xref: /openbmc/linux/fs/nilfs2/the_nilfs.c (revision f77f13e2)
1 /*
2  * the_nilfs.c - the_nilfs shared structure.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  *
22  */
23 
24 #include <linux/buffer_head.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/crc32.h>
29 #include "nilfs.h"
30 #include "segment.h"
31 #include "alloc.h"
32 #include "cpfile.h"
33 #include "sufile.h"
34 #include "dat.h"
35 #include "segbuf.h"
36 
37 
38 static LIST_HEAD(nilfs_objects);
39 static DEFINE_SPINLOCK(nilfs_lock);
40 
41 void nilfs_set_last_segment(struct the_nilfs *nilfs,
42 			    sector_t start_blocknr, u64 seq, __u64 cno)
43 {
44 	spin_lock(&nilfs->ns_last_segment_lock);
45 	nilfs->ns_last_pseg = start_blocknr;
46 	nilfs->ns_last_seq = seq;
47 	nilfs->ns_last_cno = cno;
48 	spin_unlock(&nilfs->ns_last_segment_lock);
49 }
50 
51 /**
52  * alloc_nilfs - allocate the_nilfs structure
53  * @bdev: block device to which the_nilfs is related
54  *
55  * alloc_nilfs() allocates memory for the_nilfs and
56  * initializes its reference count and locks.
57  *
58  * Return Value: On success, pointer to the_nilfs is returned.
59  * On error, NULL is returned.
60  */
61 static struct the_nilfs *alloc_nilfs(struct block_device *bdev)
62 {
63 	struct the_nilfs *nilfs;
64 
65 	nilfs = kzalloc(sizeof(*nilfs), GFP_KERNEL);
66 	if (!nilfs)
67 		return NULL;
68 
69 	nilfs->ns_bdev = bdev;
70 	atomic_set(&nilfs->ns_count, 1);
71 	atomic_set(&nilfs->ns_ndirtyblks, 0);
72 	init_rwsem(&nilfs->ns_sem);
73 	init_rwsem(&nilfs->ns_super_sem);
74 	mutex_init(&nilfs->ns_mount_mutex);
75 	init_rwsem(&nilfs->ns_writer_sem);
76 	INIT_LIST_HEAD(&nilfs->ns_list);
77 	INIT_LIST_HEAD(&nilfs->ns_supers);
78 	spin_lock_init(&nilfs->ns_last_segment_lock);
79 	nilfs->ns_gc_inodes_h = NULL;
80 	init_rwsem(&nilfs->ns_segctor_sem);
81 
82 	return nilfs;
83 }
84 
85 /**
86  * find_or_create_nilfs - find or create nilfs object
87  * @bdev: block device to which the_nilfs is related
88  *
89  * find_nilfs() looks up an existent nilfs object created on the
90  * device and gets the reference count of the object.  If no nilfs object
91  * is found on the device, a new nilfs object is allocated.
92  *
93  * Return Value: On success, pointer to the nilfs object is returned.
94  * On error, NULL is returned.
95  */
96 struct the_nilfs *find_or_create_nilfs(struct block_device *bdev)
97 {
98 	struct the_nilfs *nilfs, *new = NULL;
99 
100  retry:
101 	spin_lock(&nilfs_lock);
102 	list_for_each_entry(nilfs, &nilfs_objects, ns_list) {
103 		if (nilfs->ns_bdev == bdev) {
104 			get_nilfs(nilfs);
105 			spin_unlock(&nilfs_lock);
106 			if (new)
107 				put_nilfs(new);
108 			return nilfs; /* existing object */
109 		}
110 	}
111 	if (new) {
112 		list_add_tail(&new->ns_list, &nilfs_objects);
113 		spin_unlock(&nilfs_lock);
114 		return new; /* new object */
115 	}
116 	spin_unlock(&nilfs_lock);
117 
118 	new = alloc_nilfs(bdev);
119 	if (new)
120 		goto retry;
121 	return NULL; /* insufficient memory */
122 }
123 
124 /**
125  * put_nilfs - release a reference to the_nilfs
126  * @nilfs: the_nilfs structure to be released
127  *
128  * put_nilfs() decrements a reference counter of the_nilfs.
129  * If the reference count reaches zero, the_nilfs is freed.
130  */
131 void put_nilfs(struct the_nilfs *nilfs)
132 {
133 	spin_lock(&nilfs_lock);
134 	if (!atomic_dec_and_test(&nilfs->ns_count)) {
135 		spin_unlock(&nilfs_lock);
136 		return;
137 	}
138 	list_del_init(&nilfs->ns_list);
139 	spin_unlock(&nilfs_lock);
140 
141 	/*
142 	 * Increment of ns_count never occurs below because the caller
143 	 * of get_nilfs() holds at least one reference to the_nilfs.
144 	 * Thus its exclusion control is not required here.
145 	 */
146 
147 	might_sleep();
148 	if (nilfs_loaded(nilfs)) {
149 		nilfs_mdt_destroy(nilfs->ns_sufile);
150 		nilfs_mdt_destroy(nilfs->ns_cpfile);
151 		nilfs_mdt_destroy(nilfs->ns_dat);
152 		nilfs_mdt_destroy(nilfs->ns_gc_dat);
153 	}
154 	if (nilfs_init(nilfs)) {
155 		nilfs_destroy_gccache(nilfs);
156 		brelse(nilfs->ns_sbh[0]);
157 		brelse(nilfs->ns_sbh[1]);
158 	}
159 	kfree(nilfs);
160 }
161 
162 static int nilfs_load_super_root(struct the_nilfs *nilfs,
163 				 struct nilfs_sb_info *sbi, sector_t sr_block)
164 {
165 	struct buffer_head *bh_sr;
166 	struct nilfs_super_root *raw_sr;
167 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
168 	unsigned dat_entry_size, segment_usage_size, checkpoint_size;
169 	unsigned inode_size;
170 	int err;
171 
172 	err = nilfs_read_super_root_block(sbi->s_super, sr_block, &bh_sr, 1);
173 	if (unlikely(err))
174 		return err;
175 
176 	down_read(&nilfs->ns_sem);
177 	dat_entry_size = le16_to_cpu(sbp[0]->s_dat_entry_size);
178 	checkpoint_size = le16_to_cpu(sbp[0]->s_checkpoint_size);
179 	segment_usage_size = le16_to_cpu(sbp[0]->s_segment_usage_size);
180 	up_read(&nilfs->ns_sem);
181 
182 	inode_size = nilfs->ns_inode_size;
183 
184 	err = -ENOMEM;
185 	nilfs->ns_dat = nilfs_dat_new(nilfs, dat_entry_size);
186 	if (unlikely(!nilfs->ns_dat))
187 		goto failed;
188 
189 	nilfs->ns_gc_dat = nilfs_dat_new(nilfs, dat_entry_size);
190 	if (unlikely(!nilfs->ns_gc_dat))
191 		goto failed_dat;
192 
193 	nilfs->ns_cpfile = nilfs_cpfile_new(nilfs, checkpoint_size);
194 	if (unlikely(!nilfs->ns_cpfile))
195 		goto failed_gc_dat;
196 
197 	nilfs->ns_sufile = nilfs_sufile_new(nilfs, segment_usage_size);
198 	if (unlikely(!nilfs->ns_sufile))
199 		goto failed_cpfile;
200 
201 	nilfs_mdt_set_shadow(nilfs->ns_dat, nilfs->ns_gc_dat);
202 
203 	err = nilfs_dat_read(nilfs->ns_dat, (void *)bh_sr->b_data +
204 			     NILFS_SR_DAT_OFFSET(inode_size));
205 	if (unlikely(err))
206 		goto failed_sufile;
207 
208 	err = nilfs_cpfile_read(nilfs->ns_cpfile, (void *)bh_sr->b_data +
209 				NILFS_SR_CPFILE_OFFSET(inode_size));
210 	if (unlikely(err))
211 		goto failed_sufile;
212 
213 	err = nilfs_sufile_read(nilfs->ns_sufile, (void *)bh_sr->b_data +
214 				NILFS_SR_SUFILE_OFFSET(inode_size));
215 	if (unlikely(err))
216 		goto failed_sufile;
217 
218 	raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
219 	nilfs->ns_nongc_ctime = le64_to_cpu(raw_sr->sr_nongc_ctime);
220 
221  failed:
222 	brelse(bh_sr);
223 	return err;
224 
225  failed_sufile:
226 	nilfs_mdt_destroy(nilfs->ns_sufile);
227 
228  failed_cpfile:
229 	nilfs_mdt_destroy(nilfs->ns_cpfile);
230 
231  failed_gc_dat:
232 	nilfs_mdt_destroy(nilfs->ns_gc_dat);
233 
234  failed_dat:
235 	nilfs_mdt_destroy(nilfs->ns_dat);
236 	goto failed;
237 }
238 
239 static void nilfs_init_recovery_info(struct nilfs_recovery_info *ri)
240 {
241 	memset(ri, 0, sizeof(*ri));
242 	INIT_LIST_HEAD(&ri->ri_used_segments);
243 }
244 
245 static void nilfs_clear_recovery_info(struct nilfs_recovery_info *ri)
246 {
247 	nilfs_dispose_segment_list(&ri->ri_used_segments);
248 }
249 
250 /**
251  * load_nilfs - load and recover the nilfs
252  * @nilfs: the_nilfs structure to be released
253  * @sbi: nilfs_sb_info used to recover past segment
254  *
255  * load_nilfs() searches and load the latest super root,
256  * attaches the last segment, and does recovery if needed.
257  * The caller must call this exclusively for simultaneous mounts.
258  */
259 int load_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi)
260 {
261 	struct nilfs_recovery_info ri;
262 	unsigned int s_flags = sbi->s_super->s_flags;
263 	int really_read_only = bdev_read_only(nilfs->ns_bdev);
264 	int valid_fs = nilfs_valid_fs(nilfs);
265 	int err;
266 
267 	if (nilfs_loaded(nilfs)) {
268 		if (valid_fs ||
269 		    ((s_flags & MS_RDONLY) && nilfs_test_opt(sbi, NORECOVERY)))
270 			return 0;
271 		printk(KERN_ERR "NILFS: the filesystem is in an incomplete "
272 		       "recovery state.\n");
273 		return -EINVAL;
274 	}
275 
276 	if (!valid_fs) {
277 		printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
278 		if (s_flags & MS_RDONLY) {
279 			printk(KERN_INFO "NILFS: INFO: recovery "
280 			       "required for readonly filesystem.\n");
281 			printk(KERN_INFO "NILFS: write access will "
282 			       "be enabled during recovery.\n");
283 		}
284 	}
285 
286 	nilfs_init_recovery_info(&ri);
287 
288 	err = nilfs_search_super_root(nilfs, sbi, &ri);
289 	if (unlikely(err)) {
290 		printk(KERN_ERR "NILFS: error searching super root.\n");
291 		goto failed;
292 	}
293 
294 	err = nilfs_load_super_root(nilfs, sbi, ri.ri_super_root);
295 	if (unlikely(err)) {
296 		printk(KERN_ERR "NILFS: error loading super root.\n");
297 		goto failed;
298 	}
299 
300 	if (valid_fs)
301 		goto skip_recovery;
302 
303 	if (s_flags & MS_RDONLY) {
304 		if (nilfs_test_opt(sbi, NORECOVERY)) {
305 			printk(KERN_INFO "NILFS: norecovery option specified. "
306 			       "skipping roll-forward recovery\n");
307 			goto skip_recovery;
308 		}
309 		if (really_read_only) {
310 			printk(KERN_ERR "NILFS: write access "
311 			       "unavailable, cannot proceed.\n");
312 			err = -EROFS;
313 			goto failed_unload;
314 		}
315 		sbi->s_super->s_flags &= ~MS_RDONLY;
316 	} else if (nilfs_test_opt(sbi, NORECOVERY)) {
317 		printk(KERN_ERR "NILFS: recovery cancelled because norecovery "
318 		       "option was specified for a read/write mount\n");
319 		err = -EINVAL;
320 		goto failed_unload;
321 	}
322 
323 	err = nilfs_recover_logical_segments(nilfs, sbi, &ri);
324 	if (err)
325 		goto failed_unload;
326 
327 	down_write(&nilfs->ns_sem);
328 	nilfs->ns_mount_state |= NILFS_VALID_FS;
329 	nilfs->ns_sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
330 	err = nilfs_commit_super(sbi, 1);
331 	up_write(&nilfs->ns_sem);
332 
333 	if (err) {
334 		printk(KERN_ERR "NILFS: failed to update super block. "
335 		       "recovery unfinished.\n");
336 		goto failed_unload;
337 	}
338 	printk(KERN_INFO "NILFS: recovery complete.\n");
339 
340  skip_recovery:
341 	set_nilfs_loaded(nilfs);
342 	nilfs_clear_recovery_info(&ri);
343 	sbi->s_super->s_flags = s_flags;
344 	return 0;
345 
346  failed_unload:
347 	nilfs_mdt_destroy(nilfs->ns_cpfile);
348 	nilfs_mdt_destroy(nilfs->ns_sufile);
349 	nilfs_mdt_destroy(nilfs->ns_dat);
350 
351  failed:
352 	nilfs_clear_recovery_info(&ri);
353 	sbi->s_super->s_flags = s_flags;
354 	return err;
355 }
356 
357 static unsigned long long nilfs_max_size(unsigned int blkbits)
358 {
359 	unsigned int max_bits;
360 	unsigned long long res = MAX_LFS_FILESIZE; /* page cache limit */
361 
362 	max_bits = blkbits + NILFS_BMAP_KEY_BIT; /* bmap size limit */
363 	if (max_bits < 64)
364 		res = min_t(unsigned long long, res, (1ULL << max_bits) - 1);
365 	return res;
366 }
367 
368 static int nilfs_store_disk_layout(struct the_nilfs *nilfs,
369 				   struct nilfs_super_block *sbp)
370 {
371 	if (le32_to_cpu(sbp->s_rev_level) != NILFS_CURRENT_REV) {
372 		printk(KERN_ERR "NILFS: revision mismatch "
373 		       "(superblock rev.=%d.%d, current rev.=%d.%d). "
374 		       "Please check the version of mkfs.nilfs.\n",
375 		       le32_to_cpu(sbp->s_rev_level),
376 		       le16_to_cpu(sbp->s_minor_rev_level),
377 		       NILFS_CURRENT_REV, NILFS_MINOR_REV);
378 		return -EINVAL;
379 	}
380 	nilfs->ns_sbsize = le16_to_cpu(sbp->s_bytes);
381 	if (nilfs->ns_sbsize > BLOCK_SIZE)
382 		return -EINVAL;
383 
384 	nilfs->ns_inode_size = le16_to_cpu(sbp->s_inode_size);
385 	nilfs->ns_first_ino = le32_to_cpu(sbp->s_first_ino);
386 
387 	nilfs->ns_blocks_per_segment = le32_to_cpu(sbp->s_blocks_per_segment);
388 	if (nilfs->ns_blocks_per_segment < NILFS_SEG_MIN_BLOCKS) {
389 		printk(KERN_ERR "NILFS: too short segment. \n");
390 		return -EINVAL;
391 	}
392 
393 	nilfs->ns_first_data_block = le64_to_cpu(sbp->s_first_data_block);
394 	nilfs->ns_nsegments = le64_to_cpu(sbp->s_nsegments);
395 	nilfs->ns_r_segments_percentage =
396 		le32_to_cpu(sbp->s_r_segments_percentage);
397 	nilfs->ns_nrsvsegs =
398 		max_t(unsigned long, NILFS_MIN_NRSVSEGS,
399 		      DIV_ROUND_UP(nilfs->ns_nsegments *
400 				   nilfs->ns_r_segments_percentage, 100));
401 	nilfs->ns_crc_seed = le32_to_cpu(sbp->s_crc_seed);
402 	return 0;
403 }
404 
405 static int nilfs_valid_sb(struct nilfs_super_block *sbp)
406 {
407 	static unsigned char sum[4];
408 	const int sumoff = offsetof(struct nilfs_super_block, s_sum);
409 	size_t bytes;
410 	u32 crc;
411 
412 	if (!sbp || le16_to_cpu(sbp->s_magic) != NILFS_SUPER_MAGIC)
413 		return 0;
414 	bytes = le16_to_cpu(sbp->s_bytes);
415 	if (bytes > BLOCK_SIZE)
416 		return 0;
417 	crc = crc32_le(le32_to_cpu(sbp->s_crc_seed), (unsigned char *)sbp,
418 		       sumoff);
419 	crc = crc32_le(crc, sum, 4);
420 	crc = crc32_le(crc, (unsigned char *)sbp + sumoff + 4,
421 		       bytes - sumoff - 4);
422 	return crc == le32_to_cpu(sbp->s_sum);
423 }
424 
425 static int nilfs_sb2_bad_offset(struct nilfs_super_block *sbp, u64 offset)
426 {
427 	return offset < ((le64_to_cpu(sbp->s_nsegments) *
428 			  le32_to_cpu(sbp->s_blocks_per_segment)) <<
429 			 (le32_to_cpu(sbp->s_log_block_size) + 10));
430 }
431 
432 static void nilfs_release_super_block(struct the_nilfs *nilfs)
433 {
434 	int i;
435 
436 	for (i = 0; i < 2; i++) {
437 		if (nilfs->ns_sbp[i]) {
438 			brelse(nilfs->ns_sbh[i]);
439 			nilfs->ns_sbh[i] = NULL;
440 			nilfs->ns_sbp[i] = NULL;
441 		}
442 	}
443 }
444 
445 void nilfs_fall_back_super_block(struct the_nilfs *nilfs)
446 {
447 	brelse(nilfs->ns_sbh[0]);
448 	nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
449 	nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
450 	nilfs->ns_sbh[1] = NULL;
451 	nilfs->ns_sbp[1] = NULL;
452 }
453 
454 void nilfs_swap_super_block(struct the_nilfs *nilfs)
455 {
456 	struct buffer_head *tsbh = nilfs->ns_sbh[0];
457 	struct nilfs_super_block *tsbp = nilfs->ns_sbp[0];
458 
459 	nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
460 	nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
461 	nilfs->ns_sbh[1] = tsbh;
462 	nilfs->ns_sbp[1] = tsbp;
463 }
464 
465 static int nilfs_load_super_block(struct the_nilfs *nilfs,
466 				  struct super_block *sb, int blocksize,
467 				  struct nilfs_super_block **sbpp)
468 {
469 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
470 	struct buffer_head **sbh = nilfs->ns_sbh;
471 	u64 sb2off = NILFS_SB2_OFFSET_BYTES(nilfs->ns_bdev->bd_inode->i_size);
472 	int valid[2], swp = 0;
473 
474 	sbp[0] = nilfs_read_super_block(sb, NILFS_SB_OFFSET_BYTES, blocksize,
475 					&sbh[0]);
476 	sbp[1] = nilfs_read_super_block(sb, sb2off, blocksize, &sbh[1]);
477 
478 	if (!sbp[0]) {
479 		if (!sbp[1]) {
480 			printk(KERN_ERR "NILFS: unable to read superblock\n");
481 			return -EIO;
482 		}
483 		printk(KERN_WARNING
484 		       "NILFS warning: unable to read primary superblock\n");
485 	} else if (!sbp[1])
486 		printk(KERN_WARNING
487 		       "NILFS warning: unable to read secondary superblock\n");
488 
489 	valid[0] = nilfs_valid_sb(sbp[0]);
490 	valid[1] = nilfs_valid_sb(sbp[1]);
491 	swp = valid[1] &&
492 		(!valid[0] ||
493 		 le64_to_cpu(sbp[1]->s_wtime) > le64_to_cpu(sbp[0]->s_wtime));
494 
495 	if (valid[swp] && nilfs_sb2_bad_offset(sbp[swp], sb2off)) {
496 		brelse(sbh[1]);
497 		sbh[1] = NULL;
498 		sbp[1] = NULL;
499 		swp = 0;
500 	}
501 	if (!valid[swp]) {
502 		nilfs_release_super_block(nilfs);
503 		printk(KERN_ERR "NILFS: Can't find nilfs on dev %s.\n",
504 		       sb->s_id);
505 		return -EINVAL;
506 	}
507 
508 	if (swp) {
509 		printk(KERN_WARNING "NILFS warning: broken superblock. "
510 		       "using spare superblock.\n");
511 		nilfs_swap_super_block(nilfs);
512 	}
513 
514 	nilfs->ns_sbwtime[0] = le64_to_cpu(sbp[0]->s_wtime);
515 	nilfs->ns_sbwtime[1] = valid[!swp] ? le64_to_cpu(sbp[1]->s_wtime) : 0;
516 	nilfs->ns_prot_seq = le64_to_cpu(sbp[valid[1] & !swp]->s_last_seq);
517 	*sbpp = sbp[0];
518 	return 0;
519 }
520 
521 /**
522  * init_nilfs - initialize a NILFS instance.
523  * @nilfs: the_nilfs structure
524  * @sbi: nilfs_sb_info
525  * @sb: super block
526  * @data: mount options
527  *
528  * init_nilfs() performs common initialization per block device (e.g.
529  * reading the super block, getting disk layout information, initializing
530  * shared fields in the_nilfs). It takes on some portion of the jobs
531  * typically done by a fill_super() routine. This division arises from
532  * the nature that multiple NILFS instances may be simultaneously
533  * mounted on a device.
534  * For multiple mounts on the same device, only the first mount
535  * invokes these tasks.
536  *
537  * Return Value: On success, 0 is returned. On error, a negative error
538  * code is returned.
539  */
540 int init_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi, char *data)
541 {
542 	struct super_block *sb = sbi->s_super;
543 	struct nilfs_super_block *sbp;
544 	struct backing_dev_info *bdi;
545 	int blocksize;
546 	int err;
547 
548 	down_write(&nilfs->ns_sem);
549 	if (nilfs_init(nilfs)) {
550 		/* Load values from existing the_nilfs */
551 		sbp = nilfs->ns_sbp[0];
552 		err = nilfs_store_magic_and_option(sb, sbp, data);
553 		if (err)
554 			goto out;
555 
556 		blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
557 		if (sb->s_blocksize != blocksize &&
558 		    !sb_set_blocksize(sb, blocksize)) {
559 			printk(KERN_ERR "NILFS: blocksize %d unfit to device\n",
560 			       blocksize);
561 			err = -EINVAL;
562 		}
563 		sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
564 		goto out;
565 	}
566 
567 	blocksize = sb_min_blocksize(sb, BLOCK_SIZE);
568 	if (!blocksize) {
569 		printk(KERN_ERR "NILFS: unable to set blocksize\n");
570 		err = -EINVAL;
571 		goto out;
572 	}
573 	err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
574 	if (err)
575 		goto out;
576 
577 	err = nilfs_store_magic_and_option(sb, sbp, data);
578 	if (err)
579 		goto failed_sbh;
580 
581 	blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
582 	if (sb->s_blocksize != blocksize) {
583 		int hw_blocksize = bdev_logical_block_size(sb->s_bdev);
584 
585 		if (blocksize < hw_blocksize) {
586 			printk(KERN_ERR
587 			       "NILFS: blocksize %d too small for device "
588 			       "(sector-size = %d).\n",
589 			       blocksize, hw_blocksize);
590 			err = -EINVAL;
591 			goto failed_sbh;
592 		}
593 		nilfs_release_super_block(nilfs);
594 		sb_set_blocksize(sb, blocksize);
595 
596 		err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
597 		if (err)
598 			goto out;
599 			/* not failed_sbh; sbh is released automatically
600 			   when reloading fails. */
601 	}
602 	nilfs->ns_blocksize_bits = sb->s_blocksize_bits;
603 
604 	err = nilfs_store_disk_layout(nilfs, sbp);
605 	if (err)
606 		goto failed_sbh;
607 
608 	sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
609 
610 	nilfs->ns_mount_state = le16_to_cpu(sbp->s_state);
611 
612 	bdi = nilfs->ns_bdev->bd_inode->i_mapping->backing_dev_info;
613 	nilfs->ns_bdi = bdi ? : &default_backing_dev_info;
614 
615 	/* Finding last segment */
616 	nilfs->ns_last_pseg = le64_to_cpu(sbp->s_last_pseg);
617 	nilfs->ns_last_cno = le64_to_cpu(sbp->s_last_cno);
618 	nilfs->ns_last_seq = le64_to_cpu(sbp->s_last_seq);
619 
620 	nilfs->ns_seg_seq = nilfs->ns_last_seq;
621 	nilfs->ns_segnum =
622 		nilfs_get_segnum_of_block(nilfs, nilfs->ns_last_pseg);
623 	nilfs->ns_cno = nilfs->ns_last_cno + 1;
624 	if (nilfs->ns_segnum >= nilfs->ns_nsegments) {
625 		printk(KERN_ERR "NILFS invalid last segment number.\n");
626 		err = -EINVAL;
627 		goto failed_sbh;
628 	}
629 	/* Dummy values  */
630 	nilfs->ns_free_segments_count =
631 		nilfs->ns_nsegments - (nilfs->ns_segnum + 1);
632 
633 	/* Initialize gcinode cache */
634 	err = nilfs_init_gccache(nilfs);
635 	if (err)
636 		goto failed_sbh;
637 
638 	set_nilfs_init(nilfs);
639 	err = 0;
640  out:
641 	up_write(&nilfs->ns_sem);
642 	return err;
643 
644  failed_sbh:
645 	nilfs_release_super_block(nilfs);
646 	goto out;
647 }
648 
649 int nilfs_discard_segments(struct the_nilfs *nilfs, __u64 *segnump,
650 			    size_t nsegs)
651 {
652 	sector_t seg_start, seg_end;
653 	sector_t start = 0, nblocks = 0;
654 	unsigned int sects_per_block;
655 	__u64 *sn;
656 	int ret = 0;
657 
658 	sects_per_block = (1 << nilfs->ns_blocksize_bits) /
659 		bdev_logical_block_size(nilfs->ns_bdev);
660 	for (sn = segnump; sn < segnump + nsegs; sn++) {
661 		nilfs_get_segment_range(nilfs, *sn, &seg_start, &seg_end);
662 
663 		if (!nblocks) {
664 			start = seg_start;
665 			nblocks = seg_end - seg_start + 1;
666 		} else if (start + nblocks == seg_start) {
667 			nblocks += seg_end - seg_start + 1;
668 		} else {
669 			ret = blkdev_issue_discard(nilfs->ns_bdev,
670 						   start * sects_per_block,
671 						   nblocks * sects_per_block,
672 						   GFP_NOFS,
673 						   DISCARD_FL_BARRIER);
674 			if (ret < 0)
675 				return ret;
676 			nblocks = 0;
677 		}
678 	}
679 	if (nblocks)
680 		ret = blkdev_issue_discard(nilfs->ns_bdev,
681 					   start * sects_per_block,
682 					   nblocks * sects_per_block,
683 					   GFP_NOFS, DISCARD_FL_BARRIER);
684 	return ret;
685 }
686 
687 int nilfs_count_free_blocks(struct the_nilfs *nilfs, sector_t *nblocks)
688 {
689 	struct inode *dat = nilfs_dat_inode(nilfs);
690 	unsigned long ncleansegs;
691 
692 	down_read(&NILFS_MDT(dat)->mi_sem);	/* XXX */
693 	ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile);
694 	up_read(&NILFS_MDT(dat)->mi_sem);	/* XXX */
695 	*nblocks = (sector_t)ncleansegs * nilfs->ns_blocks_per_segment;
696 	return 0;
697 }
698 
699 int nilfs_near_disk_full(struct the_nilfs *nilfs)
700 {
701 	unsigned long ncleansegs, nincsegs;
702 
703 	ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile);
704 	nincsegs = atomic_read(&nilfs->ns_ndirtyblks) /
705 		nilfs->ns_blocks_per_segment + 1;
706 
707 	return ncleansegs <= nilfs->ns_nrsvsegs + nincsegs;
708 }
709 
710 /**
711  * nilfs_find_sbinfo - find existing nilfs_sb_info structure
712  * @nilfs: nilfs object
713  * @rw_mount: mount type (non-zero value for read/write mount)
714  * @cno: checkpoint number (zero for read-only mount)
715  *
716  * nilfs_find_sbinfo() returns the nilfs_sb_info structure which
717  * @rw_mount and @cno (in case of snapshots) matched.  If no instance
718  * was found, NULL is returned.  Although the super block instance can
719  * be unmounted after this function returns, the nilfs_sb_info struct
720  * is kept on memory until nilfs_put_sbinfo() is called.
721  */
722 struct nilfs_sb_info *nilfs_find_sbinfo(struct the_nilfs *nilfs,
723 					int rw_mount, __u64 cno)
724 {
725 	struct nilfs_sb_info *sbi;
726 
727 	down_read(&nilfs->ns_super_sem);
728 	/*
729 	 * The SNAPSHOT flag and sb->s_flags are supposed to be
730 	 * protected with nilfs->ns_super_sem.
731 	 */
732 	sbi = nilfs->ns_current;
733 	if (rw_mount) {
734 		if (sbi && !(sbi->s_super->s_flags & MS_RDONLY))
735 			goto found; /* read/write mount */
736 		else
737 			goto out;
738 	} else if (cno == 0) {
739 		if (sbi && (sbi->s_super->s_flags & MS_RDONLY))
740 			goto found; /* read-only mount */
741 		else
742 			goto out;
743 	}
744 
745 	list_for_each_entry(sbi, &nilfs->ns_supers, s_list) {
746 		if (nilfs_test_opt(sbi, SNAPSHOT) &&
747 		    sbi->s_snapshot_cno == cno)
748 			goto found; /* snapshot mount */
749 	}
750  out:
751 	up_read(&nilfs->ns_super_sem);
752 	return NULL;
753 
754  found:
755 	atomic_inc(&sbi->s_count);
756 	up_read(&nilfs->ns_super_sem);
757 	return sbi;
758 }
759 
760 int nilfs_checkpoint_is_mounted(struct the_nilfs *nilfs, __u64 cno,
761 				int snapshot_mount)
762 {
763 	struct nilfs_sb_info *sbi;
764 	int ret = 0;
765 
766 	down_read(&nilfs->ns_super_sem);
767 	if (cno == 0 || cno > nilfs->ns_cno)
768 		goto out_unlock;
769 
770 	list_for_each_entry(sbi, &nilfs->ns_supers, s_list) {
771 		if (sbi->s_snapshot_cno == cno &&
772 		    (!snapshot_mount || nilfs_test_opt(sbi, SNAPSHOT))) {
773 					/* exclude read-only mounts */
774 			ret++;
775 			break;
776 		}
777 	}
778 	/* for protecting recent checkpoints */
779 	if (cno >= nilfs_last_cno(nilfs))
780 		ret++;
781 
782  out_unlock:
783 	up_read(&nilfs->ns_super_sem);
784 	return ret;
785 }
786