xref: /openbmc/linux/fs/nilfs2/super.c (revision a8fe58ce)
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  */
22 /*
23  *  linux/fs/ext2/super.c
24  *
25  * Copyright (C) 1992, 1993, 1994, 1995
26  * Remy Card (card@masi.ibp.fr)
27  * Laboratoire MASI - Institut Blaise Pascal
28  * Universite Pierre et Marie Curie (Paris VI)
29  *
30  *  from
31  *
32  *  linux/fs/minix/inode.c
33  *
34  *  Copyright (C) 1991, 1992  Linus Torvalds
35  *
36  *  Big-endian to little-endian byte-swapping/bitmaps by
37  *        David S. Miller (davem@caip.rutgers.edu), 1995
38  */
39 
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/crc32.h>
47 #include <linux/vfs.h>
48 #include <linux/writeback.h>
49 #include <linux/seq_file.h>
50 #include <linux/mount.h>
51 #include "nilfs.h"
52 #include "export.h"
53 #include "mdt.h"
54 #include "alloc.h"
55 #include "btree.h"
56 #include "btnode.h"
57 #include "page.h"
58 #include "cpfile.h"
59 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
60 #include "ifile.h"
61 #include "dat.h"
62 #include "segment.h"
63 #include "segbuf.h"
64 
65 MODULE_AUTHOR("NTT Corp.");
66 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
67 		   "(NILFS)");
68 MODULE_LICENSE("GPL");
69 
70 static struct kmem_cache *nilfs_inode_cachep;
71 struct kmem_cache *nilfs_transaction_cachep;
72 struct kmem_cache *nilfs_segbuf_cachep;
73 struct kmem_cache *nilfs_btree_path_cache;
74 
75 static int nilfs_setup_super(struct super_block *sb, int is_mount);
76 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
77 
78 static void nilfs_set_error(struct super_block *sb)
79 {
80 	struct the_nilfs *nilfs = sb->s_fs_info;
81 	struct nilfs_super_block **sbp;
82 
83 	down_write(&nilfs->ns_sem);
84 	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
85 		nilfs->ns_mount_state |= NILFS_ERROR_FS;
86 		sbp = nilfs_prepare_super(sb, 0);
87 		if (likely(sbp)) {
88 			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
89 			if (sbp[1])
90 				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
91 			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
92 		}
93 	}
94 	up_write(&nilfs->ns_sem);
95 }
96 
97 /**
98  * nilfs_error() - report failure condition on a filesystem
99  *
100  * nilfs_error() sets an ERROR_FS flag on the superblock as well as
101  * reporting an error message.  It should be called when NILFS detects
102  * incoherences or defects of meta data on disk.  As for sustainable
103  * errors such as a single-shot I/O error, nilfs_warning() or the printk()
104  * function should be used instead.
105  *
106  * The segment constructor must not call this function because it can
107  * kill itself.
108  */
109 void nilfs_error(struct super_block *sb, const char *function,
110 		 const char *fmt, ...)
111 {
112 	struct the_nilfs *nilfs = sb->s_fs_info;
113 	struct va_format vaf;
114 	va_list args;
115 
116 	va_start(args, fmt);
117 
118 	vaf.fmt = fmt;
119 	vaf.va = &args;
120 
121 	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
122 	       sb->s_id, function, &vaf);
123 
124 	va_end(args);
125 
126 	if (!(sb->s_flags & MS_RDONLY)) {
127 		nilfs_set_error(sb);
128 
129 		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
130 			printk(KERN_CRIT "Remounting filesystem read-only\n");
131 			sb->s_flags |= MS_RDONLY;
132 		}
133 	}
134 
135 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
136 		panic("NILFS (device %s): panic forced after error\n",
137 		      sb->s_id);
138 }
139 
140 void nilfs_warning(struct super_block *sb, const char *function,
141 		   const char *fmt, ...)
142 {
143 	struct va_format vaf;
144 	va_list args;
145 
146 	va_start(args, fmt);
147 
148 	vaf.fmt = fmt;
149 	vaf.va = &args;
150 
151 	printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
152 	       sb->s_id, function, &vaf);
153 
154 	va_end(args);
155 }
156 
157 
158 struct inode *nilfs_alloc_inode(struct super_block *sb)
159 {
160 	struct nilfs_inode_info *ii;
161 
162 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
163 	if (!ii)
164 		return NULL;
165 	ii->i_bh = NULL;
166 	ii->i_state = 0;
167 	ii->i_cno = 0;
168 	ii->vfs_inode.i_version = 1;
169 	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
170 	return &ii->vfs_inode;
171 }
172 
173 static void nilfs_i_callback(struct rcu_head *head)
174 {
175 	struct inode *inode = container_of(head, struct inode, i_rcu);
176 	struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
177 
178 	if (mdi) {
179 		kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
180 		kfree(mdi);
181 	}
182 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
183 }
184 
185 void nilfs_destroy_inode(struct inode *inode)
186 {
187 	call_rcu(&inode->i_rcu, nilfs_i_callback);
188 }
189 
190 static int nilfs_sync_super(struct super_block *sb, int flag)
191 {
192 	struct the_nilfs *nilfs = sb->s_fs_info;
193 	int err;
194 
195  retry:
196 	set_buffer_dirty(nilfs->ns_sbh[0]);
197 	if (nilfs_test_opt(nilfs, BARRIER)) {
198 		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
199 					  WRITE_SYNC | WRITE_FLUSH_FUA);
200 	} else {
201 		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
202 	}
203 
204 	if (unlikely(err)) {
205 		printk(KERN_ERR
206 		       "NILFS: unable to write superblock (err=%d)\n", err);
207 		if (err == -EIO && nilfs->ns_sbh[1]) {
208 			/*
209 			 * sbp[0] points to newer log than sbp[1],
210 			 * so copy sbp[0] to sbp[1] to take over sbp[0].
211 			 */
212 			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
213 			       nilfs->ns_sbsize);
214 			nilfs_fall_back_super_block(nilfs);
215 			goto retry;
216 		}
217 	} else {
218 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
219 
220 		nilfs->ns_sbwcount++;
221 
222 		/*
223 		 * The latest segment becomes trailable from the position
224 		 * written in superblock.
225 		 */
226 		clear_nilfs_discontinued(nilfs);
227 
228 		/* update GC protection for recent segments */
229 		if (nilfs->ns_sbh[1]) {
230 			if (flag == NILFS_SB_COMMIT_ALL) {
231 				set_buffer_dirty(nilfs->ns_sbh[1]);
232 				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
233 					goto out;
234 			}
235 			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
236 			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
237 				sbp = nilfs->ns_sbp[1];
238 		}
239 
240 		spin_lock(&nilfs->ns_last_segment_lock);
241 		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
242 		spin_unlock(&nilfs->ns_last_segment_lock);
243 	}
244  out:
245 	return err;
246 }
247 
248 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
249 			  struct the_nilfs *nilfs)
250 {
251 	sector_t nfreeblocks;
252 
253 	/* nilfs->ns_sem must be locked by the caller. */
254 	nilfs_count_free_blocks(nilfs, &nfreeblocks);
255 	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
256 
257 	spin_lock(&nilfs->ns_last_segment_lock);
258 	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
259 	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
260 	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
261 	spin_unlock(&nilfs->ns_last_segment_lock);
262 }
263 
264 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
265 					       int flip)
266 {
267 	struct the_nilfs *nilfs = sb->s_fs_info;
268 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
269 
270 	/* nilfs->ns_sem must be locked by the caller. */
271 	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
272 		if (sbp[1] &&
273 		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
274 			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
275 		} else {
276 			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
277 			       sb->s_id);
278 			return NULL;
279 		}
280 	} else if (sbp[1] &&
281 		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
282 			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
283 	}
284 
285 	if (flip && sbp[1])
286 		nilfs_swap_super_block(nilfs);
287 
288 	return sbp;
289 }
290 
291 int nilfs_commit_super(struct super_block *sb, int flag)
292 {
293 	struct the_nilfs *nilfs = sb->s_fs_info;
294 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
295 	time_t t;
296 
297 	/* nilfs->ns_sem must be locked by the caller. */
298 	t = get_seconds();
299 	nilfs->ns_sbwtime = t;
300 	sbp[0]->s_wtime = cpu_to_le64(t);
301 	sbp[0]->s_sum = 0;
302 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
303 					     (unsigned char *)sbp[0],
304 					     nilfs->ns_sbsize));
305 	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
306 		sbp[1]->s_wtime = sbp[0]->s_wtime;
307 		sbp[1]->s_sum = 0;
308 		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
309 					    (unsigned char *)sbp[1],
310 					    nilfs->ns_sbsize));
311 	}
312 	clear_nilfs_sb_dirty(nilfs);
313 	nilfs->ns_flushed_device = 1;
314 	/* make sure store to ns_flushed_device cannot be reordered */
315 	smp_wmb();
316 	return nilfs_sync_super(sb, flag);
317 }
318 
319 /**
320  * nilfs_cleanup_super() - write filesystem state for cleanup
321  * @sb: super block instance to be unmounted or degraded to read-only
322  *
323  * This function restores state flags in the on-disk super block.
324  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
325  * filesystem was not clean previously.
326  */
327 int nilfs_cleanup_super(struct super_block *sb)
328 {
329 	struct the_nilfs *nilfs = sb->s_fs_info;
330 	struct nilfs_super_block **sbp;
331 	int flag = NILFS_SB_COMMIT;
332 	int ret = -EIO;
333 
334 	sbp = nilfs_prepare_super(sb, 0);
335 	if (sbp) {
336 		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
337 		nilfs_set_log_cursor(sbp[0], nilfs);
338 		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
339 			/*
340 			 * make the "clean" flag also to the opposite
341 			 * super block if both super blocks point to
342 			 * the same checkpoint.
343 			 */
344 			sbp[1]->s_state = sbp[0]->s_state;
345 			flag = NILFS_SB_COMMIT_ALL;
346 		}
347 		ret = nilfs_commit_super(sb, flag);
348 	}
349 	return ret;
350 }
351 
352 /**
353  * nilfs_move_2nd_super - relocate secondary super block
354  * @sb: super block instance
355  * @sb2off: new offset of the secondary super block (in bytes)
356  */
357 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
358 {
359 	struct the_nilfs *nilfs = sb->s_fs_info;
360 	struct buffer_head *nsbh;
361 	struct nilfs_super_block *nsbp;
362 	sector_t blocknr, newblocknr;
363 	unsigned long offset;
364 	int sb2i;  /* array index of the secondary superblock */
365 	int ret = 0;
366 
367 	/* nilfs->ns_sem must be locked by the caller. */
368 	if (nilfs->ns_sbh[1] &&
369 	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
370 		sb2i = 1;
371 		blocknr = nilfs->ns_sbh[1]->b_blocknr;
372 	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
373 		sb2i = 0;
374 		blocknr = nilfs->ns_sbh[0]->b_blocknr;
375 	} else {
376 		sb2i = -1;
377 		blocknr = 0;
378 	}
379 	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
380 		goto out;  /* super block location is unchanged */
381 
382 	/* Get new super block buffer */
383 	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
384 	offset = sb2off & (nilfs->ns_blocksize - 1);
385 	nsbh = sb_getblk(sb, newblocknr);
386 	if (!nsbh) {
387 		printk(KERN_WARNING
388 		       "NILFS warning: unable to move secondary superblock "
389 		       "to block %llu\n", (unsigned long long)newblocknr);
390 		ret = -EIO;
391 		goto out;
392 	}
393 	nsbp = (void *)nsbh->b_data + offset;
394 	memset(nsbp, 0, nilfs->ns_blocksize);
395 
396 	if (sb2i >= 0) {
397 		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
398 		brelse(nilfs->ns_sbh[sb2i]);
399 		nilfs->ns_sbh[sb2i] = nsbh;
400 		nilfs->ns_sbp[sb2i] = nsbp;
401 	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
402 		/* secondary super block will be restored to index 1 */
403 		nilfs->ns_sbh[1] = nsbh;
404 		nilfs->ns_sbp[1] = nsbp;
405 	} else {
406 		brelse(nsbh);
407 	}
408 out:
409 	return ret;
410 }
411 
412 /**
413  * nilfs_resize_fs - resize the filesystem
414  * @sb: super block instance
415  * @newsize: new size of the filesystem (in bytes)
416  */
417 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
418 {
419 	struct the_nilfs *nilfs = sb->s_fs_info;
420 	struct nilfs_super_block **sbp;
421 	__u64 devsize, newnsegs;
422 	loff_t sb2off;
423 	int ret;
424 
425 	ret = -ERANGE;
426 	devsize = i_size_read(sb->s_bdev->bd_inode);
427 	if (newsize > devsize)
428 		goto out;
429 
430 	/*
431 	 * Write lock is required to protect some functions depending
432 	 * on the number of segments, the number of reserved segments,
433 	 * and so forth.
434 	 */
435 	down_write(&nilfs->ns_segctor_sem);
436 
437 	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
438 	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
439 	do_div(newnsegs, nilfs->ns_blocks_per_segment);
440 
441 	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
442 	up_write(&nilfs->ns_segctor_sem);
443 	if (ret < 0)
444 		goto out;
445 
446 	ret = nilfs_construct_segment(sb);
447 	if (ret < 0)
448 		goto out;
449 
450 	down_write(&nilfs->ns_sem);
451 	nilfs_move_2nd_super(sb, sb2off);
452 	ret = -EIO;
453 	sbp = nilfs_prepare_super(sb, 0);
454 	if (likely(sbp)) {
455 		nilfs_set_log_cursor(sbp[0], nilfs);
456 		/*
457 		 * Drop NILFS_RESIZE_FS flag for compatibility with
458 		 * mount-time resize which may be implemented in a
459 		 * future release.
460 		 */
461 		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
462 					      ~NILFS_RESIZE_FS);
463 		sbp[0]->s_dev_size = cpu_to_le64(newsize);
464 		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
465 		if (sbp[1])
466 			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
467 		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
468 	}
469 	up_write(&nilfs->ns_sem);
470 
471 	/*
472 	 * Reset the range of allocatable segments last.  This order
473 	 * is important in the case of expansion because the secondary
474 	 * superblock must be protected from log write until migration
475 	 * completes.
476 	 */
477 	if (!ret)
478 		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
479 out:
480 	return ret;
481 }
482 
483 static void nilfs_put_super(struct super_block *sb)
484 {
485 	struct the_nilfs *nilfs = sb->s_fs_info;
486 
487 	nilfs_detach_log_writer(sb);
488 
489 	if (!(sb->s_flags & MS_RDONLY)) {
490 		down_write(&nilfs->ns_sem);
491 		nilfs_cleanup_super(sb);
492 		up_write(&nilfs->ns_sem);
493 	}
494 
495 	iput(nilfs->ns_sufile);
496 	iput(nilfs->ns_cpfile);
497 	iput(nilfs->ns_dat);
498 
499 	destroy_nilfs(nilfs);
500 	sb->s_fs_info = NULL;
501 }
502 
503 static int nilfs_sync_fs(struct super_block *sb, int wait)
504 {
505 	struct the_nilfs *nilfs = sb->s_fs_info;
506 	struct nilfs_super_block **sbp;
507 	int err = 0;
508 
509 	/* This function is called when super block should be written back */
510 	if (wait)
511 		err = nilfs_construct_segment(sb);
512 
513 	down_write(&nilfs->ns_sem);
514 	if (nilfs_sb_dirty(nilfs)) {
515 		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
516 		if (likely(sbp)) {
517 			nilfs_set_log_cursor(sbp[0], nilfs);
518 			nilfs_commit_super(sb, NILFS_SB_COMMIT);
519 		}
520 	}
521 	up_write(&nilfs->ns_sem);
522 
523 	if (!err)
524 		err = nilfs_flush_device(nilfs);
525 
526 	return err;
527 }
528 
529 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
530 			    struct nilfs_root **rootp)
531 {
532 	struct the_nilfs *nilfs = sb->s_fs_info;
533 	struct nilfs_root *root;
534 	struct nilfs_checkpoint *raw_cp;
535 	struct buffer_head *bh_cp;
536 	int err = -ENOMEM;
537 
538 	root = nilfs_find_or_create_root(
539 		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
540 	if (!root)
541 		return err;
542 
543 	if (root->ifile)
544 		goto reuse; /* already attached checkpoint */
545 
546 	down_read(&nilfs->ns_segctor_sem);
547 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
548 					  &bh_cp);
549 	up_read(&nilfs->ns_segctor_sem);
550 	if (unlikely(err)) {
551 		if (err == -ENOENT || err == -EINVAL) {
552 			printk(KERN_ERR
553 			       "NILFS: Invalid checkpoint "
554 			       "(checkpoint number=%llu)\n",
555 			       (unsigned long long)cno);
556 			err = -EINVAL;
557 		}
558 		goto failed;
559 	}
560 
561 	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
562 			       &raw_cp->cp_ifile_inode, &root->ifile);
563 	if (err)
564 		goto failed_bh;
565 
566 	atomic64_set(&root->inodes_count,
567 			le64_to_cpu(raw_cp->cp_inodes_count));
568 	atomic64_set(&root->blocks_count,
569 			le64_to_cpu(raw_cp->cp_blocks_count));
570 
571 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
572 
573  reuse:
574 	*rootp = root;
575 	return 0;
576 
577  failed_bh:
578 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
579  failed:
580 	nilfs_put_root(root);
581 
582 	return err;
583 }
584 
585 static int nilfs_freeze(struct super_block *sb)
586 {
587 	struct the_nilfs *nilfs = sb->s_fs_info;
588 	int err;
589 
590 	if (sb->s_flags & MS_RDONLY)
591 		return 0;
592 
593 	/* Mark super block clean */
594 	down_write(&nilfs->ns_sem);
595 	err = nilfs_cleanup_super(sb);
596 	up_write(&nilfs->ns_sem);
597 	return err;
598 }
599 
600 static int nilfs_unfreeze(struct super_block *sb)
601 {
602 	struct the_nilfs *nilfs = sb->s_fs_info;
603 
604 	if (sb->s_flags & MS_RDONLY)
605 		return 0;
606 
607 	down_write(&nilfs->ns_sem);
608 	nilfs_setup_super(sb, false);
609 	up_write(&nilfs->ns_sem);
610 	return 0;
611 }
612 
613 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
614 {
615 	struct super_block *sb = dentry->d_sb;
616 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
617 	struct the_nilfs *nilfs = root->nilfs;
618 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
619 	unsigned long long blocks;
620 	unsigned long overhead;
621 	unsigned long nrsvblocks;
622 	sector_t nfreeblocks;
623 	u64 nmaxinodes, nfreeinodes;
624 	int err;
625 
626 	/*
627 	 * Compute all of the segment blocks
628 	 *
629 	 * The blocks before first segment and after last segment
630 	 * are excluded.
631 	 */
632 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
633 		- nilfs->ns_first_data_block;
634 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
635 
636 	/*
637 	 * Compute the overhead
638 	 *
639 	 * When distributing meta data blocks outside segment structure,
640 	 * We must count them as the overhead.
641 	 */
642 	overhead = 0;
643 
644 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
645 	if (unlikely(err))
646 		return err;
647 
648 	err = nilfs_ifile_count_free_inodes(root->ifile,
649 					    &nmaxinodes, &nfreeinodes);
650 	if (unlikely(err)) {
651 		printk(KERN_WARNING
652 			"NILFS warning: fail to count free inodes: err %d.\n",
653 			err);
654 		if (err == -ERANGE) {
655 			/*
656 			 * If nilfs_palloc_count_max_entries() returns
657 			 * -ERANGE error code then we simply treat
658 			 * curent inodes count as maximum possible and
659 			 * zero as free inodes value.
660 			 */
661 			nmaxinodes = atomic64_read(&root->inodes_count);
662 			nfreeinodes = 0;
663 			err = 0;
664 		} else
665 			return err;
666 	}
667 
668 	buf->f_type = NILFS_SUPER_MAGIC;
669 	buf->f_bsize = sb->s_blocksize;
670 	buf->f_blocks = blocks - overhead;
671 	buf->f_bfree = nfreeblocks;
672 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
673 		(buf->f_bfree - nrsvblocks) : 0;
674 	buf->f_files = nmaxinodes;
675 	buf->f_ffree = nfreeinodes;
676 	buf->f_namelen = NILFS_NAME_LEN;
677 	buf->f_fsid.val[0] = (u32)id;
678 	buf->f_fsid.val[1] = (u32)(id >> 32);
679 
680 	return 0;
681 }
682 
683 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
684 {
685 	struct super_block *sb = dentry->d_sb;
686 	struct the_nilfs *nilfs = sb->s_fs_info;
687 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
688 
689 	if (!nilfs_test_opt(nilfs, BARRIER))
690 		seq_puts(seq, ",nobarrier");
691 	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
692 		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
693 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
694 		seq_puts(seq, ",errors=panic");
695 	if (nilfs_test_opt(nilfs, ERRORS_CONT))
696 		seq_puts(seq, ",errors=continue");
697 	if (nilfs_test_opt(nilfs, STRICT_ORDER))
698 		seq_puts(seq, ",order=strict");
699 	if (nilfs_test_opt(nilfs, NORECOVERY))
700 		seq_puts(seq, ",norecovery");
701 	if (nilfs_test_opt(nilfs, DISCARD))
702 		seq_puts(seq, ",discard");
703 
704 	return 0;
705 }
706 
707 static const struct super_operations nilfs_sops = {
708 	.alloc_inode    = nilfs_alloc_inode,
709 	.destroy_inode  = nilfs_destroy_inode,
710 	.dirty_inode    = nilfs_dirty_inode,
711 	.evict_inode    = nilfs_evict_inode,
712 	.put_super      = nilfs_put_super,
713 	.sync_fs        = nilfs_sync_fs,
714 	.freeze_fs	= nilfs_freeze,
715 	.unfreeze_fs	= nilfs_unfreeze,
716 	.statfs         = nilfs_statfs,
717 	.remount_fs     = nilfs_remount,
718 	.show_options = nilfs_show_options
719 };
720 
721 enum {
722 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
723 	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
724 	Opt_discard, Opt_nodiscard, Opt_err,
725 };
726 
727 static match_table_t tokens = {
728 	{Opt_err_cont, "errors=continue"},
729 	{Opt_err_panic, "errors=panic"},
730 	{Opt_err_ro, "errors=remount-ro"},
731 	{Opt_barrier, "barrier"},
732 	{Opt_nobarrier, "nobarrier"},
733 	{Opt_snapshot, "cp=%u"},
734 	{Opt_order, "order=%s"},
735 	{Opt_norecovery, "norecovery"},
736 	{Opt_discard, "discard"},
737 	{Opt_nodiscard, "nodiscard"},
738 	{Opt_err, NULL}
739 };
740 
741 static int parse_options(char *options, struct super_block *sb, int is_remount)
742 {
743 	struct the_nilfs *nilfs = sb->s_fs_info;
744 	char *p;
745 	substring_t args[MAX_OPT_ARGS];
746 
747 	if (!options)
748 		return 1;
749 
750 	while ((p = strsep(&options, ",")) != NULL) {
751 		int token;
752 		if (!*p)
753 			continue;
754 
755 		token = match_token(p, tokens, args);
756 		switch (token) {
757 		case Opt_barrier:
758 			nilfs_set_opt(nilfs, BARRIER);
759 			break;
760 		case Opt_nobarrier:
761 			nilfs_clear_opt(nilfs, BARRIER);
762 			break;
763 		case Opt_order:
764 			if (strcmp(args[0].from, "relaxed") == 0)
765 				/* Ordered data semantics */
766 				nilfs_clear_opt(nilfs, STRICT_ORDER);
767 			else if (strcmp(args[0].from, "strict") == 0)
768 				/* Strict in-order semantics */
769 				nilfs_set_opt(nilfs, STRICT_ORDER);
770 			else
771 				return 0;
772 			break;
773 		case Opt_err_panic:
774 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
775 			break;
776 		case Opt_err_ro:
777 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
778 			break;
779 		case Opt_err_cont:
780 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
781 			break;
782 		case Opt_snapshot:
783 			if (is_remount) {
784 				printk(KERN_ERR
785 				       "NILFS: \"%s\" option is invalid "
786 				       "for remount.\n", p);
787 				return 0;
788 			}
789 			break;
790 		case Opt_norecovery:
791 			nilfs_set_opt(nilfs, NORECOVERY);
792 			break;
793 		case Opt_discard:
794 			nilfs_set_opt(nilfs, DISCARD);
795 			break;
796 		case Opt_nodiscard:
797 			nilfs_clear_opt(nilfs, DISCARD);
798 			break;
799 		default:
800 			printk(KERN_ERR
801 			       "NILFS: Unrecognized mount option \"%s\"\n", p);
802 			return 0;
803 		}
804 	}
805 	return 1;
806 }
807 
808 static inline void
809 nilfs_set_default_options(struct super_block *sb,
810 			  struct nilfs_super_block *sbp)
811 {
812 	struct the_nilfs *nilfs = sb->s_fs_info;
813 
814 	nilfs->ns_mount_opt =
815 		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
816 }
817 
818 static int nilfs_setup_super(struct super_block *sb, int is_mount)
819 {
820 	struct the_nilfs *nilfs = sb->s_fs_info;
821 	struct nilfs_super_block **sbp;
822 	int max_mnt_count;
823 	int mnt_count;
824 
825 	/* nilfs->ns_sem must be locked by the caller. */
826 	sbp = nilfs_prepare_super(sb, 0);
827 	if (!sbp)
828 		return -EIO;
829 
830 	if (!is_mount)
831 		goto skip_mount_setup;
832 
833 	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
834 	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
835 
836 	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
837 		printk(KERN_WARNING
838 		       "NILFS warning: mounting fs with errors\n");
839 #if 0
840 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
841 		printk(KERN_WARNING
842 		       "NILFS warning: maximal mount count reached\n");
843 #endif
844 	}
845 	if (!max_mnt_count)
846 		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
847 
848 	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
849 	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
850 
851 skip_mount_setup:
852 	sbp[0]->s_state =
853 		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
854 	/* synchronize sbp[1] with sbp[0] */
855 	if (sbp[1])
856 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
857 	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
858 }
859 
860 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
861 						 u64 pos, int blocksize,
862 						 struct buffer_head **pbh)
863 {
864 	unsigned long long sb_index = pos;
865 	unsigned long offset;
866 
867 	offset = do_div(sb_index, blocksize);
868 	*pbh = sb_bread(sb, sb_index);
869 	if (!*pbh)
870 		return NULL;
871 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
872 }
873 
874 int nilfs_store_magic_and_option(struct super_block *sb,
875 				 struct nilfs_super_block *sbp,
876 				 char *data)
877 {
878 	struct the_nilfs *nilfs = sb->s_fs_info;
879 
880 	sb->s_magic = le16_to_cpu(sbp->s_magic);
881 
882 	/* FS independent flags */
883 #ifdef NILFS_ATIME_DISABLE
884 	sb->s_flags |= MS_NOATIME;
885 #endif
886 
887 	nilfs_set_default_options(sb, sbp);
888 
889 	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
890 	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
891 	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
892 	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
893 
894 	return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
895 }
896 
897 int nilfs_check_feature_compatibility(struct super_block *sb,
898 				      struct nilfs_super_block *sbp)
899 {
900 	__u64 features;
901 
902 	features = le64_to_cpu(sbp->s_feature_incompat) &
903 		~NILFS_FEATURE_INCOMPAT_SUPP;
904 	if (features) {
905 		printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
906 		       "optional features (%llx)\n",
907 		       (unsigned long long)features);
908 		return -EINVAL;
909 	}
910 	features = le64_to_cpu(sbp->s_feature_compat_ro) &
911 		~NILFS_FEATURE_COMPAT_RO_SUPP;
912 	if (!(sb->s_flags & MS_RDONLY) && features) {
913 		printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
914 		       "unsupported optional features (%llx)\n",
915 		       (unsigned long long)features);
916 		return -EINVAL;
917 	}
918 	return 0;
919 }
920 
921 static int nilfs_get_root_dentry(struct super_block *sb,
922 				 struct nilfs_root *root,
923 				 struct dentry **root_dentry)
924 {
925 	struct inode *inode;
926 	struct dentry *dentry;
927 	int ret = 0;
928 
929 	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
930 	if (IS_ERR(inode)) {
931 		printk(KERN_ERR "NILFS: get root inode failed\n");
932 		ret = PTR_ERR(inode);
933 		goto out;
934 	}
935 	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
936 		iput(inode);
937 		printk(KERN_ERR "NILFS: corrupt root inode.\n");
938 		ret = -EINVAL;
939 		goto out;
940 	}
941 
942 	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
943 		dentry = d_find_alias(inode);
944 		if (!dentry) {
945 			dentry = d_make_root(inode);
946 			if (!dentry) {
947 				ret = -ENOMEM;
948 				goto failed_dentry;
949 			}
950 		} else {
951 			iput(inode);
952 		}
953 	} else {
954 		dentry = d_obtain_root(inode);
955 		if (IS_ERR(dentry)) {
956 			ret = PTR_ERR(dentry);
957 			goto failed_dentry;
958 		}
959 	}
960 	*root_dentry = dentry;
961  out:
962 	return ret;
963 
964  failed_dentry:
965 	printk(KERN_ERR "NILFS: get root dentry failed\n");
966 	goto out;
967 }
968 
969 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
970 				 struct dentry **root_dentry)
971 {
972 	struct the_nilfs *nilfs = s->s_fs_info;
973 	struct nilfs_root *root;
974 	int ret;
975 
976 	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
977 
978 	down_read(&nilfs->ns_segctor_sem);
979 	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
980 	up_read(&nilfs->ns_segctor_sem);
981 	if (ret < 0) {
982 		ret = (ret == -ENOENT) ? -EINVAL : ret;
983 		goto out;
984 	} else if (!ret) {
985 		printk(KERN_ERR "NILFS: The specified checkpoint is "
986 		       "not a snapshot (checkpoint number=%llu).\n",
987 		       (unsigned long long)cno);
988 		ret = -EINVAL;
989 		goto out;
990 	}
991 
992 	ret = nilfs_attach_checkpoint(s, cno, false, &root);
993 	if (ret) {
994 		printk(KERN_ERR "NILFS: error loading snapshot "
995 		       "(checkpoint number=%llu).\n",
996 	       (unsigned long long)cno);
997 		goto out;
998 	}
999 	ret = nilfs_get_root_dentry(s, root, root_dentry);
1000 	nilfs_put_root(root);
1001  out:
1002 	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
1003 	return ret;
1004 }
1005 
1006 /**
1007  * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1008  * @root_dentry: root dentry of the tree to be shrunk
1009  *
1010  * This function returns true if the tree was in-use.
1011  */
1012 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1013 {
1014 	shrink_dcache_parent(root_dentry);
1015 	return d_count(root_dentry) > 1;
1016 }
1017 
1018 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1019 {
1020 	struct the_nilfs *nilfs = sb->s_fs_info;
1021 	struct nilfs_root *root;
1022 	struct inode *inode;
1023 	struct dentry *dentry;
1024 	int ret;
1025 
1026 	if (cno > nilfs->ns_cno)
1027 		return false;
1028 
1029 	if (cno >= nilfs_last_cno(nilfs))
1030 		return true;	/* protect recent checkpoints */
1031 
1032 	ret = false;
1033 	root = nilfs_lookup_root(nilfs, cno);
1034 	if (root) {
1035 		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1036 		if (inode) {
1037 			dentry = d_find_alias(inode);
1038 			if (dentry) {
1039 				ret = nilfs_tree_is_busy(dentry);
1040 				dput(dentry);
1041 			}
1042 			iput(inode);
1043 		}
1044 		nilfs_put_root(root);
1045 	}
1046 	return ret;
1047 }
1048 
1049 /**
1050  * nilfs_fill_super() - initialize a super block instance
1051  * @sb: super_block
1052  * @data: mount options
1053  * @silent: silent mode flag
1054  *
1055  * This function is called exclusively by nilfs->ns_mount_mutex.
1056  * So, the recovery process is protected from other simultaneous mounts.
1057  */
1058 static int
1059 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1060 {
1061 	struct the_nilfs *nilfs;
1062 	struct nilfs_root *fsroot;
1063 	__u64 cno;
1064 	int err;
1065 
1066 	nilfs = alloc_nilfs(sb->s_bdev);
1067 	if (!nilfs)
1068 		return -ENOMEM;
1069 
1070 	sb->s_fs_info = nilfs;
1071 
1072 	err = init_nilfs(nilfs, sb, (char *)data);
1073 	if (err)
1074 		goto failed_nilfs;
1075 
1076 	sb->s_op = &nilfs_sops;
1077 	sb->s_export_op = &nilfs_export_ops;
1078 	sb->s_root = NULL;
1079 	sb->s_time_gran = 1;
1080 	sb->s_max_links = NILFS_LINK_MAX;
1081 
1082 	sb->s_bdi = &bdev_get_queue(sb->s_bdev)->backing_dev_info;
1083 
1084 	err = load_nilfs(nilfs, sb);
1085 	if (err)
1086 		goto failed_nilfs;
1087 
1088 	cno = nilfs_last_cno(nilfs);
1089 	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1090 	if (err) {
1091 		printk(KERN_ERR "NILFS: error loading last checkpoint "
1092 		       "(checkpoint number=%llu).\n", (unsigned long long)cno);
1093 		goto failed_unload;
1094 	}
1095 
1096 	if (!(sb->s_flags & MS_RDONLY)) {
1097 		err = nilfs_attach_log_writer(sb, fsroot);
1098 		if (err)
1099 			goto failed_checkpoint;
1100 	}
1101 
1102 	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1103 	if (err)
1104 		goto failed_segctor;
1105 
1106 	nilfs_put_root(fsroot);
1107 
1108 	if (!(sb->s_flags & MS_RDONLY)) {
1109 		down_write(&nilfs->ns_sem);
1110 		nilfs_setup_super(sb, true);
1111 		up_write(&nilfs->ns_sem);
1112 	}
1113 
1114 	return 0;
1115 
1116  failed_segctor:
1117 	nilfs_detach_log_writer(sb);
1118 
1119  failed_checkpoint:
1120 	nilfs_put_root(fsroot);
1121 
1122  failed_unload:
1123 	iput(nilfs->ns_sufile);
1124 	iput(nilfs->ns_cpfile);
1125 	iput(nilfs->ns_dat);
1126 
1127  failed_nilfs:
1128 	destroy_nilfs(nilfs);
1129 	return err;
1130 }
1131 
1132 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1133 {
1134 	struct the_nilfs *nilfs = sb->s_fs_info;
1135 	unsigned long old_sb_flags;
1136 	unsigned long old_mount_opt;
1137 	int err;
1138 
1139 	sync_filesystem(sb);
1140 	old_sb_flags = sb->s_flags;
1141 	old_mount_opt = nilfs->ns_mount_opt;
1142 
1143 	if (!parse_options(data, sb, 1)) {
1144 		err = -EINVAL;
1145 		goto restore_opts;
1146 	}
1147 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1148 
1149 	err = -EINVAL;
1150 
1151 	if (!nilfs_valid_fs(nilfs)) {
1152 		printk(KERN_WARNING "NILFS (device %s): couldn't "
1153 		       "remount because the filesystem is in an "
1154 		       "incomplete recovery state.\n", sb->s_id);
1155 		goto restore_opts;
1156 	}
1157 
1158 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1159 		goto out;
1160 	if (*flags & MS_RDONLY) {
1161 		/* Shutting down log writer */
1162 		nilfs_detach_log_writer(sb);
1163 		sb->s_flags |= MS_RDONLY;
1164 
1165 		/*
1166 		 * Remounting a valid RW partition RDONLY, so set
1167 		 * the RDONLY flag and then mark the partition as valid again.
1168 		 */
1169 		down_write(&nilfs->ns_sem);
1170 		nilfs_cleanup_super(sb);
1171 		up_write(&nilfs->ns_sem);
1172 	} else {
1173 		__u64 features;
1174 		struct nilfs_root *root;
1175 
1176 		/*
1177 		 * Mounting a RDONLY partition read-write, so reread and
1178 		 * store the current valid flag.  (It may have been changed
1179 		 * by fsck since we originally mounted the partition.)
1180 		 */
1181 		down_read(&nilfs->ns_sem);
1182 		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1183 			~NILFS_FEATURE_COMPAT_RO_SUPP;
1184 		up_read(&nilfs->ns_sem);
1185 		if (features) {
1186 			printk(KERN_WARNING "NILFS (device %s): couldn't "
1187 			       "remount RDWR because of unsupported optional "
1188 			       "features (%llx)\n",
1189 			       sb->s_id, (unsigned long long)features);
1190 			err = -EROFS;
1191 			goto restore_opts;
1192 		}
1193 
1194 		sb->s_flags &= ~MS_RDONLY;
1195 
1196 		root = NILFS_I(d_inode(sb->s_root))->i_root;
1197 		err = nilfs_attach_log_writer(sb, root);
1198 		if (err)
1199 			goto restore_opts;
1200 
1201 		down_write(&nilfs->ns_sem);
1202 		nilfs_setup_super(sb, true);
1203 		up_write(&nilfs->ns_sem);
1204 	}
1205  out:
1206 	return 0;
1207 
1208  restore_opts:
1209 	sb->s_flags = old_sb_flags;
1210 	nilfs->ns_mount_opt = old_mount_opt;
1211 	return err;
1212 }
1213 
1214 struct nilfs_super_data {
1215 	struct block_device *bdev;
1216 	__u64 cno;
1217 	int flags;
1218 };
1219 
1220 /**
1221  * nilfs_identify - pre-read mount options needed to identify mount instance
1222  * @data: mount options
1223  * @sd: nilfs_super_data
1224  */
1225 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1226 {
1227 	char *p, *options = data;
1228 	substring_t args[MAX_OPT_ARGS];
1229 	int token;
1230 	int ret = 0;
1231 
1232 	do {
1233 		p = strsep(&options, ",");
1234 		if (p != NULL && *p) {
1235 			token = match_token(p, tokens, args);
1236 			if (token == Opt_snapshot) {
1237 				if (!(sd->flags & MS_RDONLY)) {
1238 					ret++;
1239 				} else {
1240 					sd->cno = simple_strtoull(args[0].from,
1241 								  NULL, 0);
1242 					/*
1243 					 * No need to see the end pointer;
1244 					 * match_token() has done syntax
1245 					 * checking.
1246 					 */
1247 					if (sd->cno == 0)
1248 						ret++;
1249 				}
1250 			}
1251 			if (ret)
1252 				printk(KERN_ERR
1253 				       "NILFS: invalid mount option: %s\n", p);
1254 		}
1255 		if (!options)
1256 			break;
1257 		BUG_ON(options == data);
1258 		*(options - 1) = ',';
1259 	} while (!ret);
1260 	return ret;
1261 }
1262 
1263 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1264 {
1265 	s->s_bdev = data;
1266 	s->s_dev = s->s_bdev->bd_dev;
1267 	return 0;
1268 }
1269 
1270 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1271 {
1272 	return (void *)s->s_bdev == data;
1273 }
1274 
1275 static struct dentry *
1276 nilfs_mount(struct file_system_type *fs_type, int flags,
1277 	     const char *dev_name, void *data)
1278 {
1279 	struct nilfs_super_data sd;
1280 	struct super_block *s;
1281 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1282 	struct dentry *root_dentry;
1283 	int err, s_new = false;
1284 
1285 	if (!(flags & MS_RDONLY))
1286 		mode |= FMODE_WRITE;
1287 
1288 	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1289 	if (IS_ERR(sd.bdev))
1290 		return ERR_CAST(sd.bdev);
1291 
1292 	sd.cno = 0;
1293 	sd.flags = flags;
1294 	if (nilfs_identify((char *)data, &sd)) {
1295 		err = -EINVAL;
1296 		goto failed;
1297 	}
1298 
1299 	/*
1300 	 * once the super is inserted into the list by sget, s_umount
1301 	 * will protect the lockfs code from trying to start a snapshot
1302 	 * while we are mounting
1303 	 */
1304 	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1305 	if (sd.bdev->bd_fsfreeze_count > 0) {
1306 		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1307 		err = -EBUSY;
1308 		goto failed;
1309 	}
1310 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1311 		 sd.bdev);
1312 	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1313 	if (IS_ERR(s)) {
1314 		err = PTR_ERR(s);
1315 		goto failed;
1316 	}
1317 
1318 	if (!s->s_root) {
1319  		s_new = true;
1320 
1321 		/* New superblock instance created */
1322 		s->s_mode = mode;
1323 		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1324 		sb_set_blocksize(s, block_size(sd.bdev));
1325 
1326 		err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1327 		if (err)
1328 			goto failed_super;
1329 
1330 		s->s_flags |= MS_ACTIVE;
1331 	} else if (!sd.cno) {
1332 		if (nilfs_tree_is_busy(s->s_root)) {
1333 			if ((flags ^ s->s_flags) & MS_RDONLY) {
1334 				printk(KERN_ERR "NILFS: the device already "
1335 				       "has a %s mount.\n",
1336 				       (s->s_flags & MS_RDONLY) ?
1337 				       "read-only" : "read/write");
1338 				err = -EBUSY;
1339 				goto failed_super;
1340 			}
1341 		} else {
1342 			/*
1343 			 * Try remount to setup mount states if the current
1344 			 * tree is not mounted and only snapshots use this sb.
1345 			 */
1346 			err = nilfs_remount(s, &flags, data);
1347 			if (err)
1348 				goto failed_super;
1349 		}
1350 	}
1351 
1352 	if (sd.cno) {
1353 		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1354 		if (err)
1355 			goto failed_super;
1356 	} else {
1357 		root_dentry = dget(s->s_root);
1358 	}
1359 
1360 	if (!s_new)
1361 		blkdev_put(sd.bdev, mode);
1362 
1363 	return root_dentry;
1364 
1365  failed_super:
1366 	deactivate_locked_super(s);
1367 
1368  failed:
1369 	if (!s_new)
1370 		blkdev_put(sd.bdev, mode);
1371 	return ERR_PTR(err);
1372 }
1373 
1374 struct file_system_type nilfs_fs_type = {
1375 	.owner    = THIS_MODULE,
1376 	.name     = "nilfs2",
1377 	.mount    = nilfs_mount,
1378 	.kill_sb  = kill_block_super,
1379 	.fs_flags = FS_REQUIRES_DEV,
1380 };
1381 MODULE_ALIAS_FS("nilfs2");
1382 
1383 static void nilfs_inode_init_once(void *obj)
1384 {
1385 	struct nilfs_inode_info *ii = obj;
1386 
1387 	INIT_LIST_HEAD(&ii->i_dirty);
1388 #ifdef CONFIG_NILFS_XATTR
1389 	init_rwsem(&ii->xattr_sem);
1390 #endif
1391 	address_space_init_once(&ii->i_btnode_cache);
1392 	ii->i_bmap = &ii->i_bmap_data;
1393 	inode_init_once(&ii->vfs_inode);
1394 }
1395 
1396 static void nilfs_segbuf_init_once(void *obj)
1397 {
1398 	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1399 }
1400 
1401 static void nilfs_destroy_cachep(void)
1402 {
1403 	/*
1404 	 * Make sure all delayed rcu free inodes are flushed before we
1405 	 * destroy cache.
1406 	 */
1407 	rcu_barrier();
1408 
1409 	kmem_cache_destroy(nilfs_inode_cachep);
1410 	kmem_cache_destroy(nilfs_transaction_cachep);
1411 	kmem_cache_destroy(nilfs_segbuf_cachep);
1412 	kmem_cache_destroy(nilfs_btree_path_cache);
1413 }
1414 
1415 static int __init nilfs_init_cachep(void)
1416 {
1417 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1418 			sizeof(struct nilfs_inode_info), 0,
1419 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1420 			nilfs_inode_init_once);
1421 	if (!nilfs_inode_cachep)
1422 		goto fail;
1423 
1424 	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1425 			sizeof(struct nilfs_transaction_info), 0,
1426 			SLAB_RECLAIM_ACCOUNT, NULL);
1427 	if (!nilfs_transaction_cachep)
1428 		goto fail;
1429 
1430 	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1431 			sizeof(struct nilfs_segment_buffer), 0,
1432 			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1433 	if (!nilfs_segbuf_cachep)
1434 		goto fail;
1435 
1436 	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1437 			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1438 			0, 0, NULL);
1439 	if (!nilfs_btree_path_cache)
1440 		goto fail;
1441 
1442 	return 0;
1443 
1444 fail:
1445 	nilfs_destroy_cachep();
1446 	return -ENOMEM;
1447 }
1448 
1449 static int __init init_nilfs_fs(void)
1450 {
1451 	int err;
1452 
1453 	err = nilfs_init_cachep();
1454 	if (err)
1455 		goto fail;
1456 
1457 	err = nilfs_sysfs_init();
1458 	if (err)
1459 		goto free_cachep;
1460 
1461 	err = register_filesystem(&nilfs_fs_type);
1462 	if (err)
1463 		goto deinit_sysfs_entry;
1464 
1465 	printk(KERN_INFO "NILFS version 2 loaded\n");
1466 	return 0;
1467 
1468 deinit_sysfs_entry:
1469 	nilfs_sysfs_exit();
1470 free_cachep:
1471 	nilfs_destroy_cachep();
1472 fail:
1473 	return err;
1474 }
1475 
1476 static void __exit exit_nilfs_fs(void)
1477 {
1478 	nilfs_destroy_cachep();
1479 	nilfs_sysfs_exit();
1480 	unregister_filesystem(&nilfs_fs_type);
1481 }
1482 
1483 module_init(init_nilfs_fs)
1484 module_exit(exit_nilfs_fs)
1485