xref: /openbmc/linux/fs/nilfs2/super.c (revision b04b4f78)
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  */
22 /*
23  *  linux/fs/ext2/super.c
24  *
25  * Copyright (C) 1992, 1993, 1994, 1995
26  * Remy Card (card@masi.ibp.fr)
27  * Laboratoire MASI - Institut Blaise Pascal
28  * Universite Pierre et Marie Curie (Paris VI)
29  *
30  *  from
31  *
32  *  linux/fs/minix/inode.c
33  *
34  *  Copyright (C) 1991, 1992  Linus Torvalds
35  *
36  *  Big-endian to little-endian byte-swapping/bitmaps by
37  *        David S. Miller (davem@caip.rutgers.edu), 1995
38  */
39 
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/smp_lock.h>
49 #include <linux/vfs.h>
50 #include <linux/writeback.h>
51 #include <linux/kobject.h>
52 #include <linux/exportfs.h>
53 #include "nilfs.h"
54 #include "mdt.h"
55 #include "alloc.h"
56 #include "page.h"
57 #include "cpfile.h"
58 #include "ifile.h"
59 #include "dat.h"
60 #include "segment.h"
61 #include "segbuf.h"
62 
63 MODULE_AUTHOR("NTT Corp.");
64 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
65 		   "(NILFS)");
66 MODULE_LICENSE("GPL");
67 
68 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
69 static int test_exclusive_mount(struct file_system_type *fs_type,
70 				struct block_device *bdev, int flags);
71 
72 /**
73  * nilfs_error() - report failure condition on a filesystem
74  *
75  * nilfs_error() sets an ERROR_FS flag on the superblock as well as
76  * reporting an error message.  It should be called when NILFS detects
77  * incoherences or defects of meta data on disk.  As for sustainable
78  * errors such as a single-shot I/O error, nilfs_warning() or the printk()
79  * function should be used instead.
80  *
81  * The segment constructor must not call this function because it can
82  * kill itself.
83  */
84 void nilfs_error(struct super_block *sb, const char *function,
85 		 const char *fmt, ...)
86 {
87 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
88 	va_list args;
89 
90 	va_start(args, fmt);
91 	printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
92 	vprintk(fmt, args);
93 	printk("\n");
94 	va_end(args);
95 
96 	if (!(sb->s_flags & MS_RDONLY)) {
97 		struct the_nilfs *nilfs = sbi->s_nilfs;
98 
99 		if (!nilfs_test_opt(sbi, ERRORS_CONT))
100 			nilfs_detach_segment_constructor(sbi);
101 
102 		down_write(&nilfs->ns_sem);
103 		if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
104 			nilfs->ns_mount_state |= NILFS_ERROR_FS;
105 			nilfs->ns_sbp[0]->s_state |=
106 				cpu_to_le16(NILFS_ERROR_FS);
107 			nilfs_commit_super(sbi, 1);
108 		}
109 		up_write(&nilfs->ns_sem);
110 
111 		if (nilfs_test_opt(sbi, ERRORS_RO)) {
112 			printk(KERN_CRIT "Remounting filesystem read-only\n");
113 			sb->s_flags |= MS_RDONLY;
114 		}
115 	}
116 
117 	if (nilfs_test_opt(sbi, ERRORS_PANIC))
118 		panic("NILFS (device %s): panic forced after error\n",
119 		      sb->s_id);
120 }
121 
122 void nilfs_warning(struct super_block *sb, const char *function,
123 		   const char *fmt, ...)
124 {
125 	va_list args;
126 
127 	va_start(args, fmt);
128 	printk(KERN_WARNING "NILFS warning (device %s): %s: ",
129 	       sb->s_id, function);
130 	vprintk(fmt, args);
131 	printk("\n");
132 	va_end(args);
133 }
134 
135 static struct kmem_cache *nilfs_inode_cachep;
136 
137 struct inode *nilfs_alloc_inode(struct super_block *sb)
138 {
139 	struct nilfs_inode_info *ii;
140 
141 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
142 	if (!ii)
143 		return NULL;
144 	ii->i_bh = NULL;
145 	ii->i_state = 0;
146 	ii->vfs_inode.i_version = 1;
147 	nilfs_btnode_cache_init(&ii->i_btnode_cache);
148 	return &ii->vfs_inode;
149 }
150 
151 void nilfs_destroy_inode(struct inode *inode)
152 {
153 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
154 }
155 
156 static void init_once(void *obj)
157 {
158 	struct nilfs_inode_info *ii = obj;
159 
160 	INIT_LIST_HEAD(&ii->i_dirty);
161 #ifdef CONFIG_NILFS_XATTR
162 	init_rwsem(&ii->xattr_sem);
163 #endif
164 	nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
165 	ii->i_bmap = (struct nilfs_bmap *)&ii->i_bmap_union;
166 	inode_init_once(&ii->vfs_inode);
167 }
168 
169 static int nilfs_init_inode_cache(void)
170 {
171 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
172 					       sizeof(struct nilfs_inode_info),
173 					       0, SLAB_RECLAIM_ACCOUNT,
174 					       init_once);
175 
176 	return (nilfs_inode_cachep == NULL) ? -ENOMEM : 0;
177 }
178 
179 static inline void nilfs_destroy_inode_cache(void)
180 {
181 	kmem_cache_destroy(nilfs_inode_cachep);
182 }
183 
184 static void nilfs_clear_inode(struct inode *inode)
185 {
186 	struct nilfs_inode_info *ii = NILFS_I(inode);
187 
188 #ifdef CONFIG_NILFS_POSIX_ACL
189 	if (ii->i_acl && ii->i_acl != NILFS_ACL_NOT_CACHED) {
190 		posix_acl_release(ii->i_acl);
191 		ii->i_acl = NILFS_ACL_NOT_CACHED;
192 	}
193 	if (ii->i_default_acl && ii->i_default_acl != NILFS_ACL_NOT_CACHED) {
194 		posix_acl_release(ii->i_default_acl);
195 		ii->i_default_acl = NILFS_ACL_NOT_CACHED;
196 	}
197 #endif
198 	/*
199 	 * Free resources allocated in nilfs_read_inode(), here.
200 	 */
201 	BUG_ON(!list_empty(&ii->i_dirty));
202 	brelse(ii->i_bh);
203 	ii->i_bh = NULL;
204 
205 	if (test_bit(NILFS_I_BMAP, &ii->i_state))
206 		nilfs_bmap_clear(ii->i_bmap);
207 
208 	nilfs_btnode_cache_clear(&ii->i_btnode_cache);
209 }
210 
211 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int dupsb)
212 {
213 	struct the_nilfs *nilfs = sbi->s_nilfs;
214 	int err;
215 	int barrier_done = 0;
216 
217 	if (nilfs_test_opt(sbi, BARRIER)) {
218 		set_buffer_ordered(nilfs->ns_sbh[0]);
219 		barrier_done = 1;
220 	}
221  retry:
222 	set_buffer_dirty(nilfs->ns_sbh[0]);
223 	err = sync_dirty_buffer(nilfs->ns_sbh[0]);
224 	if (err == -EOPNOTSUPP && barrier_done) {
225 		nilfs_warning(sbi->s_super, __func__,
226 			      "barrier-based sync failed. "
227 			      "disabling barriers\n");
228 		nilfs_clear_opt(sbi, BARRIER);
229 		barrier_done = 0;
230 		clear_buffer_ordered(nilfs->ns_sbh[0]);
231 		goto retry;
232 	}
233 	if (unlikely(err)) {
234 		printk(KERN_ERR
235 		       "NILFS: unable to write superblock (err=%d)\n", err);
236 		if (err == -EIO && nilfs->ns_sbh[1]) {
237 			nilfs_fall_back_super_block(nilfs);
238 			goto retry;
239 		}
240 	} else {
241 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
242 
243 		/*
244 		 * The latest segment becomes trailable from the position
245 		 * written in superblock.
246 		 */
247 		clear_nilfs_discontinued(nilfs);
248 
249 		/* update GC protection for recent segments */
250 		if (nilfs->ns_sbh[1]) {
251 			sbp = NULL;
252 			if (dupsb) {
253 				set_buffer_dirty(nilfs->ns_sbh[1]);
254 				if (!sync_dirty_buffer(nilfs->ns_sbh[1]))
255 					sbp = nilfs->ns_sbp[1];
256 			}
257 		}
258 		if (sbp) {
259 			spin_lock(&nilfs->ns_last_segment_lock);
260 			nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
261 			spin_unlock(&nilfs->ns_last_segment_lock);
262 		}
263 	}
264 
265 	return err;
266 }
267 
268 int nilfs_commit_super(struct nilfs_sb_info *sbi, int dupsb)
269 {
270 	struct the_nilfs *nilfs = sbi->s_nilfs;
271 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
272 	sector_t nfreeblocks;
273 	time_t t;
274 	int err;
275 
276 	/* nilfs->sem must be locked by the caller. */
277 	if (sbp[0]->s_magic != NILFS_SUPER_MAGIC) {
278 		if (sbp[1] && sbp[1]->s_magic == NILFS_SUPER_MAGIC)
279 			nilfs_swap_super_block(nilfs);
280 		else {
281 			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
282 			       sbi->s_super->s_id);
283 			return -EIO;
284 		}
285 	}
286 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
287 	if (unlikely(err)) {
288 		printk(KERN_ERR "NILFS: failed to count free blocks\n");
289 		return err;
290 	}
291 	spin_lock(&nilfs->ns_last_segment_lock);
292 	sbp[0]->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
293 	sbp[0]->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
294 	sbp[0]->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
295 	spin_unlock(&nilfs->ns_last_segment_lock);
296 
297 	t = get_seconds();
298 	nilfs->ns_sbwtime[0] = t;
299 	sbp[0]->s_free_blocks_count = cpu_to_le64(nfreeblocks);
300 	sbp[0]->s_wtime = cpu_to_le64(t);
301 	sbp[0]->s_sum = 0;
302 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
303 					     (unsigned char *)sbp[0],
304 					     nilfs->ns_sbsize));
305 	if (dupsb && sbp[1]) {
306 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
307 		nilfs->ns_sbwtime[1] = t;
308 	}
309 	sbi->s_super->s_dirt = 0;
310 	return nilfs_sync_super(sbi, dupsb);
311 }
312 
313 static void nilfs_put_super(struct super_block *sb)
314 {
315 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
316 	struct the_nilfs *nilfs = sbi->s_nilfs;
317 
318 	nilfs_detach_segment_constructor(sbi);
319 
320 	if (!(sb->s_flags & MS_RDONLY)) {
321 		down_write(&nilfs->ns_sem);
322 		nilfs->ns_sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
323 		nilfs_commit_super(sbi, 1);
324 		up_write(&nilfs->ns_sem);
325 	}
326 
327 	nilfs_detach_checkpoint(sbi);
328 	put_nilfs(sbi->s_nilfs);
329 	sbi->s_super = NULL;
330 	sb->s_fs_info = NULL;
331 	kfree(sbi);
332 }
333 
334 /**
335  * nilfs_write_super - write super block(s) of NILFS
336  * @sb: super_block
337  *
338  * nilfs_write_super() gets a fs-dependent lock, writes super block(s), and
339  * clears s_dirt.  This function is called in the section protected by
340  * lock_super().
341  *
342  * The s_dirt flag is managed by each filesystem and we protect it by ns_sem
343  * of the struct the_nilfs.  Lock order must be as follows:
344  *
345  *   1. lock_super()
346  *   2.    down_write(&nilfs->ns_sem)
347  *
348  * Inside NILFS, locking ns_sem is enough to protect s_dirt and the buffer
349  * of the super block (nilfs->ns_sbp[]).
350  *
351  * In most cases, VFS functions call lock_super() before calling these
352  * methods.  So we must be careful not to bring on deadlocks when using
353  * lock_super();  see generic_shutdown_super(), write_super(), and so on.
354  *
355  * Note that order of lock_kernel() and lock_super() depends on contexts
356  * of VFS.  We should also note that lock_kernel() can be used in its
357  * protective section and only the outermost one has an effect.
358  */
359 static void nilfs_write_super(struct super_block *sb)
360 {
361 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
362 	struct the_nilfs *nilfs = sbi->s_nilfs;
363 
364 	down_write(&nilfs->ns_sem);
365 	if (!(sb->s_flags & MS_RDONLY)) {
366 		struct nilfs_super_block **sbp = nilfs->ns_sbp;
367 		u64 t = get_seconds();
368 		int dupsb;
369 
370 		if (!nilfs_discontinued(nilfs) && t >= nilfs->ns_sbwtime[0] &&
371 		    t < nilfs->ns_sbwtime[0] + NILFS_SB_FREQ) {
372 			up_write(&nilfs->ns_sem);
373 			return;
374 		}
375 		dupsb = sbp[1] && t > nilfs->ns_sbwtime[1] + NILFS_ALTSB_FREQ;
376 		nilfs_commit_super(sbi, dupsb);
377 	}
378 	sb->s_dirt = 0;
379 	up_write(&nilfs->ns_sem);
380 }
381 
382 static int nilfs_sync_fs(struct super_block *sb, int wait)
383 {
384 	int err = 0;
385 
386 	/* This function is called when super block should be written back */
387 	if (wait)
388 		err = nilfs_construct_segment(sb);
389 	return err;
390 }
391 
392 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
393 {
394 	struct the_nilfs *nilfs = sbi->s_nilfs;
395 	struct nilfs_checkpoint *raw_cp;
396 	struct buffer_head *bh_cp;
397 	int err;
398 
399 	down_write(&nilfs->ns_sem);
400 	list_add(&sbi->s_list, &nilfs->ns_supers);
401 	up_write(&nilfs->ns_sem);
402 
403 	sbi->s_ifile = nilfs_mdt_new(
404 		nilfs, sbi->s_super, NILFS_IFILE_INO, NILFS_IFILE_GFP);
405 	if (!sbi->s_ifile)
406 		return -ENOMEM;
407 
408 	err = nilfs_palloc_init_blockgroup(sbi->s_ifile, nilfs->ns_inode_size);
409 	if (unlikely(err))
410 		goto failed;
411 
412 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
413 					  &bh_cp);
414 	if (unlikely(err)) {
415 		if (err == -ENOENT || err == -EINVAL) {
416 			printk(KERN_ERR
417 			       "NILFS: Invalid checkpoint "
418 			       "(checkpoint number=%llu)\n",
419 			       (unsigned long long)cno);
420 			err = -EINVAL;
421 		}
422 		goto failed;
423 	}
424 	err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
425 	if (unlikely(err))
426 		goto failed_bh;
427 	atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
428 	atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
429 
430 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
431 	return 0;
432 
433  failed_bh:
434 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
435  failed:
436 	nilfs_mdt_destroy(sbi->s_ifile);
437 	sbi->s_ifile = NULL;
438 
439 	down_write(&nilfs->ns_sem);
440 	list_del_init(&sbi->s_list);
441 	up_write(&nilfs->ns_sem);
442 
443 	return err;
444 }
445 
446 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
447 {
448 	struct the_nilfs *nilfs = sbi->s_nilfs;
449 
450 	nilfs_mdt_clear(sbi->s_ifile);
451 	nilfs_mdt_destroy(sbi->s_ifile);
452 	sbi->s_ifile = NULL;
453 	down_write(&nilfs->ns_sem);
454 	list_del_init(&sbi->s_list);
455 	up_write(&nilfs->ns_sem);
456 }
457 
458 static int nilfs_mark_recovery_complete(struct nilfs_sb_info *sbi)
459 {
460 	struct the_nilfs *nilfs = sbi->s_nilfs;
461 	int err = 0;
462 
463 	down_write(&nilfs->ns_sem);
464 	if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
465 		nilfs->ns_mount_state |= NILFS_VALID_FS;
466 		err = nilfs_commit_super(sbi, 1);
467 		if (likely(!err))
468 			printk(KERN_INFO "NILFS: recovery complete.\n");
469 	}
470 	up_write(&nilfs->ns_sem);
471 	return err;
472 }
473 
474 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
475 {
476 	struct super_block *sb = dentry->d_sb;
477 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
478 	struct the_nilfs *nilfs = sbi->s_nilfs;
479 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
480 	unsigned long long blocks;
481 	unsigned long overhead;
482 	unsigned long nrsvblocks;
483 	sector_t nfreeblocks;
484 	int err;
485 
486 	/*
487 	 * Compute all of the segment blocks
488 	 *
489 	 * The blocks before first segment and after last segment
490 	 * are excluded.
491 	 */
492 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
493 		- nilfs->ns_first_data_block;
494 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
495 
496 	/*
497 	 * Compute the overhead
498 	 *
499 	 * When distributing meta data blocks outside semgent structure,
500 	 * We must count them as the overhead.
501 	 */
502 	overhead = 0;
503 
504 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
505 	if (unlikely(err))
506 		return err;
507 
508 	buf->f_type = NILFS_SUPER_MAGIC;
509 	buf->f_bsize = sb->s_blocksize;
510 	buf->f_blocks = blocks - overhead;
511 	buf->f_bfree = nfreeblocks;
512 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
513 		(buf->f_bfree - nrsvblocks) : 0;
514 	buf->f_files = atomic_read(&sbi->s_inodes_count);
515 	buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
516 	buf->f_namelen = NILFS_NAME_LEN;
517 	buf->f_fsid.val[0] = (u32)id;
518 	buf->f_fsid.val[1] = (u32)(id >> 32);
519 
520 	return 0;
521 }
522 
523 static struct super_operations nilfs_sops = {
524 	.alloc_inode    = nilfs_alloc_inode,
525 	.destroy_inode  = nilfs_destroy_inode,
526 	.dirty_inode    = nilfs_dirty_inode,
527 	/* .write_inode    = nilfs_write_inode, */
528 	/* .put_inode      = nilfs_put_inode, */
529 	/* .drop_inode	  = nilfs_drop_inode, */
530 	.delete_inode   = nilfs_delete_inode,
531 	.put_super      = nilfs_put_super,
532 	.write_super    = nilfs_write_super,
533 	.sync_fs        = nilfs_sync_fs,
534 	/* .write_super_lockfs */
535 	/* .unlockfs */
536 	.statfs         = nilfs_statfs,
537 	.remount_fs     = nilfs_remount,
538 	.clear_inode    = nilfs_clear_inode,
539 	/* .umount_begin */
540 	/* .show_options */
541 };
542 
543 static struct inode *
544 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
545 {
546 	struct inode *inode;
547 
548 	if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
549 	    ino != NILFS_SKETCH_INO)
550 		return ERR_PTR(-ESTALE);
551 
552 	inode = nilfs_iget(sb, ino);
553 	if (IS_ERR(inode))
554 		return ERR_CAST(inode);
555 	if (generation && inode->i_generation != generation) {
556 		iput(inode);
557 		return ERR_PTR(-ESTALE);
558 	}
559 
560 	return inode;
561 }
562 
563 static struct dentry *
564 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
565 		   int fh_type)
566 {
567 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
568 				    nilfs_nfs_get_inode);
569 }
570 
571 static struct dentry *
572 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
573 		   int fh_type)
574 {
575 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
576 				    nilfs_nfs_get_inode);
577 }
578 
579 static struct export_operations nilfs_export_ops = {
580 	.fh_to_dentry = nilfs_fh_to_dentry,
581 	.fh_to_parent = nilfs_fh_to_parent,
582 	.get_parent = nilfs_get_parent,
583 };
584 
585 enum {
586 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
587 	Opt_barrier, Opt_snapshot, Opt_order,
588 	Opt_err,
589 };
590 
591 static match_table_t tokens = {
592 	{Opt_err_cont, "errors=continue"},
593 	{Opt_err_panic, "errors=panic"},
594 	{Opt_err_ro, "errors=remount-ro"},
595 	{Opt_barrier, "barrier=%s"},
596 	{Opt_snapshot, "cp=%u"},
597 	{Opt_order, "order=%s"},
598 	{Opt_err, NULL}
599 };
600 
601 static int match_bool(substring_t *s, int *result)
602 {
603 	int len = s->to - s->from;
604 
605 	if (strncmp(s->from, "on", len) == 0)
606 		*result = 1;
607 	else if (strncmp(s->from, "off", len) == 0)
608 		*result = 0;
609 	else
610 		return 1;
611 	return 0;
612 }
613 
614 static int parse_options(char *options, struct super_block *sb)
615 {
616 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
617 	char *p;
618 	substring_t args[MAX_OPT_ARGS];
619 	int option;
620 
621 	if (!options)
622 		return 1;
623 
624 	while ((p = strsep(&options, ",")) != NULL) {
625 		int token;
626 		if (!*p)
627 			continue;
628 
629 		token = match_token(p, tokens, args);
630 		switch (token) {
631 		case Opt_barrier:
632 			if (match_bool(&args[0], &option))
633 				return 0;
634 			if (option)
635 				nilfs_set_opt(sbi, BARRIER);
636 			else
637 				nilfs_clear_opt(sbi, BARRIER);
638 			break;
639 		case Opt_order:
640 			if (strcmp(args[0].from, "relaxed") == 0)
641 				/* Ordered data semantics */
642 				nilfs_clear_opt(sbi, STRICT_ORDER);
643 			else if (strcmp(args[0].from, "strict") == 0)
644 				/* Strict in-order semantics */
645 				nilfs_set_opt(sbi, STRICT_ORDER);
646 			else
647 				return 0;
648 			break;
649 		case Opt_err_panic:
650 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
651 			break;
652 		case Opt_err_ro:
653 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
654 			break;
655 		case Opt_err_cont:
656 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
657 			break;
658 		case Opt_snapshot:
659 			if (match_int(&args[0], &option) || option <= 0)
660 				return 0;
661 			if (!(sb->s_flags & MS_RDONLY))
662 				return 0;
663 			sbi->s_snapshot_cno = option;
664 			nilfs_set_opt(sbi, SNAPSHOT);
665 			break;
666 		default:
667 			printk(KERN_ERR
668 			       "NILFS: Unrecognized mount option \"%s\"\n", p);
669 			return 0;
670 		}
671 	}
672 	return 1;
673 }
674 
675 static inline void
676 nilfs_set_default_options(struct nilfs_sb_info *sbi,
677 			  struct nilfs_super_block *sbp)
678 {
679 	sbi->s_mount_opt =
680 		NILFS_MOUNT_ERRORS_CONT | NILFS_MOUNT_BARRIER;
681 }
682 
683 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
684 {
685 	struct the_nilfs *nilfs = sbi->s_nilfs;
686 	struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
687 	int max_mnt_count = le16_to_cpu(sbp->s_max_mnt_count);
688 	int mnt_count = le16_to_cpu(sbp->s_mnt_count);
689 
690 	/* nilfs->sem must be locked by the caller. */
691 	if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
692 		printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
693 	} else if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
694 		printk(KERN_WARNING
695 		       "NILFS warning: mounting fs with errors\n");
696 #if 0
697 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
698 		printk(KERN_WARNING
699 		       "NILFS warning: maximal mount count reached\n");
700 #endif
701 	}
702 	if (!max_mnt_count)
703 		sbp->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
704 
705 	sbp->s_mnt_count = cpu_to_le16(mnt_count + 1);
706 	sbp->s_state = cpu_to_le16(le16_to_cpu(sbp->s_state) & ~NILFS_VALID_FS);
707 	sbp->s_mtime = cpu_to_le64(get_seconds());
708 	return nilfs_commit_super(sbi, 1);
709 }
710 
711 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
712 						 u64 pos, int blocksize,
713 						 struct buffer_head **pbh)
714 {
715 	unsigned long long sb_index = pos;
716 	unsigned long offset;
717 
718 	offset = do_div(sb_index, blocksize);
719 	*pbh = sb_bread(sb, sb_index);
720 	if (!*pbh)
721 		return NULL;
722 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
723 }
724 
725 int nilfs_store_magic_and_option(struct super_block *sb,
726 				 struct nilfs_super_block *sbp,
727 				 char *data)
728 {
729 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
730 
731 	sb->s_magic = le16_to_cpu(sbp->s_magic);
732 
733 	/* FS independent flags */
734 #ifdef NILFS_ATIME_DISABLE
735 	sb->s_flags |= MS_NOATIME;
736 #endif
737 
738 	nilfs_set_default_options(sbi, sbp);
739 
740 	sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
741 	sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
742 	sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
743 	sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
744 
745 	return !parse_options(data, sb) ? -EINVAL : 0 ;
746 }
747 
748 /**
749  * nilfs_fill_super() - initialize a super block instance
750  * @sb: super_block
751  * @data: mount options
752  * @silent: silent mode flag
753  * @nilfs: the_nilfs struct
754  *
755  * This function is called exclusively by bd_mount_mutex.
756  * So, the recovery process is protected from other simultaneous mounts.
757  */
758 static int
759 nilfs_fill_super(struct super_block *sb, void *data, int silent,
760 		 struct the_nilfs *nilfs)
761 {
762 	struct nilfs_sb_info *sbi;
763 	struct inode *root;
764 	__u64 cno;
765 	int err;
766 
767 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
768 	if (!sbi)
769 		return -ENOMEM;
770 
771 	sb->s_fs_info = sbi;
772 
773 	get_nilfs(nilfs);
774 	sbi->s_nilfs = nilfs;
775 	sbi->s_super = sb;
776 
777 	err = init_nilfs(nilfs, sbi, (char *)data);
778 	if (err)
779 		goto failed_sbi;
780 
781 	spin_lock_init(&sbi->s_inode_lock);
782 	INIT_LIST_HEAD(&sbi->s_dirty_files);
783 	INIT_LIST_HEAD(&sbi->s_list);
784 
785 	/*
786 	 * Following initialization is overlapped because
787 	 * nilfs_sb_info structure has been cleared at the beginning.
788 	 * But we reserve them to keep our interest and make ready
789 	 * for the future change.
790 	 */
791 	get_random_bytes(&sbi->s_next_generation,
792 			 sizeof(sbi->s_next_generation));
793 	spin_lock_init(&sbi->s_next_gen_lock);
794 
795 	sb->s_op = &nilfs_sops;
796 	sb->s_export_op = &nilfs_export_ops;
797 	sb->s_root = NULL;
798 	sb->s_time_gran = 1;
799 
800 	if (!nilfs_loaded(nilfs)) {
801 		err = load_nilfs(nilfs, sbi);
802 		if (err)
803 			goto failed_sbi;
804 	}
805 	cno = nilfs_last_cno(nilfs);
806 
807 	if (sb->s_flags & MS_RDONLY) {
808 		if (nilfs_test_opt(sbi, SNAPSHOT)) {
809 			err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
810 						       sbi->s_snapshot_cno);
811 			if (err < 0)
812 				goto failed_sbi;
813 			if (!err) {
814 				printk(KERN_ERR
815 				       "NILFS: The specified checkpoint is "
816 				       "not a snapshot "
817 				       "(checkpoint number=%llu).\n",
818 				       (unsigned long long)sbi->s_snapshot_cno);
819 				err = -EINVAL;
820 				goto failed_sbi;
821 			}
822 			cno = sbi->s_snapshot_cno;
823 		} else
824 			/* Read-only mount */
825 			sbi->s_snapshot_cno = cno;
826 	}
827 
828 	err = nilfs_attach_checkpoint(sbi, cno);
829 	if (err) {
830 		printk(KERN_ERR "NILFS: error loading a checkpoint"
831 		       " (checkpoint number=%llu).\n", (unsigned long long)cno);
832 		goto failed_sbi;
833 	}
834 
835 	if (!(sb->s_flags & MS_RDONLY)) {
836 		err = nilfs_attach_segment_constructor(sbi);
837 		if (err)
838 			goto failed_checkpoint;
839 	}
840 
841 	root = nilfs_iget(sb, NILFS_ROOT_INO);
842 	if (IS_ERR(root)) {
843 		printk(KERN_ERR "NILFS: get root inode failed\n");
844 		err = PTR_ERR(root);
845 		goto failed_segctor;
846 	}
847 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
848 		iput(root);
849 		printk(KERN_ERR "NILFS: corrupt root inode.\n");
850 		err = -EINVAL;
851 		goto failed_segctor;
852 	}
853 	sb->s_root = d_alloc_root(root);
854 	if (!sb->s_root) {
855 		iput(root);
856 		printk(KERN_ERR "NILFS: get root dentry failed\n");
857 		err = -ENOMEM;
858 		goto failed_segctor;
859 	}
860 
861 	if (!(sb->s_flags & MS_RDONLY)) {
862 		down_write(&nilfs->ns_sem);
863 		nilfs_setup_super(sbi);
864 		up_write(&nilfs->ns_sem);
865 	}
866 
867 	err = nilfs_mark_recovery_complete(sbi);
868 	if (unlikely(err)) {
869 		printk(KERN_ERR "NILFS: recovery failed.\n");
870 		goto failed_root;
871 	}
872 
873 	return 0;
874 
875  failed_root:
876 	dput(sb->s_root);
877 	sb->s_root = NULL;
878 
879  failed_segctor:
880 	nilfs_detach_segment_constructor(sbi);
881 
882  failed_checkpoint:
883 	nilfs_detach_checkpoint(sbi);
884 
885  failed_sbi:
886 	put_nilfs(nilfs);
887 	sb->s_fs_info = NULL;
888 	kfree(sbi);
889 	return err;
890 }
891 
892 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
893 {
894 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
895 	struct nilfs_super_block *sbp;
896 	struct the_nilfs *nilfs = sbi->s_nilfs;
897 	unsigned long old_sb_flags;
898 	struct nilfs_mount_options old_opts;
899 	int err;
900 
901 	old_sb_flags = sb->s_flags;
902 	old_opts.mount_opt = sbi->s_mount_opt;
903 	old_opts.snapshot_cno = sbi->s_snapshot_cno;
904 
905 	if (!parse_options(data, sb)) {
906 		err = -EINVAL;
907 		goto restore_opts;
908 	}
909 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
910 
911 	if ((*flags & MS_RDONLY) &&
912 	    sbi->s_snapshot_cno != old_opts.snapshot_cno) {
913 		printk(KERN_WARNING "NILFS (device %s): couldn't "
914 		       "remount to a different snapshot. \n",
915 		       sb->s_id);
916 		err = -EINVAL;
917 		goto restore_opts;
918 	}
919 
920 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
921 		goto out;
922 	if (*flags & MS_RDONLY) {
923 		/* Shutting down the segment constructor */
924 		nilfs_detach_segment_constructor(sbi);
925 		sb->s_flags |= MS_RDONLY;
926 
927 		sbi->s_snapshot_cno = nilfs_last_cno(nilfs);
928 		/* nilfs_set_opt(sbi, SNAPSHOT); */
929 
930 		/*
931 		 * Remounting a valid RW partition RDONLY, so set
932 		 * the RDONLY flag and then mark the partition as valid again.
933 		 */
934 		down_write(&nilfs->ns_sem);
935 		sbp = nilfs->ns_sbp[0];
936 		if (!(sbp->s_state & le16_to_cpu(NILFS_VALID_FS)) &&
937 		    (nilfs->ns_mount_state & NILFS_VALID_FS))
938 			sbp->s_state = cpu_to_le16(nilfs->ns_mount_state);
939 		sbp->s_mtime = cpu_to_le64(get_seconds());
940 		nilfs_commit_super(sbi, 1);
941 		up_write(&nilfs->ns_sem);
942 	} else {
943 		/*
944 		 * Mounting a RDONLY partition read-write, so reread and
945 		 * store the current valid flag.  (It may have been changed
946 		 * by fsck since we originally mounted the partition.)
947 		 */
948 		down(&sb->s_bdev->bd_mount_sem);
949 		/* Check existing RW-mount */
950 		if (test_exclusive_mount(sb->s_type, sb->s_bdev, 0)) {
951 			printk(KERN_WARNING "NILFS (device %s): couldn't "
952 			       "remount because a RW-mount exists.\n",
953 			       sb->s_id);
954 			err = -EBUSY;
955 			goto rw_remount_failed;
956 		}
957 		if (sbi->s_snapshot_cno != nilfs_last_cno(nilfs)) {
958 			printk(KERN_WARNING "NILFS (device %s): couldn't "
959 			       "remount because the current RO-mount is not "
960 			       "the latest one.\n",
961 			       sb->s_id);
962 			err = -EINVAL;
963 			goto rw_remount_failed;
964 		}
965 		sb->s_flags &= ~MS_RDONLY;
966 		nilfs_clear_opt(sbi, SNAPSHOT);
967 		sbi->s_snapshot_cno = 0;
968 
969 		err = nilfs_attach_segment_constructor(sbi);
970 		if (err)
971 			goto rw_remount_failed;
972 
973 		down_write(&nilfs->ns_sem);
974 		nilfs_setup_super(sbi);
975 		up_write(&nilfs->ns_sem);
976 
977 		up(&sb->s_bdev->bd_mount_sem);
978 	}
979  out:
980 	return 0;
981 
982  rw_remount_failed:
983 	up(&sb->s_bdev->bd_mount_sem);
984  restore_opts:
985 	sb->s_flags = old_sb_flags;
986 	sbi->s_mount_opt = old_opts.mount_opt;
987 	sbi->s_snapshot_cno = old_opts.snapshot_cno;
988 	return err;
989 }
990 
991 struct nilfs_super_data {
992 	struct block_device *bdev;
993 	__u64 cno;
994 	int flags;
995 };
996 
997 /**
998  * nilfs_identify - pre-read mount options needed to identify mount instance
999  * @data: mount options
1000  * @sd: nilfs_super_data
1001  */
1002 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1003 {
1004 	char *p, *options = data;
1005 	substring_t args[MAX_OPT_ARGS];
1006 	int option, token;
1007 	int ret = 0;
1008 
1009 	do {
1010 		p = strsep(&options, ",");
1011 		if (p != NULL && *p) {
1012 			token = match_token(p, tokens, args);
1013 			if (token == Opt_snapshot) {
1014 				if (!(sd->flags & MS_RDONLY))
1015 					ret++;
1016 				else {
1017 					ret = match_int(&args[0], &option);
1018 					if (!ret) {
1019 						if (option > 0)
1020 							sd->cno = option;
1021 						else
1022 							ret++;
1023 					}
1024 				}
1025 			}
1026 			if (ret)
1027 				printk(KERN_ERR
1028 				       "NILFS: invalid mount option: %s\n", p);
1029 		}
1030 		if (!options)
1031 			break;
1032 		BUG_ON(options == data);
1033 		*(options - 1) = ',';
1034 	} while (!ret);
1035 	return ret;
1036 }
1037 
1038 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1039 {
1040 	struct nilfs_super_data *sd = data;
1041 
1042 	s->s_bdev = sd->bdev;
1043 	s->s_dev = s->s_bdev->bd_dev;
1044 	return 0;
1045 }
1046 
1047 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1048 {
1049 	struct nilfs_super_data *sd = data;
1050 
1051 	return s->s_bdev == sd->bdev;
1052 }
1053 
1054 static int nilfs_test_bdev_super2(struct super_block *s, void *data)
1055 {
1056 	struct nilfs_super_data *sd = data;
1057 	int ret;
1058 
1059 	if (s->s_bdev != sd->bdev)
1060 		return 0;
1061 
1062 	if (!((s->s_flags | sd->flags) & MS_RDONLY))
1063 		return 1; /* Reuse an old R/W-mode super_block */
1064 
1065 	if (s->s_flags & sd->flags & MS_RDONLY) {
1066 		if (down_read_trylock(&s->s_umount)) {
1067 			ret = s->s_root &&
1068 				(sd->cno == NILFS_SB(s)->s_snapshot_cno);
1069 			up_read(&s->s_umount);
1070 			/*
1071 			 * This path is locked with sb_lock by sget().
1072 			 * So, drop_super() causes deadlock.
1073 			 */
1074 			return ret;
1075 		}
1076 	}
1077 	return 0;
1078 }
1079 
1080 static int
1081 nilfs_get_sb(struct file_system_type *fs_type, int flags,
1082 	     const char *dev_name, void *data, struct vfsmount *mnt)
1083 {
1084 	struct nilfs_super_data sd;
1085 	struct super_block *s, *s2;
1086 	struct the_nilfs *nilfs = NULL;
1087 	int err, need_to_close = 1;
1088 
1089 	sd.bdev = open_bdev_exclusive(dev_name, flags, fs_type);
1090 	if (IS_ERR(sd.bdev))
1091 		return PTR_ERR(sd.bdev);
1092 
1093 	/*
1094 	 * To get mount instance using sget() vfs-routine, NILFS needs
1095 	 * much more information than normal filesystems to identify mount
1096 	 * instance.  For snapshot mounts, not only a mount type (ro-mount
1097 	 * or rw-mount) but also a checkpoint number is required.
1098 	 * The results are passed in sget() using nilfs_super_data.
1099 	 */
1100 	sd.cno = 0;
1101 	sd.flags = flags;
1102 	if (nilfs_identify((char *)data, &sd)) {
1103 		err = -EINVAL;
1104 		goto failed;
1105 	}
1106 
1107 	/*
1108 	 * once the super is inserted into the list by sget, s_umount
1109 	 * will protect the lockfs code from trying to start a snapshot
1110 	 * while we are mounting
1111 	 */
1112 	down(&sd.bdev->bd_mount_sem);
1113 	if (!sd.cno &&
1114 	    (err = test_exclusive_mount(fs_type, sd.bdev, flags ^ MS_RDONLY))) {
1115 		err = (err < 0) ? : -EBUSY;
1116 		goto failed_unlock;
1117 	}
1118 
1119 	/*
1120 	 * Phase-1: search any existent instance and get the_nilfs
1121 	 */
1122 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1123 	if (IS_ERR(s))
1124 		goto error_s;
1125 
1126 	if (!s->s_root) {
1127 		err = -ENOMEM;
1128 		nilfs = alloc_nilfs(sd.bdev);
1129 		if (!nilfs)
1130 			goto cancel_new;
1131 	} else {
1132 		struct nilfs_sb_info *sbi = NILFS_SB(s);
1133 
1134 		/*
1135 		 * s_umount protects super_block from unmount process;
1136 		 * It covers pointers of nilfs_sb_info and the_nilfs.
1137 		 */
1138 		nilfs = sbi->s_nilfs;
1139 		get_nilfs(nilfs);
1140 		up_write(&s->s_umount);
1141 
1142 		/*
1143 		 * Phase-2: search specified snapshot or R/W mode super_block
1144 		 */
1145 		if (!sd.cno)
1146 			/* trying to get the latest checkpoint.  */
1147 			sd.cno = nilfs_last_cno(nilfs);
1148 
1149 		s2 = sget(fs_type, nilfs_test_bdev_super2,
1150 			  nilfs_set_bdev_super, &sd);
1151 		deactivate_super(s);
1152 		/*
1153 		 * Although deactivate_super() invokes close_bdev_exclusive() at
1154 		 * kill_block_super().  Here, s is an existent mount; we need
1155 		 * one more close_bdev_exclusive() call.
1156 		 */
1157 		s = s2;
1158 		if (IS_ERR(s))
1159 			goto error_s;
1160 	}
1161 
1162 	if (!s->s_root) {
1163 		char b[BDEVNAME_SIZE];
1164 
1165 		s->s_flags = flags;
1166 		strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1167 		sb_set_blocksize(s, block_size(sd.bdev));
1168 
1169 		err = nilfs_fill_super(s, data, flags & MS_VERBOSE, nilfs);
1170 		if (err)
1171 			goto cancel_new;
1172 
1173 		s->s_flags |= MS_ACTIVE;
1174 		need_to_close = 0;
1175 	} else if (!(s->s_flags & MS_RDONLY)) {
1176 		err = -EBUSY;
1177 	}
1178 
1179 	up(&sd.bdev->bd_mount_sem);
1180 	put_nilfs(nilfs);
1181 	if (need_to_close)
1182 		close_bdev_exclusive(sd.bdev, flags);
1183 	simple_set_mnt(mnt, s);
1184 	return 0;
1185 
1186  error_s:
1187 	up(&sd.bdev->bd_mount_sem);
1188 	if (nilfs)
1189 		put_nilfs(nilfs);
1190 	close_bdev_exclusive(sd.bdev, flags);
1191 	return PTR_ERR(s);
1192 
1193  failed_unlock:
1194 	up(&sd.bdev->bd_mount_sem);
1195  failed:
1196 	close_bdev_exclusive(sd.bdev, flags);
1197 
1198 	return err;
1199 
1200  cancel_new:
1201 	/* Abandoning the newly allocated superblock */
1202 	up(&sd.bdev->bd_mount_sem);
1203 	if (nilfs)
1204 		put_nilfs(nilfs);
1205 	up_write(&s->s_umount);
1206 	deactivate_super(s);
1207 	/*
1208 	 * deactivate_super() invokes close_bdev_exclusive().
1209 	 * We must finish all post-cleaning before this call;
1210 	 * put_nilfs() and unlocking bd_mount_sem need the block device.
1211 	 */
1212 	return err;
1213 }
1214 
1215 static int nilfs_test_bdev_super3(struct super_block *s, void *data)
1216 {
1217 	struct nilfs_super_data *sd = data;
1218 	int ret;
1219 
1220 	if (s->s_bdev != sd->bdev)
1221 		return 0;
1222 	if (down_read_trylock(&s->s_umount)) {
1223 		ret = (s->s_flags & MS_RDONLY) && s->s_root &&
1224 			nilfs_test_opt(NILFS_SB(s), SNAPSHOT);
1225 		up_read(&s->s_umount);
1226 		if (ret)
1227 			return 0; /* ignore snapshot mounts */
1228 	}
1229 	return !((sd->flags ^ s->s_flags) & MS_RDONLY);
1230 }
1231 
1232 static int __false_bdev_super(struct super_block *s, void *data)
1233 {
1234 #if 0 /* XXX: workaround for lock debug. This is not good idea */
1235 	up_write(&s->s_umount);
1236 #endif
1237 	return -EFAULT;
1238 }
1239 
1240 /**
1241  * test_exclusive_mount - check whether an exclusive RW/RO mount exists or not.
1242  * fs_type: filesystem type
1243  * bdev: block device
1244  * flag: 0 (check rw-mount) or MS_RDONLY (check ro-mount)
1245  * res: pointer to an integer to store result
1246  *
1247  * This function must be called within a section protected by bd_mount_mutex.
1248  */
1249 static int test_exclusive_mount(struct file_system_type *fs_type,
1250 				struct block_device *bdev, int flags)
1251 {
1252 	struct super_block *s;
1253 	struct nilfs_super_data sd = { .flags = flags, .bdev = bdev };
1254 
1255 	s = sget(fs_type, nilfs_test_bdev_super3, __false_bdev_super, &sd);
1256 	if (IS_ERR(s)) {
1257 		if (PTR_ERR(s) != -EFAULT)
1258 			return PTR_ERR(s);
1259 		return 0;  /* Not found */
1260 	}
1261 	up_write(&s->s_umount);
1262 	deactivate_super(s);
1263 	return 1;  /* Found */
1264 }
1265 
1266 struct file_system_type nilfs_fs_type = {
1267 	.owner    = THIS_MODULE,
1268 	.name     = "nilfs2",
1269 	.get_sb   = nilfs_get_sb,
1270 	.kill_sb  = kill_block_super,
1271 	.fs_flags = FS_REQUIRES_DEV,
1272 };
1273 
1274 static int __init init_nilfs_fs(void)
1275 {
1276 	int err;
1277 
1278 	err = nilfs_init_inode_cache();
1279 	if (err)
1280 		goto failed;
1281 
1282 	err = nilfs_init_transaction_cache();
1283 	if (err)
1284 		goto failed_inode_cache;
1285 
1286 	err = nilfs_init_segbuf_cache();
1287 	if (err)
1288 		goto failed_transaction_cache;
1289 
1290 	err = nilfs_btree_path_cache_init();
1291 	if (err)
1292 		goto failed_segbuf_cache;
1293 
1294 	err = register_filesystem(&nilfs_fs_type);
1295 	if (err)
1296 		goto failed_btree_path_cache;
1297 
1298 	return 0;
1299 
1300  failed_btree_path_cache:
1301 	nilfs_btree_path_cache_destroy();
1302 
1303  failed_segbuf_cache:
1304 	nilfs_destroy_segbuf_cache();
1305 
1306  failed_transaction_cache:
1307 	nilfs_destroy_transaction_cache();
1308 
1309  failed_inode_cache:
1310 	nilfs_destroy_inode_cache();
1311 
1312  failed:
1313 	return err;
1314 }
1315 
1316 static void __exit exit_nilfs_fs(void)
1317 {
1318 	nilfs_destroy_segbuf_cache();
1319 	nilfs_destroy_transaction_cache();
1320 	nilfs_destroy_inode_cache();
1321 	nilfs_btree_path_cache_destroy();
1322 	unregister_filesystem(&nilfs_fs_type);
1323 }
1324 
1325 module_init(init_nilfs_fs)
1326 module_exit(exit_nilfs_fs)
1327