xref: /openbmc/linux/fs/nilfs2/super.c (revision da2ef666)
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * Written by Ryusuke Konishi.
17  */
18 /*
19  *  linux/fs/ext2/super.c
20  *
21  * Copyright (C) 1992, 1993, 1994, 1995
22  * Remy Card (card@masi.ibp.fr)
23  * Laboratoire MASI - Institut Blaise Pascal
24  * Universite Pierre et Marie Curie (Paris VI)
25  *
26  *  from
27  *
28  *  linux/fs/minix/inode.c
29  *
30  *  Copyright (C) 1991, 1992  Linus Torvalds
31  *
32  *  Big-endian to little-endian byte-swapping/bitmaps by
33  *        David S. Miller (davem@caip.rutgers.edu), 1995
34  */
35 
36 #include <linux/module.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/blkdev.h>
41 #include <linux/parser.h>
42 #include <linux/crc32.h>
43 #include <linux/vfs.h>
44 #include <linux/writeback.h>
45 #include <linux/seq_file.h>
46 #include <linux/mount.h>
47 #include "nilfs.h"
48 #include "export.h"
49 #include "mdt.h"
50 #include "alloc.h"
51 #include "btree.h"
52 #include "btnode.h"
53 #include "page.h"
54 #include "cpfile.h"
55 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
56 #include "ifile.h"
57 #include "dat.h"
58 #include "segment.h"
59 #include "segbuf.h"
60 
61 MODULE_AUTHOR("NTT Corp.");
62 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
63 		   "(NILFS)");
64 MODULE_LICENSE("GPL");
65 
66 static struct kmem_cache *nilfs_inode_cachep;
67 struct kmem_cache *nilfs_transaction_cachep;
68 struct kmem_cache *nilfs_segbuf_cachep;
69 struct kmem_cache *nilfs_btree_path_cache;
70 
71 static int nilfs_setup_super(struct super_block *sb, int is_mount);
72 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
73 
74 void __nilfs_msg(struct super_block *sb, const char *level, const char *fmt,
75 		 ...)
76 {
77 	struct va_format vaf;
78 	va_list args;
79 
80 	va_start(args, fmt);
81 	vaf.fmt = fmt;
82 	vaf.va = &args;
83 	if (sb)
84 		printk("%sNILFS (%s): %pV\n", level, sb->s_id, &vaf);
85 	else
86 		printk("%sNILFS: %pV\n", level, &vaf);
87 	va_end(args);
88 }
89 
90 static void nilfs_set_error(struct super_block *sb)
91 {
92 	struct the_nilfs *nilfs = sb->s_fs_info;
93 	struct nilfs_super_block **sbp;
94 
95 	down_write(&nilfs->ns_sem);
96 	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
97 		nilfs->ns_mount_state |= NILFS_ERROR_FS;
98 		sbp = nilfs_prepare_super(sb, 0);
99 		if (likely(sbp)) {
100 			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
101 			if (sbp[1])
102 				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
103 			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
104 		}
105 	}
106 	up_write(&nilfs->ns_sem);
107 }
108 
109 /**
110  * __nilfs_error() - report failure condition on a filesystem
111  *
112  * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
113  * reporting an error message.  This function should be called when
114  * NILFS detects incoherences or defects of meta data on disk.
115  *
116  * This implements the body of nilfs_error() macro.  Normally,
117  * nilfs_error() should be used.  As for sustainable errors such as a
118  * single-shot I/O error, nilfs_msg() should be used instead.
119  *
120  * Callers should not add a trailing newline since this will do it.
121  */
122 void __nilfs_error(struct super_block *sb, const char *function,
123 		   const char *fmt, ...)
124 {
125 	struct the_nilfs *nilfs = sb->s_fs_info;
126 	struct va_format vaf;
127 	va_list args;
128 
129 	va_start(args, fmt);
130 
131 	vaf.fmt = fmt;
132 	vaf.va = &args;
133 
134 	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
135 	       sb->s_id, function, &vaf);
136 
137 	va_end(args);
138 
139 	if (!sb_rdonly(sb)) {
140 		nilfs_set_error(sb);
141 
142 		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
143 			printk(KERN_CRIT "Remounting filesystem read-only\n");
144 			sb->s_flags |= SB_RDONLY;
145 		}
146 	}
147 
148 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
149 		panic("NILFS (device %s): panic forced after error\n",
150 		      sb->s_id);
151 }
152 
153 struct inode *nilfs_alloc_inode(struct super_block *sb)
154 {
155 	struct nilfs_inode_info *ii;
156 
157 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
158 	if (!ii)
159 		return NULL;
160 	ii->i_bh = NULL;
161 	ii->i_state = 0;
162 	ii->i_cno = 0;
163 	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
164 	return &ii->vfs_inode;
165 }
166 
167 static void nilfs_i_callback(struct rcu_head *head)
168 {
169 	struct inode *inode = container_of(head, struct inode, i_rcu);
170 
171 	if (nilfs_is_metadata_file_inode(inode))
172 		nilfs_mdt_destroy(inode);
173 
174 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
175 }
176 
177 void nilfs_destroy_inode(struct inode *inode)
178 {
179 	call_rcu(&inode->i_rcu, nilfs_i_callback);
180 }
181 
182 static int nilfs_sync_super(struct super_block *sb, int flag)
183 {
184 	struct the_nilfs *nilfs = sb->s_fs_info;
185 	int err;
186 
187  retry:
188 	set_buffer_dirty(nilfs->ns_sbh[0]);
189 	if (nilfs_test_opt(nilfs, BARRIER)) {
190 		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
191 					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
192 	} else {
193 		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
194 	}
195 
196 	if (unlikely(err)) {
197 		nilfs_msg(sb, KERN_ERR, "unable to write superblock: err=%d",
198 			  err);
199 		if (err == -EIO && nilfs->ns_sbh[1]) {
200 			/*
201 			 * sbp[0] points to newer log than sbp[1],
202 			 * so copy sbp[0] to sbp[1] to take over sbp[0].
203 			 */
204 			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
205 			       nilfs->ns_sbsize);
206 			nilfs_fall_back_super_block(nilfs);
207 			goto retry;
208 		}
209 	} else {
210 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
211 
212 		nilfs->ns_sbwcount++;
213 
214 		/*
215 		 * The latest segment becomes trailable from the position
216 		 * written in superblock.
217 		 */
218 		clear_nilfs_discontinued(nilfs);
219 
220 		/* update GC protection for recent segments */
221 		if (nilfs->ns_sbh[1]) {
222 			if (flag == NILFS_SB_COMMIT_ALL) {
223 				set_buffer_dirty(nilfs->ns_sbh[1]);
224 				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
225 					goto out;
226 			}
227 			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
228 			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
229 				sbp = nilfs->ns_sbp[1];
230 		}
231 
232 		spin_lock(&nilfs->ns_last_segment_lock);
233 		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
234 		spin_unlock(&nilfs->ns_last_segment_lock);
235 	}
236  out:
237 	return err;
238 }
239 
240 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
241 			  struct the_nilfs *nilfs)
242 {
243 	sector_t nfreeblocks;
244 
245 	/* nilfs->ns_sem must be locked by the caller. */
246 	nilfs_count_free_blocks(nilfs, &nfreeblocks);
247 	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
248 
249 	spin_lock(&nilfs->ns_last_segment_lock);
250 	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
251 	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
252 	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
253 	spin_unlock(&nilfs->ns_last_segment_lock);
254 }
255 
256 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
257 					       int flip)
258 {
259 	struct the_nilfs *nilfs = sb->s_fs_info;
260 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
261 
262 	/* nilfs->ns_sem must be locked by the caller. */
263 	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
264 		if (sbp[1] &&
265 		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
266 			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
267 		} else {
268 			nilfs_msg(sb, KERN_CRIT, "superblock broke");
269 			return NULL;
270 		}
271 	} else if (sbp[1] &&
272 		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
273 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
274 	}
275 
276 	if (flip && sbp[1])
277 		nilfs_swap_super_block(nilfs);
278 
279 	return sbp;
280 }
281 
282 int nilfs_commit_super(struct super_block *sb, int flag)
283 {
284 	struct the_nilfs *nilfs = sb->s_fs_info;
285 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
286 	time64_t t;
287 
288 	/* nilfs->ns_sem must be locked by the caller. */
289 	t = ktime_get_real_seconds();
290 	nilfs->ns_sbwtime = t;
291 	sbp[0]->s_wtime = cpu_to_le64(t);
292 	sbp[0]->s_sum = 0;
293 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
294 					     (unsigned char *)sbp[0],
295 					     nilfs->ns_sbsize));
296 	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
297 		sbp[1]->s_wtime = sbp[0]->s_wtime;
298 		sbp[1]->s_sum = 0;
299 		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
300 					    (unsigned char *)sbp[1],
301 					    nilfs->ns_sbsize));
302 	}
303 	clear_nilfs_sb_dirty(nilfs);
304 	nilfs->ns_flushed_device = 1;
305 	/* make sure store to ns_flushed_device cannot be reordered */
306 	smp_wmb();
307 	return nilfs_sync_super(sb, flag);
308 }
309 
310 /**
311  * nilfs_cleanup_super() - write filesystem state for cleanup
312  * @sb: super block instance to be unmounted or degraded to read-only
313  *
314  * This function restores state flags in the on-disk super block.
315  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
316  * filesystem was not clean previously.
317  */
318 int nilfs_cleanup_super(struct super_block *sb)
319 {
320 	struct the_nilfs *nilfs = sb->s_fs_info;
321 	struct nilfs_super_block **sbp;
322 	int flag = NILFS_SB_COMMIT;
323 	int ret = -EIO;
324 
325 	sbp = nilfs_prepare_super(sb, 0);
326 	if (sbp) {
327 		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
328 		nilfs_set_log_cursor(sbp[0], nilfs);
329 		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
330 			/*
331 			 * make the "clean" flag also to the opposite
332 			 * super block if both super blocks point to
333 			 * the same checkpoint.
334 			 */
335 			sbp[1]->s_state = sbp[0]->s_state;
336 			flag = NILFS_SB_COMMIT_ALL;
337 		}
338 		ret = nilfs_commit_super(sb, flag);
339 	}
340 	return ret;
341 }
342 
343 /**
344  * nilfs_move_2nd_super - relocate secondary super block
345  * @sb: super block instance
346  * @sb2off: new offset of the secondary super block (in bytes)
347  */
348 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
349 {
350 	struct the_nilfs *nilfs = sb->s_fs_info;
351 	struct buffer_head *nsbh;
352 	struct nilfs_super_block *nsbp;
353 	sector_t blocknr, newblocknr;
354 	unsigned long offset;
355 	int sb2i;  /* array index of the secondary superblock */
356 	int ret = 0;
357 
358 	/* nilfs->ns_sem must be locked by the caller. */
359 	if (nilfs->ns_sbh[1] &&
360 	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
361 		sb2i = 1;
362 		blocknr = nilfs->ns_sbh[1]->b_blocknr;
363 	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
364 		sb2i = 0;
365 		blocknr = nilfs->ns_sbh[0]->b_blocknr;
366 	} else {
367 		sb2i = -1;
368 		blocknr = 0;
369 	}
370 	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
371 		goto out;  /* super block location is unchanged */
372 
373 	/* Get new super block buffer */
374 	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
375 	offset = sb2off & (nilfs->ns_blocksize - 1);
376 	nsbh = sb_getblk(sb, newblocknr);
377 	if (!nsbh) {
378 		nilfs_msg(sb, KERN_WARNING,
379 			  "unable to move secondary superblock to block %llu",
380 			  (unsigned long long)newblocknr);
381 		ret = -EIO;
382 		goto out;
383 	}
384 	nsbp = (void *)nsbh->b_data + offset;
385 	memset(nsbp, 0, nilfs->ns_blocksize);
386 
387 	if (sb2i >= 0) {
388 		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
389 		brelse(nilfs->ns_sbh[sb2i]);
390 		nilfs->ns_sbh[sb2i] = nsbh;
391 		nilfs->ns_sbp[sb2i] = nsbp;
392 	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
393 		/* secondary super block will be restored to index 1 */
394 		nilfs->ns_sbh[1] = nsbh;
395 		nilfs->ns_sbp[1] = nsbp;
396 	} else {
397 		brelse(nsbh);
398 	}
399 out:
400 	return ret;
401 }
402 
403 /**
404  * nilfs_resize_fs - resize the filesystem
405  * @sb: super block instance
406  * @newsize: new size of the filesystem (in bytes)
407  */
408 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
409 {
410 	struct the_nilfs *nilfs = sb->s_fs_info;
411 	struct nilfs_super_block **sbp;
412 	__u64 devsize, newnsegs;
413 	loff_t sb2off;
414 	int ret;
415 
416 	ret = -ERANGE;
417 	devsize = i_size_read(sb->s_bdev->bd_inode);
418 	if (newsize > devsize)
419 		goto out;
420 
421 	/*
422 	 * Write lock is required to protect some functions depending
423 	 * on the number of segments, the number of reserved segments,
424 	 * and so forth.
425 	 */
426 	down_write(&nilfs->ns_segctor_sem);
427 
428 	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
429 	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
430 	do_div(newnsegs, nilfs->ns_blocks_per_segment);
431 
432 	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
433 	up_write(&nilfs->ns_segctor_sem);
434 	if (ret < 0)
435 		goto out;
436 
437 	ret = nilfs_construct_segment(sb);
438 	if (ret < 0)
439 		goto out;
440 
441 	down_write(&nilfs->ns_sem);
442 	nilfs_move_2nd_super(sb, sb2off);
443 	ret = -EIO;
444 	sbp = nilfs_prepare_super(sb, 0);
445 	if (likely(sbp)) {
446 		nilfs_set_log_cursor(sbp[0], nilfs);
447 		/*
448 		 * Drop NILFS_RESIZE_FS flag for compatibility with
449 		 * mount-time resize which may be implemented in a
450 		 * future release.
451 		 */
452 		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
453 					      ~NILFS_RESIZE_FS);
454 		sbp[0]->s_dev_size = cpu_to_le64(newsize);
455 		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
456 		if (sbp[1])
457 			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
458 		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
459 	}
460 	up_write(&nilfs->ns_sem);
461 
462 	/*
463 	 * Reset the range of allocatable segments last.  This order
464 	 * is important in the case of expansion because the secondary
465 	 * superblock must be protected from log write until migration
466 	 * completes.
467 	 */
468 	if (!ret)
469 		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
470 out:
471 	return ret;
472 }
473 
474 static void nilfs_put_super(struct super_block *sb)
475 {
476 	struct the_nilfs *nilfs = sb->s_fs_info;
477 
478 	nilfs_detach_log_writer(sb);
479 
480 	if (!sb_rdonly(sb)) {
481 		down_write(&nilfs->ns_sem);
482 		nilfs_cleanup_super(sb);
483 		up_write(&nilfs->ns_sem);
484 	}
485 
486 	iput(nilfs->ns_sufile);
487 	iput(nilfs->ns_cpfile);
488 	iput(nilfs->ns_dat);
489 
490 	destroy_nilfs(nilfs);
491 	sb->s_fs_info = NULL;
492 }
493 
494 static int nilfs_sync_fs(struct super_block *sb, int wait)
495 {
496 	struct the_nilfs *nilfs = sb->s_fs_info;
497 	struct nilfs_super_block **sbp;
498 	int err = 0;
499 
500 	/* This function is called when super block should be written back */
501 	if (wait)
502 		err = nilfs_construct_segment(sb);
503 
504 	down_write(&nilfs->ns_sem);
505 	if (nilfs_sb_dirty(nilfs)) {
506 		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
507 		if (likely(sbp)) {
508 			nilfs_set_log_cursor(sbp[0], nilfs);
509 			nilfs_commit_super(sb, NILFS_SB_COMMIT);
510 		}
511 	}
512 	up_write(&nilfs->ns_sem);
513 
514 	if (!err)
515 		err = nilfs_flush_device(nilfs);
516 
517 	return err;
518 }
519 
520 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
521 			    struct nilfs_root **rootp)
522 {
523 	struct the_nilfs *nilfs = sb->s_fs_info;
524 	struct nilfs_root *root;
525 	struct nilfs_checkpoint *raw_cp;
526 	struct buffer_head *bh_cp;
527 	int err = -ENOMEM;
528 
529 	root = nilfs_find_or_create_root(
530 		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
531 	if (!root)
532 		return err;
533 
534 	if (root->ifile)
535 		goto reuse; /* already attached checkpoint */
536 
537 	down_read(&nilfs->ns_segctor_sem);
538 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
539 					  &bh_cp);
540 	up_read(&nilfs->ns_segctor_sem);
541 	if (unlikely(err)) {
542 		if (err == -ENOENT || err == -EINVAL) {
543 			nilfs_msg(sb, KERN_ERR,
544 				  "Invalid checkpoint (checkpoint number=%llu)",
545 				  (unsigned long long)cno);
546 			err = -EINVAL;
547 		}
548 		goto failed;
549 	}
550 
551 	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
552 			       &raw_cp->cp_ifile_inode, &root->ifile);
553 	if (err)
554 		goto failed_bh;
555 
556 	atomic64_set(&root->inodes_count,
557 			le64_to_cpu(raw_cp->cp_inodes_count));
558 	atomic64_set(&root->blocks_count,
559 			le64_to_cpu(raw_cp->cp_blocks_count));
560 
561 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
562 
563  reuse:
564 	*rootp = root;
565 	return 0;
566 
567  failed_bh:
568 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
569  failed:
570 	nilfs_put_root(root);
571 
572 	return err;
573 }
574 
575 static int nilfs_freeze(struct super_block *sb)
576 {
577 	struct the_nilfs *nilfs = sb->s_fs_info;
578 	int err;
579 
580 	if (sb_rdonly(sb))
581 		return 0;
582 
583 	/* Mark super block clean */
584 	down_write(&nilfs->ns_sem);
585 	err = nilfs_cleanup_super(sb);
586 	up_write(&nilfs->ns_sem);
587 	return err;
588 }
589 
590 static int nilfs_unfreeze(struct super_block *sb)
591 {
592 	struct the_nilfs *nilfs = sb->s_fs_info;
593 
594 	if (sb_rdonly(sb))
595 		return 0;
596 
597 	down_write(&nilfs->ns_sem);
598 	nilfs_setup_super(sb, false);
599 	up_write(&nilfs->ns_sem);
600 	return 0;
601 }
602 
603 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
604 {
605 	struct super_block *sb = dentry->d_sb;
606 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
607 	struct the_nilfs *nilfs = root->nilfs;
608 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
609 	unsigned long long blocks;
610 	unsigned long overhead;
611 	unsigned long nrsvblocks;
612 	sector_t nfreeblocks;
613 	u64 nmaxinodes, nfreeinodes;
614 	int err;
615 
616 	/*
617 	 * Compute all of the segment blocks
618 	 *
619 	 * The blocks before first segment and after last segment
620 	 * are excluded.
621 	 */
622 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
623 		- nilfs->ns_first_data_block;
624 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
625 
626 	/*
627 	 * Compute the overhead
628 	 *
629 	 * When distributing meta data blocks outside segment structure,
630 	 * We must count them as the overhead.
631 	 */
632 	overhead = 0;
633 
634 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
635 	if (unlikely(err))
636 		return err;
637 
638 	err = nilfs_ifile_count_free_inodes(root->ifile,
639 					    &nmaxinodes, &nfreeinodes);
640 	if (unlikely(err)) {
641 		nilfs_msg(sb, KERN_WARNING,
642 			  "failed to count free inodes: err=%d", err);
643 		if (err == -ERANGE) {
644 			/*
645 			 * If nilfs_palloc_count_max_entries() returns
646 			 * -ERANGE error code then we simply treat
647 			 * curent inodes count as maximum possible and
648 			 * zero as free inodes value.
649 			 */
650 			nmaxinodes = atomic64_read(&root->inodes_count);
651 			nfreeinodes = 0;
652 			err = 0;
653 		} else
654 			return err;
655 	}
656 
657 	buf->f_type = NILFS_SUPER_MAGIC;
658 	buf->f_bsize = sb->s_blocksize;
659 	buf->f_blocks = blocks - overhead;
660 	buf->f_bfree = nfreeblocks;
661 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
662 		(buf->f_bfree - nrsvblocks) : 0;
663 	buf->f_files = nmaxinodes;
664 	buf->f_ffree = nfreeinodes;
665 	buf->f_namelen = NILFS_NAME_LEN;
666 	buf->f_fsid.val[0] = (u32)id;
667 	buf->f_fsid.val[1] = (u32)(id >> 32);
668 
669 	return 0;
670 }
671 
672 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
673 {
674 	struct super_block *sb = dentry->d_sb;
675 	struct the_nilfs *nilfs = sb->s_fs_info;
676 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
677 
678 	if (!nilfs_test_opt(nilfs, BARRIER))
679 		seq_puts(seq, ",nobarrier");
680 	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
681 		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
682 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
683 		seq_puts(seq, ",errors=panic");
684 	if (nilfs_test_opt(nilfs, ERRORS_CONT))
685 		seq_puts(seq, ",errors=continue");
686 	if (nilfs_test_opt(nilfs, STRICT_ORDER))
687 		seq_puts(seq, ",order=strict");
688 	if (nilfs_test_opt(nilfs, NORECOVERY))
689 		seq_puts(seq, ",norecovery");
690 	if (nilfs_test_opt(nilfs, DISCARD))
691 		seq_puts(seq, ",discard");
692 
693 	return 0;
694 }
695 
696 static const struct super_operations nilfs_sops = {
697 	.alloc_inode    = nilfs_alloc_inode,
698 	.destroy_inode  = nilfs_destroy_inode,
699 	.dirty_inode    = nilfs_dirty_inode,
700 	.evict_inode    = nilfs_evict_inode,
701 	.put_super      = nilfs_put_super,
702 	.sync_fs        = nilfs_sync_fs,
703 	.freeze_fs	= nilfs_freeze,
704 	.unfreeze_fs	= nilfs_unfreeze,
705 	.statfs         = nilfs_statfs,
706 	.remount_fs     = nilfs_remount,
707 	.show_options = nilfs_show_options
708 };
709 
710 enum {
711 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
712 	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
713 	Opt_discard, Opt_nodiscard, Opt_err,
714 };
715 
716 static match_table_t tokens = {
717 	{Opt_err_cont, "errors=continue"},
718 	{Opt_err_panic, "errors=panic"},
719 	{Opt_err_ro, "errors=remount-ro"},
720 	{Opt_barrier, "barrier"},
721 	{Opt_nobarrier, "nobarrier"},
722 	{Opt_snapshot, "cp=%u"},
723 	{Opt_order, "order=%s"},
724 	{Opt_norecovery, "norecovery"},
725 	{Opt_discard, "discard"},
726 	{Opt_nodiscard, "nodiscard"},
727 	{Opt_err, NULL}
728 };
729 
730 static int parse_options(char *options, struct super_block *sb, int is_remount)
731 {
732 	struct the_nilfs *nilfs = sb->s_fs_info;
733 	char *p;
734 	substring_t args[MAX_OPT_ARGS];
735 
736 	if (!options)
737 		return 1;
738 
739 	while ((p = strsep(&options, ",")) != NULL) {
740 		int token;
741 
742 		if (!*p)
743 			continue;
744 
745 		token = match_token(p, tokens, args);
746 		switch (token) {
747 		case Opt_barrier:
748 			nilfs_set_opt(nilfs, BARRIER);
749 			break;
750 		case Opt_nobarrier:
751 			nilfs_clear_opt(nilfs, BARRIER);
752 			break;
753 		case Opt_order:
754 			if (strcmp(args[0].from, "relaxed") == 0)
755 				/* Ordered data semantics */
756 				nilfs_clear_opt(nilfs, STRICT_ORDER);
757 			else if (strcmp(args[0].from, "strict") == 0)
758 				/* Strict in-order semantics */
759 				nilfs_set_opt(nilfs, STRICT_ORDER);
760 			else
761 				return 0;
762 			break;
763 		case Opt_err_panic:
764 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
765 			break;
766 		case Opt_err_ro:
767 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
768 			break;
769 		case Opt_err_cont:
770 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
771 			break;
772 		case Opt_snapshot:
773 			if (is_remount) {
774 				nilfs_msg(sb, KERN_ERR,
775 					  "\"%s\" option is invalid for remount",
776 					  p);
777 				return 0;
778 			}
779 			break;
780 		case Opt_norecovery:
781 			nilfs_set_opt(nilfs, NORECOVERY);
782 			break;
783 		case Opt_discard:
784 			nilfs_set_opt(nilfs, DISCARD);
785 			break;
786 		case Opt_nodiscard:
787 			nilfs_clear_opt(nilfs, DISCARD);
788 			break;
789 		default:
790 			nilfs_msg(sb, KERN_ERR,
791 				  "unrecognized mount option \"%s\"", p);
792 			return 0;
793 		}
794 	}
795 	return 1;
796 }
797 
798 static inline void
799 nilfs_set_default_options(struct super_block *sb,
800 			  struct nilfs_super_block *sbp)
801 {
802 	struct the_nilfs *nilfs = sb->s_fs_info;
803 
804 	nilfs->ns_mount_opt =
805 		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
806 }
807 
808 static int nilfs_setup_super(struct super_block *sb, int is_mount)
809 {
810 	struct the_nilfs *nilfs = sb->s_fs_info;
811 	struct nilfs_super_block **sbp;
812 	int max_mnt_count;
813 	int mnt_count;
814 
815 	/* nilfs->ns_sem must be locked by the caller. */
816 	sbp = nilfs_prepare_super(sb, 0);
817 	if (!sbp)
818 		return -EIO;
819 
820 	if (!is_mount)
821 		goto skip_mount_setup;
822 
823 	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
824 	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
825 
826 	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
827 		nilfs_msg(sb, KERN_WARNING, "mounting fs with errors");
828 #if 0
829 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
830 		nilfs_msg(sb, KERN_WARNING, "maximal mount count reached");
831 #endif
832 	}
833 	if (!max_mnt_count)
834 		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
835 
836 	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
837 	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
838 
839 skip_mount_setup:
840 	sbp[0]->s_state =
841 		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
842 	/* synchronize sbp[1] with sbp[0] */
843 	if (sbp[1])
844 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
845 	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
846 }
847 
848 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
849 						 u64 pos, int blocksize,
850 						 struct buffer_head **pbh)
851 {
852 	unsigned long long sb_index = pos;
853 	unsigned long offset;
854 
855 	offset = do_div(sb_index, blocksize);
856 	*pbh = sb_bread(sb, sb_index);
857 	if (!*pbh)
858 		return NULL;
859 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
860 }
861 
862 int nilfs_store_magic_and_option(struct super_block *sb,
863 				 struct nilfs_super_block *sbp,
864 				 char *data)
865 {
866 	struct the_nilfs *nilfs = sb->s_fs_info;
867 
868 	sb->s_magic = le16_to_cpu(sbp->s_magic);
869 
870 	/* FS independent flags */
871 #ifdef NILFS_ATIME_DISABLE
872 	sb->s_flags |= SB_NOATIME;
873 #endif
874 
875 	nilfs_set_default_options(sb, sbp);
876 
877 	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
878 	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
879 	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
880 	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
881 
882 	return !parse_options(data, sb, 0) ? -EINVAL : 0;
883 }
884 
885 int nilfs_check_feature_compatibility(struct super_block *sb,
886 				      struct nilfs_super_block *sbp)
887 {
888 	__u64 features;
889 
890 	features = le64_to_cpu(sbp->s_feature_incompat) &
891 		~NILFS_FEATURE_INCOMPAT_SUPP;
892 	if (features) {
893 		nilfs_msg(sb, KERN_ERR,
894 			  "couldn't mount because of unsupported optional features (%llx)",
895 			  (unsigned long long)features);
896 		return -EINVAL;
897 	}
898 	features = le64_to_cpu(sbp->s_feature_compat_ro) &
899 		~NILFS_FEATURE_COMPAT_RO_SUPP;
900 	if (!sb_rdonly(sb) && features) {
901 		nilfs_msg(sb, KERN_ERR,
902 			  "couldn't mount RDWR because of unsupported optional features (%llx)",
903 			  (unsigned long long)features);
904 		return -EINVAL;
905 	}
906 	return 0;
907 }
908 
909 static int nilfs_get_root_dentry(struct super_block *sb,
910 				 struct nilfs_root *root,
911 				 struct dentry **root_dentry)
912 {
913 	struct inode *inode;
914 	struct dentry *dentry;
915 	int ret = 0;
916 
917 	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
918 	if (IS_ERR(inode)) {
919 		ret = PTR_ERR(inode);
920 		nilfs_msg(sb, KERN_ERR, "error %d getting root inode", ret);
921 		goto out;
922 	}
923 	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
924 		iput(inode);
925 		nilfs_msg(sb, KERN_ERR, "corrupt root inode");
926 		ret = -EINVAL;
927 		goto out;
928 	}
929 
930 	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
931 		dentry = d_find_alias(inode);
932 		if (!dentry) {
933 			dentry = d_make_root(inode);
934 			if (!dentry) {
935 				ret = -ENOMEM;
936 				goto failed_dentry;
937 			}
938 		} else {
939 			iput(inode);
940 		}
941 	} else {
942 		dentry = d_obtain_root(inode);
943 		if (IS_ERR(dentry)) {
944 			ret = PTR_ERR(dentry);
945 			goto failed_dentry;
946 		}
947 	}
948 	*root_dentry = dentry;
949  out:
950 	return ret;
951 
952  failed_dentry:
953 	nilfs_msg(sb, KERN_ERR, "error %d getting root dentry", ret);
954 	goto out;
955 }
956 
957 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
958 				 struct dentry **root_dentry)
959 {
960 	struct the_nilfs *nilfs = s->s_fs_info;
961 	struct nilfs_root *root;
962 	int ret;
963 
964 	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
965 
966 	down_read(&nilfs->ns_segctor_sem);
967 	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
968 	up_read(&nilfs->ns_segctor_sem);
969 	if (ret < 0) {
970 		ret = (ret == -ENOENT) ? -EINVAL : ret;
971 		goto out;
972 	} else if (!ret) {
973 		nilfs_msg(s, KERN_ERR,
974 			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
975 			  (unsigned long long)cno);
976 		ret = -EINVAL;
977 		goto out;
978 	}
979 
980 	ret = nilfs_attach_checkpoint(s, cno, false, &root);
981 	if (ret) {
982 		nilfs_msg(s, KERN_ERR,
983 			  "error %d while loading snapshot (checkpoint number=%llu)",
984 			  ret, (unsigned long long)cno);
985 		goto out;
986 	}
987 	ret = nilfs_get_root_dentry(s, root, root_dentry);
988 	nilfs_put_root(root);
989  out:
990 	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
991 	return ret;
992 }
993 
994 /**
995  * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
996  * @root_dentry: root dentry of the tree to be shrunk
997  *
998  * This function returns true if the tree was in-use.
999  */
1000 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1001 {
1002 	shrink_dcache_parent(root_dentry);
1003 	return d_count(root_dentry) > 1;
1004 }
1005 
1006 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1007 {
1008 	struct the_nilfs *nilfs = sb->s_fs_info;
1009 	struct nilfs_root *root;
1010 	struct inode *inode;
1011 	struct dentry *dentry;
1012 	int ret;
1013 
1014 	if (cno > nilfs->ns_cno)
1015 		return false;
1016 
1017 	if (cno >= nilfs_last_cno(nilfs))
1018 		return true;	/* protect recent checkpoints */
1019 
1020 	ret = false;
1021 	root = nilfs_lookup_root(nilfs, cno);
1022 	if (root) {
1023 		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1024 		if (inode) {
1025 			dentry = d_find_alias(inode);
1026 			if (dentry) {
1027 				ret = nilfs_tree_is_busy(dentry);
1028 				dput(dentry);
1029 			}
1030 			iput(inode);
1031 		}
1032 		nilfs_put_root(root);
1033 	}
1034 	return ret;
1035 }
1036 
1037 /**
1038  * nilfs_fill_super() - initialize a super block instance
1039  * @sb: super_block
1040  * @data: mount options
1041  * @silent: silent mode flag
1042  *
1043  * This function is called exclusively by nilfs->ns_mount_mutex.
1044  * So, the recovery process is protected from other simultaneous mounts.
1045  */
1046 static int
1047 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1048 {
1049 	struct the_nilfs *nilfs;
1050 	struct nilfs_root *fsroot;
1051 	__u64 cno;
1052 	int err;
1053 
1054 	nilfs = alloc_nilfs(sb);
1055 	if (!nilfs)
1056 		return -ENOMEM;
1057 
1058 	sb->s_fs_info = nilfs;
1059 
1060 	err = init_nilfs(nilfs, sb, (char *)data);
1061 	if (err)
1062 		goto failed_nilfs;
1063 
1064 	sb->s_op = &nilfs_sops;
1065 	sb->s_export_op = &nilfs_export_ops;
1066 	sb->s_root = NULL;
1067 	sb->s_time_gran = 1;
1068 	sb->s_max_links = NILFS_LINK_MAX;
1069 
1070 	sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
1071 
1072 	err = load_nilfs(nilfs, sb);
1073 	if (err)
1074 		goto failed_nilfs;
1075 
1076 	cno = nilfs_last_cno(nilfs);
1077 	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1078 	if (err) {
1079 		nilfs_msg(sb, KERN_ERR,
1080 			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1081 			  err, (unsigned long long)cno);
1082 		goto failed_unload;
1083 	}
1084 
1085 	if (!sb_rdonly(sb)) {
1086 		err = nilfs_attach_log_writer(sb, fsroot);
1087 		if (err)
1088 			goto failed_checkpoint;
1089 	}
1090 
1091 	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1092 	if (err)
1093 		goto failed_segctor;
1094 
1095 	nilfs_put_root(fsroot);
1096 
1097 	if (!sb_rdonly(sb)) {
1098 		down_write(&nilfs->ns_sem);
1099 		nilfs_setup_super(sb, true);
1100 		up_write(&nilfs->ns_sem);
1101 	}
1102 
1103 	return 0;
1104 
1105  failed_segctor:
1106 	nilfs_detach_log_writer(sb);
1107 
1108  failed_checkpoint:
1109 	nilfs_put_root(fsroot);
1110 
1111  failed_unload:
1112 	iput(nilfs->ns_sufile);
1113 	iput(nilfs->ns_cpfile);
1114 	iput(nilfs->ns_dat);
1115 
1116  failed_nilfs:
1117 	destroy_nilfs(nilfs);
1118 	return err;
1119 }
1120 
1121 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1122 {
1123 	struct the_nilfs *nilfs = sb->s_fs_info;
1124 	unsigned long old_sb_flags;
1125 	unsigned long old_mount_opt;
1126 	int err;
1127 
1128 	sync_filesystem(sb);
1129 	old_sb_flags = sb->s_flags;
1130 	old_mount_opt = nilfs->ns_mount_opt;
1131 
1132 	if (!parse_options(data, sb, 1)) {
1133 		err = -EINVAL;
1134 		goto restore_opts;
1135 	}
1136 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1137 
1138 	err = -EINVAL;
1139 
1140 	if (!nilfs_valid_fs(nilfs)) {
1141 		nilfs_msg(sb, KERN_WARNING,
1142 			  "couldn't remount because the filesystem is in an incomplete recovery state");
1143 		goto restore_opts;
1144 	}
1145 
1146 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1147 		goto out;
1148 	if (*flags & SB_RDONLY) {
1149 		/* Shutting down log writer */
1150 		nilfs_detach_log_writer(sb);
1151 		sb->s_flags |= SB_RDONLY;
1152 
1153 		/*
1154 		 * Remounting a valid RW partition RDONLY, so set
1155 		 * the RDONLY flag and then mark the partition as valid again.
1156 		 */
1157 		down_write(&nilfs->ns_sem);
1158 		nilfs_cleanup_super(sb);
1159 		up_write(&nilfs->ns_sem);
1160 	} else {
1161 		__u64 features;
1162 		struct nilfs_root *root;
1163 
1164 		/*
1165 		 * Mounting a RDONLY partition read-write, so reread and
1166 		 * store the current valid flag.  (It may have been changed
1167 		 * by fsck since we originally mounted the partition.)
1168 		 */
1169 		down_read(&nilfs->ns_sem);
1170 		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1171 			~NILFS_FEATURE_COMPAT_RO_SUPP;
1172 		up_read(&nilfs->ns_sem);
1173 		if (features) {
1174 			nilfs_msg(sb, KERN_WARNING,
1175 				  "couldn't remount RDWR because of unsupported optional features (%llx)",
1176 				  (unsigned long long)features);
1177 			err = -EROFS;
1178 			goto restore_opts;
1179 		}
1180 
1181 		sb->s_flags &= ~SB_RDONLY;
1182 
1183 		root = NILFS_I(d_inode(sb->s_root))->i_root;
1184 		err = nilfs_attach_log_writer(sb, root);
1185 		if (err)
1186 			goto restore_opts;
1187 
1188 		down_write(&nilfs->ns_sem);
1189 		nilfs_setup_super(sb, true);
1190 		up_write(&nilfs->ns_sem);
1191 	}
1192  out:
1193 	return 0;
1194 
1195  restore_opts:
1196 	sb->s_flags = old_sb_flags;
1197 	nilfs->ns_mount_opt = old_mount_opt;
1198 	return err;
1199 }
1200 
1201 struct nilfs_super_data {
1202 	struct block_device *bdev;
1203 	__u64 cno;
1204 	int flags;
1205 };
1206 
1207 static int nilfs_parse_snapshot_option(const char *option,
1208 				       const substring_t *arg,
1209 				       struct nilfs_super_data *sd)
1210 {
1211 	unsigned long long val;
1212 	const char *msg = NULL;
1213 	int err;
1214 
1215 	if (!(sd->flags & SB_RDONLY)) {
1216 		msg = "read-only option is not specified";
1217 		goto parse_error;
1218 	}
1219 
1220 	err = kstrtoull(arg->from, 0, &val);
1221 	if (err) {
1222 		if (err == -ERANGE)
1223 			msg = "too large checkpoint number";
1224 		else
1225 			msg = "malformed argument";
1226 		goto parse_error;
1227 	} else if (val == 0) {
1228 		msg = "invalid checkpoint number 0";
1229 		goto parse_error;
1230 	}
1231 	sd->cno = val;
1232 	return 0;
1233 
1234 parse_error:
1235 	nilfs_msg(NULL, KERN_ERR, "invalid option \"%s\": %s", option, msg);
1236 	return 1;
1237 }
1238 
1239 /**
1240  * nilfs_identify - pre-read mount options needed to identify mount instance
1241  * @data: mount options
1242  * @sd: nilfs_super_data
1243  */
1244 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1245 {
1246 	char *p, *options = data;
1247 	substring_t args[MAX_OPT_ARGS];
1248 	int token;
1249 	int ret = 0;
1250 
1251 	do {
1252 		p = strsep(&options, ",");
1253 		if (p != NULL && *p) {
1254 			token = match_token(p, tokens, args);
1255 			if (token == Opt_snapshot)
1256 				ret = nilfs_parse_snapshot_option(p, &args[0],
1257 								  sd);
1258 		}
1259 		if (!options)
1260 			break;
1261 		BUG_ON(options == data);
1262 		*(options - 1) = ',';
1263 	} while (!ret);
1264 	return ret;
1265 }
1266 
1267 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1268 {
1269 	s->s_bdev = data;
1270 	s->s_dev = s->s_bdev->bd_dev;
1271 	return 0;
1272 }
1273 
1274 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1275 {
1276 	return (void *)s->s_bdev == data;
1277 }
1278 
1279 static struct dentry *
1280 nilfs_mount(struct file_system_type *fs_type, int flags,
1281 	     const char *dev_name, void *data)
1282 {
1283 	struct nilfs_super_data sd;
1284 	struct super_block *s;
1285 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1286 	struct dentry *root_dentry;
1287 	int err, s_new = false;
1288 
1289 	if (!(flags & SB_RDONLY))
1290 		mode |= FMODE_WRITE;
1291 
1292 	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1293 	if (IS_ERR(sd.bdev))
1294 		return ERR_CAST(sd.bdev);
1295 
1296 	sd.cno = 0;
1297 	sd.flags = flags;
1298 	if (nilfs_identify((char *)data, &sd)) {
1299 		err = -EINVAL;
1300 		goto failed;
1301 	}
1302 
1303 	/*
1304 	 * once the super is inserted into the list by sget, s_umount
1305 	 * will protect the lockfs code from trying to start a snapshot
1306 	 * while we are mounting
1307 	 */
1308 	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1309 	if (sd.bdev->bd_fsfreeze_count > 0) {
1310 		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1311 		err = -EBUSY;
1312 		goto failed;
1313 	}
1314 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1315 		 sd.bdev);
1316 	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1317 	if (IS_ERR(s)) {
1318 		err = PTR_ERR(s);
1319 		goto failed;
1320 	}
1321 
1322 	if (!s->s_root) {
1323 		s_new = true;
1324 
1325 		/* New superblock instance created */
1326 		s->s_mode = mode;
1327 		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1328 		sb_set_blocksize(s, block_size(sd.bdev));
1329 
1330 		err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1331 		if (err)
1332 			goto failed_super;
1333 
1334 		s->s_flags |= SB_ACTIVE;
1335 	} else if (!sd.cno) {
1336 		if (nilfs_tree_is_busy(s->s_root)) {
1337 			if ((flags ^ s->s_flags) & SB_RDONLY) {
1338 				nilfs_msg(s, KERN_ERR,
1339 					  "the device already has a %s mount.",
1340 					  sb_rdonly(s) ? "read-only" : "read/write");
1341 				err = -EBUSY;
1342 				goto failed_super;
1343 			}
1344 		} else {
1345 			/*
1346 			 * Try remount to setup mount states if the current
1347 			 * tree is not mounted and only snapshots use this sb.
1348 			 */
1349 			err = nilfs_remount(s, &flags, data);
1350 			if (err)
1351 				goto failed_super;
1352 		}
1353 	}
1354 
1355 	if (sd.cno) {
1356 		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1357 		if (err)
1358 			goto failed_super;
1359 	} else {
1360 		root_dentry = dget(s->s_root);
1361 	}
1362 
1363 	if (!s_new)
1364 		blkdev_put(sd.bdev, mode);
1365 
1366 	return root_dentry;
1367 
1368  failed_super:
1369 	deactivate_locked_super(s);
1370 
1371  failed:
1372 	if (!s_new)
1373 		blkdev_put(sd.bdev, mode);
1374 	return ERR_PTR(err);
1375 }
1376 
1377 struct file_system_type nilfs_fs_type = {
1378 	.owner    = THIS_MODULE,
1379 	.name     = "nilfs2",
1380 	.mount    = nilfs_mount,
1381 	.kill_sb  = kill_block_super,
1382 	.fs_flags = FS_REQUIRES_DEV,
1383 };
1384 MODULE_ALIAS_FS("nilfs2");
1385 
1386 static void nilfs_inode_init_once(void *obj)
1387 {
1388 	struct nilfs_inode_info *ii = obj;
1389 
1390 	INIT_LIST_HEAD(&ii->i_dirty);
1391 #ifdef CONFIG_NILFS_XATTR
1392 	init_rwsem(&ii->xattr_sem);
1393 #endif
1394 	address_space_init_once(&ii->i_btnode_cache);
1395 	ii->i_bmap = &ii->i_bmap_data;
1396 	inode_init_once(&ii->vfs_inode);
1397 }
1398 
1399 static void nilfs_segbuf_init_once(void *obj)
1400 {
1401 	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1402 }
1403 
1404 static void nilfs_destroy_cachep(void)
1405 {
1406 	/*
1407 	 * Make sure all delayed rcu free inodes are flushed before we
1408 	 * destroy cache.
1409 	 */
1410 	rcu_barrier();
1411 
1412 	kmem_cache_destroy(nilfs_inode_cachep);
1413 	kmem_cache_destroy(nilfs_transaction_cachep);
1414 	kmem_cache_destroy(nilfs_segbuf_cachep);
1415 	kmem_cache_destroy(nilfs_btree_path_cache);
1416 }
1417 
1418 static int __init nilfs_init_cachep(void)
1419 {
1420 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1421 			sizeof(struct nilfs_inode_info), 0,
1422 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1423 			nilfs_inode_init_once);
1424 	if (!nilfs_inode_cachep)
1425 		goto fail;
1426 
1427 	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1428 			sizeof(struct nilfs_transaction_info), 0,
1429 			SLAB_RECLAIM_ACCOUNT, NULL);
1430 	if (!nilfs_transaction_cachep)
1431 		goto fail;
1432 
1433 	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1434 			sizeof(struct nilfs_segment_buffer), 0,
1435 			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1436 	if (!nilfs_segbuf_cachep)
1437 		goto fail;
1438 
1439 	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1440 			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1441 			0, 0, NULL);
1442 	if (!nilfs_btree_path_cache)
1443 		goto fail;
1444 
1445 	return 0;
1446 
1447 fail:
1448 	nilfs_destroy_cachep();
1449 	return -ENOMEM;
1450 }
1451 
1452 static int __init init_nilfs_fs(void)
1453 {
1454 	int err;
1455 
1456 	err = nilfs_init_cachep();
1457 	if (err)
1458 		goto fail;
1459 
1460 	err = nilfs_sysfs_init();
1461 	if (err)
1462 		goto free_cachep;
1463 
1464 	err = register_filesystem(&nilfs_fs_type);
1465 	if (err)
1466 		goto deinit_sysfs_entry;
1467 
1468 	printk(KERN_INFO "NILFS version 2 loaded\n");
1469 	return 0;
1470 
1471 deinit_sysfs_entry:
1472 	nilfs_sysfs_exit();
1473 free_cachep:
1474 	nilfs_destroy_cachep();
1475 fail:
1476 	return err;
1477 }
1478 
1479 static void __exit exit_nilfs_fs(void)
1480 {
1481 	nilfs_destroy_cachep();
1482 	nilfs_sysfs_exit();
1483 	unregister_filesystem(&nilfs_fs_type);
1484 }
1485 
1486 module_init(init_nilfs_fs)
1487 module_exit(exit_nilfs_fs)
1488