1 /* 2 * Copyright (C) 2008 Red Hat, Inc., Eric Paris <eparis@redhat.com> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; see the file COPYING. If not, write to 16 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 17 */ 18 19 /* 20 * fsnotify inode mark locking/lifetime/and refcnting 21 * 22 * REFCNT: 23 * The group->recnt and mark->refcnt tell how many "things" in the kernel 24 * currently are referencing the objects. Both kind of objects typically will 25 * live inside the kernel with a refcnt of 2, one for its creation and one for 26 * the reference a group and a mark hold to each other. 27 * If you are holding the appropriate locks, you can take a reference and the 28 * object itself is guaranteed to survive until the reference is dropped. 29 * 30 * LOCKING: 31 * There are 3 locks involved with fsnotify inode marks and they MUST be taken 32 * in order as follows: 33 * 34 * group->mark_mutex 35 * mark->lock 36 * mark->connector->lock 37 * 38 * group->mark_mutex protects the marks_list anchored inside a given group and 39 * each mark is hooked via the g_list. It also protects the groups private 40 * data (i.e group limits). 41 42 * mark->lock protects the marks attributes like its masks and flags. 43 * Furthermore it protects the access to a reference of the group that the mark 44 * is assigned to as well as the access to a reference of the inode/vfsmount 45 * that is being watched by the mark. 46 * 47 * mark->connector->lock protects the list of marks anchored inside an 48 * inode / vfsmount and each mark is hooked via the i_list. 49 * 50 * A list of notification marks relating to inode / mnt is contained in 51 * fsnotify_mark_connector. That structure is alive as long as there are any 52 * marks in the list and is also protected by fsnotify_mark_srcu. A mark gets 53 * detached from fsnotify_mark_connector when last reference to the mark is 54 * dropped. Thus having mark reference is enough to protect mark->connector 55 * pointer and to make sure fsnotify_mark_connector cannot disappear. Also 56 * because we remove mark from g_list before dropping mark reference associated 57 * with that, any mark found through g_list is guaranteed to have 58 * mark->connector set until we drop group->mark_mutex. 59 * 60 * LIFETIME: 61 * Inode marks survive between when they are added to an inode and when their 62 * refcnt==0. Marks are also protected by fsnotify_mark_srcu. 63 * 64 * The inode mark can be cleared for a number of different reasons including: 65 * - The inode is unlinked for the last time. (fsnotify_inode_remove) 66 * - The inode is being evicted from cache. (fsnotify_inode_delete) 67 * - The fs the inode is on is unmounted. (fsnotify_inode_delete/fsnotify_unmount_inodes) 68 * - Something explicitly requests that it be removed. (fsnotify_destroy_mark) 69 * - The fsnotify_group associated with the mark is going away and all such marks 70 * need to be cleaned up. (fsnotify_clear_marks_by_group) 71 * 72 * This has the very interesting property of being able to run concurrently with 73 * any (or all) other directions. 74 */ 75 76 #include <linux/fs.h> 77 #include <linux/init.h> 78 #include <linux/kernel.h> 79 #include <linux/kthread.h> 80 #include <linux/module.h> 81 #include <linux/mutex.h> 82 #include <linux/slab.h> 83 #include <linux/spinlock.h> 84 #include <linux/srcu.h> 85 86 #include <linux/atomic.h> 87 88 #include <linux/fsnotify_backend.h> 89 #include "fsnotify.h" 90 91 #define FSNOTIFY_REAPER_DELAY (1) /* 1 jiffy */ 92 93 struct srcu_struct fsnotify_mark_srcu; 94 struct kmem_cache *fsnotify_mark_connector_cachep; 95 96 static DEFINE_SPINLOCK(destroy_lock); 97 static LIST_HEAD(destroy_list); 98 static struct fsnotify_mark_connector *connector_destroy_list; 99 100 static void fsnotify_mark_destroy_workfn(struct work_struct *work); 101 static DECLARE_DELAYED_WORK(reaper_work, fsnotify_mark_destroy_workfn); 102 103 static void fsnotify_connector_destroy_workfn(struct work_struct *work); 104 static DECLARE_WORK(connector_reaper_work, fsnotify_connector_destroy_workfn); 105 106 void fsnotify_get_mark(struct fsnotify_mark *mark) 107 { 108 WARN_ON_ONCE(!refcount_read(&mark->refcnt)); 109 refcount_inc(&mark->refcnt); 110 } 111 112 static __u32 *fsnotify_conn_mask_p(struct fsnotify_mark_connector *conn) 113 { 114 if (conn->type == FSNOTIFY_OBJ_TYPE_INODE) 115 return &fsnotify_conn_inode(conn)->i_fsnotify_mask; 116 else if (conn->type == FSNOTIFY_OBJ_TYPE_VFSMOUNT) 117 return &fsnotify_conn_mount(conn)->mnt_fsnotify_mask; 118 else if (conn->type == FSNOTIFY_OBJ_TYPE_SB) 119 return &fsnotify_conn_sb(conn)->s_fsnotify_mask; 120 return NULL; 121 } 122 123 __u32 fsnotify_conn_mask(struct fsnotify_mark_connector *conn) 124 { 125 if (WARN_ON(!fsnotify_valid_obj_type(conn->type))) 126 return 0; 127 128 return *fsnotify_conn_mask_p(conn); 129 } 130 131 static void __fsnotify_recalc_mask(struct fsnotify_mark_connector *conn) 132 { 133 u32 new_mask = 0; 134 struct fsnotify_mark *mark; 135 136 assert_spin_locked(&conn->lock); 137 /* We can get detached connector here when inode is getting unlinked. */ 138 if (!fsnotify_valid_obj_type(conn->type)) 139 return; 140 hlist_for_each_entry(mark, &conn->list, obj_list) { 141 if (mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) 142 new_mask |= mark->mask; 143 } 144 *fsnotify_conn_mask_p(conn) = new_mask; 145 } 146 147 /* 148 * Calculate mask of events for a list of marks. The caller must make sure 149 * connector and connector->obj cannot disappear under us. Callers achieve 150 * this by holding a mark->lock or mark->group->mark_mutex for a mark on this 151 * list. 152 */ 153 void fsnotify_recalc_mask(struct fsnotify_mark_connector *conn) 154 { 155 if (!conn) 156 return; 157 158 spin_lock(&conn->lock); 159 __fsnotify_recalc_mask(conn); 160 spin_unlock(&conn->lock); 161 if (conn->type == FSNOTIFY_OBJ_TYPE_INODE) 162 __fsnotify_update_child_dentry_flags( 163 fsnotify_conn_inode(conn)); 164 } 165 166 /* Free all connectors queued for freeing once SRCU period ends */ 167 static void fsnotify_connector_destroy_workfn(struct work_struct *work) 168 { 169 struct fsnotify_mark_connector *conn, *free; 170 171 spin_lock(&destroy_lock); 172 conn = connector_destroy_list; 173 connector_destroy_list = NULL; 174 spin_unlock(&destroy_lock); 175 176 synchronize_srcu(&fsnotify_mark_srcu); 177 while (conn) { 178 free = conn; 179 conn = conn->destroy_next; 180 kmem_cache_free(fsnotify_mark_connector_cachep, free); 181 } 182 } 183 184 static void *fsnotify_detach_connector_from_object( 185 struct fsnotify_mark_connector *conn, 186 unsigned int *type) 187 { 188 struct inode *inode = NULL; 189 190 *type = conn->type; 191 if (conn->type == FSNOTIFY_OBJ_TYPE_DETACHED) 192 return NULL; 193 194 if (conn->type == FSNOTIFY_OBJ_TYPE_INODE) { 195 inode = fsnotify_conn_inode(conn); 196 inode->i_fsnotify_mask = 0; 197 atomic_long_inc(&inode->i_sb->s_fsnotify_inode_refs); 198 } else if (conn->type == FSNOTIFY_OBJ_TYPE_VFSMOUNT) { 199 fsnotify_conn_mount(conn)->mnt_fsnotify_mask = 0; 200 } else if (conn->type == FSNOTIFY_OBJ_TYPE_SB) { 201 fsnotify_conn_sb(conn)->s_fsnotify_mask = 0; 202 } 203 204 rcu_assign_pointer(*(conn->obj), NULL); 205 conn->obj = NULL; 206 conn->type = FSNOTIFY_OBJ_TYPE_DETACHED; 207 208 return inode; 209 } 210 211 static void fsnotify_final_mark_destroy(struct fsnotify_mark *mark) 212 { 213 struct fsnotify_group *group = mark->group; 214 215 if (WARN_ON_ONCE(!group)) 216 return; 217 group->ops->free_mark(mark); 218 fsnotify_put_group(group); 219 } 220 221 /* Drop object reference originally held by a connector */ 222 static void fsnotify_drop_object(unsigned int type, void *objp) 223 { 224 struct inode *inode; 225 struct super_block *sb; 226 227 if (!objp) 228 return; 229 /* Currently only inode references are passed to be dropped */ 230 if (WARN_ON_ONCE(type != FSNOTIFY_OBJ_TYPE_INODE)) 231 return; 232 inode = objp; 233 sb = inode->i_sb; 234 iput(inode); 235 if (atomic_long_dec_and_test(&sb->s_fsnotify_inode_refs)) 236 wake_up_var(&sb->s_fsnotify_inode_refs); 237 } 238 239 void fsnotify_put_mark(struct fsnotify_mark *mark) 240 { 241 struct fsnotify_mark_connector *conn; 242 void *objp = NULL; 243 unsigned int type = FSNOTIFY_OBJ_TYPE_DETACHED; 244 bool free_conn = false; 245 246 /* Catch marks that were actually never attached to object */ 247 if (!mark->connector) { 248 if (refcount_dec_and_test(&mark->refcnt)) 249 fsnotify_final_mark_destroy(mark); 250 return; 251 } 252 253 /* 254 * We have to be careful so that traversals of obj_list under lock can 255 * safely grab mark reference. 256 */ 257 if (!refcount_dec_and_lock(&mark->refcnt, &mark->connector->lock)) 258 return; 259 260 conn = mark->connector; 261 hlist_del_init_rcu(&mark->obj_list); 262 if (hlist_empty(&conn->list)) { 263 objp = fsnotify_detach_connector_from_object(conn, &type); 264 free_conn = true; 265 } else { 266 __fsnotify_recalc_mask(conn); 267 } 268 mark->connector = NULL; 269 spin_unlock(&conn->lock); 270 271 fsnotify_drop_object(type, objp); 272 273 if (free_conn) { 274 spin_lock(&destroy_lock); 275 conn->destroy_next = connector_destroy_list; 276 connector_destroy_list = conn; 277 spin_unlock(&destroy_lock); 278 queue_work(system_unbound_wq, &connector_reaper_work); 279 } 280 /* 281 * Note that we didn't update flags telling whether inode cares about 282 * what's happening with children. We update these flags from 283 * __fsnotify_parent() lazily when next event happens on one of our 284 * children. 285 */ 286 spin_lock(&destroy_lock); 287 list_add(&mark->g_list, &destroy_list); 288 spin_unlock(&destroy_lock); 289 queue_delayed_work(system_unbound_wq, &reaper_work, 290 FSNOTIFY_REAPER_DELAY); 291 } 292 293 /* 294 * Get mark reference when we found the mark via lockless traversal of object 295 * list. Mark can be already removed from the list by now and on its way to be 296 * destroyed once SRCU period ends. 297 * 298 * Also pin the group so it doesn't disappear under us. 299 */ 300 static bool fsnotify_get_mark_safe(struct fsnotify_mark *mark) 301 { 302 if (!mark) 303 return true; 304 305 if (refcount_inc_not_zero(&mark->refcnt)) { 306 spin_lock(&mark->lock); 307 if (mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) { 308 /* mark is attached, group is still alive then */ 309 atomic_inc(&mark->group->user_waits); 310 spin_unlock(&mark->lock); 311 return true; 312 } 313 spin_unlock(&mark->lock); 314 fsnotify_put_mark(mark); 315 } 316 return false; 317 } 318 319 /* 320 * Puts marks and wakes up group destruction if necessary. 321 * 322 * Pairs with fsnotify_get_mark_safe() 323 */ 324 static void fsnotify_put_mark_wake(struct fsnotify_mark *mark) 325 { 326 if (mark) { 327 struct fsnotify_group *group = mark->group; 328 329 fsnotify_put_mark(mark); 330 /* 331 * We abuse notification_waitq on group shutdown for waiting for 332 * all marks pinned when waiting for userspace. 333 */ 334 if (atomic_dec_and_test(&group->user_waits) && group->shutdown) 335 wake_up(&group->notification_waitq); 336 } 337 } 338 339 bool fsnotify_prepare_user_wait(struct fsnotify_iter_info *iter_info) 340 { 341 int type; 342 343 fsnotify_foreach_obj_type(type) { 344 /* This can fail if mark is being removed */ 345 if (!fsnotify_get_mark_safe(iter_info->marks[type])) 346 goto fail; 347 } 348 349 /* 350 * Now that both marks are pinned by refcount in the inode / vfsmount 351 * lists, we can drop SRCU lock, and safely resume the list iteration 352 * once userspace returns. 353 */ 354 srcu_read_unlock(&fsnotify_mark_srcu, iter_info->srcu_idx); 355 356 return true; 357 358 fail: 359 for (type--; type >= 0; type--) 360 fsnotify_put_mark_wake(iter_info->marks[type]); 361 return false; 362 } 363 364 void fsnotify_finish_user_wait(struct fsnotify_iter_info *iter_info) 365 { 366 int type; 367 368 iter_info->srcu_idx = srcu_read_lock(&fsnotify_mark_srcu); 369 fsnotify_foreach_obj_type(type) 370 fsnotify_put_mark_wake(iter_info->marks[type]); 371 } 372 373 /* 374 * Mark mark as detached, remove it from group list. Mark still stays in object 375 * list until its last reference is dropped. Note that we rely on mark being 376 * removed from group list before corresponding reference to it is dropped. In 377 * particular we rely on mark->connector being valid while we hold 378 * group->mark_mutex if we found the mark through g_list. 379 * 380 * Must be called with group->mark_mutex held. The caller must either hold 381 * reference to the mark or be protected by fsnotify_mark_srcu. 382 */ 383 void fsnotify_detach_mark(struct fsnotify_mark *mark) 384 { 385 struct fsnotify_group *group = mark->group; 386 387 WARN_ON_ONCE(!mutex_is_locked(&group->mark_mutex)); 388 WARN_ON_ONCE(!srcu_read_lock_held(&fsnotify_mark_srcu) && 389 refcount_read(&mark->refcnt) < 1 + 390 !!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED)); 391 392 spin_lock(&mark->lock); 393 /* something else already called this function on this mark */ 394 if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) { 395 spin_unlock(&mark->lock); 396 return; 397 } 398 mark->flags &= ~FSNOTIFY_MARK_FLAG_ATTACHED; 399 list_del_init(&mark->g_list); 400 spin_unlock(&mark->lock); 401 402 atomic_dec(&group->num_marks); 403 404 /* Drop mark reference acquired in fsnotify_add_mark_locked() */ 405 fsnotify_put_mark(mark); 406 } 407 408 /* 409 * Free fsnotify mark. The mark is actually only marked as being freed. The 410 * freeing is actually happening only once last reference to the mark is 411 * dropped from a workqueue which first waits for srcu period end. 412 * 413 * Caller must have a reference to the mark or be protected by 414 * fsnotify_mark_srcu. 415 */ 416 void fsnotify_free_mark(struct fsnotify_mark *mark) 417 { 418 struct fsnotify_group *group = mark->group; 419 420 spin_lock(&mark->lock); 421 /* something else already called this function on this mark */ 422 if (!(mark->flags & FSNOTIFY_MARK_FLAG_ALIVE)) { 423 spin_unlock(&mark->lock); 424 return; 425 } 426 mark->flags &= ~FSNOTIFY_MARK_FLAG_ALIVE; 427 spin_unlock(&mark->lock); 428 429 /* 430 * Some groups like to know that marks are being freed. This is a 431 * callback to the group function to let it know that this mark 432 * is being freed. 433 */ 434 if (group->ops->freeing_mark) 435 group->ops->freeing_mark(mark, group); 436 } 437 438 void fsnotify_destroy_mark(struct fsnotify_mark *mark, 439 struct fsnotify_group *group) 440 { 441 mutex_lock_nested(&group->mark_mutex, SINGLE_DEPTH_NESTING); 442 fsnotify_detach_mark(mark); 443 mutex_unlock(&group->mark_mutex); 444 fsnotify_free_mark(mark); 445 } 446 447 /* 448 * Sorting function for lists of fsnotify marks. 449 * 450 * Fanotify supports different notification classes (reflected as priority of 451 * notification group). Events shall be passed to notification groups in 452 * decreasing priority order. To achieve this marks in notification lists for 453 * inodes and vfsmounts are sorted so that priorities of corresponding groups 454 * are descending. 455 * 456 * Furthermore correct handling of the ignore mask requires processing inode 457 * and vfsmount marks of each group together. Using the group address as 458 * further sort criterion provides a unique sorting order and thus we can 459 * merge inode and vfsmount lists of marks in linear time and find groups 460 * present in both lists. 461 * 462 * A return value of 1 signifies that b has priority over a. 463 * A return value of 0 signifies that the two marks have to be handled together. 464 * A return value of -1 signifies that a has priority over b. 465 */ 466 int fsnotify_compare_groups(struct fsnotify_group *a, struct fsnotify_group *b) 467 { 468 if (a == b) 469 return 0; 470 if (!a) 471 return 1; 472 if (!b) 473 return -1; 474 if (a->priority < b->priority) 475 return 1; 476 if (a->priority > b->priority) 477 return -1; 478 if (a < b) 479 return 1; 480 return -1; 481 } 482 483 static int fsnotify_attach_connector_to_object(fsnotify_connp_t *connp, 484 unsigned int type) 485 { 486 struct inode *inode = NULL; 487 struct fsnotify_mark_connector *conn; 488 489 conn = kmem_cache_alloc(fsnotify_mark_connector_cachep, GFP_KERNEL); 490 if (!conn) 491 return -ENOMEM; 492 spin_lock_init(&conn->lock); 493 INIT_HLIST_HEAD(&conn->list); 494 conn->type = type; 495 conn->obj = connp; 496 if (conn->type == FSNOTIFY_OBJ_TYPE_INODE) 497 inode = igrab(fsnotify_conn_inode(conn)); 498 /* 499 * cmpxchg() provides the barrier so that readers of *connp can see 500 * only initialized structure 501 */ 502 if (cmpxchg(connp, NULL, conn)) { 503 /* Someone else created list structure for us */ 504 if (inode) 505 iput(inode); 506 kmem_cache_free(fsnotify_mark_connector_cachep, conn); 507 } 508 509 return 0; 510 } 511 512 /* 513 * Get mark connector, make sure it is alive and return with its lock held. 514 * This is for users that get connector pointer from inode or mount. Users that 515 * hold reference to a mark on the list may directly lock connector->lock as 516 * they are sure list cannot go away under them. 517 */ 518 static struct fsnotify_mark_connector *fsnotify_grab_connector( 519 fsnotify_connp_t *connp) 520 { 521 struct fsnotify_mark_connector *conn; 522 int idx; 523 524 idx = srcu_read_lock(&fsnotify_mark_srcu); 525 conn = srcu_dereference(*connp, &fsnotify_mark_srcu); 526 if (!conn) 527 goto out; 528 spin_lock(&conn->lock); 529 if (conn->type == FSNOTIFY_OBJ_TYPE_DETACHED) { 530 spin_unlock(&conn->lock); 531 srcu_read_unlock(&fsnotify_mark_srcu, idx); 532 return NULL; 533 } 534 out: 535 srcu_read_unlock(&fsnotify_mark_srcu, idx); 536 return conn; 537 } 538 539 /* 540 * Add mark into proper place in given list of marks. These marks may be used 541 * for the fsnotify backend to determine which event types should be delivered 542 * to which group and for which inodes. These marks are ordered according to 543 * priority, highest number first, and then by the group's location in memory. 544 */ 545 static int fsnotify_add_mark_list(struct fsnotify_mark *mark, 546 fsnotify_connp_t *connp, unsigned int type, 547 int allow_dups) 548 { 549 struct fsnotify_mark *lmark, *last = NULL; 550 struct fsnotify_mark_connector *conn; 551 int cmp; 552 int err = 0; 553 554 if (WARN_ON(!fsnotify_valid_obj_type(type))) 555 return -EINVAL; 556 restart: 557 spin_lock(&mark->lock); 558 conn = fsnotify_grab_connector(connp); 559 if (!conn) { 560 spin_unlock(&mark->lock); 561 err = fsnotify_attach_connector_to_object(connp, type); 562 if (err) 563 return err; 564 goto restart; 565 } 566 567 /* is mark the first mark? */ 568 if (hlist_empty(&conn->list)) { 569 hlist_add_head_rcu(&mark->obj_list, &conn->list); 570 goto added; 571 } 572 573 /* should mark be in the middle of the current list? */ 574 hlist_for_each_entry(lmark, &conn->list, obj_list) { 575 last = lmark; 576 577 if ((lmark->group == mark->group) && 578 (lmark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) && 579 !allow_dups) { 580 err = -EEXIST; 581 goto out_err; 582 } 583 584 cmp = fsnotify_compare_groups(lmark->group, mark->group); 585 if (cmp >= 0) { 586 hlist_add_before_rcu(&mark->obj_list, &lmark->obj_list); 587 goto added; 588 } 589 } 590 591 BUG_ON(last == NULL); 592 /* mark should be the last entry. last is the current last entry */ 593 hlist_add_behind_rcu(&mark->obj_list, &last->obj_list); 594 added: 595 mark->connector = conn; 596 out_err: 597 spin_unlock(&conn->lock); 598 spin_unlock(&mark->lock); 599 return err; 600 } 601 602 /* 603 * Attach an initialized mark to a given group and fs object. 604 * These marks may be used for the fsnotify backend to determine which 605 * event types should be delivered to which group. 606 */ 607 int fsnotify_add_mark_locked(struct fsnotify_mark *mark, 608 fsnotify_connp_t *connp, unsigned int type, 609 int allow_dups) 610 { 611 struct fsnotify_group *group = mark->group; 612 int ret = 0; 613 614 BUG_ON(!mutex_is_locked(&group->mark_mutex)); 615 616 /* 617 * LOCKING ORDER!!!! 618 * group->mark_mutex 619 * mark->lock 620 * mark->connector->lock 621 */ 622 spin_lock(&mark->lock); 623 mark->flags |= FSNOTIFY_MARK_FLAG_ALIVE | FSNOTIFY_MARK_FLAG_ATTACHED; 624 625 list_add(&mark->g_list, &group->marks_list); 626 atomic_inc(&group->num_marks); 627 fsnotify_get_mark(mark); /* for g_list */ 628 spin_unlock(&mark->lock); 629 630 ret = fsnotify_add_mark_list(mark, connp, type, allow_dups); 631 if (ret) 632 goto err; 633 634 if (mark->mask) 635 fsnotify_recalc_mask(mark->connector); 636 637 return ret; 638 err: 639 spin_lock(&mark->lock); 640 mark->flags &= ~(FSNOTIFY_MARK_FLAG_ALIVE | 641 FSNOTIFY_MARK_FLAG_ATTACHED); 642 list_del_init(&mark->g_list); 643 spin_unlock(&mark->lock); 644 atomic_dec(&group->num_marks); 645 646 fsnotify_put_mark(mark); 647 return ret; 648 } 649 650 int fsnotify_add_mark(struct fsnotify_mark *mark, fsnotify_connp_t *connp, 651 unsigned int type, int allow_dups) 652 { 653 int ret; 654 struct fsnotify_group *group = mark->group; 655 656 mutex_lock(&group->mark_mutex); 657 ret = fsnotify_add_mark_locked(mark, connp, type, allow_dups); 658 mutex_unlock(&group->mark_mutex); 659 return ret; 660 } 661 662 /* 663 * Given a list of marks, find the mark associated with given group. If found 664 * take a reference to that mark and return it, else return NULL. 665 */ 666 struct fsnotify_mark *fsnotify_find_mark(fsnotify_connp_t *connp, 667 struct fsnotify_group *group) 668 { 669 struct fsnotify_mark_connector *conn; 670 struct fsnotify_mark *mark; 671 672 conn = fsnotify_grab_connector(connp); 673 if (!conn) 674 return NULL; 675 676 hlist_for_each_entry(mark, &conn->list, obj_list) { 677 if (mark->group == group && 678 (mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) { 679 fsnotify_get_mark(mark); 680 spin_unlock(&conn->lock); 681 return mark; 682 } 683 } 684 spin_unlock(&conn->lock); 685 return NULL; 686 } 687 688 /* Clear any marks in a group with given type mask */ 689 void fsnotify_clear_marks_by_group(struct fsnotify_group *group, 690 unsigned int type_mask) 691 { 692 struct fsnotify_mark *lmark, *mark; 693 LIST_HEAD(to_free); 694 struct list_head *head = &to_free; 695 696 /* Skip selection step if we want to clear all marks. */ 697 if (type_mask == FSNOTIFY_OBJ_ALL_TYPES_MASK) { 698 head = &group->marks_list; 699 goto clear; 700 } 701 /* 702 * We have to be really careful here. Anytime we drop mark_mutex, e.g. 703 * fsnotify_clear_marks_by_inode() can come and free marks. Even in our 704 * to_free list so we have to use mark_mutex even when accessing that 705 * list. And freeing mark requires us to drop mark_mutex. So we can 706 * reliably free only the first mark in the list. That's why we first 707 * move marks to free to to_free list in one go and then free marks in 708 * to_free list one by one. 709 */ 710 mutex_lock_nested(&group->mark_mutex, SINGLE_DEPTH_NESTING); 711 list_for_each_entry_safe(mark, lmark, &group->marks_list, g_list) { 712 if ((1U << mark->connector->type) & type_mask) 713 list_move(&mark->g_list, &to_free); 714 } 715 mutex_unlock(&group->mark_mutex); 716 717 clear: 718 while (1) { 719 mutex_lock_nested(&group->mark_mutex, SINGLE_DEPTH_NESTING); 720 if (list_empty(head)) { 721 mutex_unlock(&group->mark_mutex); 722 break; 723 } 724 mark = list_first_entry(head, struct fsnotify_mark, g_list); 725 fsnotify_get_mark(mark); 726 fsnotify_detach_mark(mark); 727 mutex_unlock(&group->mark_mutex); 728 fsnotify_free_mark(mark); 729 fsnotify_put_mark(mark); 730 } 731 } 732 733 /* Destroy all marks attached to an object via connector */ 734 void fsnotify_destroy_marks(fsnotify_connp_t *connp) 735 { 736 struct fsnotify_mark_connector *conn; 737 struct fsnotify_mark *mark, *old_mark = NULL; 738 void *objp; 739 unsigned int type; 740 741 conn = fsnotify_grab_connector(connp); 742 if (!conn) 743 return; 744 /* 745 * We have to be careful since we can race with e.g. 746 * fsnotify_clear_marks_by_group() and once we drop the conn->lock, the 747 * list can get modified. However we are holding mark reference and 748 * thus our mark cannot be removed from obj_list so we can continue 749 * iteration after regaining conn->lock. 750 */ 751 hlist_for_each_entry(mark, &conn->list, obj_list) { 752 fsnotify_get_mark(mark); 753 spin_unlock(&conn->lock); 754 if (old_mark) 755 fsnotify_put_mark(old_mark); 756 old_mark = mark; 757 fsnotify_destroy_mark(mark, mark->group); 758 spin_lock(&conn->lock); 759 } 760 /* 761 * Detach list from object now so that we don't pin inode until all 762 * mark references get dropped. It would lead to strange results such 763 * as delaying inode deletion or blocking unmount. 764 */ 765 objp = fsnotify_detach_connector_from_object(conn, &type); 766 spin_unlock(&conn->lock); 767 if (old_mark) 768 fsnotify_put_mark(old_mark); 769 fsnotify_drop_object(type, objp); 770 } 771 772 /* 773 * Nothing fancy, just initialize lists and locks and counters. 774 */ 775 void fsnotify_init_mark(struct fsnotify_mark *mark, 776 struct fsnotify_group *group) 777 { 778 memset(mark, 0, sizeof(*mark)); 779 spin_lock_init(&mark->lock); 780 refcount_set(&mark->refcnt, 1); 781 fsnotify_get_group(group); 782 mark->group = group; 783 } 784 785 /* 786 * Destroy all marks in destroy_list, waits for SRCU period to finish before 787 * actually freeing marks. 788 */ 789 static void fsnotify_mark_destroy_workfn(struct work_struct *work) 790 { 791 struct fsnotify_mark *mark, *next; 792 struct list_head private_destroy_list; 793 794 spin_lock(&destroy_lock); 795 /* exchange the list head */ 796 list_replace_init(&destroy_list, &private_destroy_list); 797 spin_unlock(&destroy_lock); 798 799 synchronize_srcu(&fsnotify_mark_srcu); 800 801 list_for_each_entry_safe(mark, next, &private_destroy_list, g_list) { 802 list_del_init(&mark->g_list); 803 fsnotify_final_mark_destroy(mark); 804 } 805 } 806 807 /* Wait for all marks queued for destruction to be actually destroyed */ 808 void fsnotify_wait_marks_destroyed(void) 809 { 810 flush_delayed_work(&reaper_work); 811 } 812