xref: /openbmc/linux/fs/nilfs2/the_nilfs.c (revision 0edbfea5)
1 /*
2  * the_nilfs.c - the_nilfs shared structure.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * Written by Ryusuke Konishi.
17  *
18  */
19 
20 #include <linux/buffer_head.h>
21 #include <linux/slab.h>
22 #include <linux/blkdev.h>
23 #include <linux/backing-dev.h>
24 #include <linux/random.h>
25 #include <linux/crc32.h>
26 #include "nilfs.h"
27 #include "segment.h"
28 #include "alloc.h"
29 #include "cpfile.h"
30 #include "sufile.h"
31 #include "dat.h"
32 #include "segbuf.h"
33 
34 
35 static int nilfs_valid_sb(struct nilfs_super_block *sbp);
36 
37 void nilfs_set_last_segment(struct the_nilfs *nilfs,
38 			    sector_t start_blocknr, u64 seq, __u64 cno)
39 {
40 	spin_lock(&nilfs->ns_last_segment_lock);
41 	nilfs->ns_last_pseg = start_blocknr;
42 	nilfs->ns_last_seq = seq;
43 	nilfs->ns_last_cno = cno;
44 
45 	if (!nilfs_sb_dirty(nilfs)) {
46 		if (nilfs->ns_prev_seq == nilfs->ns_last_seq)
47 			goto stay_cursor;
48 
49 		set_nilfs_sb_dirty(nilfs);
50 	}
51 	nilfs->ns_prev_seq = nilfs->ns_last_seq;
52 
53  stay_cursor:
54 	spin_unlock(&nilfs->ns_last_segment_lock);
55 }
56 
57 /**
58  * alloc_nilfs - allocate a nilfs object
59  * @bdev: block device to which the_nilfs is related
60  *
61  * Return Value: On success, pointer to the_nilfs is returned.
62  * On error, NULL is returned.
63  */
64 struct the_nilfs *alloc_nilfs(struct block_device *bdev)
65 {
66 	struct the_nilfs *nilfs;
67 
68 	nilfs = kzalloc(sizeof(*nilfs), GFP_KERNEL);
69 	if (!nilfs)
70 		return NULL;
71 
72 	nilfs->ns_bdev = bdev;
73 	atomic_set(&nilfs->ns_ndirtyblks, 0);
74 	init_rwsem(&nilfs->ns_sem);
75 	mutex_init(&nilfs->ns_snapshot_mount_mutex);
76 	INIT_LIST_HEAD(&nilfs->ns_dirty_files);
77 	INIT_LIST_HEAD(&nilfs->ns_gc_inodes);
78 	spin_lock_init(&nilfs->ns_inode_lock);
79 	spin_lock_init(&nilfs->ns_next_gen_lock);
80 	spin_lock_init(&nilfs->ns_last_segment_lock);
81 	nilfs->ns_cptree = RB_ROOT;
82 	spin_lock_init(&nilfs->ns_cptree_lock);
83 	init_rwsem(&nilfs->ns_segctor_sem);
84 	nilfs->ns_sb_update_freq = NILFS_SB_FREQ;
85 
86 	return nilfs;
87 }
88 
89 /**
90  * destroy_nilfs - destroy nilfs object
91  * @nilfs: nilfs object to be released
92  */
93 void destroy_nilfs(struct the_nilfs *nilfs)
94 {
95 	might_sleep();
96 	if (nilfs_init(nilfs)) {
97 		nilfs_sysfs_delete_device_group(nilfs);
98 		brelse(nilfs->ns_sbh[0]);
99 		brelse(nilfs->ns_sbh[1]);
100 	}
101 	kfree(nilfs);
102 }
103 
104 static int nilfs_load_super_root(struct the_nilfs *nilfs,
105 				 struct super_block *sb, sector_t sr_block)
106 {
107 	struct buffer_head *bh_sr;
108 	struct nilfs_super_root *raw_sr;
109 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
110 	struct nilfs_inode *rawi;
111 	unsigned int dat_entry_size, segment_usage_size, checkpoint_size;
112 	unsigned int inode_size;
113 	int err;
114 
115 	err = nilfs_read_super_root_block(nilfs, sr_block, &bh_sr, 1);
116 	if (unlikely(err))
117 		return err;
118 
119 	down_read(&nilfs->ns_sem);
120 	dat_entry_size = le16_to_cpu(sbp[0]->s_dat_entry_size);
121 	checkpoint_size = le16_to_cpu(sbp[0]->s_checkpoint_size);
122 	segment_usage_size = le16_to_cpu(sbp[0]->s_segment_usage_size);
123 	up_read(&nilfs->ns_sem);
124 
125 	inode_size = nilfs->ns_inode_size;
126 
127 	rawi = (void *)bh_sr->b_data + NILFS_SR_DAT_OFFSET(inode_size);
128 	err = nilfs_dat_read(sb, dat_entry_size, rawi, &nilfs->ns_dat);
129 	if (err)
130 		goto failed;
131 
132 	rawi = (void *)bh_sr->b_data + NILFS_SR_CPFILE_OFFSET(inode_size);
133 	err = nilfs_cpfile_read(sb, checkpoint_size, rawi, &nilfs->ns_cpfile);
134 	if (err)
135 		goto failed_dat;
136 
137 	rawi = (void *)bh_sr->b_data + NILFS_SR_SUFILE_OFFSET(inode_size);
138 	err = nilfs_sufile_read(sb, segment_usage_size, rawi,
139 				&nilfs->ns_sufile);
140 	if (err)
141 		goto failed_cpfile;
142 
143 	raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
144 	nilfs->ns_nongc_ctime = le64_to_cpu(raw_sr->sr_nongc_ctime);
145 
146  failed:
147 	brelse(bh_sr);
148 	return err;
149 
150  failed_cpfile:
151 	iput(nilfs->ns_cpfile);
152 
153  failed_dat:
154 	iput(nilfs->ns_dat);
155 	goto failed;
156 }
157 
158 static void nilfs_init_recovery_info(struct nilfs_recovery_info *ri)
159 {
160 	memset(ri, 0, sizeof(*ri));
161 	INIT_LIST_HEAD(&ri->ri_used_segments);
162 }
163 
164 static void nilfs_clear_recovery_info(struct nilfs_recovery_info *ri)
165 {
166 	nilfs_dispose_segment_list(&ri->ri_used_segments);
167 }
168 
169 /**
170  * nilfs_store_log_cursor - load log cursor from a super block
171  * @nilfs: nilfs object
172  * @sbp: buffer storing super block to be read
173  *
174  * nilfs_store_log_cursor() reads the last position of the log
175  * containing a super root from a given super block, and initializes
176  * relevant information on the nilfs object preparatory for log
177  * scanning and recovery.
178  */
179 static int nilfs_store_log_cursor(struct the_nilfs *nilfs,
180 				  struct nilfs_super_block *sbp)
181 {
182 	int ret = 0;
183 
184 	nilfs->ns_last_pseg = le64_to_cpu(sbp->s_last_pseg);
185 	nilfs->ns_last_cno = le64_to_cpu(sbp->s_last_cno);
186 	nilfs->ns_last_seq = le64_to_cpu(sbp->s_last_seq);
187 
188 	nilfs->ns_prev_seq = nilfs->ns_last_seq;
189 	nilfs->ns_seg_seq = nilfs->ns_last_seq;
190 	nilfs->ns_segnum =
191 		nilfs_get_segnum_of_block(nilfs, nilfs->ns_last_pseg);
192 	nilfs->ns_cno = nilfs->ns_last_cno + 1;
193 	if (nilfs->ns_segnum >= nilfs->ns_nsegments) {
194 		printk(KERN_ERR "NILFS invalid last segment number.\n");
195 		ret = -EINVAL;
196 	}
197 	return ret;
198 }
199 
200 /**
201  * load_nilfs - load and recover the nilfs
202  * @nilfs: the_nilfs structure to be released
203  * @sb: super block isntance used to recover past segment
204  *
205  * load_nilfs() searches and load the latest super root,
206  * attaches the last segment, and does recovery if needed.
207  * The caller must call this exclusively for simultaneous mounts.
208  */
209 int load_nilfs(struct the_nilfs *nilfs, struct super_block *sb)
210 {
211 	struct nilfs_recovery_info ri;
212 	unsigned int s_flags = sb->s_flags;
213 	int really_read_only = bdev_read_only(nilfs->ns_bdev);
214 	int valid_fs = nilfs_valid_fs(nilfs);
215 	int err;
216 
217 	if (!valid_fs) {
218 		printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
219 		if (s_flags & MS_RDONLY) {
220 			printk(KERN_INFO "NILFS: INFO: recovery "
221 			       "required for readonly filesystem.\n");
222 			printk(KERN_INFO "NILFS: write access will "
223 			       "be enabled during recovery.\n");
224 		}
225 	}
226 
227 	nilfs_init_recovery_info(&ri);
228 
229 	err = nilfs_search_super_root(nilfs, &ri);
230 	if (unlikely(err)) {
231 		struct nilfs_super_block **sbp = nilfs->ns_sbp;
232 		int blocksize;
233 
234 		if (err != -EINVAL)
235 			goto scan_error;
236 
237 		if (!nilfs_valid_sb(sbp[1])) {
238 			printk(KERN_WARNING
239 			       "NILFS warning: unable to fall back to spare"
240 			       "super block\n");
241 			goto scan_error;
242 		}
243 		printk(KERN_INFO
244 		       "NILFS: try rollback from an earlier position\n");
245 
246 		/*
247 		 * restore super block with its spare and reconfigure
248 		 * relevant states of the nilfs object.
249 		 */
250 		memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
251 		nilfs->ns_crc_seed = le32_to_cpu(sbp[0]->s_crc_seed);
252 		nilfs->ns_sbwtime = le64_to_cpu(sbp[0]->s_wtime);
253 
254 		/* verify consistency between two super blocks */
255 		blocksize = BLOCK_SIZE << le32_to_cpu(sbp[0]->s_log_block_size);
256 		if (blocksize != nilfs->ns_blocksize) {
257 			printk(KERN_WARNING
258 			       "NILFS warning: blocksize differs between "
259 			       "two super blocks (%d != %d)\n",
260 			       blocksize, nilfs->ns_blocksize);
261 			goto scan_error;
262 		}
263 
264 		err = nilfs_store_log_cursor(nilfs, sbp[0]);
265 		if (err)
266 			goto scan_error;
267 
268 		/* drop clean flag to allow roll-forward and recovery */
269 		nilfs->ns_mount_state &= ~NILFS_VALID_FS;
270 		valid_fs = 0;
271 
272 		err = nilfs_search_super_root(nilfs, &ri);
273 		if (err)
274 			goto scan_error;
275 	}
276 
277 	err = nilfs_load_super_root(nilfs, sb, ri.ri_super_root);
278 	if (unlikely(err)) {
279 		printk(KERN_ERR "NILFS: error loading super root.\n");
280 		goto failed;
281 	}
282 
283 	if (valid_fs)
284 		goto skip_recovery;
285 
286 	if (s_flags & MS_RDONLY) {
287 		__u64 features;
288 
289 		if (nilfs_test_opt(nilfs, NORECOVERY)) {
290 			printk(KERN_INFO "NILFS: norecovery option specified. "
291 			       "skipping roll-forward recovery\n");
292 			goto skip_recovery;
293 		}
294 		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
295 			~NILFS_FEATURE_COMPAT_RO_SUPP;
296 		if (features) {
297 			printk(KERN_ERR "NILFS: couldn't proceed with "
298 			       "recovery because of unsupported optional "
299 			       "features (%llx)\n",
300 			       (unsigned long long)features);
301 			err = -EROFS;
302 			goto failed_unload;
303 		}
304 		if (really_read_only) {
305 			printk(KERN_ERR "NILFS: write access "
306 			       "unavailable, cannot proceed.\n");
307 			err = -EROFS;
308 			goto failed_unload;
309 		}
310 		sb->s_flags &= ~MS_RDONLY;
311 	} else if (nilfs_test_opt(nilfs, NORECOVERY)) {
312 		printk(KERN_ERR "NILFS: recovery cancelled because norecovery "
313 		       "option was specified for a read/write mount\n");
314 		err = -EINVAL;
315 		goto failed_unload;
316 	}
317 
318 	err = nilfs_salvage_orphan_logs(nilfs, sb, &ri);
319 	if (err)
320 		goto failed_unload;
321 
322 	down_write(&nilfs->ns_sem);
323 	nilfs->ns_mount_state |= NILFS_VALID_FS; /* set "clean" flag */
324 	err = nilfs_cleanup_super(sb);
325 	up_write(&nilfs->ns_sem);
326 
327 	if (err) {
328 		printk(KERN_ERR "NILFS: failed to update super block. "
329 		       "recovery unfinished.\n");
330 		goto failed_unload;
331 	}
332 	printk(KERN_INFO "NILFS: recovery complete.\n");
333 
334  skip_recovery:
335 	nilfs_clear_recovery_info(&ri);
336 	sb->s_flags = s_flags;
337 	return 0;
338 
339  scan_error:
340 	printk(KERN_ERR "NILFS: error searching super root.\n");
341 	goto failed;
342 
343  failed_unload:
344 	iput(nilfs->ns_cpfile);
345 	iput(nilfs->ns_sufile);
346 	iput(nilfs->ns_dat);
347 
348  failed:
349 	nilfs_clear_recovery_info(&ri);
350 	sb->s_flags = s_flags;
351 	return err;
352 }
353 
354 static unsigned long long nilfs_max_size(unsigned int blkbits)
355 {
356 	unsigned int max_bits;
357 	unsigned long long res = MAX_LFS_FILESIZE; /* page cache limit */
358 
359 	max_bits = blkbits + NILFS_BMAP_KEY_BIT; /* bmap size limit */
360 	if (max_bits < 64)
361 		res = min_t(unsigned long long, res, (1ULL << max_bits) - 1);
362 	return res;
363 }
364 
365 /**
366  * nilfs_nrsvsegs - calculate the number of reserved segments
367  * @nilfs: nilfs object
368  * @nsegs: total number of segments
369  */
370 unsigned long nilfs_nrsvsegs(struct the_nilfs *nilfs, unsigned long nsegs)
371 {
372 	return max_t(unsigned long, NILFS_MIN_NRSVSEGS,
373 		     DIV_ROUND_UP(nsegs * nilfs->ns_r_segments_percentage,
374 				  100));
375 }
376 
377 void nilfs_set_nsegments(struct the_nilfs *nilfs, unsigned long nsegs)
378 {
379 	nilfs->ns_nsegments = nsegs;
380 	nilfs->ns_nrsvsegs = nilfs_nrsvsegs(nilfs, nsegs);
381 }
382 
383 static int nilfs_store_disk_layout(struct the_nilfs *nilfs,
384 				   struct nilfs_super_block *sbp)
385 {
386 	if (le32_to_cpu(sbp->s_rev_level) < NILFS_MIN_SUPP_REV) {
387 		printk(KERN_ERR "NILFS: unsupported revision "
388 		       "(superblock rev.=%d.%d, current rev.=%d.%d). "
389 		       "Please check the version of mkfs.nilfs.\n",
390 		       le32_to_cpu(sbp->s_rev_level),
391 		       le16_to_cpu(sbp->s_minor_rev_level),
392 		       NILFS_CURRENT_REV, NILFS_MINOR_REV);
393 		return -EINVAL;
394 	}
395 	nilfs->ns_sbsize = le16_to_cpu(sbp->s_bytes);
396 	if (nilfs->ns_sbsize > BLOCK_SIZE)
397 		return -EINVAL;
398 
399 	nilfs->ns_inode_size = le16_to_cpu(sbp->s_inode_size);
400 	if (nilfs->ns_inode_size > nilfs->ns_blocksize) {
401 		printk(KERN_ERR "NILFS: too large inode size: %d bytes.\n",
402 		       nilfs->ns_inode_size);
403 		return -EINVAL;
404 	} else if (nilfs->ns_inode_size < NILFS_MIN_INODE_SIZE) {
405 		printk(KERN_ERR "NILFS: too small inode size: %d bytes.\n",
406 		       nilfs->ns_inode_size);
407 		return -EINVAL;
408 	}
409 
410 	nilfs->ns_first_ino = le32_to_cpu(sbp->s_first_ino);
411 
412 	nilfs->ns_blocks_per_segment = le32_to_cpu(sbp->s_blocks_per_segment);
413 	if (nilfs->ns_blocks_per_segment < NILFS_SEG_MIN_BLOCKS) {
414 		printk(KERN_ERR "NILFS: too short segment.\n");
415 		return -EINVAL;
416 	}
417 
418 	nilfs->ns_first_data_block = le64_to_cpu(sbp->s_first_data_block);
419 	nilfs->ns_r_segments_percentage =
420 		le32_to_cpu(sbp->s_r_segments_percentage);
421 	if (nilfs->ns_r_segments_percentage < 1 ||
422 	    nilfs->ns_r_segments_percentage > 99) {
423 		printk(KERN_ERR "NILFS: invalid reserved segments percentage.\n");
424 		return -EINVAL;
425 	}
426 
427 	nilfs_set_nsegments(nilfs, le64_to_cpu(sbp->s_nsegments));
428 	nilfs->ns_crc_seed = le32_to_cpu(sbp->s_crc_seed);
429 	return 0;
430 }
431 
432 static int nilfs_valid_sb(struct nilfs_super_block *sbp)
433 {
434 	static unsigned char sum[4];
435 	const int sumoff = offsetof(struct nilfs_super_block, s_sum);
436 	size_t bytes;
437 	u32 crc;
438 
439 	if (!sbp || le16_to_cpu(sbp->s_magic) != NILFS_SUPER_MAGIC)
440 		return 0;
441 	bytes = le16_to_cpu(sbp->s_bytes);
442 	if (bytes > BLOCK_SIZE)
443 		return 0;
444 	crc = crc32_le(le32_to_cpu(sbp->s_crc_seed), (unsigned char *)sbp,
445 		       sumoff);
446 	crc = crc32_le(crc, sum, 4);
447 	crc = crc32_le(crc, (unsigned char *)sbp + sumoff + 4,
448 		       bytes - sumoff - 4);
449 	return crc == le32_to_cpu(sbp->s_sum);
450 }
451 
452 static int nilfs_sb2_bad_offset(struct nilfs_super_block *sbp, u64 offset)
453 {
454 	return offset < ((le64_to_cpu(sbp->s_nsegments) *
455 			  le32_to_cpu(sbp->s_blocks_per_segment)) <<
456 			 (le32_to_cpu(sbp->s_log_block_size) + 10));
457 }
458 
459 static void nilfs_release_super_block(struct the_nilfs *nilfs)
460 {
461 	int i;
462 
463 	for (i = 0; i < 2; i++) {
464 		if (nilfs->ns_sbp[i]) {
465 			brelse(nilfs->ns_sbh[i]);
466 			nilfs->ns_sbh[i] = NULL;
467 			nilfs->ns_sbp[i] = NULL;
468 		}
469 	}
470 }
471 
472 void nilfs_fall_back_super_block(struct the_nilfs *nilfs)
473 {
474 	brelse(nilfs->ns_sbh[0]);
475 	nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
476 	nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
477 	nilfs->ns_sbh[1] = NULL;
478 	nilfs->ns_sbp[1] = NULL;
479 }
480 
481 void nilfs_swap_super_block(struct the_nilfs *nilfs)
482 {
483 	struct buffer_head *tsbh = nilfs->ns_sbh[0];
484 	struct nilfs_super_block *tsbp = nilfs->ns_sbp[0];
485 
486 	nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
487 	nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
488 	nilfs->ns_sbh[1] = tsbh;
489 	nilfs->ns_sbp[1] = tsbp;
490 }
491 
492 static int nilfs_load_super_block(struct the_nilfs *nilfs,
493 				  struct super_block *sb, int blocksize,
494 				  struct nilfs_super_block **sbpp)
495 {
496 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
497 	struct buffer_head **sbh = nilfs->ns_sbh;
498 	u64 sb2off = NILFS_SB2_OFFSET_BYTES(nilfs->ns_bdev->bd_inode->i_size);
499 	int valid[2], swp = 0;
500 
501 	sbp[0] = nilfs_read_super_block(sb, NILFS_SB_OFFSET_BYTES, blocksize,
502 					&sbh[0]);
503 	sbp[1] = nilfs_read_super_block(sb, sb2off, blocksize, &sbh[1]);
504 
505 	if (!sbp[0]) {
506 		if (!sbp[1]) {
507 			printk(KERN_ERR "NILFS: unable to read superblock\n");
508 			return -EIO;
509 		}
510 		printk(KERN_WARNING
511 		       "NILFS warning: unable to read primary superblock "
512 		       "(blocksize = %d)\n", blocksize);
513 	} else if (!sbp[1]) {
514 		printk(KERN_WARNING
515 		       "NILFS warning: unable to read secondary superblock "
516 		       "(blocksize = %d)\n", blocksize);
517 	}
518 
519 	/*
520 	 * Compare two super blocks and set 1 in swp if the secondary
521 	 * super block is valid and newer.  Otherwise, set 0 in swp.
522 	 */
523 	valid[0] = nilfs_valid_sb(sbp[0]);
524 	valid[1] = nilfs_valid_sb(sbp[1]);
525 	swp = valid[1] && (!valid[0] ||
526 			   le64_to_cpu(sbp[1]->s_last_cno) >
527 			   le64_to_cpu(sbp[0]->s_last_cno));
528 
529 	if (valid[swp] && nilfs_sb2_bad_offset(sbp[swp], sb2off)) {
530 		brelse(sbh[1]);
531 		sbh[1] = NULL;
532 		sbp[1] = NULL;
533 		valid[1] = 0;
534 		swp = 0;
535 	}
536 	if (!valid[swp]) {
537 		nilfs_release_super_block(nilfs);
538 		printk(KERN_ERR "NILFS: Can't find nilfs on dev %s.\n",
539 		       sb->s_id);
540 		return -EINVAL;
541 	}
542 
543 	if (!valid[!swp])
544 		printk(KERN_WARNING "NILFS warning: broken superblock. "
545 		       "using spare superblock (blocksize = %d).\n", blocksize);
546 	if (swp)
547 		nilfs_swap_super_block(nilfs);
548 
549 	nilfs->ns_sbwcount = 0;
550 	nilfs->ns_sbwtime = le64_to_cpu(sbp[0]->s_wtime);
551 	nilfs->ns_prot_seq = le64_to_cpu(sbp[valid[1] & !swp]->s_last_seq);
552 	*sbpp = sbp[0];
553 	return 0;
554 }
555 
556 /**
557  * init_nilfs - initialize a NILFS instance.
558  * @nilfs: the_nilfs structure
559  * @sb: super block
560  * @data: mount options
561  *
562  * init_nilfs() performs common initialization per block device (e.g.
563  * reading the super block, getting disk layout information, initializing
564  * shared fields in the_nilfs).
565  *
566  * Return Value: On success, 0 is returned. On error, a negative error
567  * code is returned.
568  */
569 int init_nilfs(struct the_nilfs *nilfs, struct super_block *sb, char *data)
570 {
571 	struct nilfs_super_block *sbp;
572 	int blocksize;
573 	int err;
574 
575 	down_write(&nilfs->ns_sem);
576 
577 	blocksize = sb_min_blocksize(sb, NILFS_MIN_BLOCK_SIZE);
578 	if (!blocksize) {
579 		printk(KERN_ERR "NILFS: unable to set blocksize\n");
580 		err = -EINVAL;
581 		goto out;
582 	}
583 	err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
584 	if (err)
585 		goto out;
586 
587 	err = nilfs_store_magic_and_option(sb, sbp, data);
588 	if (err)
589 		goto failed_sbh;
590 
591 	err = nilfs_check_feature_compatibility(sb, sbp);
592 	if (err)
593 		goto failed_sbh;
594 
595 	blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
596 	if (blocksize < NILFS_MIN_BLOCK_SIZE ||
597 	    blocksize > NILFS_MAX_BLOCK_SIZE) {
598 		printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
599 		       "filesystem blocksize %d\n", blocksize);
600 		err = -EINVAL;
601 		goto failed_sbh;
602 	}
603 	if (sb->s_blocksize != blocksize) {
604 		int hw_blocksize = bdev_logical_block_size(sb->s_bdev);
605 
606 		if (blocksize < hw_blocksize) {
607 			printk(KERN_ERR
608 			       "NILFS: blocksize %d too small for device "
609 			       "(sector-size = %d).\n",
610 			       blocksize, hw_blocksize);
611 			err = -EINVAL;
612 			goto failed_sbh;
613 		}
614 		nilfs_release_super_block(nilfs);
615 		sb_set_blocksize(sb, blocksize);
616 
617 		err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
618 		if (err)
619 			goto out;
620 			/*
621 			 * Not to failed_sbh; sbh is released automatically
622 			 * when reloading fails.
623 			 */
624 	}
625 	nilfs->ns_blocksize_bits = sb->s_blocksize_bits;
626 	nilfs->ns_blocksize = blocksize;
627 
628 	get_random_bytes(&nilfs->ns_next_generation,
629 			 sizeof(nilfs->ns_next_generation));
630 
631 	err = nilfs_store_disk_layout(nilfs, sbp);
632 	if (err)
633 		goto failed_sbh;
634 
635 	sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
636 
637 	nilfs->ns_mount_state = le16_to_cpu(sbp->s_state);
638 
639 	err = nilfs_store_log_cursor(nilfs, sbp);
640 	if (err)
641 		goto failed_sbh;
642 
643 	err = nilfs_sysfs_create_device_group(sb);
644 	if (err)
645 		goto failed_sbh;
646 
647 	set_nilfs_init(nilfs);
648 	err = 0;
649  out:
650 	up_write(&nilfs->ns_sem);
651 	return err;
652 
653  failed_sbh:
654 	nilfs_release_super_block(nilfs);
655 	goto out;
656 }
657 
658 int nilfs_discard_segments(struct the_nilfs *nilfs, __u64 *segnump,
659 			    size_t nsegs)
660 {
661 	sector_t seg_start, seg_end;
662 	sector_t start = 0, nblocks = 0;
663 	unsigned int sects_per_block;
664 	__u64 *sn;
665 	int ret = 0;
666 
667 	sects_per_block = (1 << nilfs->ns_blocksize_bits) /
668 		bdev_logical_block_size(nilfs->ns_bdev);
669 	for (sn = segnump; sn < segnump + nsegs; sn++) {
670 		nilfs_get_segment_range(nilfs, *sn, &seg_start, &seg_end);
671 
672 		if (!nblocks) {
673 			start = seg_start;
674 			nblocks = seg_end - seg_start + 1;
675 		} else if (start + nblocks == seg_start) {
676 			nblocks += seg_end - seg_start + 1;
677 		} else {
678 			ret = blkdev_issue_discard(nilfs->ns_bdev,
679 						   start * sects_per_block,
680 						   nblocks * sects_per_block,
681 						   GFP_NOFS, 0);
682 			if (ret < 0)
683 				return ret;
684 			nblocks = 0;
685 		}
686 	}
687 	if (nblocks)
688 		ret = blkdev_issue_discard(nilfs->ns_bdev,
689 					   start * sects_per_block,
690 					   nblocks * sects_per_block,
691 					   GFP_NOFS, 0);
692 	return ret;
693 }
694 
695 int nilfs_count_free_blocks(struct the_nilfs *nilfs, sector_t *nblocks)
696 {
697 	unsigned long ncleansegs;
698 
699 	down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
700 	ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile);
701 	up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
702 	*nblocks = (sector_t)ncleansegs * nilfs->ns_blocks_per_segment;
703 	return 0;
704 }
705 
706 int nilfs_near_disk_full(struct the_nilfs *nilfs)
707 {
708 	unsigned long ncleansegs, nincsegs;
709 
710 	ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile);
711 	nincsegs = atomic_read(&nilfs->ns_ndirtyblks) /
712 		nilfs->ns_blocks_per_segment + 1;
713 
714 	return ncleansegs <= nilfs->ns_nrsvsegs + nincsegs;
715 }
716 
717 struct nilfs_root *nilfs_lookup_root(struct the_nilfs *nilfs, __u64 cno)
718 {
719 	struct rb_node *n;
720 	struct nilfs_root *root;
721 
722 	spin_lock(&nilfs->ns_cptree_lock);
723 	n = nilfs->ns_cptree.rb_node;
724 	while (n) {
725 		root = rb_entry(n, struct nilfs_root, rb_node);
726 
727 		if (cno < root->cno) {
728 			n = n->rb_left;
729 		} else if (cno > root->cno) {
730 			n = n->rb_right;
731 		} else {
732 			atomic_inc(&root->count);
733 			spin_unlock(&nilfs->ns_cptree_lock);
734 			return root;
735 		}
736 	}
737 	spin_unlock(&nilfs->ns_cptree_lock);
738 
739 	return NULL;
740 }
741 
742 struct nilfs_root *
743 nilfs_find_or_create_root(struct the_nilfs *nilfs, __u64 cno)
744 {
745 	struct rb_node **p, *parent;
746 	struct nilfs_root *root, *new;
747 	int err;
748 
749 	root = nilfs_lookup_root(nilfs, cno);
750 	if (root)
751 		return root;
752 
753 	new = kzalloc(sizeof(*root), GFP_KERNEL);
754 	if (!new)
755 		return NULL;
756 
757 	spin_lock(&nilfs->ns_cptree_lock);
758 
759 	p = &nilfs->ns_cptree.rb_node;
760 	parent = NULL;
761 
762 	while (*p) {
763 		parent = *p;
764 		root = rb_entry(parent, struct nilfs_root, rb_node);
765 
766 		if (cno < root->cno) {
767 			p = &(*p)->rb_left;
768 		} else if (cno > root->cno) {
769 			p = &(*p)->rb_right;
770 		} else {
771 			atomic_inc(&root->count);
772 			spin_unlock(&nilfs->ns_cptree_lock);
773 			kfree(new);
774 			return root;
775 		}
776 	}
777 
778 	new->cno = cno;
779 	new->ifile = NULL;
780 	new->nilfs = nilfs;
781 	atomic_set(&new->count, 1);
782 	atomic64_set(&new->inodes_count, 0);
783 	atomic64_set(&new->blocks_count, 0);
784 
785 	rb_link_node(&new->rb_node, parent, p);
786 	rb_insert_color(&new->rb_node, &nilfs->ns_cptree);
787 
788 	spin_unlock(&nilfs->ns_cptree_lock);
789 
790 	err = nilfs_sysfs_create_snapshot_group(new);
791 	if (err) {
792 		kfree(new);
793 		new = NULL;
794 	}
795 
796 	return new;
797 }
798 
799 void nilfs_put_root(struct nilfs_root *root)
800 {
801 	if (atomic_dec_and_test(&root->count)) {
802 		struct the_nilfs *nilfs = root->nilfs;
803 
804 		nilfs_sysfs_delete_snapshot_group(root);
805 
806 		spin_lock(&nilfs->ns_cptree_lock);
807 		rb_erase(&root->rb_node, &nilfs->ns_cptree);
808 		spin_unlock(&nilfs->ns_cptree_lock);
809 		iput(root->ifile);
810 
811 		kfree(root);
812 	}
813 }
814