xref: /openbmc/linux/fs/nilfs2/super.c (revision 9cdb81c7)
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  */
22 /*
23  *  linux/fs/ext2/super.c
24  *
25  * Copyright (C) 1992, 1993, 1994, 1995
26  * Remy Card (card@masi.ibp.fr)
27  * Laboratoire MASI - Institut Blaise Pascal
28  * Universite Pierre et Marie Curie (Paris VI)
29  *
30  *  from
31  *
32  *  linux/fs/minix/inode.c
33  *
34  *  Copyright (C) 1991, 1992  Linus Torvalds
35  *
36  *  Big-endian to little-endian byte-swapping/bitmaps by
37  *        David S. Miller (davem@caip.rutgers.edu), 1995
38  */
39 
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/crc32.h>
47 #include <linux/vfs.h>
48 #include <linux/writeback.h>
49 #include <linux/seq_file.h>
50 #include <linux/mount.h>
51 #include "nilfs.h"
52 #include "export.h"
53 #include "mdt.h"
54 #include "alloc.h"
55 #include "btree.h"
56 #include "btnode.h"
57 #include "page.h"
58 #include "cpfile.h"
59 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
60 #include "ifile.h"
61 #include "dat.h"
62 #include "segment.h"
63 #include "segbuf.h"
64 
65 MODULE_AUTHOR("NTT Corp.");
66 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
67 		   "(NILFS)");
68 MODULE_LICENSE("GPL");
69 
70 static struct kmem_cache *nilfs_inode_cachep;
71 struct kmem_cache *nilfs_transaction_cachep;
72 struct kmem_cache *nilfs_segbuf_cachep;
73 struct kmem_cache *nilfs_btree_path_cache;
74 
75 static int nilfs_setup_super(struct super_block *sb, int is_mount);
76 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
77 
78 static void nilfs_set_error(struct super_block *sb)
79 {
80 	struct the_nilfs *nilfs = sb->s_fs_info;
81 	struct nilfs_super_block **sbp;
82 
83 	down_write(&nilfs->ns_sem);
84 	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
85 		nilfs->ns_mount_state |= NILFS_ERROR_FS;
86 		sbp = nilfs_prepare_super(sb, 0);
87 		if (likely(sbp)) {
88 			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
89 			if (sbp[1])
90 				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
91 			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
92 		}
93 	}
94 	up_write(&nilfs->ns_sem);
95 }
96 
97 /**
98  * nilfs_error() - report failure condition on a filesystem
99  *
100  * nilfs_error() sets an ERROR_FS flag on the superblock as well as
101  * reporting an error message.  It should be called when NILFS detects
102  * incoherences or defects of meta data on disk.  As for sustainable
103  * errors such as a single-shot I/O error, nilfs_warning() or the printk()
104  * function should be used instead.
105  *
106  * The segment constructor must not call this function because it can
107  * kill itself.
108  */
109 void nilfs_error(struct super_block *sb, const char *function,
110 		 const char *fmt, ...)
111 {
112 	struct the_nilfs *nilfs = sb->s_fs_info;
113 	struct va_format vaf;
114 	va_list args;
115 
116 	va_start(args, fmt);
117 
118 	vaf.fmt = fmt;
119 	vaf.va = &args;
120 
121 	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
122 	       sb->s_id, function, &vaf);
123 
124 	va_end(args);
125 
126 	if (!(sb->s_flags & MS_RDONLY)) {
127 		nilfs_set_error(sb);
128 
129 		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
130 			printk(KERN_CRIT "Remounting filesystem read-only\n");
131 			sb->s_flags |= MS_RDONLY;
132 		}
133 	}
134 
135 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
136 		panic("NILFS (device %s): panic forced after error\n",
137 		      sb->s_id);
138 }
139 
140 void nilfs_warning(struct super_block *sb, const char *function,
141 		   const char *fmt, ...)
142 {
143 	struct va_format vaf;
144 	va_list args;
145 
146 	va_start(args, fmt);
147 
148 	vaf.fmt = fmt;
149 	vaf.va = &args;
150 
151 	printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
152 	       sb->s_id, function, &vaf);
153 
154 	va_end(args);
155 }
156 
157 
158 struct inode *nilfs_alloc_inode(struct super_block *sb)
159 {
160 	struct nilfs_inode_info *ii;
161 
162 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
163 	if (!ii)
164 		return NULL;
165 	ii->i_bh = NULL;
166 	ii->i_state = 0;
167 	ii->i_cno = 0;
168 	ii->vfs_inode.i_version = 1;
169 	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode, sb->s_bdi);
170 	return &ii->vfs_inode;
171 }
172 
173 static void nilfs_i_callback(struct rcu_head *head)
174 {
175 	struct inode *inode = container_of(head, struct inode, i_rcu);
176 	struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
177 
178 	if (mdi) {
179 		kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
180 		kfree(mdi);
181 	}
182 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
183 }
184 
185 void nilfs_destroy_inode(struct inode *inode)
186 {
187 	call_rcu(&inode->i_rcu, nilfs_i_callback);
188 }
189 
190 static int nilfs_sync_super(struct super_block *sb, int flag)
191 {
192 	struct the_nilfs *nilfs = sb->s_fs_info;
193 	int err;
194 
195  retry:
196 	set_buffer_dirty(nilfs->ns_sbh[0]);
197 	if (nilfs_test_opt(nilfs, BARRIER)) {
198 		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
199 					  WRITE_SYNC | WRITE_FLUSH_FUA);
200 	} else {
201 		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
202 	}
203 
204 	if (unlikely(err)) {
205 		printk(KERN_ERR
206 		       "NILFS: unable to write superblock (err=%d)\n", err);
207 		if (err == -EIO && nilfs->ns_sbh[1]) {
208 			/*
209 			 * sbp[0] points to newer log than sbp[1],
210 			 * so copy sbp[0] to sbp[1] to take over sbp[0].
211 			 */
212 			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
213 			       nilfs->ns_sbsize);
214 			nilfs_fall_back_super_block(nilfs);
215 			goto retry;
216 		}
217 	} else {
218 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
219 
220 		nilfs->ns_sbwcount++;
221 
222 		/*
223 		 * The latest segment becomes trailable from the position
224 		 * written in superblock.
225 		 */
226 		clear_nilfs_discontinued(nilfs);
227 
228 		/* update GC protection for recent segments */
229 		if (nilfs->ns_sbh[1]) {
230 			if (flag == NILFS_SB_COMMIT_ALL) {
231 				set_buffer_dirty(nilfs->ns_sbh[1]);
232 				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
233 					goto out;
234 			}
235 			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
236 			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
237 				sbp = nilfs->ns_sbp[1];
238 		}
239 
240 		spin_lock(&nilfs->ns_last_segment_lock);
241 		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
242 		spin_unlock(&nilfs->ns_last_segment_lock);
243 	}
244  out:
245 	return err;
246 }
247 
248 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
249 			  struct the_nilfs *nilfs)
250 {
251 	sector_t nfreeblocks;
252 
253 	/* nilfs->ns_sem must be locked by the caller. */
254 	nilfs_count_free_blocks(nilfs, &nfreeblocks);
255 	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
256 
257 	spin_lock(&nilfs->ns_last_segment_lock);
258 	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
259 	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
260 	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
261 	spin_unlock(&nilfs->ns_last_segment_lock);
262 }
263 
264 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
265 					       int flip)
266 {
267 	struct the_nilfs *nilfs = sb->s_fs_info;
268 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
269 
270 	/* nilfs->ns_sem must be locked by the caller. */
271 	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
272 		if (sbp[1] &&
273 		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
274 			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
275 		} else {
276 			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
277 			       sb->s_id);
278 			return NULL;
279 		}
280 	} else if (sbp[1] &&
281 		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
282 			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
283 	}
284 
285 	if (flip && sbp[1])
286 		nilfs_swap_super_block(nilfs);
287 
288 	return sbp;
289 }
290 
291 int nilfs_commit_super(struct super_block *sb, int flag)
292 {
293 	struct the_nilfs *nilfs = sb->s_fs_info;
294 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
295 	time_t t;
296 
297 	/* nilfs->ns_sem must be locked by the caller. */
298 	t = get_seconds();
299 	nilfs->ns_sbwtime = t;
300 	sbp[0]->s_wtime = cpu_to_le64(t);
301 	sbp[0]->s_sum = 0;
302 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
303 					     (unsigned char *)sbp[0],
304 					     nilfs->ns_sbsize));
305 	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
306 		sbp[1]->s_wtime = sbp[0]->s_wtime;
307 		sbp[1]->s_sum = 0;
308 		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
309 					    (unsigned char *)sbp[1],
310 					    nilfs->ns_sbsize));
311 	}
312 	clear_nilfs_sb_dirty(nilfs);
313 	return nilfs_sync_super(sb, flag);
314 }
315 
316 /**
317  * nilfs_cleanup_super() - write filesystem state for cleanup
318  * @sb: super block instance to be unmounted or degraded to read-only
319  *
320  * This function restores state flags in the on-disk super block.
321  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
322  * filesystem was not clean previously.
323  */
324 int nilfs_cleanup_super(struct super_block *sb)
325 {
326 	struct the_nilfs *nilfs = sb->s_fs_info;
327 	struct nilfs_super_block **sbp;
328 	int flag = NILFS_SB_COMMIT;
329 	int ret = -EIO;
330 
331 	sbp = nilfs_prepare_super(sb, 0);
332 	if (sbp) {
333 		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
334 		nilfs_set_log_cursor(sbp[0], nilfs);
335 		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
336 			/*
337 			 * make the "clean" flag also to the opposite
338 			 * super block if both super blocks point to
339 			 * the same checkpoint.
340 			 */
341 			sbp[1]->s_state = sbp[0]->s_state;
342 			flag = NILFS_SB_COMMIT_ALL;
343 		}
344 		ret = nilfs_commit_super(sb, flag);
345 	}
346 	return ret;
347 }
348 
349 /**
350  * nilfs_move_2nd_super - relocate secondary super block
351  * @sb: super block instance
352  * @sb2off: new offset of the secondary super block (in bytes)
353  */
354 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
355 {
356 	struct the_nilfs *nilfs = sb->s_fs_info;
357 	struct buffer_head *nsbh;
358 	struct nilfs_super_block *nsbp;
359 	sector_t blocknr, newblocknr;
360 	unsigned long offset;
361 	int sb2i = -1;  /* array index of the secondary superblock */
362 	int ret = 0;
363 
364 	/* nilfs->ns_sem must be locked by the caller. */
365 	if (nilfs->ns_sbh[1] &&
366 	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
367 		sb2i = 1;
368 		blocknr = nilfs->ns_sbh[1]->b_blocknr;
369 	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
370 		sb2i = 0;
371 		blocknr = nilfs->ns_sbh[0]->b_blocknr;
372 	}
373 	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
374 		goto out;  /* super block location is unchanged */
375 
376 	/* Get new super block buffer */
377 	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
378 	offset = sb2off & (nilfs->ns_blocksize - 1);
379 	nsbh = sb_getblk(sb, newblocknr);
380 	if (!nsbh) {
381 		printk(KERN_WARNING
382 		       "NILFS warning: unable to move secondary superblock "
383 		       "to block %llu\n", (unsigned long long)newblocknr);
384 		ret = -EIO;
385 		goto out;
386 	}
387 	nsbp = (void *)nsbh->b_data + offset;
388 	memset(nsbp, 0, nilfs->ns_blocksize);
389 
390 	if (sb2i >= 0) {
391 		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
392 		brelse(nilfs->ns_sbh[sb2i]);
393 		nilfs->ns_sbh[sb2i] = nsbh;
394 		nilfs->ns_sbp[sb2i] = nsbp;
395 	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
396 		/* secondary super block will be restored to index 1 */
397 		nilfs->ns_sbh[1] = nsbh;
398 		nilfs->ns_sbp[1] = nsbp;
399 	} else {
400 		brelse(nsbh);
401 	}
402 out:
403 	return ret;
404 }
405 
406 /**
407  * nilfs_resize_fs - resize the filesystem
408  * @sb: super block instance
409  * @newsize: new size of the filesystem (in bytes)
410  */
411 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
412 {
413 	struct the_nilfs *nilfs = sb->s_fs_info;
414 	struct nilfs_super_block **sbp;
415 	__u64 devsize, newnsegs;
416 	loff_t sb2off;
417 	int ret;
418 
419 	ret = -ERANGE;
420 	devsize = i_size_read(sb->s_bdev->bd_inode);
421 	if (newsize > devsize)
422 		goto out;
423 
424 	/*
425 	 * Write lock is required to protect some functions depending
426 	 * on the number of segments, the number of reserved segments,
427 	 * and so forth.
428 	 */
429 	down_write(&nilfs->ns_segctor_sem);
430 
431 	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
432 	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
433 	do_div(newnsegs, nilfs->ns_blocks_per_segment);
434 
435 	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
436 	up_write(&nilfs->ns_segctor_sem);
437 	if (ret < 0)
438 		goto out;
439 
440 	ret = nilfs_construct_segment(sb);
441 	if (ret < 0)
442 		goto out;
443 
444 	down_write(&nilfs->ns_sem);
445 	nilfs_move_2nd_super(sb, sb2off);
446 	ret = -EIO;
447 	sbp = nilfs_prepare_super(sb, 0);
448 	if (likely(sbp)) {
449 		nilfs_set_log_cursor(sbp[0], nilfs);
450 		/*
451 		 * Drop NILFS_RESIZE_FS flag for compatibility with
452 		 * mount-time resize which may be implemented in a
453 		 * future release.
454 		 */
455 		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
456 					      ~NILFS_RESIZE_FS);
457 		sbp[0]->s_dev_size = cpu_to_le64(newsize);
458 		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
459 		if (sbp[1])
460 			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
461 		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
462 	}
463 	up_write(&nilfs->ns_sem);
464 
465 	/*
466 	 * Reset the range of allocatable segments last.  This order
467 	 * is important in the case of expansion because the secondary
468 	 * superblock must be protected from log write until migration
469 	 * completes.
470 	 */
471 	if (!ret)
472 		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
473 out:
474 	return ret;
475 }
476 
477 static void nilfs_put_super(struct super_block *sb)
478 {
479 	struct the_nilfs *nilfs = sb->s_fs_info;
480 
481 	nilfs_detach_log_writer(sb);
482 
483 	if (!(sb->s_flags & MS_RDONLY)) {
484 		down_write(&nilfs->ns_sem);
485 		nilfs_cleanup_super(sb);
486 		up_write(&nilfs->ns_sem);
487 	}
488 
489 	iput(nilfs->ns_sufile);
490 	iput(nilfs->ns_cpfile);
491 	iput(nilfs->ns_dat);
492 
493 	destroy_nilfs(nilfs);
494 	sb->s_fs_info = NULL;
495 }
496 
497 static int nilfs_sync_fs(struct super_block *sb, int wait)
498 {
499 	struct the_nilfs *nilfs = sb->s_fs_info;
500 	struct nilfs_super_block **sbp;
501 	int err = 0;
502 
503 	/* This function is called when super block should be written back */
504 	if (wait)
505 		err = nilfs_construct_segment(sb);
506 
507 	down_write(&nilfs->ns_sem);
508 	if (nilfs_sb_dirty(nilfs)) {
509 		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
510 		if (likely(sbp)) {
511 			nilfs_set_log_cursor(sbp[0], nilfs);
512 			nilfs_commit_super(sb, NILFS_SB_COMMIT);
513 		}
514 	}
515 	up_write(&nilfs->ns_sem);
516 
517 	return err;
518 }
519 
520 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
521 			    struct nilfs_root **rootp)
522 {
523 	struct the_nilfs *nilfs = sb->s_fs_info;
524 	struct nilfs_root *root;
525 	struct nilfs_checkpoint *raw_cp;
526 	struct buffer_head *bh_cp;
527 	int err = -ENOMEM;
528 
529 	root = nilfs_find_or_create_root(
530 		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
531 	if (!root)
532 		return err;
533 
534 	if (root->ifile)
535 		goto reuse; /* already attached checkpoint */
536 
537 	down_read(&nilfs->ns_segctor_sem);
538 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
539 					  &bh_cp);
540 	up_read(&nilfs->ns_segctor_sem);
541 	if (unlikely(err)) {
542 		if (err == -ENOENT || err == -EINVAL) {
543 			printk(KERN_ERR
544 			       "NILFS: Invalid checkpoint "
545 			       "(checkpoint number=%llu)\n",
546 			       (unsigned long long)cno);
547 			err = -EINVAL;
548 		}
549 		goto failed;
550 	}
551 
552 	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
553 			       &raw_cp->cp_ifile_inode, &root->ifile);
554 	if (err)
555 		goto failed_bh;
556 
557 	atomic_set(&root->inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
558 	atomic_set(&root->blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
559 
560 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
561 
562  reuse:
563 	*rootp = root;
564 	return 0;
565 
566  failed_bh:
567 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
568  failed:
569 	nilfs_put_root(root);
570 
571 	return err;
572 }
573 
574 static int nilfs_freeze(struct super_block *sb)
575 {
576 	struct the_nilfs *nilfs = sb->s_fs_info;
577 	int err;
578 
579 	if (sb->s_flags & MS_RDONLY)
580 		return 0;
581 
582 	/* Mark super block clean */
583 	down_write(&nilfs->ns_sem);
584 	err = nilfs_cleanup_super(sb);
585 	up_write(&nilfs->ns_sem);
586 	return err;
587 }
588 
589 static int nilfs_unfreeze(struct super_block *sb)
590 {
591 	struct the_nilfs *nilfs = sb->s_fs_info;
592 
593 	if (sb->s_flags & MS_RDONLY)
594 		return 0;
595 
596 	down_write(&nilfs->ns_sem);
597 	nilfs_setup_super(sb, false);
598 	up_write(&nilfs->ns_sem);
599 	return 0;
600 }
601 
602 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
603 {
604 	struct super_block *sb = dentry->d_sb;
605 	struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root;
606 	struct the_nilfs *nilfs = root->nilfs;
607 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
608 	unsigned long long blocks;
609 	unsigned long overhead;
610 	unsigned long nrsvblocks;
611 	sector_t nfreeblocks;
612 	int err;
613 
614 	/*
615 	 * Compute all of the segment blocks
616 	 *
617 	 * The blocks before first segment and after last segment
618 	 * are excluded.
619 	 */
620 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
621 		- nilfs->ns_first_data_block;
622 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
623 
624 	/*
625 	 * Compute the overhead
626 	 *
627 	 * When distributing meta data blocks outside segment structure,
628 	 * We must count them as the overhead.
629 	 */
630 	overhead = 0;
631 
632 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
633 	if (unlikely(err))
634 		return err;
635 
636 	buf->f_type = NILFS_SUPER_MAGIC;
637 	buf->f_bsize = sb->s_blocksize;
638 	buf->f_blocks = blocks - overhead;
639 	buf->f_bfree = nfreeblocks;
640 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
641 		(buf->f_bfree - nrsvblocks) : 0;
642 	buf->f_files = atomic_read(&root->inodes_count);
643 	buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
644 	buf->f_namelen = NILFS_NAME_LEN;
645 	buf->f_fsid.val[0] = (u32)id;
646 	buf->f_fsid.val[1] = (u32)(id >> 32);
647 
648 	return 0;
649 }
650 
651 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
652 {
653 	struct super_block *sb = dentry->d_sb;
654 	struct the_nilfs *nilfs = sb->s_fs_info;
655 	struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root;
656 
657 	if (!nilfs_test_opt(nilfs, BARRIER))
658 		seq_puts(seq, ",nobarrier");
659 	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
660 		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
661 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
662 		seq_puts(seq, ",errors=panic");
663 	if (nilfs_test_opt(nilfs, ERRORS_CONT))
664 		seq_puts(seq, ",errors=continue");
665 	if (nilfs_test_opt(nilfs, STRICT_ORDER))
666 		seq_puts(seq, ",order=strict");
667 	if (nilfs_test_opt(nilfs, NORECOVERY))
668 		seq_puts(seq, ",norecovery");
669 	if (nilfs_test_opt(nilfs, DISCARD))
670 		seq_puts(seq, ",discard");
671 
672 	return 0;
673 }
674 
675 static const struct super_operations nilfs_sops = {
676 	.alloc_inode    = nilfs_alloc_inode,
677 	.destroy_inode  = nilfs_destroy_inode,
678 	.dirty_inode    = nilfs_dirty_inode,
679 	/* .write_inode    = nilfs_write_inode, */
680 	/* .put_inode      = nilfs_put_inode, */
681 	/* .drop_inode	  = nilfs_drop_inode, */
682 	.evict_inode    = nilfs_evict_inode,
683 	.put_super      = nilfs_put_super,
684 	/* .write_super    = nilfs_write_super, */
685 	.sync_fs        = nilfs_sync_fs,
686 	.freeze_fs	= nilfs_freeze,
687 	.unfreeze_fs	= nilfs_unfreeze,
688 	/* .write_super_lockfs */
689 	/* .unlockfs */
690 	.statfs         = nilfs_statfs,
691 	.remount_fs     = nilfs_remount,
692 	/* .umount_begin */
693 	.show_options = nilfs_show_options
694 };
695 
696 enum {
697 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
698 	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
699 	Opt_discard, Opt_nodiscard, Opt_err,
700 };
701 
702 static match_table_t tokens = {
703 	{Opt_err_cont, "errors=continue"},
704 	{Opt_err_panic, "errors=panic"},
705 	{Opt_err_ro, "errors=remount-ro"},
706 	{Opt_barrier, "barrier"},
707 	{Opt_nobarrier, "nobarrier"},
708 	{Opt_snapshot, "cp=%u"},
709 	{Opt_order, "order=%s"},
710 	{Opt_norecovery, "norecovery"},
711 	{Opt_discard, "discard"},
712 	{Opt_nodiscard, "nodiscard"},
713 	{Opt_err, NULL}
714 };
715 
716 static int parse_options(char *options, struct super_block *sb, int is_remount)
717 {
718 	struct the_nilfs *nilfs = sb->s_fs_info;
719 	char *p;
720 	substring_t args[MAX_OPT_ARGS];
721 
722 	if (!options)
723 		return 1;
724 
725 	while ((p = strsep(&options, ",")) != NULL) {
726 		int token;
727 		if (!*p)
728 			continue;
729 
730 		token = match_token(p, tokens, args);
731 		switch (token) {
732 		case Opt_barrier:
733 			nilfs_set_opt(nilfs, BARRIER);
734 			break;
735 		case Opt_nobarrier:
736 			nilfs_clear_opt(nilfs, BARRIER);
737 			break;
738 		case Opt_order:
739 			if (strcmp(args[0].from, "relaxed") == 0)
740 				/* Ordered data semantics */
741 				nilfs_clear_opt(nilfs, STRICT_ORDER);
742 			else if (strcmp(args[0].from, "strict") == 0)
743 				/* Strict in-order semantics */
744 				nilfs_set_opt(nilfs, STRICT_ORDER);
745 			else
746 				return 0;
747 			break;
748 		case Opt_err_panic:
749 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
750 			break;
751 		case Opt_err_ro:
752 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
753 			break;
754 		case Opt_err_cont:
755 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
756 			break;
757 		case Opt_snapshot:
758 			if (is_remount) {
759 				printk(KERN_ERR
760 				       "NILFS: \"%s\" option is invalid "
761 				       "for remount.\n", p);
762 				return 0;
763 			}
764 			break;
765 		case Opt_norecovery:
766 			nilfs_set_opt(nilfs, NORECOVERY);
767 			break;
768 		case Opt_discard:
769 			nilfs_set_opt(nilfs, DISCARD);
770 			break;
771 		case Opt_nodiscard:
772 			nilfs_clear_opt(nilfs, DISCARD);
773 			break;
774 		default:
775 			printk(KERN_ERR
776 			       "NILFS: Unrecognized mount option \"%s\"\n", p);
777 			return 0;
778 		}
779 	}
780 	return 1;
781 }
782 
783 static inline void
784 nilfs_set_default_options(struct super_block *sb,
785 			  struct nilfs_super_block *sbp)
786 {
787 	struct the_nilfs *nilfs = sb->s_fs_info;
788 
789 	nilfs->ns_mount_opt =
790 		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
791 }
792 
793 static int nilfs_setup_super(struct super_block *sb, int is_mount)
794 {
795 	struct the_nilfs *nilfs = sb->s_fs_info;
796 	struct nilfs_super_block **sbp;
797 	int max_mnt_count;
798 	int mnt_count;
799 
800 	/* nilfs->ns_sem must be locked by the caller. */
801 	sbp = nilfs_prepare_super(sb, 0);
802 	if (!sbp)
803 		return -EIO;
804 
805 	if (!is_mount)
806 		goto skip_mount_setup;
807 
808 	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
809 	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
810 
811 	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
812 		printk(KERN_WARNING
813 		       "NILFS warning: mounting fs with errors\n");
814 #if 0
815 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
816 		printk(KERN_WARNING
817 		       "NILFS warning: maximal mount count reached\n");
818 #endif
819 	}
820 	if (!max_mnt_count)
821 		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
822 
823 	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
824 	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
825 
826 skip_mount_setup:
827 	sbp[0]->s_state =
828 		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
829 	/* synchronize sbp[1] with sbp[0] */
830 	if (sbp[1])
831 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
832 	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
833 }
834 
835 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
836 						 u64 pos, int blocksize,
837 						 struct buffer_head **pbh)
838 {
839 	unsigned long long sb_index = pos;
840 	unsigned long offset;
841 
842 	offset = do_div(sb_index, blocksize);
843 	*pbh = sb_bread(sb, sb_index);
844 	if (!*pbh)
845 		return NULL;
846 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
847 }
848 
849 int nilfs_store_magic_and_option(struct super_block *sb,
850 				 struct nilfs_super_block *sbp,
851 				 char *data)
852 {
853 	struct the_nilfs *nilfs = sb->s_fs_info;
854 
855 	sb->s_magic = le16_to_cpu(sbp->s_magic);
856 
857 	/* FS independent flags */
858 #ifdef NILFS_ATIME_DISABLE
859 	sb->s_flags |= MS_NOATIME;
860 #endif
861 
862 	nilfs_set_default_options(sb, sbp);
863 
864 	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
865 	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
866 	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
867 	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
868 
869 	return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
870 }
871 
872 int nilfs_check_feature_compatibility(struct super_block *sb,
873 				      struct nilfs_super_block *sbp)
874 {
875 	__u64 features;
876 
877 	features = le64_to_cpu(sbp->s_feature_incompat) &
878 		~NILFS_FEATURE_INCOMPAT_SUPP;
879 	if (features) {
880 		printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
881 		       "optional features (%llx)\n",
882 		       (unsigned long long)features);
883 		return -EINVAL;
884 	}
885 	features = le64_to_cpu(sbp->s_feature_compat_ro) &
886 		~NILFS_FEATURE_COMPAT_RO_SUPP;
887 	if (!(sb->s_flags & MS_RDONLY) && features) {
888 		printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
889 		       "unsupported optional features (%llx)\n",
890 		       (unsigned long long)features);
891 		return -EINVAL;
892 	}
893 	return 0;
894 }
895 
896 static int nilfs_get_root_dentry(struct super_block *sb,
897 				 struct nilfs_root *root,
898 				 struct dentry **root_dentry)
899 {
900 	struct inode *inode;
901 	struct dentry *dentry;
902 	int ret = 0;
903 
904 	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
905 	if (IS_ERR(inode)) {
906 		printk(KERN_ERR "NILFS: get root inode failed\n");
907 		ret = PTR_ERR(inode);
908 		goto out;
909 	}
910 	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
911 		iput(inode);
912 		printk(KERN_ERR "NILFS: corrupt root inode.\n");
913 		ret = -EINVAL;
914 		goto out;
915 	}
916 
917 	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
918 		dentry = d_find_alias(inode);
919 		if (!dentry) {
920 			dentry = d_make_root(inode);
921 			if (!dentry) {
922 				ret = -ENOMEM;
923 				goto failed_dentry;
924 			}
925 		} else {
926 			iput(inode);
927 		}
928 	} else {
929 		dentry = d_obtain_alias(inode);
930 		if (IS_ERR(dentry)) {
931 			ret = PTR_ERR(dentry);
932 			goto failed_dentry;
933 		}
934 	}
935 	*root_dentry = dentry;
936  out:
937 	return ret;
938 
939  failed_dentry:
940 	printk(KERN_ERR "NILFS: get root dentry failed\n");
941 	goto out;
942 }
943 
944 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
945 				 struct dentry **root_dentry)
946 {
947 	struct the_nilfs *nilfs = s->s_fs_info;
948 	struct nilfs_root *root;
949 	int ret;
950 
951 	down_read(&nilfs->ns_segctor_sem);
952 	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
953 	up_read(&nilfs->ns_segctor_sem);
954 	if (ret < 0) {
955 		ret = (ret == -ENOENT) ? -EINVAL : ret;
956 		goto out;
957 	} else if (!ret) {
958 		printk(KERN_ERR "NILFS: The specified checkpoint is "
959 		       "not a snapshot (checkpoint number=%llu).\n",
960 		       (unsigned long long)cno);
961 		ret = -EINVAL;
962 		goto out;
963 	}
964 
965 	ret = nilfs_attach_checkpoint(s, cno, false, &root);
966 	if (ret) {
967 		printk(KERN_ERR "NILFS: error loading snapshot "
968 		       "(checkpoint number=%llu).\n",
969 	       (unsigned long long)cno);
970 		goto out;
971 	}
972 	ret = nilfs_get_root_dentry(s, root, root_dentry);
973 	nilfs_put_root(root);
974  out:
975 	return ret;
976 }
977 
978 static int nilfs_tree_was_touched(struct dentry *root_dentry)
979 {
980 	return root_dentry->d_count > 1;
981 }
982 
983 /**
984  * nilfs_try_to_shrink_tree() - try to shrink dentries of a checkpoint
985  * @root_dentry: root dentry of the tree to be shrunk
986  *
987  * This function returns true if the tree was in-use.
988  */
989 static int nilfs_try_to_shrink_tree(struct dentry *root_dentry)
990 {
991 	if (have_submounts(root_dentry))
992 		return true;
993 	shrink_dcache_parent(root_dentry);
994 	return nilfs_tree_was_touched(root_dentry);
995 }
996 
997 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
998 {
999 	struct the_nilfs *nilfs = sb->s_fs_info;
1000 	struct nilfs_root *root;
1001 	struct inode *inode;
1002 	struct dentry *dentry;
1003 	int ret;
1004 
1005 	if (cno < 0 || cno > nilfs->ns_cno)
1006 		return false;
1007 
1008 	if (cno >= nilfs_last_cno(nilfs))
1009 		return true;	/* protect recent checkpoints */
1010 
1011 	ret = false;
1012 	root = nilfs_lookup_root(nilfs, cno);
1013 	if (root) {
1014 		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1015 		if (inode) {
1016 			dentry = d_find_alias(inode);
1017 			if (dentry) {
1018 				if (nilfs_tree_was_touched(dentry))
1019 					ret = nilfs_try_to_shrink_tree(dentry);
1020 				dput(dentry);
1021 			}
1022 			iput(inode);
1023 		}
1024 		nilfs_put_root(root);
1025 	}
1026 	return ret;
1027 }
1028 
1029 /**
1030  * nilfs_fill_super() - initialize a super block instance
1031  * @sb: super_block
1032  * @data: mount options
1033  * @silent: silent mode flag
1034  *
1035  * This function is called exclusively by nilfs->ns_mount_mutex.
1036  * So, the recovery process is protected from other simultaneous mounts.
1037  */
1038 static int
1039 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1040 {
1041 	struct the_nilfs *nilfs;
1042 	struct nilfs_root *fsroot;
1043 	struct backing_dev_info *bdi;
1044 	__u64 cno;
1045 	int err;
1046 
1047 	nilfs = alloc_nilfs(sb->s_bdev);
1048 	if (!nilfs)
1049 		return -ENOMEM;
1050 
1051 	sb->s_fs_info = nilfs;
1052 
1053 	err = init_nilfs(nilfs, sb, (char *)data);
1054 	if (err)
1055 		goto failed_nilfs;
1056 
1057 	sb->s_op = &nilfs_sops;
1058 	sb->s_export_op = &nilfs_export_ops;
1059 	sb->s_root = NULL;
1060 	sb->s_time_gran = 1;
1061 	sb->s_max_links = NILFS_LINK_MAX;
1062 
1063 	bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
1064 	sb->s_bdi = bdi ? : &default_backing_dev_info;
1065 
1066 	err = load_nilfs(nilfs, sb);
1067 	if (err)
1068 		goto failed_nilfs;
1069 
1070 	cno = nilfs_last_cno(nilfs);
1071 	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1072 	if (err) {
1073 		printk(KERN_ERR "NILFS: error loading last checkpoint "
1074 		       "(checkpoint number=%llu).\n", (unsigned long long)cno);
1075 		goto failed_unload;
1076 	}
1077 
1078 	if (!(sb->s_flags & MS_RDONLY)) {
1079 		err = nilfs_attach_log_writer(sb, fsroot);
1080 		if (err)
1081 			goto failed_checkpoint;
1082 	}
1083 
1084 	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1085 	if (err)
1086 		goto failed_segctor;
1087 
1088 	nilfs_put_root(fsroot);
1089 
1090 	if (!(sb->s_flags & MS_RDONLY)) {
1091 		down_write(&nilfs->ns_sem);
1092 		nilfs_setup_super(sb, true);
1093 		up_write(&nilfs->ns_sem);
1094 	}
1095 
1096 	return 0;
1097 
1098  failed_segctor:
1099 	nilfs_detach_log_writer(sb);
1100 
1101  failed_checkpoint:
1102 	nilfs_put_root(fsroot);
1103 
1104  failed_unload:
1105 	iput(nilfs->ns_sufile);
1106 	iput(nilfs->ns_cpfile);
1107 	iput(nilfs->ns_dat);
1108 
1109  failed_nilfs:
1110 	destroy_nilfs(nilfs);
1111 	return err;
1112 }
1113 
1114 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1115 {
1116 	struct the_nilfs *nilfs = sb->s_fs_info;
1117 	unsigned long old_sb_flags;
1118 	unsigned long old_mount_opt;
1119 	int err;
1120 
1121 	old_sb_flags = sb->s_flags;
1122 	old_mount_opt = nilfs->ns_mount_opt;
1123 
1124 	if (!parse_options(data, sb, 1)) {
1125 		err = -EINVAL;
1126 		goto restore_opts;
1127 	}
1128 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1129 
1130 	err = -EINVAL;
1131 
1132 	if (!nilfs_valid_fs(nilfs)) {
1133 		printk(KERN_WARNING "NILFS (device %s): couldn't "
1134 		       "remount because the filesystem is in an "
1135 		       "incomplete recovery state.\n", sb->s_id);
1136 		goto restore_opts;
1137 	}
1138 
1139 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1140 		goto out;
1141 	if (*flags & MS_RDONLY) {
1142 		/* Shutting down log writer */
1143 		nilfs_detach_log_writer(sb);
1144 		sb->s_flags |= MS_RDONLY;
1145 
1146 		/*
1147 		 * Remounting a valid RW partition RDONLY, so set
1148 		 * the RDONLY flag and then mark the partition as valid again.
1149 		 */
1150 		down_write(&nilfs->ns_sem);
1151 		nilfs_cleanup_super(sb);
1152 		up_write(&nilfs->ns_sem);
1153 	} else {
1154 		__u64 features;
1155 		struct nilfs_root *root;
1156 
1157 		/*
1158 		 * Mounting a RDONLY partition read-write, so reread and
1159 		 * store the current valid flag.  (It may have been changed
1160 		 * by fsck since we originally mounted the partition.)
1161 		 */
1162 		down_read(&nilfs->ns_sem);
1163 		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1164 			~NILFS_FEATURE_COMPAT_RO_SUPP;
1165 		up_read(&nilfs->ns_sem);
1166 		if (features) {
1167 			printk(KERN_WARNING "NILFS (device %s): couldn't "
1168 			       "remount RDWR because of unsupported optional "
1169 			       "features (%llx)\n",
1170 			       sb->s_id, (unsigned long long)features);
1171 			err = -EROFS;
1172 			goto restore_opts;
1173 		}
1174 
1175 		sb->s_flags &= ~MS_RDONLY;
1176 
1177 		root = NILFS_I(sb->s_root->d_inode)->i_root;
1178 		err = nilfs_attach_log_writer(sb, root);
1179 		if (err)
1180 			goto restore_opts;
1181 
1182 		down_write(&nilfs->ns_sem);
1183 		nilfs_setup_super(sb, true);
1184 		up_write(&nilfs->ns_sem);
1185 	}
1186  out:
1187 	return 0;
1188 
1189  restore_opts:
1190 	sb->s_flags = old_sb_flags;
1191 	nilfs->ns_mount_opt = old_mount_opt;
1192 	return err;
1193 }
1194 
1195 struct nilfs_super_data {
1196 	struct block_device *bdev;
1197 	__u64 cno;
1198 	int flags;
1199 };
1200 
1201 /**
1202  * nilfs_identify - pre-read mount options needed to identify mount instance
1203  * @data: mount options
1204  * @sd: nilfs_super_data
1205  */
1206 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1207 {
1208 	char *p, *options = data;
1209 	substring_t args[MAX_OPT_ARGS];
1210 	int token;
1211 	int ret = 0;
1212 
1213 	do {
1214 		p = strsep(&options, ",");
1215 		if (p != NULL && *p) {
1216 			token = match_token(p, tokens, args);
1217 			if (token == Opt_snapshot) {
1218 				if (!(sd->flags & MS_RDONLY)) {
1219 					ret++;
1220 				} else {
1221 					sd->cno = simple_strtoull(args[0].from,
1222 								  NULL, 0);
1223 					/*
1224 					 * No need to see the end pointer;
1225 					 * match_token() has done syntax
1226 					 * checking.
1227 					 */
1228 					if (sd->cno == 0)
1229 						ret++;
1230 				}
1231 			}
1232 			if (ret)
1233 				printk(KERN_ERR
1234 				       "NILFS: invalid mount option: %s\n", p);
1235 		}
1236 		if (!options)
1237 			break;
1238 		BUG_ON(options == data);
1239 		*(options - 1) = ',';
1240 	} while (!ret);
1241 	return ret;
1242 }
1243 
1244 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1245 {
1246 	s->s_bdev = data;
1247 	s->s_dev = s->s_bdev->bd_dev;
1248 	return 0;
1249 }
1250 
1251 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1252 {
1253 	return (void *)s->s_bdev == data;
1254 }
1255 
1256 static struct dentry *
1257 nilfs_mount(struct file_system_type *fs_type, int flags,
1258 	     const char *dev_name, void *data)
1259 {
1260 	struct nilfs_super_data sd;
1261 	struct super_block *s;
1262 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1263 	struct dentry *root_dentry;
1264 	int err, s_new = false;
1265 
1266 	if (!(flags & MS_RDONLY))
1267 		mode |= FMODE_WRITE;
1268 
1269 	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1270 	if (IS_ERR(sd.bdev))
1271 		return ERR_CAST(sd.bdev);
1272 
1273 	sd.cno = 0;
1274 	sd.flags = flags;
1275 	if (nilfs_identify((char *)data, &sd)) {
1276 		err = -EINVAL;
1277 		goto failed;
1278 	}
1279 
1280 	/*
1281 	 * once the super is inserted into the list by sget, s_umount
1282 	 * will protect the lockfs code from trying to start a snapshot
1283 	 * while we are mounting
1284 	 */
1285 	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1286 	if (sd.bdev->bd_fsfreeze_count > 0) {
1287 		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1288 		err = -EBUSY;
1289 		goto failed;
1290 	}
1291 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, sd.bdev);
1292 	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1293 	if (IS_ERR(s)) {
1294 		err = PTR_ERR(s);
1295 		goto failed;
1296 	}
1297 
1298 	if (!s->s_root) {
1299 		char b[BDEVNAME_SIZE];
1300 
1301 		s_new = true;
1302 
1303 		/* New superblock instance created */
1304 		s->s_flags = flags;
1305 		s->s_mode = mode;
1306 		strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1307 		sb_set_blocksize(s, block_size(sd.bdev));
1308 
1309 		err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1310 		if (err)
1311 			goto failed_super;
1312 
1313 		s->s_flags |= MS_ACTIVE;
1314 	} else if (!sd.cno) {
1315 		int busy = false;
1316 
1317 		if (nilfs_tree_was_touched(s->s_root)) {
1318 			busy = nilfs_try_to_shrink_tree(s->s_root);
1319 			if (busy && (flags ^ s->s_flags) & MS_RDONLY) {
1320 				printk(KERN_ERR "NILFS: the device already "
1321 				       "has a %s mount.\n",
1322 				       (s->s_flags & MS_RDONLY) ?
1323 				       "read-only" : "read/write");
1324 				err = -EBUSY;
1325 				goto failed_super;
1326 			}
1327 		}
1328 		if (!busy) {
1329 			/*
1330 			 * Try remount to setup mount states if the current
1331 			 * tree is not mounted and only snapshots use this sb.
1332 			 */
1333 			err = nilfs_remount(s, &flags, data);
1334 			if (err)
1335 				goto failed_super;
1336 		}
1337 	}
1338 
1339 	if (sd.cno) {
1340 		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1341 		if (err)
1342 			goto failed_super;
1343 	} else {
1344 		root_dentry = dget(s->s_root);
1345 	}
1346 
1347 	if (!s_new)
1348 		blkdev_put(sd.bdev, mode);
1349 
1350 	return root_dentry;
1351 
1352  failed_super:
1353 	deactivate_locked_super(s);
1354 
1355  failed:
1356 	if (!s_new)
1357 		blkdev_put(sd.bdev, mode);
1358 	return ERR_PTR(err);
1359 }
1360 
1361 struct file_system_type nilfs_fs_type = {
1362 	.owner    = THIS_MODULE,
1363 	.name     = "nilfs2",
1364 	.mount    = nilfs_mount,
1365 	.kill_sb  = kill_block_super,
1366 	.fs_flags = FS_REQUIRES_DEV,
1367 };
1368 
1369 static void nilfs_inode_init_once(void *obj)
1370 {
1371 	struct nilfs_inode_info *ii = obj;
1372 
1373 	INIT_LIST_HEAD(&ii->i_dirty);
1374 #ifdef CONFIG_NILFS_XATTR
1375 	init_rwsem(&ii->xattr_sem);
1376 #endif
1377 	address_space_init_once(&ii->i_btnode_cache);
1378 	ii->i_bmap = &ii->i_bmap_data;
1379 	inode_init_once(&ii->vfs_inode);
1380 }
1381 
1382 static void nilfs_segbuf_init_once(void *obj)
1383 {
1384 	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1385 }
1386 
1387 static void nilfs_destroy_cachep(void)
1388 {
1389 	if (nilfs_inode_cachep)
1390 		kmem_cache_destroy(nilfs_inode_cachep);
1391 	if (nilfs_transaction_cachep)
1392 		kmem_cache_destroy(nilfs_transaction_cachep);
1393 	if (nilfs_segbuf_cachep)
1394 		kmem_cache_destroy(nilfs_segbuf_cachep);
1395 	if (nilfs_btree_path_cache)
1396 		kmem_cache_destroy(nilfs_btree_path_cache);
1397 }
1398 
1399 static int __init nilfs_init_cachep(void)
1400 {
1401 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1402 			sizeof(struct nilfs_inode_info), 0,
1403 			SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1404 	if (!nilfs_inode_cachep)
1405 		goto fail;
1406 
1407 	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1408 			sizeof(struct nilfs_transaction_info), 0,
1409 			SLAB_RECLAIM_ACCOUNT, NULL);
1410 	if (!nilfs_transaction_cachep)
1411 		goto fail;
1412 
1413 	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1414 			sizeof(struct nilfs_segment_buffer), 0,
1415 			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1416 	if (!nilfs_segbuf_cachep)
1417 		goto fail;
1418 
1419 	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1420 			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1421 			0, 0, NULL);
1422 	if (!nilfs_btree_path_cache)
1423 		goto fail;
1424 
1425 	return 0;
1426 
1427 fail:
1428 	nilfs_destroy_cachep();
1429 	return -ENOMEM;
1430 }
1431 
1432 static int __init init_nilfs_fs(void)
1433 {
1434 	int err;
1435 
1436 	err = nilfs_init_cachep();
1437 	if (err)
1438 		goto fail;
1439 
1440 	err = register_filesystem(&nilfs_fs_type);
1441 	if (err)
1442 		goto free_cachep;
1443 
1444 	printk(KERN_INFO "NILFS version 2 loaded\n");
1445 	return 0;
1446 
1447 free_cachep:
1448 	nilfs_destroy_cachep();
1449 fail:
1450 	return err;
1451 }
1452 
1453 static void __exit exit_nilfs_fs(void)
1454 {
1455 	nilfs_destroy_cachep();
1456 	unregister_filesystem(&nilfs_fs_type);
1457 }
1458 
1459 module_init(init_nilfs_fs)
1460 module_exit(exit_nilfs_fs)
1461