xref: /openbmc/linux/fs/nilfs2/the_nilfs.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * the_nilfs.c - the_nilfs shared structure.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  *
22  */
23 
24 #include <linux/buffer_head.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/crc32.h>
29 #include "nilfs.h"
30 #include "segment.h"
31 #include "alloc.h"
32 #include "cpfile.h"
33 #include "sufile.h"
34 #include "dat.h"
35 #include "segbuf.h"
36 
37 
38 static int nilfs_valid_sb(struct nilfs_super_block *sbp);
39 
40 void nilfs_set_last_segment(struct the_nilfs *nilfs,
41 			    sector_t start_blocknr, u64 seq, __u64 cno)
42 {
43 	spin_lock(&nilfs->ns_last_segment_lock);
44 	nilfs->ns_last_pseg = start_blocknr;
45 	nilfs->ns_last_seq = seq;
46 	nilfs->ns_last_cno = cno;
47 
48 	if (!nilfs_sb_dirty(nilfs)) {
49 		if (nilfs->ns_prev_seq == nilfs->ns_last_seq)
50 			goto stay_cursor;
51 
52 		set_nilfs_sb_dirty(nilfs);
53 	}
54 	nilfs->ns_prev_seq = nilfs->ns_last_seq;
55 
56  stay_cursor:
57 	spin_unlock(&nilfs->ns_last_segment_lock);
58 }
59 
60 /**
61  * alloc_nilfs - allocate a nilfs object
62  * @bdev: block device to which the_nilfs is related
63  *
64  * Return Value: On success, pointer to the_nilfs is returned.
65  * On error, NULL is returned.
66  */
67 struct the_nilfs *alloc_nilfs(struct block_device *bdev)
68 {
69 	struct the_nilfs *nilfs;
70 
71 	nilfs = kzalloc(sizeof(*nilfs), GFP_KERNEL);
72 	if (!nilfs)
73 		return NULL;
74 
75 	nilfs->ns_bdev = bdev;
76 	atomic_set(&nilfs->ns_ndirtyblks, 0);
77 	init_rwsem(&nilfs->ns_sem);
78 	INIT_LIST_HEAD(&nilfs->ns_gc_inodes);
79 	spin_lock_init(&nilfs->ns_last_segment_lock);
80 	nilfs->ns_cptree = RB_ROOT;
81 	spin_lock_init(&nilfs->ns_cptree_lock);
82 	init_rwsem(&nilfs->ns_segctor_sem);
83 
84 	return nilfs;
85 }
86 
87 /**
88  * destroy_nilfs - destroy nilfs object
89  * @nilfs: nilfs object to be released
90  */
91 void destroy_nilfs(struct the_nilfs *nilfs)
92 {
93 	might_sleep();
94 	if (nilfs_init(nilfs)) {
95 		brelse(nilfs->ns_sbh[0]);
96 		brelse(nilfs->ns_sbh[1]);
97 	}
98 	kfree(nilfs);
99 }
100 
101 static int nilfs_load_super_root(struct the_nilfs *nilfs,
102 				 struct super_block *sb, sector_t sr_block)
103 {
104 	struct buffer_head *bh_sr;
105 	struct nilfs_super_root *raw_sr;
106 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
107 	struct nilfs_inode *rawi;
108 	unsigned dat_entry_size, segment_usage_size, checkpoint_size;
109 	unsigned inode_size;
110 	int err;
111 
112 	err = nilfs_read_super_root_block(nilfs, sr_block, &bh_sr, 1);
113 	if (unlikely(err))
114 		return err;
115 
116 	down_read(&nilfs->ns_sem);
117 	dat_entry_size = le16_to_cpu(sbp[0]->s_dat_entry_size);
118 	checkpoint_size = le16_to_cpu(sbp[0]->s_checkpoint_size);
119 	segment_usage_size = le16_to_cpu(sbp[0]->s_segment_usage_size);
120 	up_read(&nilfs->ns_sem);
121 
122 	inode_size = nilfs->ns_inode_size;
123 
124 	rawi = (void *)bh_sr->b_data + NILFS_SR_DAT_OFFSET(inode_size);
125 	err = nilfs_dat_read(sb, dat_entry_size, rawi, &nilfs->ns_dat);
126 	if (err)
127 		goto failed;
128 
129 	rawi = (void *)bh_sr->b_data + NILFS_SR_CPFILE_OFFSET(inode_size);
130 	err = nilfs_cpfile_read(sb, checkpoint_size, rawi, &nilfs->ns_cpfile);
131 	if (err)
132 		goto failed_dat;
133 
134 	rawi = (void *)bh_sr->b_data + NILFS_SR_SUFILE_OFFSET(inode_size);
135 	err = nilfs_sufile_read(sb, segment_usage_size, rawi,
136 				&nilfs->ns_sufile);
137 	if (err)
138 		goto failed_cpfile;
139 
140 	raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
141 	nilfs->ns_nongc_ctime = le64_to_cpu(raw_sr->sr_nongc_ctime);
142 
143  failed:
144 	brelse(bh_sr);
145 	return err;
146 
147  failed_cpfile:
148 	iput(nilfs->ns_cpfile);
149 
150  failed_dat:
151 	iput(nilfs->ns_dat);
152 	goto failed;
153 }
154 
155 static void nilfs_init_recovery_info(struct nilfs_recovery_info *ri)
156 {
157 	memset(ri, 0, sizeof(*ri));
158 	INIT_LIST_HEAD(&ri->ri_used_segments);
159 }
160 
161 static void nilfs_clear_recovery_info(struct nilfs_recovery_info *ri)
162 {
163 	nilfs_dispose_segment_list(&ri->ri_used_segments);
164 }
165 
166 /**
167  * nilfs_store_log_cursor - load log cursor from a super block
168  * @nilfs: nilfs object
169  * @sbp: buffer storing super block to be read
170  *
171  * nilfs_store_log_cursor() reads the last position of the log
172  * containing a super root from a given super block, and initializes
173  * relevant information on the nilfs object preparatory for log
174  * scanning and recovery.
175  */
176 static int nilfs_store_log_cursor(struct the_nilfs *nilfs,
177 				  struct nilfs_super_block *sbp)
178 {
179 	int ret = 0;
180 
181 	nilfs->ns_last_pseg = le64_to_cpu(sbp->s_last_pseg);
182 	nilfs->ns_last_cno = le64_to_cpu(sbp->s_last_cno);
183 	nilfs->ns_last_seq = le64_to_cpu(sbp->s_last_seq);
184 
185 	nilfs->ns_prev_seq = nilfs->ns_last_seq;
186 	nilfs->ns_seg_seq = nilfs->ns_last_seq;
187 	nilfs->ns_segnum =
188 		nilfs_get_segnum_of_block(nilfs, nilfs->ns_last_pseg);
189 	nilfs->ns_cno = nilfs->ns_last_cno + 1;
190 	if (nilfs->ns_segnum >= nilfs->ns_nsegments) {
191 		printk(KERN_ERR "NILFS invalid last segment number.\n");
192 		ret = -EINVAL;
193 	}
194 	return ret;
195 }
196 
197 /**
198  * load_nilfs - load and recover the nilfs
199  * @nilfs: the_nilfs structure to be released
200  * @sbi: nilfs_sb_info used to recover past segment
201  *
202  * load_nilfs() searches and load the latest super root,
203  * attaches the last segment, and does recovery if needed.
204  * The caller must call this exclusively for simultaneous mounts.
205  */
206 int load_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi)
207 {
208 	struct nilfs_recovery_info ri;
209 	unsigned int s_flags = sbi->s_super->s_flags;
210 	int really_read_only = bdev_read_only(nilfs->ns_bdev);
211 	int valid_fs = nilfs_valid_fs(nilfs);
212 	int err;
213 
214 	if (!valid_fs) {
215 		printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
216 		if (s_flags & MS_RDONLY) {
217 			printk(KERN_INFO "NILFS: INFO: recovery "
218 			       "required for readonly filesystem.\n");
219 			printk(KERN_INFO "NILFS: write access will "
220 			       "be enabled during recovery.\n");
221 		}
222 	}
223 
224 	nilfs_init_recovery_info(&ri);
225 
226 	err = nilfs_search_super_root(nilfs, &ri);
227 	if (unlikely(err)) {
228 		struct nilfs_super_block **sbp = nilfs->ns_sbp;
229 		int blocksize;
230 
231 		if (err != -EINVAL)
232 			goto scan_error;
233 
234 		if (!nilfs_valid_sb(sbp[1])) {
235 			printk(KERN_WARNING
236 			       "NILFS warning: unable to fall back to spare"
237 			       "super block\n");
238 			goto scan_error;
239 		}
240 		printk(KERN_INFO
241 		       "NILFS: try rollback from an earlier position\n");
242 
243 		/*
244 		 * restore super block with its spare and reconfigure
245 		 * relevant states of the nilfs object.
246 		 */
247 		memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
248 		nilfs->ns_crc_seed = le32_to_cpu(sbp[0]->s_crc_seed);
249 		nilfs->ns_sbwtime = le64_to_cpu(sbp[0]->s_wtime);
250 
251 		/* verify consistency between two super blocks */
252 		blocksize = BLOCK_SIZE << le32_to_cpu(sbp[0]->s_log_block_size);
253 		if (blocksize != nilfs->ns_blocksize) {
254 			printk(KERN_WARNING
255 			       "NILFS warning: blocksize differs between "
256 			       "two super blocks (%d != %d)\n",
257 			       blocksize, nilfs->ns_blocksize);
258 			goto scan_error;
259 		}
260 
261 		err = nilfs_store_log_cursor(nilfs, sbp[0]);
262 		if (err)
263 			goto scan_error;
264 
265 		/* drop clean flag to allow roll-forward and recovery */
266 		nilfs->ns_mount_state &= ~NILFS_VALID_FS;
267 		valid_fs = 0;
268 
269 		err = nilfs_search_super_root(nilfs, &ri);
270 		if (err)
271 			goto scan_error;
272 	}
273 
274 	err = nilfs_load_super_root(nilfs, sbi->s_super, ri.ri_super_root);
275 	if (unlikely(err)) {
276 		printk(KERN_ERR "NILFS: error loading super root.\n");
277 		goto failed;
278 	}
279 
280 	if (valid_fs)
281 		goto skip_recovery;
282 
283 	if (s_flags & MS_RDONLY) {
284 		__u64 features;
285 
286 		if (nilfs_test_opt(sbi, NORECOVERY)) {
287 			printk(KERN_INFO "NILFS: norecovery option specified. "
288 			       "skipping roll-forward recovery\n");
289 			goto skip_recovery;
290 		}
291 		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
292 			~NILFS_FEATURE_COMPAT_RO_SUPP;
293 		if (features) {
294 			printk(KERN_ERR "NILFS: couldn't proceed with "
295 			       "recovery because of unsupported optional "
296 			       "features (%llx)\n",
297 			       (unsigned long long)features);
298 			err = -EROFS;
299 			goto failed_unload;
300 		}
301 		if (really_read_only) {
302 			printk(KERN_ERR "NILFS: write access "
303 			       "unavailable, cannot proceed.\n");
304 			err = -EROFS;
305 			goto failed_unload;
306 		}
307 		sbi->s_super->s_flags &= ~MS_RDONLY;
308 	} else if (nilfs_test_opt(sbi, NORECOVERY)) {
309 		printk(KERN_ERR "NILFS: recovery cancelled because norecovery "
310 		       "option was specified for a read/write mount\n");
311 		err = -EINVAL;
312 		goto failed_unload;
313 	}
314 
315 	err = nilfs_salvage_orphan_logs(nilfs, sbi, &ri);
316 	if (err)
317 		goto failed_unload;
318 
319 	down_write(&nilfs->ns_sem);
320 	nilfs->ns_mount_state |= NILFS_VALID_FS; /* set "clean" flag */
321 	err = nilfs_cleanup_super(sbi);
322 	up_write(&nilfs->ns_sem);
323 
324 	if (err) {
325 		printk(KERN_ERR "NILFS: failed to update super block. "
326 		       "recovery unfinished.\n");
327 		goto failed_unload;
328 	}
329 	printk(KERN_INFO "NILFS: recovery complete.\n");
330 
331  skip_recovery:
332 	set_nilfs_loaded(nilfs);
333 	nilfs_clear_recovery_info(&ri);
334 	sbi->s_super->s_flags = s_flags;
335 	return 0;
336 
337  scan_error:
338 	printk(KERN_ERR "NILFS: error searching super root.\n");
339 	goto failed;
340 
341  failed_unload:
342 	iput(nilfs->ns_cpfile);
343 	iput(nilfs->ns_sufile);
344 	iput(nilfs->ns_dat);
345 
346  failed:
347 	nilfs_clear_recovery_info(&ri);
348 	sbi->s_super->s_flags = s_flags;
349 	return err;
350 }
351 
352 static unsigned long long nilfs_max_size(unsigned int blkbits)
353 {
354 	unsigned int max_bits;
355 	unsigned long long res = MAX_LFS_FILESIZE; /* page cache limit */
356 
357 	max_bits = blkbits + NILFS_BMAP_KEY_BIT; /* bmap size limit */
358 	if (max_bits < 64)
359 		res = min_t(unsigned long long, res, (1ULL << max_bits) - 1);
360 	return res;
361 }
362 
363 static int nilfs_store_disk_layout(struct the_nilfs *nilfs,
364 				   struct nilfs_super_block *sbp)
365 {
366 	if (le32_to_cpu(sbp->s_rev_level) < NILFS_MIN_SUPP_REV) {
367 		printk(KERN_ERR "NILFS: unsupported revision "
368 		       "(superblock rev.=%d.%d, current rev.=%d.%d). "
369 		       "Please check the version of mkfs.nilfs.\n",
370 		       le32_to_cpu(sbp->s_rev_level),
371 		       le16_to_cpu(sbp->s_minor_rev_level),
372 		       NILFS_CURRENT_REV, NILFS_MINOR_REV);
373 		return -EINVAL;
374 	}
375 	nilfs->ns_sbsize = le16_to_cpu(sbp->s_bytes);
376 	if (nilfs->ns_sbsize > BLOCK_SIZE)
377 		return -EINVAL;
378 
379 	nilfs->ns_inode_size = le16_to_cpu(sbp->s_inode_size);
380 	nilfs->ns_first_ino = le32_to_cpu(sbp->s_first_ino);
381 
382 	nilfs->ns_blocks_per_segment = le32_to_cpu(sbp->s_blocks_per_segment);
383 	if (nilfs->ns_blocks_per_segment < NILFS_SEG_MIN_BLOCKS) {
384 		printk(KERN_ERR "NILFS: too short segment.\n");
385 		return -EINVAL;
386 	}
387 
388 	nilfs->ns_first_data_block = le64_to_cpu(sbp->s_first_data_block);
389 	nilfs->ns_nsegments = le64_to_cpu(sbp->s_nsegments);
390 	nilfs->ns_r_segments_percentage =
391 		le32_to_cpu(sbp->s_r_segments_percentage);
392 	nilfs->ns_nrsvsegs =
393 		max_t(unsigned long, NILFS_MIN_NRSVSEGS,
394 		      DIV_ROUND_UP(nilfs->ns_nsegments *
395 				   nilfs->ns_r_segments_percentage, 100));
396 	nilfs->ns_crc_seed = le32_to_cpu(sbp->s_crc_seed);
397 	return 0;
398 }
399 
400 static int nilfs_valid_sb(struct nilfs_super_block *sbp)
401 {
402 	static unsigned char sum[4];
403 	const int sumoff = offsetof(struct nilfs_super_block, s_sum);
404 	size_t bytes;
405 	u32 crc;
406 
407 	if (!sbp || le16_to_cpu(sbp->s_magic) != NILFS_SUPER_MAGIC)
408 		return 0;
409 	bytes = le16_to_cpu(sbp->s_bytes);
410 	if (bytes > BLOCK_SIZE)
411 		return 0;
412 	crc = crc32_le(le32_to_cpu(sbp->s_crc_seed), (unsigned char *)sbp,
413 		       sumoff);
414 	crc = crc32_le(crc, sum, 4);
415 	crc = crc32_le(crc, (unsigned char *)sbp + sumoff + 4,
416 		       bytes - sumoff - 4);
417 	return crc == le32_to_cpu(sbp->s_sum);
418 }
419 
420 static int nilfs_sb2_bad_offset(struct nilfs_super_block *sbp, u64 offset)
421 {
422 	return offset < ((le64_to_cpu(sbp->s_nsegments) *
423 			  le32_to_cpu(sbp->s_blocks_per_segment)) <<
424 			 (le32_to_cpu(sbp->s_log_block_size) + 10));
425 }
426 
427 static void nilfs_release_super_block(struct the_nilfs *nilfs)
428 {
429 	int i;
430 
431 	for (i = 0; i < 2; i++) {
432 		if (nilfs->ns_sbp[i]) {
433 			brelse(nilfs->ns_sbh[i]);
434 			nilfs->ns_sbh[i] = NULL;
435 			nilfs->ns_sbp[i] = NULL;
436 		}
437 	}
438 }
439 
440 void nilfs_fall_back_super_block(struct the_nilfs *nilfs)
441 {
442 	brelse(nilfs->ns_sbh[0]);
443 	nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
444 	nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
445 	nilfs->ns_sbh[1] = NULL;
446 	nilfs->ns_sbp[1] = NULL;
447 }
448 
449 void nilfs_swap_super_block(struct the_nilfs *nilfs)
450 {
451 	struct buffer_head *tsbh = nilfs->ns_sbh[0];
452 	struct nilfs_super_block *tsbp = nilfs->ns_sbp[0];
453 
454 	nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
455 	nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
456 	nilfs->ns_sbh[1] = tsbh;
457 	nilfs->ns_sbp[1] = tsbp;
458 }
459 
460 static int nilfs_load_super_block(struct the_nilfs *nilfs,
461 				  struct super_block *sb, int blocksize,
462 				  struct nilfs_super_block **sbpp)
463 {
464 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
465 	struct buffer_head **sbh = nilfs->ns_sbh;
466 	u64 sb2off = NILFS_SB2_OFFSET_BYTES(nilfs->ns_bdev->bd_inode->i_size);
467 	int valid[2], swp = 0;
468 
469 	sbp[0] = nilfs_read_super_block(sb, NILFS_SB_OFFSET_BYTES, blocksize,
470 					&sbh[0]);
471 	sbp[1] = nilfs_read_super_block(sb, sb2off, blocksize, &sbh[1]);
472 
473 	if (!sbp[0]) {
474 		if (!sbp[1]) {
475 			printk(KERN_ERR "NILFS: unable to read superblock\n");
476 			return -EIO;
477 		}
478 		printk(KERN_WARNING
479 		       "NILFS warning: unable to read primary superblock\n");
480 	} else if (!sbp[1])
481 		printk(KERN_WARNING
482 		       "NILFS warning: unable to read secondary superblock\n");
483 
484 	/*
485 	 * Compare two super blocks and set 1 in swp if the secondary
486 	 * super block is valid and newer.  Otherwise, set 0 in swp.
487 	 */
488 	valid[0] = nilfs_valid_sb(sbp[0]);
489 	valid[1] = nilfs_valid_sb(sbp[1]);
490 	swp = valid[1] && (!valid[0] ||
491 			   le64_to_cpu(sbp[1]->s_last_cno) >
492 			   le64_to_cpu(sbp[0]->s_last_cno));
493 
494 	if (valid[swp] && nilfs_sb2_bad_offset(sbp[swp], sb2off)) {
495 		brelse(sbh[1]);
496 		sbh[1] = NULL;
497 		sbp[1] = NULL;
498 		swp = 0;
499 	}
500 	if (!valid[swp]) {
501 		nilfs_release_super_block(nilfs);
502 		printk(KERN_ERR "NILFS: Can't find nilfs on dev %s.\n",
503 		       sb->s_id);
504 		return -EINVAL;
505 	}
506 
507 	if (!valid[!swp])
508 		printk(KERN_WARNING "NILFS warning: broken superblock. "
509 		       "using spare superblock.\n");
510 	if (swp)
511 		nilfs_swap_super_block(nilfs);
512 
513 	nilfs->ns_sbwcount = 0;
514 	nilfs->ns_sbwtime = le64_to_cpu(sbp[0]->s_wtime);
515 	nilfs->ns_prot_seq = le64_to_cpu(sbp[valid[1] & !swp]->s_last_seq);
516 	*sbpp = sbp[0];
517 	return 0;
518 }
519 
520 /**
521  * init_nilfs - initialize a NILFS instance.
522  * @nilfs: the_nilfs structure
523  * @sbi: nilfs_sb_info
524  * @sb: super block
525  * @data: mount options
526  *
527  * init_nilfs() performs common initialization per block device (e.g.
528  * reading the super block, getting disk layout information, initializing
529  * shared fields in the_nilfs).
530  *
531  * Return Value: On success, 0 is returned. On error, a negative error
532  * code is returned.
533  */
534 int init_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi, char *data)
535 {
536 	struct super_block *sb = sbi->s_super;
537 	struct nilfs_super_block *sbp;
538 	int blocksize;
539 	int err;
540 
541 	down_write(&nilfs->ns_sem);
542 
543 	blocksize = sb_min_blocksize(sb, NILFS_MIN_BLOCK_SIZE);
544 	if (!blocksize) {
545 		printk(KERN_ERR "NILFS: unable to set blocksize\n");
546 		err = -EINVAL;
547 		goto out;
548 	}
549 	err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
550 	if (err)
551 		goto out;
552 
553 	err = nilfs_store_magic_and_option(sb, sbp, data);
554 	if (err)
555 		goto failed_sbh;
556 
557 	err = nilfs_check_feature_compatibility(sb, sbp);
558 	if (err)
559 		goto failed_sbh;
560 
561 	blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
562 	if (blocksize < NILFS_MIN_BLOCK_SIZE ||
563 	    blocksize > NILFS_MAX_BLOCK_SIZE) {
564 		printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
565 		       "filesystem blocksize %d\n", blocksize);
566 		err = -EINVAL;
567 		goto failed_sbh;
568 	}
569 	if (sb->s_blocksize != blocksize) {
570 		int hw_blocksize = bdev_logical_block_size(sb->s_bdev);
571 
572 		if (blocksize < hw_blocksize) {
573 			printk(KERN_ERR
574 			       "NILFS: blocksize %d too small for device "
575 			       "(sector-size = %d).\n",
576 			       blocksize, hw_blocksize);
577 			err = -EINVAL;
578 			goto failed_sbh;
579 		}
580 		nilfs_release_super_block(nilfs);
581 		sb_set_blocksize(sb, blocksize);
582 
583 		err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
584 		if (err)
585 			goto out;
586 			/* not failed_sbh; sbh is released automatically
587 			   when reloading fails. */
588 	}
589 	nilfs->ns_blocksize_bits = sb->s_blocksize_bits;
590 	nilfs->ns_blocksize = blocksize;
591 
592 	err = nilfs_store_disk_layout(nilfs, sbp);
593 	if (err)
594 		goto failed_sbh;
595 
596 	sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
597 
598 	nilfs->ns_mount_state = le16_to_cpu(sbp->s_state);
599 
600 	err = nilfs_store_log_cursor(nilfs, sbp);
601 	if (err)
602 		goto failed_sbh;
603 
604 	set_nilfs_init(nilfs);
605 	err = 0;
606  out:
607 	up_write(&nilfs->ns_sem);
608 	return err;
609 
610  failed_sbh:
611 	nilfs_release_super_block(nilfs);
612 	goto out;
613 }
614 
615 int nilfs_discard_segments(struct the_nilfs *nilfs, __u64 *segnump,
616 			    size_t nsegs)
617 {
618 	sector_t seg_start, seg_end;
619 	sector_t start = 0, nblocks = 0;
620 	unsigned int sects_per_block;
621 	__u64 *sn;
622 	int ret = 0;
623 
624 	sects_per_block = (1 << nilfs->ns_blocksize_bits) /
625 		bdev_logical_block_size(nilfs->ns_bdev);
626 	for (sn = segnump; sn < segnump + nsegs; sn++) {
627 		nilfs_get_segment_range(nilfs, *sn, &seg_start, &seg_end);
628 
629 		if (!nblocks) {
630 			start = seg_start;
631 			nblocks = seg_end - seg_start + 1;
632 		} else if (start + nblocks == seg_start) {
633 			nblocks += seg_end - seg_start + 1;
634 		} else {
635 			ret = blkdev_issue_discard(nilfs->ns_bdev,
636 						   start * sects_per_block,
637 						   nblocks * sects_per_block,
638 						   GFP_NOFS, 0);
639 			if (ret < 0)
640 				return ret;
641 			nblocks = 0;
642 		}
643 	}
644 	if (nblocks)
645 		ret = blkdev_issue_discard(nilfs->ns_bdev,
646 					   start * sects_per_block,
647 					   nblocks * sects_per_block,
648 					   GFP_NOFS, 0);
649 	return ret;
650 }
651 
652 int nilfs_count_free_blocks(struct the_nilfs *nilfs, sector_t *nblocks)
653 {
654 	struct inode *dat = nilfs_dat_inode(nilfs);
655 	unsigned long ncleansegs;
656 
657 	down_read(&NILFS_MDT(dat)->mi_sem);	/* XXX */
658 	ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile);
659 	up_read(&NILFS_MDT(dat)->mi_sem);	/* XXX */
660 	*nblocks = (sector_t)ncleansegs * nilfs->ns_blocks_per_segment;
661 	return 0;
662 }
663 
664 int nilfs_near_disk_full(struct the_nilfs *nilfs)
665 {
666 	unsigned long ncleansegs, nincsegs;
667 
668 	ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile);
669 	nincsegs = atomic_read(&nilfs->ns_ndirtyblks) /
670 		nilfs->ns_blocks_per_segment + 1;
671 
672 	return ncleansegs <= nilfs->ns_nrsvsegs + nincsegs;
673 }
674 
675 struct nilfs_root *nilfs_lookup_root(struct the_nilfs *nilfs, __u64 cno)
676 {
677 	struct rb_node *n;
678 	struct nilfs_root *root;
679 
680 	spin_lock(&nilfs->ns_cptree_lock);
681 	n = nilfs->ns_cptree.rb_node;
682 	while (n) {
683 		root = rb_entry(n, struct nilfs_root, rb_node);
684 
685 		if (cno < root->cno) {
686 			n = n->rb_left;
687 		} else if (cno > root->cno) {
688 			n = n->rb_right;
689 		} else {
690 			atomic_inc(&root->count);
691 			spin_unlock(&nilfs->ns_cptree_lock);
692 			return root;
693 		}
694 	}
695 	spin_unlock(&nilfs->ns_cptree_lock);
696 
697 	return NULL;
698 }
699 
700 struct nilfs_root *
701 nilfs_find_or_create_root(struct the_nilfs *nilfs, __u64 cno)
702 {
703 	struct rb_node **p, *parent;
704 	struct nilfs_root *root, *new;
705 
706 	root = nilfs_lookup_root(nilfs, cno);
707 	if (root)
708 		return root;
709 
710 	new = kmalloc(sizeof(*root), GFP_KERNEL);
711 	if (!new)
712 		return NULL;
713 
714 	spin_lock(&nilfs->ns_cptree_lock);
715 
716 	p = &nilfs->ns_cptree.rb_node;
717 	parent = NULL;
718 
719 	while (*p) {
720 		parent = *p;
721 		root = rb_entry(parent, struct nilfs_root, rb_node);
722 
723 		if (cno < root->cno) {
724 			p = &(*p)->rb_left;
725 		} else if (cno > root->cno) {
726 			p = &(*p)->rb_right;
727 		} else {
728 			atomic_inc(&root->count);
729 			spin_unlock(&nilfs->ns_cptree_lock);
730 			kfree(new);
731 			return root;
732 		}
733 	}
734 
735 	new->cno = cno;
736 	new->ifile = NULL;
737 	new->nilfs = nilfs;
738 	atomic_set(&new->count, 1);
739 	atomic_set(&new->inodes_count, 0);
740 	atomic_set(&new->blocks_count, 0);
741 
742 	rb_link_node(&new->rb_node, parent, p);
743 	rb_insert_color(&new->rb_node, &nilfs->ns_cptree);
744 
745 	spin_unlock(&nilfs->ns_cptree_lock);
746 
747 	return new;
748 }
749 
750 void nilfs_put_root(struct nilfs_root *root)
751 {
752 	if (atomic_dec_and_test(&root->count)) {
753 		struct the_nilfs *nilfs = root->nilfs;
754 
755 		spin_lock(&nilfs->ns_cptree_lock);
756 		rb_erase(&root->rb_node, &nilfs->ns_cptree);
757 		spin_unlock(&nilfs->ns_cptree_lock);
758 		if (root->ifile)
759 			iput(root->ifile);
760 
761 		kfree(root);
762 	}
763 }
764