx); 1457 if (unlikely(err)) 1458 goto err_out; 1459 /* 1460 * Keep the VM happy. This must be done otherwise the radix-tree tag 1461 * PAGECACHE_TAG_DIRTY remains set even though the page is clean. 1462 */ 1463 BUG_ON(PageWriteback(page)); 1464 set_page_writeback(page); 1465 unlock_page(page); 1466 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length); 1467 i_size = i_size_read(vi); 1468 if (unlikely(attr_len > i_size)) { 1469 /* Race with shrinking truncate or a failed truncate. */ 1470 attr_len = i_size; 1471 /* 1472 * If the truncate failed, fix it up now. If a concurrent 1473 * truncate, we do its job, so it does not have to do anything. 1474 */ 1475 err = ntfs_resident_attr_value_resize(ctx->mrec, ctx->attr, 1476 attr_len); 1477 /* Shrinking cannot fail. */ 1478 BUG_ON(err); 1479 } 1480 addr = kmap_atomic(page); 1481 /* Copy the data from the page to the mft record. */ 1482 memcpy((u8*)ctx->attr + 1483 le16_to_cpu(ctx->attr->data.resident.value_offset), 1484 addr, attr_len); 1485 /* Zero out of bounds area in the page cache page. */ 1486 memset(addr + attr_len, 0, PAGE_SIZE - attr_len); 1487 kunmap_atomic(addr); 1488 flush_dcache_page(page); 1489 flush_dcache_mft_record_page(ctx->ntfs_ino); 1490 /* We are done with the page. */ 1491 end_page_writeback(page); 1492 /* Finally, mark the mft record dirty, so it gets written back. */ 1493 mark_mft_record_dirty(ctx->ntfs_ino); 1494 ntfs_attr_put_search_ctx(ctx); 1495 unmap_mft_record(base_ni); 1496 return 0; 1497 err_out: 1498 if (err == -ENOMEM) { 1499 ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying " 1500 "page so we try again later."); 1501 /* 1502 * Put the page back on mapping->dirty_pages, but leave its 1503 * buffers' dirty state as-is. 1504 */ 1505 redirty_page_for_writepage(wbc, page); 1506 err = 0; 1507 } else { 1508 ntfs_error(vi->i_sb, "Resident attribute write failed with " 1509 "error %i.", err); 1510 SetPageError(page); 1511 NVolSetErrors(ni->vol); 1512 } 1513 unlock_page(page); 1514 if (ctx) 1515 ntfs_attr_put_search_ctx(ctx); 1516 if (m) 1517 unmap_mft_record(base_ni); 1518 return err; 1519 } 1520 1521 #endif /* NTFS_RW */ 1522 1523 /** 1524 * ntfs_bmap - map logical file block to physical device block 1525 * @mapping: address space mapping to which the block to be mapped belongs 1526 * @block: logical block to map to its physical device block 1527 * 1528 * For regular, non-resident files (i.e. not compressed and not encrypted), map 1529 * the logical @block belonging to the file described by the address space 1530 * mapping @mapping to its physical device block. 1531 * 1532 * The size of the block is equal to the @s_blocksize field of the super block 1533 * of the mounted file system which is guaranteed to be smaller than or equal 1534 * to the cluster size thus the block is guaranteed to fit entirely inside the 1535 * cluster which means we do not need to care how many contiguous bytes are 1536 * available after the beginning of the block. 1537 * 1538 * Return the physical device block if the mapping succeeded or 0 if the block 1539 * is sparse or there was an error. 1540 * 1541 * Note: This is a problem if someone tries to run bmap() on $Boot system file 1542 * as that really is in block zero but there is nothing we can do. bmap() is 1543 * just broken in that respect (just like it cannot distinguish sparse from 1544 * not available or error). 1545 */ 1546 static sector_t ntfs_bmap(struct address_space *mapping, sector_t block) 1547 { 1548 s64 ofs, size; 1549 loff_t i_size; 1550 LCN lcn; 1551 unsigned long blocksize, flags; 1552 ntfs_inode *ni = NTFS_I(mapping->host); 1553 ntfs_volume *vol = ni->vol; 1554 unsigned delta; 1555 unsigned char blocksize_bits, cluster_size_shift; 1556 1557 ntfs_debug("Entering for mft_no 0x%lx, logical block 0x%llx.", 1558 ni->mft_no, (unsigned long long)block); 1559 if (ni->type != AT_DATA || !NInoNonResident(ni) || NInoEncrypted(ni)) { 1560 ntfs_error(vol->sb, "BMAP does not make sense for %s " 1561 "attributes, returning 0.", 1562 (ni->type != AT_DATA) ? "non-data" : 1563 (!NInoNonResident(ni) ? "resident" : 1564 "encrypted")); 1565 return 0; 1566 } 1567 /* None of these can happen. */ 1568 BUG_ON(NInoCompressed(ni)); 1569 BUG_ON(NInoMstProtected(ni)); 1570 blocksize = vol->sb->s_blocksize; 1571 blocksize_bits = vol->sb->s_blocksize_bits; 1572 ofs = (s64)block << blocksize_bits; 1573 read_lock_irqsave(&ni->size_lock, flags); 1574 size = ni->initialized_size; 1575 i_size = i_size_read(VFS_I(ni)); 1576 read_unlock_irqrestore(&ni->size_lock, flags); 1577 /* 1578 * If the offset is outside the initialized size or the block straddles 1579 * the initialized size then pretend it is a hole unless the 1580 * initialized size equals the file size. 1581 */ 1582 if (unlikely(ofs >= size || (ofs + blocksize > size && size < i_size))) 1583 goto hole; 1584 cluster_size_shift = vol->cluster_size_bits; 1585 down_read(&ni->runlist.lock); 1586 lcn = ntfs_attr_vcn_to_lcn_nolock(ni, ofs >> cluster_size_shift, false); 1587 up_read(&ni->runlist.lock); 1588 if (unlikely(lcn < LCN_HOLE)) { 1589 /* 1590 * Step down to an integer to avoid gcc doing a long long 1591 * comparision in the switch when we know @lcn is between 1592 * LCN_HOLE and LCN_EIO (i.e. -1 to -5). 1593 * 1594 * Otherwise older gcc (at least on some architectures) will 1595 * try to use __cmpdi2() which is of course not available in 1596 * the kernel. 1597 */ 1598 switch ((int)lcn) { 1599 case LCN_ENOENT: 1600 /* 1601 * If the offset is out of bounds then pretend it is a 1602 * hole. 1603 */ 1604 goto hole; 1605 case LCN_ENOMEM: 1606 ntfs_error(vol->sb, "Not enough memory to complete " 1607 "mapping for inode 0x%lx. " 1608 "Returning 0.", ni->mft_no); 1609 break; 1610 default: 1611 ntfs_error(vol->sb, "Failed to complete mapping for " 1612 "inode 0x%lx. Run chkdsk. " 1613 "Returning 0.", ni->mft_no); 1614 break; 1615 } 1616 return 0; 1617 } 1618 if (lcn < 0) { 1619 /* It is a hole. */ 1620 hole: 1621 ntfs_debug("Done (returning hole)."); 1622 return 0; 1623 } 1624 /* 1625 * The block is really allocated and fullfils all our criteria. 1626 * Convert the cluster to units of block size and return the result. 1627 */ 1628 delta = ofs & vol->cluster_size_mask; 1629 if (unlikely(sizeof(block) < sizeof(lcn))) { 1630 block = lcn = ((lcn << cluster_size_shift) + delta) >> 1631 blocksize_bits; 1632 /* If the block number was truncated return 0. */ 1633 if (unlikely(block != lcn)) { 1634 ntfs_error(vol->sb, "Physical block 0x%llx is too " 1635 "large to be returned, returning 0.", 1636 (long long)lcn); 1637 return 0; 1638 } 1639 } else 1640 block = ((lcn << cluster_size_shift) + delta) >> 1641 blocksize_bits; 1642 ntfs_debug("Done (returning block 0x%llx).", (unsigned long long)lcn); 1643 return block; 1644 } 1645 1646 /** 1647 * ntfs_normal_aops - address space operations for normal inodes and attributes 1648 * 1649 * Note these are not used for compressed or mst protected inodes and 1650 * attributes. 1651 */ 1652 const struct address_space_operations ntfs_normal_aops = { 1653 .readpage = ntfs_readpage, 1654 #ifdef NTFS_RW 1655 .writepage = ntfs_writepage, 1656 .set_page_dirty = __set_page_dirty_buffers, 1657 #endif /* NTFS_RW */ 1658 .bmap = ntfs_bmap, 1659 .migratepage = buffer_migrate_page, 1660 .is_partially_uptodate = block_is_partially_uptodate, 1661 .error_remove_page = generic_error_remove_page, 1662 }; 1663 1664 /** 1665 * ntfs_compressed_aops - address space operations for compressed inodes 1666 */ 1667 const struct address_space_operations ntfs_compressed_aops = { 1668 .readpage = ntfs_readpage, 1669 #ifdef NTFS_RW 1670 .writepage = ntfs_writepage, 1671 .set_page_dirty = __set_page_dirty_buffers, 1672 #endif /* NTFS_RW */ 1673 .migratepage = buffer_migrate_page, 1674 .is_partially_uptodate = block_is_partially_uptodate, 1675 .error_remove_page = generic_error_remove_page, 1676 }; 1677 1678 /** 1679 * ntfs_mst_aops - general address space operations for mst protecteed inodes 1680 * and attributes 1681 */ 1682 const struct address_space_operations ntfs_mst_aops = { 1683 .readpage = ntfs_readpage, /* Fill page with data. */ 1684 #ifdef NTFS_RW 1685 .writepage = ntfs_writepage, /* Write dirty page to disk. */ 1686 .set_page_dirty = __set_page_dirty_nobuffers, /* Set the page dirty 1687 without touching the buffers 1688 belonging to the page. */ 1689 #endif /* NTFS_RW */ 1690 .migratepage = buffer_migrate_page, 1691 .is_partially_uptodate = block_is_partially_uptodate, 1692 .error_remove_page = generic_error_remove_page, 1693 }; 1694 1695 #ifdef NTFS_RW 1696 1697 /** 1698 * mark_ntfs_record_dirty - mark an ntfs record dirty 1699 * @page: page containing the ntfs record to mark dirty 1700 * @ofs: byte offset within @page at which the ntfs record begins 1701 * 1702 * Set the buffers and the page in which the ntfs record is located dirty. 1703 * 1704 * The latter also marks the vfs inode the ntfs record belongs to dirty 1705 * (I_DIRTY_PAGES only). 1706 * 1707 * If the page does not have buffers, we create them and set them uptodate. 1708 * The page may not be locked which is why we need to handle the buffers under 1709 * the mapping->private_lock. Once the buffers are marked dirty we no longer 1710 * need the lock since try_to_free_buffers() does not free dirty buffers. 1711 */ 1712 void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) { 1713 struct address_space *mapping = page->mapping; 1714 ntfs_inode *ni = NTFS_I(mapping->host); 1715 struct buffer_head *bh, *head, *buffers_to_free = NULL; 1716 unsigned int end, bh_size, bh_ofs; 1717 1718 BUG_ON(!PageUptodate(page)); 1719 end = ofs + ni->itype.index.block_size; 1720 bh_size = VFS_I(ni)->i_sb->s_blocksize; 1721 spin_lock(&mapping->private_lock); 1722 if (unlikely(!page_has_buffers(page))) { 1723 spin_unlock(&mapping->private_lock); 1724 bh = head = alloc_page_buffers(page, bh_size, true); 1725 spin_lock(&mapping->private_lock); 1726 if (likely(!page_has_buffers(page))) { 1727 struct buffer_head *tail; 1728 1729 do { 1730 set_buffer_uptodate(bh); 1731 tail = bh; 1732 bh = bh->b_this_page; 1733 } while (bh); 1734 tail->b_this_page = head; 1735 attach_page_private(page, head); 1736 } else 1737 buffers_to_free = bh; 1738 } 1739 bh = head = page_buffers(page); 1740 BUG_ON(!bh); 1741 do { 1742 bh_ofs = bh_offset(bh); 1743 if (bh_ofs + bh_size <= ofs) 1744 continue; 1745 if (unlikely(bh_ofs >= end)) 1746 break; 1747 set_buffer_dirty(bh); 1748 } while ((bh = bh->b_this_page) != head); 1749 spin_unlock(&mapping->private_lock); 1750 __set_page_dirty_nobuffers(page); 1751 if (unlikely(buffers_to_free)) { 1752 do { 1753 bh = buffers_to_free->b_this_page; 1754 free_buffer_head(buffers_to_free); 1755 buffers_to_free = bh; 1756 } while (buffers_to_free); 1757 } 1758 } 1759 1760 #endif /* NTFS_RW */ 1761