xref: /openbmc/linux/fs/nilfs2/the_nilfs.c (revision fd589a8f)
1 /*
2  * the_nilfs.c - the_nilfs shared structure.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  *
22  */
23 
24 #include <linux/buffer_head.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/crc32.h>
29 #include "nilfs.h"
30 #include "segment.h"
31 #include "alloc.h"
32 #include "cpfile.h"
33 #include "sufile.h"
34 #include "dat.h"
35 #include "segbuf.h"
36 
37 
38 static LIST_HEAD(nilfs_objects);
39 static DEFINE_SPINLOCK(nilfs_lock);
40 
41 void nilfs_set_last_segment(struct the_nilfs *nilfs,
42 			    sector_t start_blocknr, u64 seq, __u64 cno)
43 {
44 	spin_lock(&nilfs->ns_last_segment_lock);
45 	nilfs->ns_last_pseg = start_blocknr;
46 	nilfs->ns_last_seq = seq;
47 	nilfs->ns_last_cno = cno;
48 	spin_unlock(&nilfs->ns_last_segment_lock);
49 }
50 
51 /**
52  * alloc_nilfs - allocate the_nilfs structure
53  * @bdev: block device to which the_nilfs is related
54  *
55  * alloc_nilfs() allocates memory for the_nilfs and
56  * initializes its reference count and locks.
57  *
58  * Return Value: On success, pointer to the_nilfs is returned.
59  * On error, NULL is returned.
60  */
61 static struct the_nilfs *alloc_nilfs(struct block_device *bdev)
62 {
63 	struct the_nilfs *nilfs;
64 
65 	nilfs = kzalloc(sizeof(*nilfs), GFP_KERNEL);
66 	if (!nilfs)
67 		return NULL;
68 
69 	nilfs->ns_bdev = bdev;
70 	atomic_set(&nilfs->ns_count, 1);
71 	atomic_set(&nilfs->ns_ndirtyblks, 0);
72 	init_rwsem(&nilfs->ns_sem);
73 	init_rwsem(&nilfs->ns_super_sem);
74 	mutex_init(&nilfs->ns_mount_mutex);
75 	init_rwsem(&nilfs->ns_writer_sem);
76 	INIT_LIST_HEAD(&nilfs->ns_list);
77 	INIT_LIST_HEAD(&nilfs->ns_supers);
78 	spin_lock_init(&nilfs->ns_last_segment_lock);
79 	nilfs->ns_gc_inodes_h = NULL;
80 	init_rwsem(&nilfs->ns_segctor_sem);
81 
82 	return nilfs;
83 }
84 
85 /**
86  * find_or_create_nilfs - find or create nilfs object
87  * @bdev: block device to which the_nilfs is related
88  *
89  * find_nilfs() looks up an existent nilfs object created on the
90  * device and gets the reference count of the object.  If no nilfs object
91  * is found on the device, a new nilfs object is allocated.
92  *
93  * Return Value: On success, pointer to the nilfs object is returned.
94  * On error, NULL is returned.
95  */
96 struct the_nilfs *find_or_create_nilfs(struct block_device *bdev)
97 {
98 	struct the_nilfs *nilfs, *new = NULL;
99 
100  retry:
101 	spin_lock(&nilfs_lock);
102 	list_for_each_entry(nilfs, &nilfs_objects, ns_list) {
103 		if (nilfs->ns_bdev == bdev) {
104 			get_nilfs(nilfs);
105 			spin_unlock(&nilfs_lock);
106 			if (new)
107 				put_nilfs(new);
108 			return nilfs; /* existing object */
109 		}
110 	}
111 	if (new) {
112 		list_add_tail(&new->ns_list, &nilfs_objects);
113 		spin_unlock(&nilfs_lock);
114 		return new; /* new object */
115 	}
116 	spin_unlock(&nilfs_lock);
117 
118 	new = alloc_nilfs(bdev);
119 	if (new)
120 		goto retry;
121 	return NULL; /* insufficient memory */
122 }
123 
124 /**
125  * put_nilfs - release a reference to the_nilfs
126  * @nilfs: the_nilfs structure to be released
127  *
128  * put_nilfs() decrements a reference counter of the_nilfs.
129  * If the reference count reaches zero, the_nilfs is freed.
130  */
131 void put_nilfs(struct the_nilfs *nilfs)
132 {
133 	spin_lock(&nilfs_lock);
134 	if (!atomic_dec_and_test(&nilfs->ns_count)) {
135 		spin_unlock(&nilfs_lock);
136 		return;
137 	}
138 	list_del_init(&nilfs->ns_list);
139 	spin_unlock(&nilfs_lock);
140 
141 	/*
142 	 * Increment of ns_count never occurs below because the caller
143 	 * of get_nilfs() holds at least one reference to the_nilfs.
144 	 * Thus its exclusion control is not required here.
145 	 */
146 
147 	might_sleep();
148 	if (nilfs_loaded(nilfs)) {
149 		nilfs_mdt_clear(nilfs->ns_sufile);
150 		nilfs_mdt_destroy(nilfs->ns_sufile);
151 		nilfs_mdt_clear(nilfs->ns_cpfile);
152 		nilfs_mdt_destroy(nilfs->ns_cpfile);
153 		nilfs_mdt_clear(nilfs->ns_dat);
154 		nilfs_mdt_destroy(nilfs->ns_dat);
155 		/* XXX: how and when to clear nilfs->ns_gc_dat? */
156 		nilfs_mdt_destroy(nilfs->ns_gc_dat);
157 	}
158 	if (nilfs_init(nilfs)) {
159 		nilfs_destroy_gccache(nilfs);
160 		brelse(nilfs->ns_sbh[0]);
161 		brelse(nilfs->ns_sbh[1]);
162 	}
163 	kfree(nilfs);
164 }
165 
166 static int nilfs_load_super_root(struct the_nilfs *nilfs,
167 				 struct nilfs_sb_info *sbi, sector_t sr_block)
168 {
169 	static struct lock_class_key dat_lock_key;
170 	struct buffer_head *bh_sr;
171 	struct nilfs_super_root *raw_sr;
172 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
173 	unsigned dat_entry_size, segment_usage_size, checkpoint_size;
174 	unsigned inode_size;
175 	int err;
176 
177 	err = nilfs_read_super_root_block(sbi->s_super, sr_block, &bh_sr, 1);
178 	if (unlikely(err))
179 		return err;
180 
181 	down_read(&nilfs->ns_sem);
182 	dat_entry_size = le16_to_cpu(sbp[0]->s_dat_entry_size);
183 	checkpoint_size = le16_to_cpu(sbp[0]->s_checkpoint_size);
184 	segment_usage_size = le16_to_cpu(sbp[0]->s_segment_usage_size);
185 	up_read(&nilfs->ns_sem);
186 
187 	inode_size = nilfs->ns_inode_size;
188 
189 	err = -ENOMEM;
190 	nilfs->ns_dat = nilfs_mdt_new(nilfs, NULL, NILFS_DAT_INO);
191 	if (unlikely(!nilfs->ns_dat))
192 		goto failed;
193 
194 	nilfs->ns_gc_dat = nilfs_mdt_new(nilfs, NULL, NILFS_DAT_INO);
195 	if (unlikely(!nilfs->ns_gc_dat))
196 		goto failed_dat;
197 
198 	nilfs->ns_cpfile = nilfs_mdt_new(nilfs, NULL, NILFS_CPFILE_INO);
199 	if (unlikely(!nilfs->ns_cpfile))
200 		goto failed_gc_dat;
201 
202 	nilfs->ns_sufile = nilfs_mdt_new(nilfs, NULL, NILFS_SUFILE_INO);
203 	if (unlikely(!nilfs->ns_sufile))
204 		goto failed_cpfile;
205 
206 	err = nilfs_palloc_init_blockgroup(nilfs->ns_dat, dat_entry_size);
207 	if (unlikely(err))
208 		goto failed_sufile;
209 
210 	err = nilfs_palloc_init_blockgroup(nilfs->ns_gc_dat, dat_entry_size);
211 	if (unlikely(err))
212 		goto failed_sufile;
213 
214 	lockdep_set_class(&NILFS_MDT(nilfs->ns_dat)->mi_sem, &dat_lock_key);
215 	lockdep_set_class(&NILFS_MDT(nilfs->ns_gc_dat)->mi_sem, &dat_lock_key);
216 
217 	nilfs_mdt_set_shadow(nilfs->ns_dat, nilfs->ns_gc_dat);
218 	nilfs_mdt_set_entry_size(nilfs->ns_cpfile, checkpoint_size,
219 				 sizeof(struct nilfs_cpfile_header));
220 	nilfs_mdt_set_entry_size(nilfs->ns_sufile, segment_usage_size,
221 				 sizeof(struct nilfs_sufile_header));
222 
223 	err = nilfs_mdt_read_inode_direct(
224 		nilfs->ns_dat, bh_sr, NILFS_SR_DAT_OFFSET(inode_size));
225 	if (unlikely(err))
226 		goto failed_sufile;
227 
228 	err = nilfs_mdt_read_inode_direct(
229 		nilfs->ns_cpfile, bh_sr, NILFS_SR_CPFILE_OFFSET(inode_size));
230 	if (unlikely(err))
231 		goto failed_sufile;
232 
233 	err = nilfs_mdt_read_inode_direct(
234 		nilfs->ns_sufile, bh_sr, NILFS_SR_SUFILE_OFFSET(inode_size));
235 	if (unlikely(err))
236 		goto failed_sufile;
237 
238 	raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
239 	nilfs->ns_nongc_ctime = le64_to_cpu(raw_sr->sr_nongc_ctime);
240 
241  failed:
242 	brelse(bh_sr);
243 	return err;
244 
245  failed_sufile:
246 	nilfs_mdt_destroy(nilfs->ns_sufile);
247 
248  failed_cpfile:
249 	nilfs_mdt_destroy(nilfs->ns_cpfile);
250 
251  failed_gc_dat:
252 	nilfs_mdt_destroy(nilfs->ns_gc_dat);
253 
254  failed_dat:
255 	nilfs_mdt_destroy(nilfs->ns_dat);
256 	goto failed;
257 }
258 
259 static void nilfs_init_recovery_info(struct nilfs_recovery_info *ri)
260 {
261 	memset(ri, 0, sizeof(*ri));
262 	INIT_LIST_HEAD(&ri->ri_used_segments);
263 }
264 
265 static void nilfs_clear_recovery_info(struct nilfs_recovery_info *ri)
266 {
267 	nilfs_dispose_segment_list(&ri->ri_used_segments);
268 }
269 
270 /**
271  * load_nilfs - load and recover the nilfs
272  * @nilfs: the_nilfs structure to be released
273  * @sbi: nilfs_sb_info used to recover past segment
274  *
275  * load_nilfs() searches and load the latest super root,
276  * attaches the last segment, and does recovery if needed.
277  * The caller must call this exclusively for simultaneous mounts.
278  */
279 int load_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi)
280 {
281 	struct nilfs_recovery_info ri;
282 	unsigned int s_flags = sbi->s_super->s_flags;
283 	int really_read_only = bdev_read_only(nilfs->ns_bdev);
284 	unsigned valid_fs;
285 	int err = 0;
286 
287 	nilfs_init_recovery_info(&ri);
288 
289 	down_write(&nilfs->ns_sem);
290 	valid_fs = (nilfs->ns_mount_state & NILFS_VALID_FS);
291 	up_write(&nilfs->ns_sem);
292 
293 	if (!valid_fs && (s_flags & MS_RDONLY)) {
294 		printk(KERN_INFO "NILFS: INFO: recovery "
295 		       "required for readonly filesystem.\n");
296 		if (really_read_only) {
297 			printk(KERN_ERR "NILFS: write access "
298 			       "unavailable, cannot proceed.\n");
299 			err = -EROFS;
300 			goto failed;
301 		}
302 		printk(KERN_INFO "NILFS: write access will "
303 		       "be enabled during recovery.\n");
304 		sbi->s_super->s_flags &= ~MS_RDONLY;
305 	}
306 
307 	err = nilfs_search_super_root(nilfs, sbi, &ri);
308 	if (unlikely(err)) {
309 		printk(KERN_ERR "NILFS: error searching super root.\n");
310 		goto failed;
311 	}
312 
313 	err = nilfs_load_super_root(nilfs, sbi, ri.ri_super_root);
314 	if (unlikely(err)) {
315 		printk(KERN_ERR "NILFS: error loading super root.\n");
316 		goto failed;
317 	}
318 
319 	if (!valid_fs) {
320 		err = nilfs_recover_logical_segments(nilfs, sbi, &ri);
321 		if (unlikely(err)) {
322 			nilfs_mdt_destroy(nilfs->ns_cpfile);
323 			nilfs_mdt_destroy(nilfs->ns_sufile);
324 			nilfs_mdt_destroy(nilfs->ns_dat);
325 			goto failed;
326 		}
327 		if (ri.ri_need_recovery == NILFS_RECOVERY_SR_UPDATED)
328 			sbi->s_super->s_dirt = 1;
329 	}
330 
331 	set_nilfs_loaded(nilfs);
332 
333  failed:
334 	nilfs_clear_recovery_info(&ri);
335 	sbi->s_super->s_flags = s_flags;
336 	return err;
337 }
338 
339 static unsigned long long nilfs_max_size(unsigned int blkbits)
340 {
341 	unsigned int max_bits;
342 	unsigned long long res = MAX_LFS_FILESIZE; /* page cache limit */
343 
344 	max_bits = blkbits + NILFS_BMAP_KEY_BIT; /* bmap size limit */
345 	if (max_bits < 64)
346 		res = min_t(unsigned long long, res, (1ULL << max_bits) - 1);
347 	return res;
348 }
349 
350 static int nilfs_store_disk_layout(struct the_nilfs *nilfs,
351 				   struct nilfs_super_block *sbp)
352 {
353 	if (le32_to_cpu(sbp->s_rev_level) != NILFS_CURRENT_REV) {
354 		printk(KERN_ERR "NILFS: revision mismatch "
355 		       "(superblock rev.=%d.%d, current rev.=%d.%d). "
356 		       "Please check the version of mkfs.nilfs.\n",
357 		       le32_to_cpu(sbp->s_rev_level),
358 		       le16_to_cpu(sbp->s_minor_rev_level),
359 		       NILFS_CURRENT_REV, NILFS_MINOR_REV);
360 		return -EINVAL;
361 	}
362 	nilfs->ns_sbsize = le16_to_cpu(sbp->s_bytes);
363 	if (nilfs->ns_sbsize > BLOCK_SIZE)
364 		return -EINVAL;
365 
366 	nilfs->ns_inode_size = le16_to_cpu(sbp->s_inode_size);
367 	nilfs->ns_first_ino = le32_to_cpu(sbp->s_first_ino);
368 
369 	nilfs->ns_blocks_per_segment = le32_to_cpu(sbp->s_blocks_per_segment);
370 	if (nilfs->ns_blocks_per_segment < NILFS_SEG_MIN_BLOCKS) {
371 		printk(KERN_ERR "NILFS: too short segment. \n");
372 		return -EINVAL;
373 	}
374 
375 	nilfs->ns_first_data_block = le64_to_cpu(sbp->s_first_data_block);
376 	nilfs->ns_nsegments = le64_to_cpu(sbp->s_nsegments);
377 	nilfs->ns_r_segments_percentage =
378 		le32_to_cpu(sbp->s_r_segments_percentage);
379 	nilfs->ns_nrsvsegs =
380 		max_t(unsigned long, NILFS_MIN_NRSVSEGS,
381 		      DIV_ROUND_UP(nilfs->ns_nsegments *
382 				   nilfs->ns_r_segments_percentage, 100));
383 	nilfs->ns_crc_seed = le32_to_cpu(sbp->s_crc_seed);
384 	return 0;
385 }
386 
387 static int nilfs_valid_sb(struct nilfs_super_block *sbp)
388 {
389 	static unsigned char sum[4];
390 	const int sumoff = offsetof(struct nilfs_super_block, s_sum);
391 	size_t bytes;
392 	u32 crc;
393 
394 	if (!sbp || le16_to_cpu(sbp->s_magic) != NILFS_SUPER_MAGIC)
395 		return 0;
396 	bytes = le16_to_cpu(sbp->s_bytes);
397 	if (bytes > BLOCK_SIZE)
398 		return 0;
399 	crc = crc32_le(le32_to_cpu(sbp->s_crc_seed), (unsigned char *)sbp,
400 		       sumoff);
401 	crc = crc32_le(crc, sum, 4);
402 	crc = crc32_le(crc, (unsigned char *)sbp + sumoff + 4,
403 		       bytes - sumoff - 4);
404 	return crc == le32_to_cpu(sbp->s_sum);
405 }
406 
407 static int nilfs_sb2_bad_offset(struct nilfs_super_block *sbp, u64 offset)
408 {
409 	return offset < ((le64_to_cpu(sbp->s_nsegments) *
410 			  le32_to_cpu(sbp->s_blocks_per_segment)) <<
411 			 (le32_to_cpu(sbp->s_log_block_size) + 10));
412 }
413 
414 static void nilfs_release_super_block(struct the_nilfs *nilfs)
415 {
416 	int i;
417 
418 	for (i = 0; i < 2; i++) {
419 		if (nilfs->ns_sbp[i]) {
420 			brelse(nilfs->ns_sbh[i]);
421 			nilfs->ns_sbh[i] = NULL;
422 			nilfs->ns_sbp[i] = NULL;
423 		}
424 	}
425 }
426 
427 void nilfs_fall_back_super_block(struct the_nilfs *nilfs)
428 {
429 	brelse(nilfs->ns_sbh[0]);
430 	nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
431 	nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
432 	nilfs->ns_sbh[1] = NULL;
433 	nilfs->ns_sbp[1] = NULL;
434 }
435 
436 void nilfs_swap_super_block(struct the_nilfs *nilfs)
437 {
438 	struct buffer_head *tsbh = nilfs->ns_sbh[0];
439 	struct nilfs_super_block *tsbp = nilfs->ns_sbp[0];
440 
441 	nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
442 	nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
443 	nilfs->ns_sbh[1] = tsbh;
444 	nilfs->ns_sbp[1] = tsbp;
445 }
446 
447 static int nilfs_load_super_block(struct the_nilfs *nilfs,
448 				  struct super_block *sb, int blocksize,
449 				  struct nilfs_super_block **sbpp)
450 {
451 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
452 	struct buffer_head **sbh = nilfs->ns_sbh;
453 	u64 sb2off = NILFS_SB2_OFFSET_BYTES(nilfs->ns_bdev->bd_inode->i_size);
454 	int valid[2], swp = 0;
455 
456 	sbp[0] = nilfs_read_super_block(sb, NILFS_SB_OFFSET_BYTES, blocksize,
457 					&sbh[0]);
458 	sbp[1] = nilfs_read_super_block(sb, sb2off, blocksize, &sbh[1]);
459 
460 	if (!sbp[0]) {
461 		if (!sbp[1]) {
462 			printk(KERN_ERR "NILFS: unable to read superblock\n");
463 			return -EIO;
464 		}
465 		printk(KERN_WARNING
466 		       "NILFS warning: unable to read primary superblock\n");
467 	} else if (!sbp[1])
468 		printk(KERN_WARNING
469 		       "NILFS warning: unable to read secondary superblock\n");
470 
471 	valid[0] = nilfs_valid_sb(sbp[0]);
472 	valid[1] = nilfs_valid_sb(sbp[1]);
473 	swp = valid[1] &&
474 		(!valid[0] ||
475 		 le64_to_cpu(sbp[1]->s_wtime) > le64_to_cpu(sbp[0]->s_wtime));
476 
477 	if (valid[swp] && nilfs_sb2_bad_offset(sbp[swp], sb2off)) {
478 		brelse(sbh[1]);
479 		sbh[1] = NULL;
480 		sbp[1] = NULL;
481 		swp = 0;
482 	}
483 	if (!valid[swp]) {
484 		nilfs_release_super_block(nilfs);
485 		printk(KERN_ERR "NILFS: Can't find nilfs on dev %s.\n",
486 		       sb->s_id);
487 		return -EINVAL;
488 	}
489 
490 	if (swp) {
491 		printk(KERN_WARNING "NILFS warning: broken superblock. "
492 		       "using spare superblock.\n");
493 		nilfs_swap_super_block(nilfs);
494 	}
495 
496 	nilfs->ns_sbwtime[0] = le64_to_cpu(sbp[0]->s_wtime);
497 	nilfs->ns_sbwtime[1] = valid[!swp] ? le64_to_cpu(sbp[1]->s_wtime) : 0;
498 	nilfs->ns_prot_seq = le64_to_cpu(sbp[valid[1] & !swp]->s_last_seq);
499 	*sbpp = sbp[0];
500 	return 0;
501 }
502 
503 /**
504  * init_nilfs - initialize a NILFS instance.
505  * @nilfs: the_nilfs structure
506  * @sbi: nilfs_sb_info
507  * @sb: super block
508  * @data: mount options
509  *
510  * init_nilfs() performs common initialization per block device (e.g.
511  * reading the super block, getting disk layout information, initializing
512  * shared fields in the_nilfs). It takes on some portion of the jobs
513  * typically done by a fill_super() routine. This division arises from
514  * the nature that multiple NILFS instances may be simultaneously
515  * mounted on a device.
516  * For multiple mounts on the same device, only the first mount
517  * invokes these tasks.
518  *
519  * Return Value: On success, 0 is returned. On error, a negative error
520  * code is returned.
521  */
522 int init_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi, char *data)
523 {
524 	struct super_block *sb = sbi->s_super;
525 	struct nilfs_super_block *sbp;
526 	struct backing_dev_info *bdi;
527 	int blocksize;
528 	int err;
529 
530 	down_write(&nilfs->ns_sem);
531 	if (nilfs_init(nilfs)) {
532 		/* Load values from existing the_nilfs */
533 		sbp = nilfs->ns_sbp[0];
534 		err = nilfs_store_magic_and_option(sb, sbp, data);
535 		if (err)
536 			goto out;
537 
538 		blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
539 		if (sb->s_blocksize != blocksize &&
540 		    !sb_set_blocksize(sb, blocksize)) {
541 			printk(KERN_ERR "NILFS: blocksize %d unfit to device\n",
542 			       blocksize);
543 			err = -EINVAL;
544 		}
545 		sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
546 		goto out;
547 	}
548 
549 	blocksize = sb_min_blocksize(sb, BLOCK_SIZE);
550 	if (!blocksize) {
551 		printk(KERN_ERR "NILFS: unable to set blocksize\n");
552 		err = -EINVAL;
553 		goto out;
554 	}
555 	err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
556 	if (err)
557 		goto out;
558 
559 	err = nilfs_store_magic_and_option(sb, sbp, data);
560 	if (err)
561 		goto failed_sbh;
562 
563 	blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
564 	if (sb->s_blocksize != blocksize) {
565 		int hw_blocksize = bdev_logical_block_size(sb->s_bdev);
566 
567 		if (blocksize < hw_blocksize) {
568 			printk(KERN_ERR
569 			       "NILFS: blocksize %d too small for device "
570 			       "(sector-size = %d).\n",
571 			       blocksize, hw_blocksize);
572 			err = -EINVAL;
573 			goto failed_sbh;
574 		}
575 		nilfs_release_super_block(nilfs);
576 		sb_set_blocksize(sb, blocksize);
577 
578 		err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
579 		if (err)
580 			goto out;
581 			/* not failed_sbh; sbh is released automatically
582 			   when reloading fails. */
583 	}
584 	nilfs->ns_blocksize_bits = sb->s_blocksize_bits;
585 
586 	err = nilfs_store_disk_layout(nilfs, sbp);
587 	if (err)
588 		goto failed_sbh;
589 
590 	sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
591 
592 	nilfs->ns_mount_state = le16_to_cpu(sbp->s_state);
593 
594 	bdi = nilfs->ns_bdev->bd_inode->i_mapping->backing_dev_info;
595 	nilfs->ns_bdi = bdi ? : &default_backing_dev_info;
596 
597 	/* Finding last segment */
598 	nilfs->ns_last_pseg = le64_to_cpu(sbp->s_last_pseg);
599 	nilfs->ns_last_cno = le64_to_cpu(sbp->s_last_cno);
600 	nilfs->ns_last_seq = le64_to_cpu(sbp->s_last_seq);
601 
602 	nilfs->ns_seg_seq = nilfs->ns_last_seq;
603 	nilfs->ns_segnum =
604 		nilfs_get_segnum_of_block(nilfs, nilfs->ns_last_pseg);
605 	nilfs->ns_cno = nilfs->ns_last_cno + 1;
606 	if (nilfs->ns_segnum >= nilfs->ns_nsegments) {
607 		printk(KERN_ERR "NILFS invalid last segment number.\n");
608 		err = -EINVAL;
609 		goto failed_sbh;
610 	}
611 	/* Dummy values  */
612 	nilfs->ns_free_segments_count =
613 		nilfs->ns_nsegments - (nilfs->ns_segnum + 1);
614 
615 	/* Initialize gcinode cache */
616 	err = nilfs_init_gccache(nilfs);
617 	if (err)
618 		goto failed_sbh;
619 
620 	set_nilfs_init(nilfs);
621 	err = 0;
622  out:
623 	up_write(&nilfs->ns_sem);
624 	return err;
625 
626  failed_sbh:
627 	nilfs_release_super_block(nilfs);
628 	goto out;
629 }
630 
631 int nilfs_count_free_blocks(struct the_nilfs *nilfs, sector_t *nblocks)
632 {
633 	struct inode *dat = nilfs_dat_inode(nilfs);
634 	unsigned long ncleansegs;
635 	int err;
636 
637 	down_read(&NILFS_MDT(dat)->mi_sem);	/* XXX */
638 	err = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile, &ncleansegs);
639 	up_read(&NILFS_MDT(dat)->mi_sem);	/* XXX */
640 	if (likely(!err))
641 		*nblocks = (sector_t)ncleansegs * nilfs->ns_blocks_per_segment;
642 	return err;
643 }
644 
645 int nilfs_near_disk_full(struct the_nilfs *nilfs)
646 {
647 	struct inode *sufile = nilfs->ns_sufile;
648 	unsigned long ncleansegs, nincsegs;
649 	int ret;
650 
651 	ret = nilfs_sufile_get_ncleansegs(sufile, &ncleansegs);
652 	if (likely(!ret)) {
653 		nincsegs = atomic_read(&nilfs->ns_ndirtyblks) /
654 			nilfs->ns_blocks_per_segment + 1;
655 		if (ncleansegs <= nilfs->ns_nrsvsegs + nincsegs)
656 			ret++;
657 	}
658 	return ret;
659 }
660 
661 /**
662  * nilfs_find_sbinfo - find existing nilfs_sb_info structure
663  * @nilfs: nilfs object
664  * @rw_mount: mount type (non-zero value for read/write mount)
665  * @cno: checkpoint number (zero for read-only mount)
666  *
667  * nilfs_find_sbinfo() returns the nilfs_sb_info structure which
668  * @rw_mount and @cno (in case of snapshots) matched.  If no instance
669  * was found, NULL is returned.  Although the super block instance can
670  * be unmounted after this function returns, the nilfs_sb_info struct
671  * is kept on memory until nilfs_put_sbinfo() is called.
672  */
673 struct nilfs_sb_info *nilfs_find_sbinfo(struct the_nilfs *nilfs,
674 					int rw_mount, __u64 cno)
675 {
676 	struct nilfs_sb_info *sbi;
677 
678 	down_read(&nilfs->ns_super_sem);
679 	/*
680 	 * The SNAPSHOT flag and sb->s_flags are supposed to be
681 	 * protected with nilfs->ns_super_sem.
682 	 */
683 	sbi = nilfs->ns_current;
684 	if (rw_mount) {
685 		if (sbi && !(sbi->s_super->s_flags & MS_RDONLY))
686 			goto found; /* read/write mount */
687 		else
688 			goto out;
689 	} else if (cno == 0) {
690 		if (sbi && (sbi->s_super->s_flags & MS_RDONLY))
691 			goto found; /* read-only mount */
692 		else
693 			goto out;
694 	}
695 
696 	list_for_each_entry(sbi, &nilfs->ns_supers, s_list) {
697 		if (nilfs_test_opt(sbi, SNAPSHOT) &&
698 		    sbi->s_snapshot_cno == cno)
699 			goto found; /* snapshot mount */
700 	}
701  out:
702 	up_read(&nilfs->ns_super_sem);
703 	return NULL;
704 
705  found:
706 	atomic_inc(&sbi->s_count);
707 	up_read(&nilfs->ns_super_sem);
708 	return sbi;
709 }
710 
711 int nilfs_checkpoint_is_mounted(struct the_nilfs *nilfs, __u64 cno,
712 				int snapshot_mount)
713 {
714 	struct nilfs_sb_info *sbi;
715 	int ret = 0;
716 
717 	down_read(&nilfs->ns_super_sem);
718 	if (cno == 0 || cno > nilfs->ns_cno)
719 		goto out_unlock;
720 
721 	list_for_each_entry(sbi, &nilfs->ns_supers, s_list) {
722 		if (sbi->s_snapshot_cno == cno &&
723 		    (!snapshot_mount || nilfs_test_opt(sbi, SNAPSHOT))) {
724 					/* exclude read-only mounts */
725 			ret++;
726 			break;
727 		}
728 	}
729 	/* for protecting recent checkpoints */
730 	if (cno >= nilfs_last_cno(nilfs))
731 		ret++;
732 
733  out_unlock:
734 	up_read(&nilfs->ns_super_sem);
735 	return ret;
736 }
737