1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /** 3 * aops.c - NTFS kernel address space operations and page cache handling. 4 * 5 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc. 6 * Copyright (c) 2002 Richard Russon 7 */ 8 9 #include <linux/errno.h> 10 #include <linux/fs.h> 11 #include <linux/gfp.h> 12 #include <linux/mm.h> 13 #include <linux/pagemap.h> 14 #include <linux/swap.h> 15 #include <linux/buffer_head.h> 16 #include <linux/writeback.h> 17 #include <linux/bit_spinlock.h> 18 #include <linux/bio.h> 19 20 #include "aops.h" 21 #include "attrib.h" 22 #include "debug.h" 23 #include "inode.h" 24 #include "mft.h" 25 #include "runlist.h" 26 #include "types.h" 27 #include "ntfs.h" 28 29 /** 30 * ntfs_end_buffer_async_read - async io completion for reading attributes 31 * @bh: buffer head on which io is completed 32 * @uptodate: whether @bh is now uptodate or not 33 * 34 * Asynchronous I/O completion handler for reading pages belonging to the 35 * attribute address space of an inode. The inodes can either be files or 36 * directories or they can be fake inodes describing some attribute. 37 * 38 * If NInoMstProtected(), perform the post read mst fixups when all IO on the 39 * page has been completed and mark the page uptodate or set the error bit on 40 * the page. To determine the size of the records that need fixing up, we 41 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs 42 * record size, and index_block_size_bits, to the log(base 2) of the ntfs 43 * record size. 44 */ 45 static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate) 46 { 47 unsigned long flags; 48 struct buffer_head *first, *tmp; 49 struct page *page; 50 struct inode *vi; 51 ntfs_inode *ni; 52 int page_uptodate = 1; 53 54 page = bh->b_page; 55 vi = page->mapping->host; 56 ni = NTFS_I(vi); 57 58 if (likely(uptodate)) { 59 loff_t i_size; 60 s64 file_ofs, init_size; 61 62 set_buffer_uptodate(bh); 63 64 file_ofs = ((s64)page->index << PAGE_SHIFT) + 65 bh_offset(bh); 66 read_lock_irqsave(&ni->size_lock, flags); 67 init_size = ni->initialized_size; 68 i_size = i_size_read(vi); 69 read_unlock_irqrestore(&ni->size_lock, flags); 70 if (unlikely(init_size > i_size)) { 71 /* Race with shrinking truncate. */ 72 init_size = i_size; 73 } 74 /* Check for the current buffer head overflowing. */ 75 if (unlikely(file_ofs + bh->b_size > init_size)) { 76 int ofs; 77 void *kaddr; 78 79 ofs = 0; 80 if (file_ofs < init_size) 81 ofs = init_size - file_ofs; 82 kaddr = kmap_atomic(page); 83 memset(kaddr + bh_offset(bh) + ofs, 0, 84 bh->b_size - ofs); 85 flush_dcache_page(page); 86 kunmap_atomic(kaddr); 87 } 88 } else { 89 clear_buffer_uptodate(bh); 90 SetPageError(page); 91 ntfs_error(ni->vol->sb, "Buffer I/O error, logical block " 92 "0x%llx.", (unsigned long long)bh->b_blocknr); 93 } 94 first = page_buffers(page); 95 local_irq_save(flags); 96 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 97 clear_buffer_async_read(bh); 98 unlock_buffer(bh); 99 tmp = bh; 100 do { 101 if (!buffer_uptodate(tmp)) 102 page_uptodate = 0; 103 if (buffer_async_read(tmp)) { 104 if (likely(buffer_locked(tmp))) 105 goto still_busy; 106 /* Async buffers must be locked. */ 107 BUG(); 108 } 109 tmp = tmp->b_this_page; 110 } while (tmp != bh); 111 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 112 local_irq_restore(flags); 113 /* 114 * If none of the buffers had errors then we can set the page uptodate, 115 * but we first have to perform the post read mst fixups, if the 116 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true. 117 * Note we ignore fixup errors as those are detected when 118 * map_mft_record() is called which gives us per record granularity 119 * rather than per page granularity. 120 */ 121 if (!NInoMstProtected(ni)) { 122 if (likely(page_uptodate && !PageError(page))) 123 SetPageUptodate(page); 124 } else { 125 u8 *kaddr; 126 unsigned int i, recs; 127 u32 rec_size; 128 129 rec_size = ni->itype.index.block_size; 130 recs = PAGE_SIZE / rec_size; 131 /* Should have been verified before we got here... */ 132 BUG_ON(!recs); 133 kaddr = kmap_atomic(page); 134 for (i = 0; i < recs; i++) 135 post_read_mst_fixup((NTFS_RECORD*)(kaddr + 136 i * rec_size), rec_size); 137 kunmap_atomic(kaddr); 138 flush_dcache_page(page); 139 if (likely(page_uptodate && !PageError(page))) 140 SetPageUptodate(page); 141 } 142 unlock_page(page); 143 return; 144 still_busy: 145 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 146 local_irq_restore(flags); 147 return; 148 } 149 150 /** 151 * ntfs_read_block - fill a @page of an address space with data 152 * @page: page cache page to fill with data 153 * 154 * Fill the page @page of the address space belonging to the @page->host inode. 155 * We read each buffer asynchronously and when all buffers are read in, our io 156 * completion handler ntfs_end_buffer_read_async(), if required, automatically 157 * applies the mst fixups to the page before finally marking it uptodate and 158 * unlocking it. 159 * 160 * We only enforce allocated_size limit because i_size is checked for in 161 * generic_file_read(). 162 * 163 * Return 0 on success and -errno on error. 164 * 165 * Contains an adapted version of fs/buffer.c::block_read_full_page(). 166 */ 167 static int ntfs_read_block(struct page *page) 168 { 169 loff_t i_size; 170 VCN vcn; 171 LCN lcn; 172 s64 init_size; 173 struct inode *vi; 174 ntfs_inode *ni; 175 ntfs_volume *vol; 176 runlist_element *rl; 177 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 178 sector_t iblock, lblock, zblock; 179 unsigned long flags; 180 unsigned int blocksize, vcn_ofs; 181 int i, nr; 182 unsigned char blocksize_bits; 183 184 vi = page->mapping->host; 185 ni = NTFS_I(vi); 186 vol = ni->vol; 187 188 /* $MFT/$DATA must have its complete runlist in memory at all times. */ 189 BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni)); 190 191 blocksize = vol->sb->s_blocksize; 192 blocksize_bits = vol->sb->s_blocksize_bits; 193 194 if (!page_has_buffers(page)) { 195 create_empty_buffers(page, blocksize, 0); 196 if (unlikely(!page_has_buffers(page))) { 197 unlock_page(page); 198 return -ENOMEM; 199 } 200 } 201 bh = head = page_buffers(page); 202 BUG_ON(!bh); 203 204 /* 205 * We may be racing with truncate. To avoid some of the problems we 206 * now take a snapshot of the various sizes and use those for the whole 207 * of the function. In case of an extending truncate it just means we 208 * may leave some buffers unmapped which are now allocated. This is 209 * not a problem since these buffers will just get mapped when a write 210 * occurs. In case of a shrinking truncate, we will detect this later 211 * on due to the runlist being incomplete and if the page is being 212 * fully truncated, truncate will throw it away as soon as we unlock 213 * it so no need to worry what we do with it. 214 */ 215 iblock = (s64)page->index << (PAGE_SHIFT - blocksize_bits); 216 read_lock_irqsave(&ni->size_lock, flags); 217 lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits; 218 init_size = ni->initialized_size; 219 i_size = i_size_read(vi); 220 read_unlock_irqrestore(&ni->size_lock, flags); 221 if (unlikely(init_size > i_size)) { 222 /* Race with shrinking truncate. */ 223 init_size = i_size; 224 } 225 zblock = (init_size + blocksize - 1) >> blocksize_bits; 226 227 /* Loop through all the buffers in the page. */ 228 rl = NULL; 229 nr = i = 0; 230 do { 231 int err = 0; 232 233 if (unlikely(buffer_uptodate(bh))) 234 continue; 235 if (unlikely(buffer_mapped(bh))) { 236 arr[nr++] = bh; 237 continue; 238 } 239 bh->b_bdev = vol->sb->s_bdev; 240 /* Is the block within the allowed limits? */ 241 if (iblock < lblock) { 242 bool is_retry = false; 243 244 /* Convert iblock into corresponding vcn and offset. */ 245 vcn = (VCN)iblock << blocksize_bits >> 246 vol->cluster_size_bits; 247 vcn_ofs = ((VCN)iblock << blocksize_bits) & 248 vol->cluster_size_mask; 249 if (!rl) { 250 lock_retry_remap: 251 down_read(&ni->runlist.lock); 252 rl = ni->runlist.rl; 253 } 254 if (likely(rl != NULL)) { 255 /* Seek to element containing target vcn. */ 256 while (rl->length && rl[1].vcn <= vcn) 257 rl++; 258 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 259 } else 260 lcn = LCN_RL_NOT_MAPPED; 261 /* Successful remap. */ 262 if (lcn >= 0) { 263 /* Setup buffer head to correct block. */ 264 bh->b_blocknr = ((lcn << vol->cluster_size_bits) 265 + vcn_ofs) >> blocksize_bits; 266 set_buffer_mapped(bh); 267 /* Only read initialized data blocks. */ 268 if (iblock < zblock) { 269 arr[nr++] = bh; 270 continue; 271 } 272 /* Fully non-initialized data block, zero it. */ 273 goto handle_zblock; 274 } 275 /* It is a hole, need to zero it. */ 276 if (lcn == LCN_HOLE) 277 goto handle_hole; 278 /* If first try and runlist unmapped, map and retry. */ 279 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) { 280 is_retry = true; 281 /* 282 * Attempt to map runlist, dropping lock for 283 * the duration. 284 */ 285 up_read(&ni->runlist.lock); 286 err = ntfs_map_runlist(ni, vcn); 287 if (likely(!err)) 288 goto lock_retry_remap; 289 rl = NULL; 290 } else if (!rl) 291 up_read(&ni->runlist.lock); 292 /* 293 * If buffer is outside the runlist, treat it as a 294 * hole. This can happen due to concurrent truncate 295 * for example. 296 */ 297 if (err == -ENOENT || lcn == LCN_ENOENT) { 298 err = 0; 299 goto handle_hole; 300 } 301 /* Hard error, zero out region. */ 302 if (!err) 303 err = -EIO; 304 bh->b_blocknr = -1; 305 SetPageError(page); 306 ntfs_error(vol->sb, "Failed to read from inode 0x%lx, " 307 "attribute type 0x%x, vcn 0x%llx, " 308 "offset 0x%x because its location on " 309 "disk could not be determined%s " 310 "(error code %i).", ni->mft_no, 311 ni->type, (unsigned long long)vcn, 312 vcn_ofs, is_retry ? " even after " 313 "retrying" : "", err); 314 } 315 /* 316 * Either iblock was outside lblock limits or 317 * ntfs_rl_vcn_to_lcn() returned error. Just zero that portion 318 * of the page and set the buffer uptodate. 319 */ 320 handle_hole: 321 bh->b_blocknr = -1UL; 322 clear_buffer_mapped(bh); 323 handle_zblock: 324 zero_user(page, i * blocksize, blocksize); 325 if (likely(!err)) 326 set_buffer_uptodate(bh); 327 } while (i++, iblock++, (bh = bh->b_this_page) != head); 328 329 /* Release the lock if we took it. */ 330 if (rl) 331 up_read(&ni->runlist.lock); 332 333 /* Check we have at least one buffer ready for i/o. */ 334 if (nr) { 335 struct buffer_head *tbh; 336 337 /* Lock the buffers. */ 338 for (i = 0; i < nr; i++) { 339 tbh = arr[i]; 340 lock_buffer(tbh); 341 tbh->b_end_io = ntfs_end_buffer_async_read; 342 set_buffer_async_read(tbh); 343 } 344 /* Finally, start i/o on the buffers. */ 345 for (i = 0; i < nr; i++) { 346 tbh = arr[i]; 347 if (likely(!buffer_uptodate(tbh))) 348 submit_bh(REQ_OP_READ, 0, tbh); 349 else 350 ntfs_end_buffer_async_read(tbh, 1); 351 } 352 return 0; 353 } 354 /* No i/o was scheduled on any of the buffers. */ 355 if (likely(!PageError(page))) 356 SetPageUptodate(page); 357 else /* Signal synchronous i/o error. */ 358 nr = -EIO; 359 unlock_page(page); 360 return nr; 361 } 362 363 /** 364 * ntfs_readpage - fill a @page of a @file with data from the device 365 * @file: open file to which the page @page belongs or NULL 366 * @page: page cache page to fill with data 367 * 368 * For non-resident attributes, ntfs_readpage() fills the @page of the open 369 * file @file by calling the ntfs version of the generic block_read_full_page() 370 * function, ntfs_read_block(), which in turn creates and reads in the buffers 371 * associated with the page asynchronously. 372 * 373 * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the 374 * data from the mft record (which at this stage is most likely in memory) and 375 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as 376 * even if the mft record is not cached at this point in time, we need to wait 377 * for it to be read in before we can do the copy. 378 * 379 * Return 0 on success and -errno on error. 380 */ 381 static int ntfs_readpage(struct file *file, struct page *page) 382 { 383 loff_t i_size; 384 struct inode *vi; 385 ntfs_inode *ni, *base_ni; 386 u8 *addr; 387 ntfs_attr_search_ctx *ctx; 388 MFT_RECORD *mrec; 389 unsigned long flags; 390 u32 attr_len; 391 int err = 0; 392 393 retry_readpage: 394 BUG_ON(!PageLocked(page)); 395 vi = page->mapping->host; 396 i_size = i_size_read(vi); 397 /* Is the page fully outside i_size? (truncate in progress) */ 398 if (unlikely(page->index >= (i_size + PAGE_SIZE - 1) >> 399 PAGE_SHIFT)) { 400 zero_user(page, 0, PAGE_SIZE); 401 ntfs_debug("Read outside i_size - truncated?"); 402 goto done; 403 } 404 /* 405 * This can potentially happen because we clear PageUptodate() during 406 * ntfs_writepage() of MstProtected() attributes. 407 */ 408 if (PageUptodate(page)) { 409 unlock_page(page); 410 return 0; 411 } 412 ni = NTFS_I(vi); 413 /* 414 * Only $DATA attributes can be encrypted and only unnamed $DATA 415 * attributes can be compressed. Index root can have the flags set but 416 * this means to create compressed/encrypted files, not that the 417 * attribute is compressed/encrypted. Note we need to check for 418 * AT_INDEX_ALLOCATION since this is the type of both directory and 419 * index inodes. 420 */ 421 if (ni->type != AT_INDEX_ALLOCATION) { 422 /* If attribute is encrypted, deny access, just like NT4. */ 423 if (NInoEncrypted(ni)) { 424 BUG_ON(ni->type != AT_DATA); 425 err = -EACCES; 426 goto err_out; 427 } 428 /* Compressed data streams are handled in compress.c. */ 429 if (NInoNonResident(ni) && NInoCompressed(ni)) { 430 BUG_ON(ni->type != AT_DATA); 431 BUG_ON(ni->name_len); 432 return ntfs_read_compressed_block(page); 433 } 434 } 435 /* NInoNonResident() == NInoIndexAllocPresent() */ 436 if (NInoNonResident(ni)) { 437 /* Normal, non-resident data stream. */ 438 return ntfs_read_block(page); 439 } 440 /* 441 * Attribute is resident, implying it is not compressed or encrypted. 442 * This also means the attribute is smaller than an mft record and 443 * hence smaller than a page, so can simply zero out any pages with 444 * index above 0. Note the attribute can actually be marked compressed 445 * but if it is resident the actual data is not compressed so we are 446 * ok to ignore the compressed flag here. 447 */ 448 if (unlikely(page->index > 0)) { 449 zero_user(page, 0, PAGE_SIZE); 450 goto done; 451 } 452 if (!NInoAttr(ni)) 453 base_ni = ni; 454 else 455 base_ni = ni->ext.base_ntfs_ino; 456 /* Map, pin, and lock the mft record. */ 457 mrec = map_mft_record(base_ni); 458 if (IS_ERR(mrec)) { 459 err = PTR_ERR(mrec); 460 goto err_out; 461 } 462 /* 463 * If a parallel write made the attribute non-resident, drop the mft 464 * record and retry the readpage. 465 */ 466 if (unlikely(NInoNonResident(ni))) { 467 unmap_mft_record(base_ni); 468 goto retry_readpage; 469 } 470 ctx = ntfs_attr_get_search_ctx(base_ni, mrec); 471 if (unlikely(!ctx)) { 472 err = -ENOMEM; 473 goto unm_err_out; 474 } 475 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 476 CASE_SENSITIVE, 0, NULL, 0, ctx); 477 if (unlikely(err)) 478 goto put_unm_err_out; 479 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length); 480 read_lock_irqsave(&ni->size_lock, flags); 481 if (unlikely(attr_len > ni->initialized_size)) 482 attr_len = ni->initialized_size; 483 i_size = i_size_read(vi); 484 read_unlock_irqrestore(&ni->size_lock, flags); 485 if (unlikely(attr_len > i_size)) { 486 /* Race with shrinking truncate. */ 487 attr_len = i_size; 488 } 489 addr = kmap_atomic(page); 490 /* Copy the data to the page. */ 491 memcpy(addr, (u8*)ctx->attr + 492 le16_to_cpu(ctx->attr->data.resident.value_offset), 493 attr_len); 494 /* Zero the remainder of the page. */ 495 memset(addr + attr_len, 0, PAGE_SIZE - attr_len); 496 flush_dcache_page(page); 497 kunmap_atomic(addr); 498 put_unm_err_out: 499 ntfs_attr_put_search_ctx(ctx); 500 unm_err_out: 501 unmap_mft_record(base_ni); 502 done: 503 SetPageUptodate(page); 504 err_out: 505 unlock_page(page); 506 return err; 507 } 508 509 #ifdef NTFS_RW 510 511 /** 512 * ntfs_write_block - write a @page to the backing store 513 * @page: page cache page to write out 514 * @wbc: writeback control structure 515 * 516 * This function is for writing pages belonging to non-resident, non-mst 517 * protected attributes to their backing store. 518 * 519 * For a page with buffers, map and write the dirty buffers asynchronously 520 * under page writeback. For a page without buffers, create buffers for the 521 * page, then proceed as above. 522 * 523 * If a page doesn't have buffers the page dirty state is definitive. If a page 524 * does have buffers, the page dirty state is just a hint, and the buffer dirty 525 * state is definitive. (A hint which has rules: dirty buffers against a clean 526 * page is illegal. Other combinations are legal and need to be handled. In 527 * particular a dirty page containing clean buffers for example.) 528 * 529 * Return 0 on success and -errno on error. 530 * 531 * Based on ntfs_read_block() and __block_write_full_page(). 532 */ 533 static int ntfs_write_block(struct page *page, struct writeback_control *wbc) 534 { 535 VCN vcn; 536 LCN lcn; 537 s64 initialized_size; 538 loff_t i_size; 539 sector_t block, dblock, iblock; 540 struct inode *vi; 541 ntfs_inode *ni; 542 ntfs_volume *vol; 543 runlist_element *rl; 544 struct buffer_head *bh, *head; 545 unsigned long flags; 546 unsigned int blocksize, vcn_ofs; 547 int err; 548 bool need_end_writeback; 549 unsigned char blocksize_bits; 550 551 vi = page->mapping->host; 552 ni = NTFS_I(vi); 553 vol = ni->vol; 554 555 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " 556 "0x%lx.", ni->mft_no, ni->type, page->index); 557 558 BUG_ON(!NInoNonResident(ni)); 559 BUG_ON(NInoMstProtected(ni)); 560 blocksize = vol->sb->s_blocksize; 561 blocksize_bits = vol->sb->s_blocksize_bits; 562 if (!page_has_buffers(page)) { 563 BUG_ON(!PageUptodate(page)); 564 create_empty_buffers(page, blocksize, 565 (1 << BH_Uptodate) | (1 << BH_Dirty)); 566 if (unlikely(!page_has_buffers(page))) { 567 ntfs_warning(vol->sb, "Error allocating page " 568 "buffers. Redirtying page so we try " 569 "again later."); 570 /* 571 * Put the page back on mapping->dirty_pages, but leave 572 * its buffers' dirty state as-is. 573 */ 574 redirty_page_for_writepage(wbc, page); 575 unlock_page(page); 576 return 0; 577 } 578 } 579 bh = head = page_buffers(page); 580 BUG_ON(!bh); 581 582 /* NOTE: Different naming scheme to ntfs_read_block()! */ 583 584 /* The first block in the page. */ 585 block = (s64)page->index << (PAGE_SHIFT - blocksize_bits); 586 587 read_lock_irqsave(&ni->size_lock, flags); 588 i_size = i_size_read(vi); 589 initialized_size = ni->initialized_size; 590 read_unlock_irqrestore(&ni->size_lock, flags); 591 592 /* The first out of bounds block for the data size. */ 593 dblock = (i_size + blocksize - 1) >> blocksize_bits; 594 595 /* The last (fully or partially) initialized block. */ 596 iblock = initialized_size >> blocksize_bits; 597 598 /* 599 * Be very careful. We have no exclusion from __set_page_dirty_buffers 600 * here, and the (potentially unmapped) buffers may become dirty at 601 * any time. If a buffer becomes dirty here after we've inspected it 602 * then we just miss that fact, and the page stays dirty. 603 * 604 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 605 * handle that here by just cleaning them. 606 */ 607 608 /* 609 * Loop through all the buffers in the page, mapping all the dirty 610 * buffers to disk addresses and handling any aliases from the 611 * underlying block device's mapping. 612 */ 613 rl = NULL; 614 err = 0; 615 do { 616 bool is_retry = false; 617 618 if (unlikely(block >= dblock)) { 619 /* 620 * Mapped buffers outside i_size will occur, because 621 * this page can be outside i_size when there is a 622 * truncate in progress. The contents of such buffers 623 * were zeroed by ntfs_writepage(). 624 * 625 * FIXME: What about the small race window where 626 * ntfs_writepage() has not done any clearing because 627 * the page was within i_size but before we get here, 628 * vmtruncate() modifies i_size? 629 */ 630 clear_buffer_dirty(bh); 631 set_buffer_uptodate(bh); 632 continue; 633 } 634 635 /* Clean buffers are not written out, so no need to map them. */ 636 if (!buffer_dirty(bh)) 637 continue; 638 639 /* Make sure we have enough initialized size. */ 640 if (unlikely((block >= iblock) && 641 (initialized_size < i_size))) { 642 /* 643 * If this page is fully outside initialized size, zero 644 * out all pages between the current initialized size 645 * and the current page. Just use ntfs_readpage() to do 646 * the zeroing transparently. 647 */ 648 if (block > iblock) { 649 // TODO: 650 // For each page do: 651 // - read_cache_page() 652 // Again for each page do: 653 // - wait_on_page_locked() 654 // - Check (PageUptodate(page) && 655 // !PageError(page)) 656 // Update initialized size in the attribute and 657 // in the inode. 658 // Again, for each page do: 659 // __set_page_dirty_buffers(); 660 // put_page() 661 // We don't need to wait on the writes. 662 // Update iblock. 663 } 664 /* 665 * The current page straddles initialized size. Zero 666 * all non-uptodate buffers and set them uptodate (and 667 * dirty?). Note, there aren't any non-uptodate buffers 668 * if the page is uptodate. 669 * FIXME: For an uptodate page, the buffers may need to 670 * be written out because they were not initialized on 671 * disk before. 672 */ 673 if (!PageUptodate(page)) { 674 // TODO: 675 // Zero any non-uptodate buffers up to i_size. 676 // Set them uptodate and dirty. 677 } 678 // TODO: 679 // Update initialized size in the attribute and in the 680 // inode (up to i_size). 681 // Update iblock. 682 // FIXME: This is inefficient. Try to batch the two 683 // size changes to happen in one go. 684 ntfs_error(vol->sb, "Writing beyond initialized size " 685 "is not supported yet. Sorry."); 686 err = -EOPNOTSUPP; 687 break; 688 // Do NOT set_buffer_new() BUT DO clear buffer range 689 // outside write request range. 690 // set_buffer_uptodate() on complete buffers as well as 691 // set_buffer_dirty(). 692 } 693 694 /* No need to map buffers that are already mapped. */ 695 if (buffer_mapped(bh)) 696 continue; 697 698 /* Unmapped, dirty buffer. Need to map it. */ 699 bh->b_bdev = vol->sb->s_bdev; 700 701 /* Convert block into corresponding vcn and offset. */ 702 vcn = (VCN)block << blocksize_bits; 703 vcn_ofs = vcn & vol->cluster_size_mask; 704 vcn >>= vol->cluster_size_bits; 705 if (!rl) { 706 lock_retry_remap: 707 down_read(&ni->runlist.lock); 708 rl = ni->runlist.rl; 709 } 710 if (likely(rl != NULL)) { 711 /* Seek to element containing target vcn. */ 712 while (rl->length && rl[1].vcn <= vcn) 713 rl++; 714 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 715 } else 716 lcn = LCN_RL_NOT_MAPPED; 717 /* Successful remap. */ 718 if (lcn >= 0) { 719 /* Setup buffer head to point to correct block. */ 720 bh->b_blocknr = ((lcn << vol->cluster_size_bits) + 721 vcn_ofs) >> blocksize_bits; 722 set_buffer_mapped(bh); 723 continue; 724 } 725 /* It is a hole, need to instantiate it. */ 726 if (lcn == LCN_HOLE) { 727 u8 *kaddr; 728 unsigned long *bpos, *bend; 729 730 /* Check if the buffer is zero. */ 731 kaddr = kmap_atomic(page); 732 bpos = (unsigned long *)(kaddr + bh_offset(bh)); 733 bend = (unsigned long *)((u8*)bpos + blocksize); 734 do { 735 if (unlikely(*bpos)) 736 break; 737 } while (likely(++bpos < bend)); 738 kunmap_atomic(kaddr); 739 if (bpos == bend) { 740 /* 741 * Buffer is zero and sparse, no need to write 742 * it. 743 */ 744 bh->b_blocknr = -1; 745 clear_buffer_dirty(bh); 746 continue; 747 } 748 // TODO: Instantiate the hole. 749 // clear_buffer_new(bh); 750 // clean_bdev_bh_alias(bh); 751 ntfs_error(vol->sb, "Writing into sparse regions is " 752 "not supported yet. Sorry."); 753 err = -EOPNOTSUPP; 754 break; 755 } 756 /* If first try and runlist unmapped, map and retry. */ 757 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) { 758 is_retry = true; 759 /* 760 * Attempt to map runlist, dropping lock for 761 * the duration. 762 */ 763 up_read(&ni->runlist.lock); 764 err = ntfs_map_runlist(ni, vcn); 765 if (likely(!err)) 766 goto lock_retry_remap; 767 rl = NULL; 768 } else if (!rl) 769 up_read(&ni->runlist.lock); 770 /* 771 * If buffer is outside the runlist, truncate has cut it out 772 * of the runlist. Just clean and clear the buffer and set it 773 * uptodate so it can get discarded by the VM. 774 */ 775 if (err == -ENOENT || lcn == LCN_ENOENT) { 776 bh->b_blocknr = -1; 777 clear_buffer_dirty(bh); 778 zero_user(page, bh_offset(bh), blocksize); 779 set_buffer_uptodate(bh); 780 err = 0; 781 continue; 782 } 783 /* Failed to map the buffer, even after retrying. */ 784 if (!err) 785 err = -EIO; 786 bh->b_blocknr = -1; 787 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, " 788 "attribute type 0x%x, vcn 0x%llx, offset 0x%x " 789 "because its location on disk could not be " 790 "determined%s (error code %i).", ni->mft_no, 791 ni->type, (unsigned long long)vcn, 792 vcn_ofs, is_retry ? " even after " 793 "retrying" : "", err); 794 break; 795 } while (block++, (bh = bh->b_this_page) != head); 796 797 /* Release the lock if we took it. */ 798 if (rl) 799 up_read(&ni->runlist.lock); 800 801 /* For the error case, need to reset bh to the beginning. */ 802 bh = head; 803 804 /* Just an optimization, so ->readpage() is not called later. */ 805 if (unlikely(!PageUptodate(page))) { 806 int uptodate = 1; 807 do { 808 if (!buffer_uptodate(bh)) { 809 uptodate = 0; 810 bh = head; 811 break; 812 } 813 } while ((bh = bh->b_this_page) != head); 814 if (uptodate) 815 SetPageUptodate(page); 816 } 817 818 /* Setup all mapped, dirty buffers for async write i/o. */ 819 do { 820 if (buffer_mapped(bh) && buffer_dirty(bh)) { 821 lock_buffer(bh); 822 if (test_clear_buffer_dirty(bh)) { 823 BUG_ON(!buffer_uptodate(bh)); 824 mark_buffer_async_write(bh); 825 } else 826 unlock_buffer(bh); 827 } else if (unlikely(err)) { 828 /* 829 * For the error case. The buffer may have been set 830 * dirty during attachment to a dirty page. 831 */ 832 if (err != -ENOMEM) 833 clear_buffer_dirty(bh); 834 } 835 } while ((bh = bh->b_this_page) != head); 836 837 if (unlikely(err)) { 838 // TODO: Remove the -EOPNOTSUPP check later on... 839 if (unlikely(err == -EOPNOTSUPP)) 840 err = 0; 841 else if (err == -ENOMEM) { 842 ntfs_warning(vol->sb, "Error allocating memory. " 843 "Redirtying page so we try again " 844 "later."); 845 /* 846 * Put the page back on mapping->dirty_pages, but 847 * leave its buffer's dirty state as-is. 848 */ 849 redirty_page_for_writepage(wbc, page); 850 err = 0; 851 } else 852 SetPageError(page); 853 } 854 855 BUG_ON(PageWriteback(page)); 856 set_page_writeback(page); /* Keeps try_to_free_buffers() away. */ 857 858 /* Submit the prepared buffers for i/o. */ 859 need_end_writeback = true; 860 do { 861 struct buffer_head *next = bh->b_this_page; 862 if (buffer_async_write(bh)) { 863 submit_bh(REQ_OP_WRITE, 0, bh); 864 need_end_writeback = false; 865 } 866 bh = next; 867 } while (bh != head); 868 unlock_page(page); 869 870 /* If no i/o was started, need to end_page_writeback(). */ 871 if (unlikely(need_end_writeback)) 872 end_page_writeback(page); 873 874 ntfs_debug("Done."); 875 return err; 876 } 877 878 /** 879 * ntfs_write_mst_block - write a @page to the backing store 880 * @page: page cache page to write out 881 * @wbc: writeback control structure 882 * 883 * This function is for writing pages belonging to non-resident, mst protected 884 * attributes to their backing store. The only supported attributes are index 885 * allocation and $MFT/$DATA. Both directory inodes and index inodes are 886 * supported for the index allocation case. 887 * 888 * The page must remain locked for the duration of the write because we apply 889 * the mst fixups, write, and then undo the fixups, so if we were to unlock the 890 * page before undoing the fixups, any other user of the page will see the 891 * page contents as corrupt. 892 * 893 * We clear the page uptodate flag for the duration of the function to ensure 894 * exclusion for the $MFT/$DATA case against someone mapping an mft record we 895 * are about to apply the mst fixups to. 896 * 897 * Return 0 on success and -errno on error. 898 * 899 * Based on ntfs_write_block(), ntfs_mft_writepage(), and 900 * write_mft_record_nolock(). 901 */ 902 static int ntfs_write_mst_block(struct page *page, 903 struct writeback_control *wbc) 904 { 905 sector_t block, dblock, rec_block; 906 struct inode *vi = page->mapping->host; 907 ntfs_inode *ni = NTFS_I(vi); 908 ntfs_volume *vol = ni->vol; 909 u8 *kaddr; 910 unsigned int rec_size = ni->itype.index.block_size; 911 ntfs_inode *locked_nis[PAGE_SIZE / NTFS_BLOCK_SIZE]; 912 struct buffer_head *bh, *head, *tbh, *rec_start_bh; 913 struct buffer_head *bhs[MAX_BUF_PER_PAGE]; 914 runlist_element *rl; 915 int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2; 916 unsigned bh_size, rec_size_bits; 917 bool sync, is_mft, page_is_dirty, rec_is_dirty; 918 unsigned char bh_size_bits; 919 920 if (WARN_ON(rec_size < NTFS_BLOCK_SIZE)) 921 return -EINVAL; 922 923 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " 924 "0x%lx.", vi->i_ino, ni->type, page->index); 925 BUG_ON(!NInoNonResident(ni)); 926 BUG_ON(!NInoMstProtected(ni)); 927 is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino); 928 /* 929 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page 930 * in its page cache were to be marked dirty. However this should 931 * never happen with the current driver and considering we do not 932 * handle this case here we do want to BUG(), at least for now. 933 */ 934 BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) || 935 (NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION))); 936 bh_size = vol->sb->s_blocksize; 937 bh_size_bits = vol->sb->s_blocksize_bits; 938 max_bhs = PAGE_SIZE / bh_size; 939 BUG_ON(!max_bhs); 940 BUG_ON(max_bhs > MAX_BUF_PER_PAGE); 941 942 /* Were we called for sync purposes? */ 943 sync = (wbc->sync_mode == WB_SYNC_ALL); 944 945 /* Make sure we have mapped buffers. */ 946 bh = head = page_buffers(page); 947 BUG_ON(!bh); 948 949 rec_size_bits = ni->itype.index.block_size_bits; 950 BUG_ON(!(PAGE_SIZE >> rec_size_bits)); 951 bhs_per_rec = rec_size >> bh_size_bits; 952 BUG_ON(!bhs_per_rec); 953 954 /* The first block in the page. */ 955 rec_block = block = (sector_t)page->index << 956 (PAGE_SHIFT - bh_size_bits); 957 958 /* The first out of bounds block for the data size. */ 959 dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits; 960 961 rl = NULL; 962 err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0; 963 page_is_dirty = rec_is_dirty = false; 964 rec_start_bh = NULL; 965 do { 966 bool is_retry = false; 967 968 if (likely(block < rec_block)) { 969 if (unlikely(block >= dblock)) { 970 clear_buffer_dirty(bh); 971 set_buffer_uptodate(bh); 972 continue; 973 } 974 /* 975 * This block is not the first one in the record. We 976 * ignore the buffer's dirty state because we could 977 * have raced with a parallel mark_ntfs_record_dirty(). 978 */ 979 if (!rec_is_dirty) 980 continue; 981 if (unlikely(err2)) { 982 if (err2 != -ENOMEM) 983 clear_buffer_dirty(bh); 984 continue; 985 } 986 } else /* if (block == rec_block) */ { 987 BUG_ON(block > rec_block); 988 /* This block is the first one in the record. */ 989 rec_block += bhs_per_rec; 990 err2 = 0; 991 if (unlikely(block >= dblock)) { 992 clear_buffer_dirty(bh); 993 continue; 994 } 995 if (!buffer_dirty(bh)) { 996 /* Clean records are not written out. */ 997 rec_is_dirty = false; 998 continue; 999 } 1000 rec_is_dirty = true; 1001 rec_start_bh = bh; 1002 } 1003 /* Need to map the buffer if it is not mapped already. */ 1004 if (unlikely(!buffer_mapped(bh))) { 1005 VCN vcn; 1006 LCN lcn; 1007 unsigned int vcn_ofs; 1008 1009 bh->b_bdev = vol->sb->s_bdev; 1010 /* Obtain the vcn and offset of the current block. */ 1011 vcn = (VCN)block << bh_size_bits; 1012 vcn_ofs = vcn & vol->cluster_size_mask; 1013 vcn >>= vol->cluster_size_bits; 1014 if (!rl) { 1015 lock_retry_remap: 1016 down_read(&ni->runlist.lock); 1017 rl = ni->runlist.rl; 1018 } 1019 if (likely(rl != NULL)) { 1020 /* Seek to element containing target vcn. */ 1021 while (rl->length && rl[1].vcn <= vcn) 1022 rl++; 1023 lcn = ntfs_rl_vcn_to_lcn(rl, vcn); 1024 } else 1025 lcn = LCN_RL_NOT_MAPPED; 1026 /* Successful remap. */ 1027 if (likely(lcn >= 0)) { 1028 /* Setup buffer head to correct block. */ 1029 bh->b_blocknr = ((lcn << 1030 vol->cluster_size_bits) + 1031 vcn_ofs) >> bh_size_bits; 1032 set_buffer_mapped(bh); 1033 } else { 1034 /* 1035 * Remap failed. Retry to map the runlist once 1036 * unless we are working on $MFT which always 1037 * has the whole of its runlist in memory. 1038 */ 1039 if (!is_mft && !is_retry && 1040 lcn == LCN_RL_NOT_MAPPED) { 1041 is_retry = true; 1042 /* 1043 * Attempt to map runlist, dropping 1044 * lock for the duration. 1045 */ 1046 up_read(&ni->runlist.lock); 1047 err2 = ntfs_map_runlist(ni, vcn); 1048 if (likely(!err2)) 1049 goto lock_retry_remap; 1050 if (err2 == -ENOMEM) 1051 page_is_dirty = true; 1052 lcn = err2; 1053 } else { 1054 err2 = -EIO; 1055 if (!rl) 1056 up_read(&ni->runlist.lock); 1057 } 1058 /* Hard error. Abort writing this record. */ 1059 if (!err || err == -ENOMEM) 1060 err = err2; 1061 bh->b_blocknr = -1; 1062 ntfs_error(vol->sb, "Cannot write ntfs record " 1063 "0x%llx (inode 0x%lx, " 1064 "attribute type 0x%x) because " 1065 "its location on disk could " 1066 "not be determined (error " 1067 "code %lli).", 1068 (long long)block << 1069 bh_size_bits >> 1070 vol->mft_record_size_bits, 1071 ni->mft_no, ni->type, 1072 (long long)lcn); 1073 /* 1074 * If this is not the first buffer, remove the 1075 * buffers in this record from the list of 1076 * buffers to write and clear their dirty bit 1077 * if not error -ENOMEM. 1078 */ 1079 if (rec_start_bh != bh) { 1080 while (bhs[--nr_bhs] != rec_start_bh) 1081 ; 1082 if (err2 != -ENOMEM) { 1083 do { 1084 clear_buffer_dirty( 1085 rec_start_bh); 1086 } while ((rec_start_bh = 1087 rec_start_bh-> 1088 b_this_page) != 1089 bh); 1090 } 1091 } 1092 continue; 1093 } 1094 } 1095 BUG_ON(!buffer_uptodate(bh)); 1096 BUG_ON(nr_bhs >= max_bhs); 1097 bhs[nr_bhs++] = bh; 1098 } while (block++, (bh = bh->b_this_page) != head); 1099 if (unlikely(rl)) 1100 up_read(&ni->runlist.lock); 1101 /* If there were no dirty buffers, we are done. */ 1102 if (!nr_bhs) 1103 goto done; 1104 /* Map the page so we can access its contents. */ 1105 kaddr = kmap(page); 1106 /* Clear the page uptodate flag whilst the mst fixups are applied. */ 1107 BUG_ON(!PageUptodate(page)); 1108 ClearPageUptodate(page); 1109 for (i = 0; i < nr_bhs; i++) { 1110 unsigned int ofs; 1111 1112 /* Skip buffers which are not at the beginning of records. */ 1113 if (i % bhs_per_rec) 1114 continue; 1115 tbh = bhs[i]; 1116 ofs = bh_offset(tbh); 1117 if (is_mft) { 1118 ntfs_inode *tni; 1119 unsigned long mft_no; 1120 1121 /* Get the mft record number. */ 1122 mft_no = (((s64)page->index << PAGE_SHIFT) + ofs) 1123 >> rec_size_bits; 1124 /* Check whether to write this mft record. */ 1125 tni = NULL; 1126 if (!ntfs_may_write_mft_record(vol, mft_no, 1127 (MFT_RECORD*)(kaddr + ofs), &tni)) { 1128 /* 1129 * The record should not be written. This 1130 * means we need to redirty the page before 1131 * returning. 1132 */ 1133 page_is_dirty = true; 1134 /* 1135 * Remove the buffers in this mft record from 1136 * the list of buffers to write. 1137 */ 1138 do { 1139 bhs[i] = NULL; 1140 } while (++i % bhs_per_rec); 1141 continue; 1142 } 1143 /* 1144 * The record should be written. If a locked ntfs 1145 * inode was returned, add it to the array of locked 1146 * ntfs inodes. 1147 */ 1148 if (tni) 1149 locked_nis[nr_locked_nis++] = tni; 1150 } 1151 /* Apply the mst protection fixups. */ 1152 err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs), 1153 rec_size); 1154 if (unlikely(err2)) { 1155 if (!err || err == -ENOMEM) 1156 err = -EIO; 1157 ntfs_error(vol->sb, "Failed to apply mst fixups " 1158 "(inode 0x%lx, attribute type 0x%x, " 1159 "page index 0x%lx, page offset 0x%x)!" 1160 " Unmount and run chkdsk.", vi->i_ino, 1161 ni->type, page->index, ofs); 1162 /* 1163 * Mark all the buffers in this record clean as we do 1164 * not want to write corrupt data to disk. 1165 */ 1166 do { 1167 clear_buffer_dirty(bhs[i]); 1168 bhs[i] = NULL; 1169 } while (++i % bhs_per_rec); 1170 continue; 1171 } 1172 nr_recs++; 1173 } 1174 /* If no records are to be written out, we are done. */ 1175 if (!nr_recs) 1176 goto unm_done; 1177 flush_dcache_page(page); 1178 /* Lock buffers and start synchronous write i/o on them. */ 1179 for (i = 0; i < nr_bhs; i++) { 1180 tbh = bhs[i]; 1181 if (!tbh) 1182 continue; 1183 if (!trylock_buffer(tbh)) 1184 BUG(); 1185 /* The buffer dirty state is now irrelevant, just clean it. */ 1186 clear_buffer_dirty(tbh); 1187 BUG_ON(!buffer_uptodate(tbh)); 1188 BUG_ON(!buffer_mapped(tbh)); 1189 get_bh(tbh); 1190 tbh->b_end_io = end_buffer_write_sync; 1191 submit_bh(REQ_OP_WRITE, 0, tbh); 1192 } 1193 /* Synchronize the mft mirror now if not @sync. */ 1194 if (is_mft && !sync) 1195 goto do_mirror; 1196 do_wait: 1197 /* Wait on i/o completion of buffers. */ 1198 for (i = 0; i < nr_bhs; i++) { 1199 tbh = bhs[i]; 1200 if (!tbh) 1201 continue; 1202 wait_on_buffer(tbh); 1203 if (unlikely(!buffer_uptodate(tbh))) { 1204 ntfs_error(vol->sb, "I/O error while writing ntfs " 1205 "record buffer (inode 0x%lx, " 1206 "attribute type 0x%x, page index " 1207 "0x%lx, page offset 0x%lx)! Unmount " 1208 "and run chkdsk.", vi->i_ino, ni->type, 1209 page->index, bh_offset(tbh)); 1210 if (!err || err == -ENOMEM) 1211 err = -EIO; 1212 /* 1213 * Set the buffer uptodate so the page and buffer 1214 * states do not become out of sync. 1215 */ 1216 set_buffer_uptodate(tbh); 1217 } 1218 } 1219 /* If @sync, now synchronize the mft mirror. */ 1220 if (is_mft && sync) { 1221 do_mirror: 1222 for (i = 0; i < nr_bhs; i++) { 1223 unsigned long mft_no; 1224 unsigned int ofs; 1225 1226 /* 1227 * Skip buffers which are not at the beginning of 1228 * records. 1229 */ 1230 if (i % bhs_per_rec) 1231 continue; 1232 tbh = bhs[i]; 1233 /* Skip removed buffers (and hence records). */ 1234 if (!tbh) 1235 continue; 1236 ofs = bh_offset(tbh); 1237 /* Get the mft record number. */ 1238 mft_no = (((s64)page->index << PAGE_SHIFT) + ofs) 1239 >> rec_size_bits; 1240 if (mft_no < vol->mftmirr_size) 1241 ntfs_sync_mft_mirror(vol, mft_no, 1242 (MFT_RECORD*)(kaddr + ofs), 1243 sync); 1244 } 1245 if (!sync) 1246 goto do_wait; 1247 } 1248 /* Remove the mst protection fixups again. */ 1249 for (i = 0; i < nr_bhs; i++) { 1250 if (!(i % bhs_per_rec)) { 1251 tbh = bhs[i]; 1252 if (!tbh) 1253 continue; 1254 post_write_mst_fixup((NTFS_RECORD*)(kaddr + 1255 bh_offset(tbh))); 1256 } 1257 } 1258 flush_dcache_page(page); 1259 unm_done: 1260 /* Unlock any locked inodes. */ 1261 while (nr_locked_nis-- > 0) { 1262 ntfs_inode *tni, *base_tni; 1263 1264 tni = locked_nis[nr_locked_nis]; 1265 /* Get the base inode. */ 1266 mutex_lock(&tni->extent_lock); 1267 if (tni->nr_extents >= 0) 1268 base_tni = tni; 1269 else { 1270 base_tni = tni->ext.base_ntfs_ino; 1271 BUG_ON(!base_tni); 1272 } 1273 mutex_unlock(&tni->extent_lock); 1274 ntfs_debug("Unlocking %s inode 0x%lx.", 1275 tni == base_tni ? "base" : "extent", 1276 tni->mft_no); 1277 mutex_unlock(&tni->mrec_lock); 1278 atomic_dec(&tni->count); 1279 iput(VFS_I(base_tni)); 1280 } 1281 SetPageUptodate(page); 1282 kunmap(page); 1283 done: 1284 if (unlikely(err && err != -ENOMEM)) { 1285 /* 1286 * Set page error if there is only one ntfs record in the page. 1287 * Otherwise we would loose per-record granularity. 1288 */ 1289 if (ni->itype.index.block_size == PAGE_SIZE) 1290 SetPageError(page); 1291 NVolSetErrors(vol); 1292 } 1293 if (page_is_dirty) { 1294 ntfs_debug("Page still contains one or more dirty ntfs " 1295 "records. Redirtying the page starting at " 1296 "record 0x%lx.", page->index << 1297 (PAGE_SHIFT - rec_size_bits)); 1298 redirty_page_for_writepage(wbc, page); 1299 unlock_page(page); 1300 } else { 1301 /* 1302 * Keep the VM happy. This must be done otherwise the 1303 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though 1304 * the page is clean. 1305 */ 1306 BUG_ON(PageWriteback(page)); 1307 set_page_writeback(page); 1308 unlock_page(page); 1309 end_page_writeback(page); 1310 } 1311 if (likely(!err)) 1312 ntfs_debug("Done."); 1313 return err; 1314 } 1315 1316 /** 1317 * ntfs_writepage - write a @page to the backing store 1318 * @page: page cache page to write out 1319 * @wbc: writeback control structure 1320 * 1321 * This is called from the VM when it wants to have a dirty ntfs page cache 1322 * page cleaned. The VM has already locked the page and marked it clean. 1323 * 1324 * For non-resident attributes, ntfs_writepage() writes the @page by calling 1325 * the ntfs version of the generic block_write_full_page() function, 1326 * ntfs_write_block(), which in turn if necessary creates and writes the 1327 * buffers associated with the page asynchronously. 1328 * 1329 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying 1330 * the data to the mft record (which at this stage is most likely in memory). 1331 * The mft record is then marked dirty and written out asynchronously via the 1332 * vfs inode dirty code path for the inode the mft record belongs to or via the 1333 * vm page dirty code path for the page the mft record is in. 1334 * 1335 * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page(). 1336 * 1337 * Return 0 on success and -errno on error. 1338 */ 1339 static int ntfs_writepage(struct page *page, struct writeback_control *wbc) 1340 { 1341 loff_t i_size; 1342 struct inode *vi = page->mapping->host; 1343 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi); 1344 char *addr; 1345 ntfs_attr_search_ctx *ctx = NULL; 1346 MFT_RECORD *m = NULL; 1347 u32 attr_len; 1348 int err; 1349 1350 retry_writepage: 1351 BUG_ON(!PageLocked(page)); 1352 i_size = i_size_read(vi); 1353 /* Is the page fully outside i_size? (truncate in progress) */ 1354 if (unlikely(page->index >= (i_size + PAGE_SIZE - 1) >> 1355 PAGE_SHIFT)) { 1356 /* 1357 * The page may have dirty, unmapped buffers. Make them 1358 * freeable here, so the page does not leak. 1359 */ 1360 block_invalidatepage(page, 0, PAGE_SIZE); 1361 unlock_page(page); 1362 ntfs_debug("Write outside i_size - truncated?"); 1363 return 0; 1364 } 1365 /* 1366 * Only $DATA attributes can be encrypted and only unnamed $DATA 1367 * attributes can be compressed. Index root can have the flags set but 1368 * this means to create compressed/encrypted files, not that the 1369 * attribute is compressed/encrypted. Note we need to check for 1370 * AT_INDEX_ALLOCATION since this is the type of both directory and 1371 * index inodes. 1372 */ 1373 if (ni->type != AT_INDEX_ALLOCATION) { 1374 /* If file is encrypted, deny access, just like NT4. */ 1375 if (NInoEncrypted(ni)) { 1376 unlock_page(page); 1377 BUG_ON(ni->type != AT_DATA); 1378 ntfs_debug("Denying write access to encrypted file."); 1379 return -EACCES; 1380 } 1381 /* Compressed data streams are handled in compress.c. */ 1382 if (NInoNonResident(ni) && NInoCompressed(ni)) { 1383 BUG_ON(ni->type != AT_DATA); 1384 BUG_ON(ni->name_len); 1385 // TODO: Implement and replace this with 1386 // return ntfs_write_compressed_block(page); 1387 unlock_page(page); 1388 ntfs_error(vi->i_sb, "Writing to compressed files is " 1389 "not supported yet. Sorry."); 1390 return -EOPNOTSUPP; 1391 } 1392 // TODO: Implement and remove this check. 1393 if (NInoNonResident(ni) && NInoSparse(ni)) { 1394 unlock_page(page); 1395 ntfs_error(vi->i_sb, "Writing to sparse files is not " 1396 "supported yet. Sorry."); 1397 return -EOPNOTSUPP; 1398 } 1399 } 1400 /* NInoNonResident() == NInoIndexAllocPresent() */ 1401 if (NInoNonResident(ni)) { 1402 /* We have to zero every time due to mmap-at-end-of-file. */ 1403 if (page->index >= (i_size >> PAGE_SHIFT)) { 1404 /* The page straddles i_size. */ 1405 unsigned int ofs = i_size & ~PAGE_MASK; 1406 zero_user_segment(page, ofs, PAGE_SIZE); 1407 } 1408 /* Handle mst protected attributes. */ 1409 if (NInoMstProtected(ni)) 1410 return ntfs_write_mst_block(page, wbc); 1411 /* Normal, non-resident data stream. */ 1412 return ntfs_write_block(page, wbc); 1413 } 1414 /* 1415 * Attribute is resident, implying it is not compressed, encrypted, or 1416 * mst protected. This also means the attribute is smaller than an mft 1417 * record and hence smaller than a page, so can simply return error on 1418 * any pages with index above 0. Note the attribute can actually be 1419 * marked compressed but if it is resident the actual data is not 1420 * compressed so we are ok to ignore the compressed flag here. 1421 */ 1422 BUG_ON(page_has_buffers(page)); 1423 BUG_ON(!PageUptodate(page)); 1424 if (unlikely(page->index > 0)) { 1425 ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0. " 1426 "Aborting write.", page->index); 1427 BUG_ON(PageWriteback(page)); 1428 set_page_writeback(page); 1429 unlock_page(page); 1430 end_page_writeback(page); 1431 return -EIO; 1432 } 1433 if (!NInoAttr(ni)) 1434 base_ni = ni; 1435 else 1436 base_ni = ni->ext.base_ntfs_ino; 1437 /* Map, pin, and lock the mft record. */ 1438 m = map_mft_record(base_ni); 1439 if (IS_ERR(m)) { 1440 err = PTR_ERR(m); 1441 m = NULL; 1442 ctx = NULL; 1443 goto err_out; 1444 } 1445 /* 1446 * If a parallel write made the attribute non-resident, drop the mft 1447 * record and retry the writepage. 1448 */ 1449 if (unlikely(NInoNonResident(ni))) { 1450 unmap_mft_record(base_ni); 1451 goto retry_writepage; 1452 } 1453 ctx = ntfs_attr_get_search_ctx(base_ni, m); 1454 if (unlikely(!ctx)) { 1455 err = -ENOMEM; 1456 goto err_out; 1457 } 1458 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, 1459 CASE_SENSITIVE, 0, NULL, 0, ctx); 1460 if (unlikely(err)) 1461 goto err_out; 1462 /* 1463 * Keep the VM happy. This must be done otherwise the radix-tree tag 1464 * PAGECACHE_TAG_DIRTY remains set even though the page is clean. 1465 */ 1466 BUG_ON(PageWriteback(page)); 1467 set_page_writeback(page); 1468 unlock_page(page); 1469 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length); 1470 i_size = i_size_read(vi); 1471 if (unlikely(attr_len > i_size)) { 1472 /* Race with shrinking truncate or a failed truncate. */ 1473 attr_len = i_size; 1474 /* 1475 * If the truncate failed, fix it up now. If a concurrent 1476 * truncate, we do its job, so it does not have to do anything. 1477 */ 1478 err = ntfs_resident_attr_value_resize(ctx->mrec, ctx->attr, 1479 attr_len); 1480 /* Shrinking cannot fail. */ 1481 BUG_ON(err); 1482 } 1483 addr = kmap_atomic(page); 1484 /* Copy the data from the page to the mft record. */ 1485 memcpy((u8*)ctx->attr + 1486 le16_to_cpu(ctx->attr->data.resident.value_offset), 1487 addr, attr_len); 1488 /* Zero out of bounds area in the page cache page. */ 1489 memset(addr + attr_len, 0, PAGE_SIZE - attr_len); 1490 kunmap_atomic(addr); 1491 flush_dcache_page(page); 1492 flush_dcache_mft_record_page(ctx->ntfs_ino); 1493 /* We are done with the page. */ 1494 end_page_writeback(page); 1495 /* Finally, mark the mft record dirty, so it gets written back. */ 1496 mark_mft_record_dirty(ctx->ntfs_ino); 1497 ntfs_attr_put_search_ctx(ctx); 1498 unmap_mft_record(base_ni); 1499 return 0; 1500 err_out: 1501 if (err == -ENOMEM) { 1502 ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying " 1503 "page so we try again later."); 1504 /* 1505 * Put the page back on mapping->dirty_pages, but leave its 1506 * buffers' dirty state as-is. 1507 */ 1508 redirty_page_for_writepage(wbc, page); 1509 err = 0; 1510 } else { 1511 ntfs_error(vi->i_sb, "Resident attribute write failed with " 1512 "error %i.", err); 1513 SetPageError(page); 1514 NVolSetErrors(ni->vol); 1515 } 1516 unlock_page(page); 1517 if (ctx) 1518 ntfs_attr_put_search_ctx(ctx); 1519 if (m) 1520 unmap_mft_record(base_ni); 1521 return err; 1522 } 1523 1524 #endif /* NTFS_RW */ 1525 1526 /** 1527 * ntfs_bmap - map logical file block to physical device block 1528 * @mapping: address space mapping to which the block to be mapped belongs 1529 * @block: logical block to map to its physical device block 1530 * 1531 * For regular, non-resident files (i.e. not compressed and not encrypted), map 1532 * the logical @block belonging to the file described by the address space 1533 * mapping @mapping to its physical device block. 1534 * 1535 * The size of the block is equal to the @s_blocksize field of the super block 1536 * of the mounted file system which is guaranteed to be smaller than or equal 1537 * to the cluster size thus the block is guaranteed to fit entirely inside the 1538 * cluster which means we do not need to care how many contiguous bytes are 1539 * available after the beginning of the block. 1540 * 1541 * Return the physical device block if the mapping succeeded or 0 if the block 1542 * is sparse or there was an error. 1543 * 1544 * Note: This is a problem if someone tries to run bmap() on $Boot system file 1545 * as that really is in block zero but there is nothing we can do. bmap() is 1546 * just broken in that respect (just like it cannot distinguish sparse from 1547 * not available or error). 1548 */ 1549 static sector_t ntfs_bmap(struct address_space *mapping, sector_t block) 1550 { 1551 s64 ofs, size; 1552 loff_t i_size; 1553 LCN lcn; 1554 unsigned long blocksize, flags; 1555 ntfs_inode *ni = NTFS_I(mapping->host); 1556 ntfs_volume *vol = ni->vol; 1557 unsigned delta; 1558 unsigned char blocksize_bits, cluster_size_shift; 1559 1560 ntfs_debug("Entering for mft_no 0x%lx, logical block 0x%llx.", 1561 ni->mft_no, (unsigned long long)block); 1562 if (ni->type != AT_DATA || !NInoNonResident(ni) || NInoEncrypted(ni)) { 1563 ntfs_error(vol->sb, "BMAP does not make sense for %s " 1564 "attributes, returning 0.", 1565 (ni->type != AT_DATA) ? "non-data" : 1566 (!NInoNonResident(ni) ? "resident" : 1567 "encrypted")); 1568 return 0; 1569 } 1570 /* None of these can happen. */ 1571 BUG_ON(NInoCompressed(ni)); 1572 BUG_ON(NInoMstProtected(ni)); 1573 blocksize = vol->sb->s_blocksize; 1574 blocksize_bits = vol->sb->s_blocksize_bits; 1575 ofs = (s64)block << blocksize_bits; 1576 read_lock_irqsave(&ni->size_lock, flags); 1577 size = ni->initialized_size; 1578 i_size = i_size_read(VFS_I(ni)); 1579 read_unlock_irqrestore(&ni->size_lock, flags); 1580 /* 1581 * If the offset is outside the initialized size or the block straddles 1582 * the initialized size then pretend it is a hole unless the 1583 * initialized size equals the file size. 1584 */ 1585 if (unlikely(ofs >= size || (ofs + blocksize > size && size < i_size))) 1586 goto hole; 1587 cluster_size_shift = vol->cluster_size_bits; 1588 down_read(&ni->runlist.lock); 1589 lcn = ntfs_attr_vcn_to_lcn_nolock(ni, ofs >> cluster_size_shift, false); 1590 up_read(&ni->runlist.lock); 1591 if (unlikely(lcn < LCN_HOLE)) { 1592 /* 1593 * Step down to an integer to avoid gcc doing a long long 1594 * comparision in the switch when we know @lcn is between 1595 * LCN_HOLE and LCN_EIO (i.e. -1 to -5). 1596 * 1597 * Otherwise older gcc (at least on some architectures) will 1598 * try to use __cmpdi2() which is of course not available in 1599 * the kernel. 1600 */ 1601 switch ((int)lcn) { 1602 case LCN_ENOENT: 1603 /* 1604 * If the offset is out of bounds then pretend it is a 1605 * hole. 1606 */ 1607 goto hole; 1608 case LCN_ENOMEM: 1609 ntfs_error(vol->sb, "Not enough memory to complete " 1610 "mapping for inode 0x%lx. " 1611 "Returning 0.", ni->mft_no); 1612 break; 1613 default: 1614 ntfs_error(vol->sb, "Failed to complete mapping for " 1615 "inode 0x%lx. Run chkdsk. " 1616 "Returning 0.", ni->mft_no); 1617 break; 1618 } 1619 return 0; 1620 } 1621 if (lcn < 0) { 1622 /* It is a hole. */ 1623 hole: 1624 ntfs_debug("Done (returning hole)."); 1625 return 0; 1626 } 1627 /* 1628 * The block is really allocated and fullfils all our criteria. 1629 * Convert the cluster to units of block size and return the result. 1630 */ 1631 delta = ofs & vol->cluster_size_mask; 1632 if (unlikely(sizeof(block) < sizeof(lcn))) { 1633 block = lcn = ((lcn << cluster_size_shift) + delta) >> 1634 blocksize_bits; 1635 /* If the block number was truncated return 0. */ 1636 if (unlikely(block != lcn)) { 1637 ntfs_error(vol->sb, "Physical block 0x%llx is too " 1638 "large to be returned, returning 0.", 1639 (long long)lcn); 1640 return 0; 1641 } 1642 } else 1643 block = ((lcn << cluster_size_shift) + delta) >> 1644 blocksize_bits; 1645 ntfs_debug("Done (returning block 0x%llx).", (unsigned long long)lcn); 1646 return block; 1647 } 1648 1649 /** 1650 * ntfs_normal_aops - address space operations for normal inodes and attributes 1651 * 1652 * Note these are not used for compressed or mst protected inodes and 1653 * attributes. 1654 */ 1655 const struct address_space_operations ntfs_normal_aops = { 1656 .readpage = ntfs_readpage, 1657 #ifdef NTFS_RW 1658 .writepage = ntfs_writepage, 1659 .set_page_dirty = __set_page_dirty_buffers, 1660 #endif /* NTFS_RW */ 1661 .bmap = ntfs_bmap, 1662 .migratepage = buffer_migrate_page, 1663 .is_partially_uptodate = block_is_partially_uptodate, 1664 .error_remove_page = generic_error_remove_page, 1665 }; 1666 1667 /** 1668 * ntfs_compressed_aops - address space operations for compressed inodes 1669 */ 1670 const struct address_space_operations ntfs_compressed_aops = { 1671 .readpage = ntfs_readpage, 1672 #ifdef NTFS_RW 1673 .writepage = ntfs_writepage, 1674 .set_page_dirty = __set_page_dirty_buffers, 1675 #endif /* NTFS_RW */ 1676 .migratepage = buffer_migrate_page, 1677 .is_partially_uptodate = block_is_partially_uptodate, 1678 .error_remove_page = generic_error_remove_page, 1679 }; 1680 1681 /** 1682 * ntfs_mst_aops - general address space operations for mst protecteed inodes 1683 * and attributes 1684 */ 1685 const struct address_space_operations ntfs_mst_aops = { 1686 .readpage = ntfs_readpage, /* Fill page with data. */ 1687 #ifdef NTFS_RW 1688 .writepage = ntfs_writepage, /* Write dirty page to disk. */ 1689 .set_page_dirty = __set_page_dirty_nobuffers, /* Set the page dirty 1690 without touching the buffers 1691 belonging to the page. */ 1692 #endif /* NTFS_RW */ 1693 .migratepage = buffer_migrate_page, 1694 .is_partially_uptodate = block_is_partially_uptodate, 1695 .error_remove_page = generic_error_remove_page, 1696 }; 1697 1698 #ifdef NTFS_RW 1699 1700 /** 1701 * mark_ntfs_record_dirty - mark an ntfs record dirty 1702 * @page: page containing the ntfs record to mark dirty 1703 * @ofs: byte offset within @page at which the ntfs record begins 1704 * 1705 * Set the buffers and the page in which the ntfs record is located dirty. 1706 * 1707 * The latter also marks the vfs inode the ntfs record belongs to dirty 1708 * (I_DIRTY_PAGES only). 1709 * 1710 * If the page does not have buffers, we create them and set them uptodate. 1711 * The page may not be locked which is why we need to handle the buffers under 1712 * the mapping->private_lock. Once the buffers are marked dirty we no longer 1713 * need the lock since try_to_free_buffers() does not free dirty buffers. 1714 */ 1715 void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) { 1716 struct address_space *mapping = page->mapping; 1717 ntfs_inode *ni = NTFS_I(mapping->host); 1718 struct buffer_head *bh, *head, *buffers_to_free = NULL; 1719 unsigned int end, bh_size, bh_ofs; 1720 1721 BUG_ON(!PageUptodate(page)); 1722 end = ofs + ni->itype.index.block_size; 1723 bh_size = VFS_I(ni)->i_sb->s_blocksize; 1724 spin_lock(&mapping->private_lock); 1725 if (unlikely(!page_has_buffers(page))) { 1726 spin_unlock(&mapping->private_lock); 1727 bh = head = alloc_page_buffers(page, bh_size, true); 1728 spin_lock(&mapping->private_lock); 1729 if (likely(!page_has_buffers(page))) { 1730 struct buffer_head *tail; 1731 1732 do { 1733 set_buffer_uptodate(bh); 1734 tail = bh; 1735 bh = bh->b_this_page; 1736 } while (bh); 1737 tail->b_this_page = head; 1738 attach_page_buffers(page, head); 1739 } else 1740 buffers_to_free = bh; 1741 } 1742 bh = head = page_buffers(page); 1743 BUG_ON(!bh); 1744 do { 1745 bh_ofs = bh_offset(bh); 1746 if (bh_ofs + bh_size <= ofs) 1747 continue; 1748 if (unlikely(bh_ofs >= end)) 1749 break; 1750 set_buffer_dirty(bh); 1751 } while ((bh = bh->b_this_page) != head); 1752 spin_unlock(&mapping->private_lock); 1753 __set_page_dirty_nobuffers(page); 1754 if (unlikely(buffers_to_free)) { 1755 do { 1756 bh = buffers_to_free->b_this_page; 1757 free_buffer_head(buffers_to_free); 1758 buffers_to_free = bh; 1759 } while (buffers_to_free); 1760 } 1761 } 1762 1763 #endif /* NTFS_RW */ 1764