1 /* 2 * super.c - NILFS module and super block management. 3 * 4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 19 * 20 * Written by Ryusuke Konishi <ryusuke@osrg.net> 21 */ 22 /* 23 * linux/fs/ext2/super.c 24 * 25 * Copyright (C) 1992, 1993, 1994, 1995 26 * Remy Card (card@masi.ibp.fr) 27 * Laboratoire MASI - Institut Blaise Pascal 28 * Universite Pierre et Marie Curie (Paris VI) 29 * 30 * from 31 * 32 * linux/fs/minix/inode.c 33 * 34 * Copyright (C) 1991, 1992 Linus Torvalds 35 * 36 * Big-endian to little-endian byte-swapping/bitmaps by 37 * David S. Miller (davem@caip.rutgers.edu), 1995 38 */ 39 40 #include <linux/module.h> 41 #include <linux/string.h> 42 #include <linux/slab.h> 43 #include <linux/init.h> 44 #include <linux/blkdev.h> 45 #include <linux/parser.h> 46 #include <linux/crc32.h> 47 #include <linux/vfs.h> 48 #include <linux/writeback.h> 49 #include <linux/seq_file.h> 50 #include <linux/mount.h> 51 #include "nilfs.h" 52 #include "export.h" 53 #include "mdt.h" 54 #include "alloc.h" 55 #include "btree.h" 56 #include "btnode.h" 57 #include "page.h" 58 #include "cpfile.h" 59 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */ 60 #include "ifile.h" 61 #include "dat.h" 62 #include "segment.h" 63 #include "segbuf.h" 64 65 MODULE_AUTHOR("NTT Corp."); 66 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem " 67 "(NILFS)"); 68 MODULE_LICENSE("GPL"); 69 70 static struct kmem_cache *nilfs_inode_cachep; 71 struct kmem_cache *nilfs_transaction_cachep; 72 struct kmem_cache *nilfs_segbuf_cachep; 73 struct kmem_cache *nilfs_btree_path_cache; 74 75 static int nilfs_setup_super(struct super_block *sb, int is_mount); 76 static int nilfs_remount(struct super_block *sb, int *flags, char *data); 77 78 static void nilfs_set_error(struct super_block *sb) 79 { 80 struct the_nilfs *nilfs = sb->s_fs_info; 81 struct nilfs_super_block **sbp; 82 83 down_write(&nilfs->ns_sem); 84 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) { 85 nilfs->ns_mount_state |= NILFS_ERROR_FS; 86 sbp = nilfs_prepare_super(sb, 0); 87 if (likely(sbp)) { 88 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 89 if (sbp[1]) 90 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 91 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 92 } 93 } 94 up_write(&nilfs->ns_sem); 95 } 96 97 /** 98 * nilfs_error() - report failure condition on a filesystem 99 * 100 * nilfs_error() sets an ERROR_FS flag on the superblock as well as 101 * reporting an error message. It should be called when NILFS detects 102 * incoherences or defects of meta data on disk. As for sustainable 103 * errors such as a single-shot I/O error, nilfs_warning() or the printk() 104 * function should be used instead. 105 * 106 * The segment constructor must not call this function because it can 107 * kill itself. 108 */ 109 void nilfs_error(struct super_block *sb, const char *function, 110 const char *fmt, ...) 111 { 112 struct the_nilfs *nilfs = sb->s_fs_info; 113 struct va_format vaf; 114 va_list args; 115 116 va_start(args, fmt); 117 118 vaf.fmt = fmt; 119 vaf.va = &args; 120 121 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n", 122 sb->s_id, function, &vaf); 123 124 va_end(args); 125 126 if (!(sb->s_flags & MS_RDONLY)) { 127 nilfs_set_error(sb); 128 129 if (nilfs_test_opt(nilfs, ERRORS_RO)) { 130 printk(KERN_CRIT "Remounting filesystem read-only\n"); 131 sb->s_flags |= MS_RDONLY; 132 } 133 } 134 135 if (nilfs_test_opt(nilfs, ERRORS_PANIC)) 136 panic("NILFS (device %s): panic forced after error\n", 137 sb->s_id); 138 } 139 140 void nilfs_warning(struct super_block *sb, const char *function, 141 const char *fmt, ...) 142 { 143 struct va_format vaf; 144 va_list args; 145 146 va_start(args, fmt); 147 148 vaf.fmt = fmt; 149 vaf.va = &args; 150 151 printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n", 152 sb->s_id, function, &vaf); 153 154 va_end(args); 155 } 156 157 158 struct inode *nilfs_alloc_inode(struct super_block *sb) 159 { 160 struct nilfs_inode_info *ii; 161 162 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS); 163 if (!ii) 164 return NULL; 165 ii->i_bh = NULL; 166 ii->i_state = 0; 167 ii->i_cno = 0; 168 ii->vfs_inode.i_version = 1; 169 nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode, sb->s_bdi); 170 return &ii->vfs_inode; 171 } 172 173 static void nilfs_i_callback(struct rcu_head *head) 174 { 175 struct inode *inode = container_of(head, struct inode, i_rcu); 176 struct nilfs_mdt_info *mdi = NILFS_MDT(inode); 177 178 if (mdi) { 179 kfree(mdi->mi_bgl); /* kfree(NULL) is safe */ 180 kfree(mdi); 181 } 182 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode)); 183 } 184 185 void nilfs_destroy_inode(struct inode *inode) 186 { 187 call_rcu(&inode->i_rcu, nilfs_i_callback); 188 } 189 190 static int nilfs_sync_super(struct super_block *sb, int flag) 191 { 192 struct the_nilfs *nilfs = sb->s_fs_info; 193 int err; 194 195 retry: 196 set_buffer_dirty(nilfs->ns_sbh[0]); 197 if (nilfs_test_opt(nilfs, BARRIER)) { 198 err = __sync_dirty_buffer(nilfs->ns_sbh[0], 199 WRITE_SYNC | WRITE_FLUSH_FUA); 200 } else { 201 err = sync_dirty_buffer(nilfs->ns_sbh[0]); 202 } 203 204 if (unlikely(err)) { 205 printk(KERN_ERR 206 "NILFS: unable to write superblock (err=%d)\n", err); 207 if (err == -EIO && nilfs->ns_sbh[1]) { 208 /* 209 * sbp[0] points to newer log than sbp[1], 210 * so copy sbp[0] to sbp[1] to take over sbp[0]. 211 */ 212 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0], 213 nilfs->ns_sbsize); 214 nilfs_fall_back_super_block(nilfs); 215 goto retry; 216 } 217 } else { 218 struct nilfs_super_block *sbp = nilfs->ns_sbp[0]; 219 220 nilfs->ns_sbwcount++; 221 222 /* 223 * The latest segment becomes trailable from the position 224 * written in superblock. 225 */ 226 clear_nilfs_discontinued(nilfs); 227 228 /* update GC protection for recent segments */ 229 if (nilfs->ns_sbh[1]) { 230 if (flag == NILFS_SB_COMMIT_ALL) { 231 set_buffer_dirty(nilfs->ns_sbh[1]); 232 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0) 233 goto out; 234 } 235 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) < 236 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno)) 237 sbp = nilfs->ns_sbp[1]; 238 } 239 240 spin_lock(&nilfs->ns_last_segment_lock); 241 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq); 242 spin_unlock(&nilfs->ns_last_segment_lock); 243 } 244 out: 245 return err; 246 } 247 248 void nilfs_set_log_cursor(struct nilfs_super_block *sbp, 249 struct the_nilfs *nilfs) 250 { 251 sector_t nfreeblocks; 252 253 /* nilfs->ns_sem must be locked by the caller. */ 254 nilfs_count_free_blocks(nilfs, &nfreeblocks); 255 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks); 256 257 spin_lock(&nilfs->ns_last_segment_lock); 258 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq); 259 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg); 260 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno); 261 spin_unlock(&nilfs->ns_last_segment_lock); 262 } 263 264 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb, 265 int flip) 266 { 267 struct the_nilfs *nilfs = sb->s_fs_info; 268 struct nilfs_super_block **sbp = nilfs->ns_sbp; 269 270 /* nilfs->ns_sem must be locked by the caller. */ 271 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 272 if (sbp[1] && 273 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) { 274 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize); 275 } else { 276 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n", 277 sb->s_id); 278 return NULL; 279 } 280 } else if (sbp[1] && 281 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 282 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 283 } 284 285 if (flip && sbp[1]) 286 nilfs_swap_super_block(nilfs); 287 288 return sbp; 289 } 290 291 int nilfs_commit_super(struct super_block *sb, int flag) 292 { 293 struct the_nilfs *nilfs = sb->s_fs_info; 294 struct nilfs_super_block **sbp = nilfs->ns_sbp; 295 time_t t; 296 297 /* nilfs->ns_sem must be locked by the caller. */ 298 t = get_seconds(); 299 nilfs->ns_sbwtime = t; 300 sbp[0]->s_wtime = cpu_to_le64(t); 301 sbp[0]->s_sum = 0; 302 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 303 (unsigned char *)sbp[0], 304 nilfs->ns_sbsize)); 305 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) { 306 sbp[1]->s_wtime = sbp[0]->s_wtime; 307 sbp[1]->s_sum = 0; 308 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 309 (unsigned char *)sbp[1], 310 nilfs->ns_sbsize)); 311 } 312 clear_nilfs_sb_dirty(nilfs); 313 return nilfs_sync_super(sb, flag); 314 } 315 316 /** 317 * nilfs_cleanup_super() - write filesystem state for cleanup 318 * @sb: super block instance to be unmounted or degraded to read-only 319 * 320 * This function restores state flags in the on-disk super block. 321 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the 322 * filesystem was not clean previously. 323 */ 324 int nilfs_cleanup_super(struct super_block *sb) 325 { 326 struct the_nilfs *nilfs = sb->s_fs_info; 327 struct nilfs_super_block **sbp; 328 int flag = NILFS_SB_COMMIT; 329 int ret = -EIO; 330 331 sbp = nilfs_prepare_super(sb, 0); 332 if (sbp) { 333 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state); 334 nilfs_set_log_cursor(sbp[0], nilfs); 335 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) { 336 /* 337 * make the "clean" flag also to the opposite 338 * super block if both super blocks point to 339 * the same checkpoint. 340 */ 341 sbp[1]->s_state = sbp[0]->s_state; 342 flag = NILFS_SB_COMMIT_ALL; 343 } 344 ret = nilfs_commit_super(sb, flag); 345 } 346 return ret; 347 } 348 349 /** 350 * nilfs_move_2nd_super - relocate secondary super block 351 * @sb: super block instance 352 * @sb2off: new offset of the secondary super block (in bytes) 353 */ 354 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off) 355 { 356 struct the_nilfs *nilfs = sb->s_fs_info; 357 struct buffer_head *nsbh; 358 struct nilfs_super_block *nsbp; 359 sector_t blocknr, newblocknr; 360 unsigned long offset; 361 int sb2i = -1; /* array index of the secondary superblock */ 362 int ret = 0; 363 364 /* nilfs->ns_sem must be locked by the caller. */ 365 if (nilfs->ns_sbh[1] && 366 nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) { 367 sb2i = 1; 368 blocknr = nilfs->ns_sbh[1]->b_blocknr; 369 } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) { 370 sb2i = 0; 371 blocknr = nilfs->ns_sbh[0]->b_blocknr; 372 } 373 if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off) 374 goto out; /* super block location is unchanged */ 375 376 /* Get new super block buffer */ 377 newblocknr = sb2off >> nilfs->ns_blocksize_bits; 378 offset = sb2off & (nilfs->ns_blocksize - 1); 379 nsbh = sb_getblk(sb, newblocknr); 380 if (!nsbh) { 381 printk(KERN_WARNING 382 "NILFS warning: unable to move secondary superblock " 383 "to block %llu\n", (unsigned long long)newblocknr); 384 ret = -EIO; 385 goto out; 386 } 387 nsbp = (void *)nsbh->b_data + offset; 388 memset(nsbp, 0, nilfs->ns_blocksize); 389 390 if (sb2i >= 0) { 391 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize); 392 brelse(nilfs->ns_sbh[sb2i]); 393 nilfs->ns_sbh[sb2i] = nsbh; 394 nilfs->ns_sbp[sb2i] = nsbp; 395 } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) { 396 /* secondary super block will be restored to index 1 */ 397 nilfs->ns_sbh[1] = nsbh; 398 nilfs->ns_sbp[1] = nsbp; 399 } else { 400 brelse(nsbh); 401 } 402 out: 403 return ret; 404 } 405 406 /** 407 * nilfs_resize_fs - resize the filesystem 408 * @sb: super block instance 409 * @newsize: new size of the filesystem (in bytes) 410 */ 411 int nilfs_resize_fs(struct super_block *sb, __u64 newsize) 412 { 413 struct the_nilfs *nilfs = sb->s_fs_info; 414 struct nilfs_super_block **sbp; 415 __u64 devsize, newnsegs; 416 loff_t sb2off; 417 int ret; 418 419 ret = -ERANGE; 420 devsize = i_size_read(sb->s_bdev->bd_inode); 421 if (newsize > devsize) 422 goto out; 423 424 /* 425 * Write lock is required to protect some functions depending 426 * on the number of segments, the number of reserved segments, 427 * and so forth. 428 */ 429 down_write(&nilfs->ns_segctor_sem); 430 431 sb2off = NILFS_SB2_OFFSET_BYTES(newsize); 432 newnsegs = sb2off >> nilfs->ns_blocksize_bits; 433 do_div(newnsegs, nilfs->ns_blocks_per_segment); 434 435 ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs); 436 up_write(&nilfs->ns_segctor_sem); 437 if (ret < 0) 438 goto out; 439 440 ret = nilfs_construct_segment(sb); 441 if (ret < 0) 442 goto out; 443 444 down_write(&nilfs->ns_sem); 445 nilfs_move_2nd_super(sb, sb2off); 446 ret = -EIO; 447 sbp = nilfs_prepare_super(sb, 0); 448 if (likely(sbp)) { 449 nilfs_set_log_cursor(sbp[0], nilfs); 450 /* 451 * Drop NILFS_RESIZE_FS flag for compatibility with 452 * mount-time resize which may be implemented in a 453 * future release. 454 */ 455 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & 456 ~NILFS_RESIZE_FS); 457 sbp[0]->s_dev_size = cpu_to_le64(newsize); 458 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments); 459 if (sbp[1]) 460 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 461 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 462 } 463 up_write(&nilfs->ns_sem); 464 465 /* 466 * Reset the range of allocatable segments last. This order 467 * is important in the case of expansion because the secondary 468 * superblock must be protected from log write until migration 469 * completes. 470 */ 471 if (!ret) 472 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1); 473 out: 474 return ret; 475 } 476 477 static void nilfs_put_super(struct super_block *sb) 478 { 479 struct the_nilfs *nilfs = sb->s_fs_info; 480 481 nilfs_detach_log_writer(sb); 482 483 if (!(sb->s_flags & MS_RDONLY)) { 484 down_write(&nilfs->ns_sem); 485 nilfs_cleanup_super(sb); 486 up_write(&nilfs->ns_sem); 487 } 488 489 iput(nilfs->ns_sufile); 490 iput(nilfs->ns_cpfile); 491 iput(nilfs->ns_dat); 492 493 destroy_nilfs(nilfs); 494 sb->s_fs_info = NULL; 495 } 496 497 static int nilfs_sync_fs(struct super_block *sb, int wait) 498 { 499 struct the_nilfs *nilfs = sb->s_fs_info; 500 struct nilfs_super_block **sbp; 501 int err = 0; 502 503 /* This function is called when super block should be written back */ 504 if (wait) 505 err = nilfs_construct_segment(sb); 506 507 down_write(&nilfs->ns_sem); 508 if (nilfs_sb_dirty(nilfs)) { 509 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs)); 510 if (likely(sbp)) { 511 nilfs_set_log_cursor(sbp[0], nilfs); 512 nilfs_commit_super(sb, NILFS_SB_COMMIT); 513 } 514 } 515 up_write(&nilfs->ns_sem); 516 517 return err; 518 } 519 520 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt, 521 struct nilfs_root **rootp) 522 { 523 struct the_nilfs *nilfs = sb->s_fs_info; 524 struct nilfs_root *root; 525 struct nilfs_checkpoint *raw_cp; 526 struct buffer_head *bh_cp; 527 int err = -ENOMEM; 528 529 root = nilfs_find_or_create_root( 530 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno); 531 if (!root) 532 return err; 533 534 if (root->ifile) 535 goto reuse; /* already attached checkpoint */ 536 537 down_read(&nilfs->ns_segctor_sem); 538 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp, 539 &bh_cp); 540 up_read(&nilfs->ns_segctor_sem); 541 if (unlikely(err)) { 542 if (err == -ENOENT || err == -EINVAL) { 543 printk(KERN_ERR 544 "NILFS: Invalid checkpoint " 545 "(checkpoint number=%llu)\n", 546 (unsigned long long)cno); 547 err = -EINVAL; 548 } 549 goto failed; 550 } 551 552 err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size, 553 &raw_cp->cp_ifile_inode, &root->ifile); 554 if (err) 555 goto failed_bh; 556 557 atomic_set(&root->inodes_count, le64_to_cpu(raw_cp->cp_inodes_count)); 558 atomic_set(&root->blocks_count, le64_to_cpu(raw_cp->cp_blocks_count)); 559 560 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); 561 562 reuse: 563 *rootp = root; 564 return 0; 565 566 failed_bh: 567 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); 568 failed: 569 nilfs_put_root(root); 570 571 return err; 572 } 573 574 static int nilfs_freeze(struct super_block *sb) 575 { 576 struct the_nilfs *nilfs = sb->s_fs_info; 577 int err; 578 579 if (sb->s_flags & MS_RDONLY) 580 return 0; 581 582 /* Mark super block clean */ 583 down_write(&nilfs->ns_sem); 584 err = nilfs_cleanup_super(sb); 585 up_write(&nilfs->ns_sem); 586 return err; 587 } 588 589 static int nilfs_unfreeze(struct super_block *sb) 590 { 591 struct the_nilfs *nilfs = sb->s_fs_info; 592 593 if (sb->s_flags & MS_RDONLY) 594 return 0; 595 596 down_write(&nilfs->ns_sem); 597 nilfs_setup_super(sb, false); 598 up_write(&nilfs->ns_sem); 599 return 0; 600 } 601 602 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf) 603 { 604 struct super_block *sb = dentry->d_sb; 605 struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root; 606 struct the_nilfs *nilfs = root->nilfs; 607 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 608 unsigned long long blocks; 609 unsigned long overhead; 610 unsigned long nrsvblocks; 611 sector_t nfreeblocks; 612 int err; 613 614 /* 615 * Compute all of the segment blocks 616 * 617 * The blocks before first segment and after last segment 618 * are excluded. 619 */ 620 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments 621 - nilfs->ns_first_data_block; 622 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment; 623 624 /* 625 * Compute the overhead 626 * 627 * When distributing meta data blocks outside segment structure, 628 * We must count them as the overhead. 629 */ 630 overhead = 0; 631 632 err = nilfs_count_free_blocks(nilfs, &nfreeblocks); 633 if (unlikely(err)) 634 return err; 635 636 buf->f_type = NILFS_SUPER_MAGIC; 637 buf->f_bsize = sb->s_blocksize; 638 buf->f_blocks = blocks - overhead; 639 buf->f_bfree = nfreeblocks; 640 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ? 641 (buf->f_bfree - nrsvblocks) : 0; 642 buf->f_files = atomic_read(&root->inodes_count); 643 buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */ 644 buf->f_namelen = NILFS_NAME_LEN; 645 buf->f_fsid.val[0] = (u32)id; 646 buf->f_fsid.val[1] = (u32)(id >> 32); 647 648 return 0; 649 } 650 651 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry) 652 { 653 struct super_block *sb = dentry->d_sb; 654 struct the_nilfs *nilfs = sb->s_fs_info; 655 struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root; 656 657 if (!nilfs_test_opt(nilfs, BARRIER)) 658 seq_puts(seq, ",nobarrier"); 659 if (root->cno != NILFS_CPTREE_CURRENT_CNO) 660 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno); 661 if (nilfs_test_opt(nilfs, ERRORS_PANIC)) 662 seq_puts(seq, ",errors=panic"); 663 if (nilfs_test_opt(nilfs, ERRORS_CONT)) 664 seq_puts(seq, ",errors=continue"); 665 if (nilfs_test_opt(nilfs, STRICT_ORDER)) 666 seq_puts(seq, ",order=strict"); 667 if (nilfs_test_opt(nilfs, NORECOVERY)) 668 seq_puts(seq, ",norecovery"); 669 if (nilfs_test_opt(nilfs, DISCARD)) 670 seq_puts(seq, ",discard"); 671 672 return 0; 673 } 674 675 static const struct super_operations nilfs_sops = { 676 .alloc_inode = nilfs_alloc_inode, 677 .destroy_inode = nilfs_destroy_inode, 678 .dirty_inode = nilfs_dirty_inode, 679 /* .write_inode = nilfs_write_inode, */ 680 /* .put_inode = nilfs_put_inode, */ 681 /* .drop_inode = nilfs_drop_inode, */ 682 .evict_inode = nilfs_evict_inode, 683 .put_super = nilfs_put_super, 684 /* .write_super = nilfs_write_super, */ 685 .sync_fs = nilfs_sync_fs, 686 .freeze_fs = nilfs_freeze, 687 .unfreeze_fs = nilfs_unfreeze, 688 /* .write_super_lockfs */ 689 /* .unlockfs */ 690 .statfs = nilfs_statfs, 691 .remount_fs = nilfs_remount, 692 /* .umount_begin */ 693 .show_options = nilfs_show_options 694 }; 695 696 enum { 697 Opt_err_cont, Opt_err_panic, Opt_err_ro, 698 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery, 699 Opt_discard, Opt_nodiscard, Opt_err, 700 }; 701 702 static match_table_t tokens = { 703 {Opt_err_cont, "errors=continue"}, 704 {Opt_err_panic, "errors=panic"}, 705 {Opt_err_ro, "errors=remount-ro"}, 706 {Opt_barrier, "barrier"}, 707 {Opt_nobarrier, "nobarrier"}, 708 {Opt_snapshot, "cp=%u"}, 709 {Opt_order, "order=%s"}, 710 {Opt_norecovery, "norecovery"}, 711 {Opt_discard, "discard"}, 712 {Opt_nodiscard, "nodiscard"}, 713 {Opt_err, NULL} 714 }; 715 716 static int parse_options(char *options, struct super_block *sb, int is_remount) 717 { 718 struct the_nilfs *nilfs = sb->s_fs_info; 719 char *p; 720 substring_t args[MAX_OPT_ARGS]; 721 722 if (!options) 723 return 1; 724 725 while ((p = strsep(&options, ",")) != NULL) { 726 int token; 727 if (!*p) 728 continue; 729 730 token = match_token(p, tokens, args); 731 switch (token) { 732 case Opt_barrier: 733 nilfs_set_opt(nilfs, BARRIER); 734 break; 735 case Opt_nobarrier: 736 nilfs_clear_opt(nilfs, BARRIER); 737 break; 738 case Opt_order: 739 if (strcmp(args[0].from, "relaxed") == 0) 740 /* Ordered data semantics */ 741 nilfs_clear_opt(nilfs, STRICT_ORDER); 742 else if (strcmp(args[0].from, "strict") == 0) 743 /* Strict in-order semantics */ 744 nilfs_set_opt(nilfs, STRICT_ORDER); 745 else 746 return 0; 747 break; 748 case Opt_err_panic: 749 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC); 750 break; 751 case Opt_err_ro: 752 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO); 753 break; 754 case Opt_err_cont: 755 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT); 756 break; 757 case Opt_snapshot: 758 if (is_remount) { 759 printk(KERN_ERR 760 "NILFS: \"%s\" option is invalid " 761 "for remount.\n", p); 762 return 0; 763 } 764 break; 765 case Opt_norecovery: 766 nilfs_set_opt(nilfs, NORECOVERY); 767 break; 768 case Opt_discard: 769 nilfs_set_opt(nilfs, DISCARD); 770 break; 771 case Opt_nodiscard: 772 nilfs_clear_opt(nilfs, DISCARD); 773 break; 774 default: 775 printk(KERN_ERR 776 "NILFS: Unrecognized mount option \"%s\"\n", p); 777 return 0; 778 } 779 } 780 return 1; 781 } 782 783 static inline void 784 nilfs_set_default_options(struct super_block *sb, 785 struct nilfs_super_block *sbp) 786 { 787 struct the_nilfs *nilfs = sb->s_fs_info; 788 789 nilfs->ns_mount_opt = 790 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER; 791 } 792 793 static int nilfs_setup_super(struct super_block *sb, int is_mount) 794 { 795 struct the_nilfs *nilfs = sb->s_fs_info; 796 struct nilfs_super_block **sbp; 797 int max_mnt_count; 798 int mnt_count; 799 800 /* nilfs->ns_sem must be locked by the caller. */ 801 sbp = nilfs_prepare_super(sb, 0); 802 if (!sbp) 803 return -EIO; 804 805 if (!is_mount) 806 goto skip_mount_setup; 807 808 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count); 809 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count); 810 811 if (nilfs->ns_mount_state & NILFS_ERROR_FS) { 812 printk(KERN_WARNING 813 "NILFS warning: mounting fs with errors\n"); 814 #if 0 815 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) { 816 printk(KERN_WARNING 817 "NILFS warning: maximal mount count reached\n"); 818 #endif 819 } 820 if (!max_mnt_count) 821 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT); 822 823 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1); 824 sbp[0]->s_mtime = cpu_to_le64(get_seconds()); 825 826 skip_mount_setup: 827 sbp[0]->s_state = 828 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS); 829 /* synchronize sbp[1] with sbp[0] */ 830 if (sbp[1]) 831 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 832 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 833 } 834 835 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb, 836 u64 pos, int blocksize, 837 struct buffer_head **pbh) 838 { 839 unsigned long long sb_index = pos; 840 unsigned long offset; 841 842 offset = do_div(sb_index, blocksize); 843 *pbh = sb_bread(sb, sb_index); 844 if (!*pbh) 845 return NULL; 846 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset); 847 } 848 849 int nilfs_store_magic_and_option(struct super_block *sb, 850 struct nilfs_super_block *sbp, 851 char *data) 852 { 853 struct the_nilfs *nilfs = sb->s_fs_info; 854 855 sb->s_magic = le16_to_cpu(sbp->s_magic); 856 857 /* FS independent flags */ 858 #ifdef NILFS_ATIME_DISABLE 859 sb->s_flags |= MS_NOATIME; 860 #endif 861 862 nilfs_set_default_options(sb, sbp); 863 864 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid); 865 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid); 866 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval); 867 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max); 868 869 return !parse_options(data, sb, 0) ? -EINVAL : 0 ; 870 } 871 872 int nilfs_check_feature_compatibility(struct super_block *sb, 873 struct nilfs_super_block *sbp) 874 { 875 __u64 features; 876 877 features = le64_to_cpu(sbp->s_feature_incompat) & 878 ~NILFS_FEATURE_INCOMPAT_SUPP; 879 if (features) { 880 printk(KERN_ERR "NILFS: couldn't mount because of unsupported " 881 "optional features (%llx)\n", 882 (unsigned long long)features); 883 return -EINVAL; 884 } 885 features = le64_to_cpu(sbp->s_feature_compat_ro) & 886 ~NILFS_FEATURE_COMPAT_RO_SUPP; 887 if (!(sb->s_flags & MS_RDONLY) && features) { 888 printk(KERN_ERR "NILFS: couldn't mount RDWR because of " 889 "unsupported optional features (%llx)\n", 890 (unsigned long long)features); 891 return -EINVAL; 892 } 893 return 0; 894 } 895 896 static int nilfs_get_root_dentry(struct super_block *sb, 897 struct nilfs_root *root, 898 struct dentry **root_dentry) 899 { 900 struct inode *inode; 901 struct dentry *dentry; 902 int ret = 0; 903 904 inode = nilfs_iget(sb, root, NILFS_ROOT_INO); 905 if (IS_ERR(inode)) { 906 printk(KERN_ERR "NILFS: get root inode failed\n"); 907 ret = PTR_ERR(inode); 908 goto out; 909 } 910 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) { 911 iput(inode); 912 printk(KERN_ERR "NILFS: corrupt root inode.\n"); 913 ret = -EINVAL; 914 goto out; 915 } 916 917 if (root->cno == NILFS_CPTREE_CURRENT_CNO) { 918 dentry = d_find_alias(inode); 919 if (!dentry) { 920 dentry = d_make_root(inode); 921 if (!dentry) { 922 ret = -ENOMEM; 923 goto failed_dentry; 924 } 925 } else { 926 iput(inode); 927 } 928 } else { 929 dentry = d_obtain_alias(inode); 930 if (IS_ERR(dentry)) { 931 ret = PTR_ERR(dentry); 932 goto failed_dentry; 933 } 934 } 935 *root_dentry = dentry; 936 out: 937 return ret; 938 939 failed_dentry: 940 printk(KERN_ERR "NILFS: get root dentry failed\n"); 941 goto out; 942 } 943 944 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno, 945 struct dentry **root_dentry) 946 { 947 struct the_nilfs *nilfs = s->s_fs_info; 948 struct nilfs_root *root; 949 int ret; 950 951 down_read(&nilfs->ns_segctor_sem); 952 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno); 953 up_read(&nilfs->ns_segctor_sem); 954 if (ret < 0) { 955 ret = (ret == -ENOENT) ? -EINVAL : ret; 956 goto out; 957 } else if (!ret) { 958 printk(KERN_ERR "NILFS: The specified checkpoint is " 959 "not a snapshot (checkpoint number=%llu).\n", 960 (unsigned long long)cno); 961 ret = -EINVAL; 962 goto out; 963 } 964 965 ret = nilfs_attach_checkpoint(s, cno, false, &root); 966 if (ret) { 967 printk(KERN_ERR "NILFS: error loading snapshot " 968 "(checkpoint number=%llu).\n", 969 (unsigned long long)cno); 970 goto out; 971 } 972 ret = nilfs_get_root_dentry(s, root, root_dentry); 973 nilfs_put_root(root); 974 out: 975 return ret; 976 } 977 978 static int nilfs_tree_was_touched(struct dentry *root_dentry) 979 { 980 return root_dentry->d_count > 1; 981 } 982 983 /** 984 * nilfs_try_to_shrink_tree() - try to shrink dentries of a checkpoint 985 * @root_dentry: root dentry of the tree to be shrunk 986 * 987 * This function returns true if the tree was in-use. 988 */ 989 static int nilfs_try_to_shrink_tree(struct dentry *root_dentry) 990 { 991 if (have_submounts(root_dentry)) 992 return true; 993 shrink_dcache_parent(root_dentry); 994 return nilfs_tree_was_touched(root_dentry); 995 } 996 997 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno) 998 { 999 struct the_nilfs *nilfs = sb->s_fs_info; 1000 struct nilfs_root *root; 1001 struct inode *inode; 1002 struct dentry *dentry; 1003 int ret; 1004 1005 if (cno < 0 || cno > nilfs->ns_cno) 1006 return false; 1007 1008 if (cno >= nilfs_last_cno(nilfs)) 1009 return true; /* protect recent checkpoints */ 1010 1011 ret = false; 1012 root = nilfs_lookup_root(nilfs, cno); 1013 if (root) { 1014 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO); 1015 if (inode) { 1016 dentry = d_find_alias(inode); 1017 if (dentry) { 1018 if (nilfs_tree_was_touched(dentry)) 1019 ret = nilfs_try_to_shrink_tree(dentry); 1020 dput(dentry); 1021 } 1022 iput(inode); 1023 } 1024 nilfs_put_root(root); 1025 } 1026 return ret; 1027 } 1028 1029 /** 1030 * nilfs_fill_super() - initialize a super block instance 1031 * @sb: super_block 1032 * @data: mount options 1033 * @silent: silent mode flag 1034 * 1035 * This function is called exclusively by nilfs->ns_mount_mutex. 1036 * So, the recovery process is protected from other simultaneous mounts. 1037 */ 1038 static int 1039 nilfs_fill_super(struct super_block *sb, void *data, int silent) 1040 { 1041 struct the_nilfs *nilfs; 1042 struct nilfs_root *fsroot; 1043 struct backing_dev_info *bdi; 1044 __u64 cno; 1045 int err; 1046 1047 nilfs = alloc_nilfs(sb->s_bdev); 1048 if (!nilfs) 1049 return -ENOMEM; 1050 1051 sb->s_fs_info = nilfs; 1052 1053 err = init_nilfs(nilfs, sb, (char *)data); 1054 if (err) 1055 goto failed_nilfs; 1056 1057 sb->s_op = &nilfs_sops; 1058 sb->s_export_op = &nilfs_export_ops; 1059 sb->s_root = NULL; 1060 sb->s_time_gran = 1; 1061 sb->s_max_links = NILFS_LINK_MAX; 1062 1063 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 1064 sb->s_bdi = bdi ? : &default_backing_dev_info; 1065 1066 err = load_nilfs(nilfs, sb); 1067 if (err) 1068 goto failed_nilfs; 1069 1070 cno = nilfs_last_cno(nilfs); 1071 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot); 1072 if (err) { 1073 printk(KERN_ERR "NILFS: error loading last checkpoint " 1074 "(checkpoint number=%llu).\n", (unsigned long long)cno); 1075 goto failed_unload; 1076 } 1077 1078 if (!(sb->s_flags & MS_RDONLY)) { 1079 err = nilfs_attach_log_writer(sb, fsroot); 1080 if (err) 1081 goto failed_checkpoint; 1082 } 1083 1084 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root); 1085 if (err) 1086 goto failed_segctor; 1087 1088 nilfs_put_root(fsroot); 1089 1090 if (!(sb->s_flags & MS_RDONLY)) { 1091 down_write(&nilfs->ns_sem); 1092 nilfs_setup_super(sb, true); 1093 up_write(&nilfs->ns_sem); 1094 } 1095 1096 return 0; 1097 1098 failed_segctor: 1099 nilfs_detach_log_writer(sb); 1100 1101 failed_checkpoint: 1102 nilfs_put_root(fsroot); 1103 1104 failed_unload: 1105 iput(nilfs->ns_sufile); 1106 iput(nilfs->ns_cpfile); 1107 iput(nilfs->ns_dat); 1108 1109 failed_nilfs: 1110 destroy_nilfs(nilfs); 1111 return err; 1112 } 1113 1114 static int nilfs_remount(struct super_block *sb, int *flags, char *data) 1115 { 1116 struct the_nilfs *nilfs = sb->s_fs_info; 1117 unsigned long old_sb_flags; 1118 unsigned long old_mount_opt; 1119 int err; 1120 1121 old_sb_flags = sb->s_flags; 1122 old_mount_opt = nilfs->ns_mount_opt; 1123 1124 if (!parse_options(data, sb, 1)) { 1125 err = -EINVAL; 1126 goto restore_opts; 1127 } 1128 sb->s_flags = (sb->s_flags & ~MS_POSIXACL); 1129 1130 err = -EINVAL; 1131 1132 if (!nilfs_valid_fs(nilfs)) { 1133 printk(KERN_WARNING "NILFS (device %s): couldn't " 1134 "remount because the filesystem is in an " 1135 "incomplete recovery state.\n", sb->s_id); 1136 goto restore_opts; 1137 } 1138 1139 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1140 goto out; 1141 if (*flags & MS_RDONLY) { 1142 /* Shutting down log writer */ 1143 nilfs_detach_log_writer(sb); 1144 sb->s_flags |= MS_RDONLY; 1145 1146 /* 1147 * Remounting a valid RW partition RDONLY, so set 1148 * the RDONLY flag and then mark the partition as valid again. 1149 */ 1150 down_write(&nilfs->ns_sem); 1151 nilfs_cleanup_super(sb); 1152 up_write(&nilfs->ns_sem); 1153 } else { 1154 __u64 features; 1155 struct nilfs_root *root; 1156 1157 /* 1158 * Mounting a RDONLY partition read-write, so reread and 1159 * store the current valid flag. (It may have been changed 1160 * by fsck since we originally mounted the partition.) 1161 */ 1162 down_read(&nilfs->ns_sem); 1163 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) & 1164 ~NILFS_FEATURE_COMPAT_RO_SUPP; 1165 up_read(&nilfs->ns_sem); 1166 if (features) { 1167 printk(KERN_WARNING "NILFS (device %s): couldn't " 1168 "remount RDWR because of unsupported optional " 1169 "features (%llx)\n", 1170 sb->s_id, (unsigned long long)features); 1171 err = -EROFS; 1172 goto restore_opts; 1173 } 1174 1175 sb->s_flags &= ~MS_RDONLY; 1176 1177 root = NILFS_I(sb->s_root->d_inode)->i_root; 1178 err = nilfs_attach_log_writer(sb, root); 1179 if (err) 1180 goto restore_opts; 1181 1182 down_write(&nilfs->ns_sem); 1183 nilfs_setup_super(sb, true); 1184 up_write(&nilfs->ns_sem); 1185 } 1186 out: 1187 return 0; 1188 1189 restore_opts: 1190 sb->s_flags = old_sb_flags; 1191 nilfs->ns_mount_opt = old_mount_opt; 1192 return err; 1193 } 1194 1195 struct nilfs_super_data { 1196 struct block_device *bdev; 1197 __u64 cno; 1198 int flags; 1199 }; 1200 1201 /** 1202 * nilfs_identify - pre-read mount options needed to identify mount instance 1203 * @data: mount options 1204 * @sd: nilfs_super_data 1205 */ 1206 static int nilfs_identify(char *data, struct nilfs_super_data *sd) 1207 { 1208 char *p, *options = data; 1209 substring_t args[MAX_OPT_ARGS]; 1210 int token; 1211 int ret = 0; 1212 1213 do { 1214 p = strsep(&options, ","); 1215 if (p != NULL && *p) { 1216 token = match_token(p, tokens, args); 1217 if (token == Opt_snapshot) { 1218 if (!(sd->flags & MS_RDONLY)) { 1219 ret++; 1220 } else { 1221 sd->cno = simple_strtoull(args[0].from, 1222 NULL, 0); 1223 /* 1224 * No need to see the end pointer; 1225 * match_token() has done syntax 1226 * checking. 1227 */ 1228 if (sd->cno == 0) 1229 ret++; 1230 } 1231 } 1232 if (ret) 1233 printk(KERN_ERR 1234 "NILFS: invalid mount option: %s\n", p); 1235 } 1236 if (!options) 1237 break; 1238 BUG_ON(options == data); 1239 *(options - 1) = ','; 1240 } while (!ret); 1241 return ret; 1242 } 1243 1244 static int nilfs_set_bdev_super(struct super_block *s, void *data) 1245 { 1246 s->s_bdev = data; 1247 s->s_dev = s->s_bdev->bd_dev; 1248 return 0; 1249 } 1250 1251 static int nilfs_test_bdev_super(struct super_block *s, void *data) 1252 { 1253 return (void *)s->s_bdev == data; 1254 } 1255 1256 static struct dentry * 1257 nilfs_mount(struct file_system_type *fs_type, int flags, 1258 const char *dev_name, void *data) 1259 { 1260 struct nilfs_super_data sd; 1261 struct super_block *s; 1262 fmode_t mode = FMODE_READ | FMODE_EXCL; 1263 struct dentry *root_dentry; 1264 int err, s_new = false; 1265 1266 if (!(flags & MS_RDONLY)) 1267 mode |= FMODE_WRITE; 1268 1269 sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1270 if (IS_ERR(sd.bdev)) 1271 return ERR_CAST(sd.bdev); 1272 1273 sd.cno = 0; 1274 sd.flags = flags; 1275 if (nilfs_identify((char *)data, &sd)) { 1276 err = -EINVAL; 1277 goto failed; 1278 } 1279 1280 /* 1281 * once the super is inserted into the list by sget, s_umount 1282 * will protect the lockfs code from trying to start a snapshot 1283 * while we are mounting 1284 */ 1285 mutex_lock(&sd.bdev->bd_fsfreeze_mutex); 1286 if (sd.bdev->bd_fsfreeze_count > 0) { 1287 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex); 1288 err = -EBUSY; 1289 goto failed; 1290 } 1291 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, sd.bdev); 1292 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex); 1293 if (IS_ERR(s)) { 1294 err = PTR_ERR(s); 1295 goto failed; 1296 } 1297 1298 if (!s->s_root) { 1299 char b[BDEVNAME_SIZE]; 1300 1301 s_new = true; 1302 1303 /* New superblock instance created */ 1304 s->s_flags = flags; 1305 s->s_mode = mode; 1306 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id)); 1307 sb_set_blocksize(s, block_size(sd.bdev)); 1308 1309 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1310 if (err) 1311 goto failed_super; 1312 1313 s->s_flags |= MS_ACTIVE; 1314 } else if (!sd.cno) { 1315 int busy = false; 1316 1317 if (nilfs_tree_was_touched(s->s_root)) { 1318 busy = nilfs_try_to_shrink_tree(s->s_root); 1319 if (busy && (flags ^ s->s_flags) & MS_RDONLY) { 1320 printk(KERN_ERR "NILFS: the device already " 1321 "has a %s mount.\n", 1322 (s->s_flags & MS_RDONLY) ? 1323 "read-only" : "read/write"); 1324 err = -EBUSY; 1325 goto failed_super; 1326 } 1327 } 1328 if (!busy) { 1329 /* 1330 * Try remount to setup mount states if the current 1331 * tree is not mounted and only snapshots use this sb. 1332 */ 1333 err = nilfs_remount(s, &flags, data); 1334 if (err) 1335 goto failed_super; 1336 } 1337 } 1338 1339 if (sd.cno) { 1340 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry); 1341 if (err) 1342 goto failed_super; 1343 } else { 1344 root_dentry = dget(s->s_root); 1345 } 1346 1347 if (!s_new) 1348 blkdev_put(sd.bdev, mode); 1349 1350 return root_dentry; 1351 1352 failed_super: 1353 deactivate_locked_super(s); 1354 1355 failed: 1356 if (!s_new) 1357 blkdev_put(sd.bdev, mode); 1358 return ERR_PTR(err); 1359 } 1360 1361 struct file_system_type nilfs_fs_type = { 1362 .owner = THIS_MODULE, 1363 .name = "nilfs2", 1364 .mount = nilfs_mount, 1365 .kill_sb = kill_block_super, 1366 .fs_flags = FS_REQUIRES_DEV, 1367 }; 1368 1369 static void nilfs_inode_init_once(void *obj) 1370 { 1371 struct nilfs_inode_info *ii = obj; 1372 1373 INIT_LIST_HEAD(&ii->i_dirty); 1374 #ifdef CONFIG_NILFS_XATTR 1375 init_rwsem(&ii->xattr_sem); 1376 #endif 1377 address_space_init_once(&ii->i_btnode_cache); 1378 ii->i_bmap = &ii->i_bmap_data; 1379 inode_init_once(&ii->vfs_inode); 1380 } 1381 1382 static void nilfs_segbuf_init_once(void *obj) 1383 { 1384 memset(obj, 0, sizeof(struct nilfs_segment_buffer)); 1385 } 1386 1387 static void nilfs_destroy_cachep(void) 1388 { 1389 if (nilfs_inode_cachep) 1390 kmem_cache_destroy(nilfs_inode_cachep); 1391 if (nilfs_transaction_cachep) 1392 kmem_cache_destroy(nilfs_transaction_cachep); 1393 if (nilfs_segbuf_cachep) 1394 kmem_cache_destroy(nilfs_segbuf_cachep); 1395 if (nilfs_btree_path_cache) 1396 kmem_cache_destroy(nilfs_btree_path_cache); 1397 } 1398 1399 static int __init nilfs_init_cachep(void) 1400 { 1401 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache", 1402 sizeof(struct nilfs_inode_info), 0, 1403 SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once); 1404 if (!nilfs_inode_cachep) 1405 goto fail; 1406 1407 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache", 1408 sizeof(struct nilfs_transaction_info), 0, 1409 SLAB_RECLAIM_ACCOUNT, NULL); 1410 if (!nilfs_transaction_cachep) 1411 goto fail; 1412 1413 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache", 1414 sizeof(struct nilfs_segment_buffer), 0, 1415 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once); 1416 if (!nilfs_segbuf_cachep) 1417 goto fail; 1418 1419 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache", 1420 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX, 1421 0, 0, NULL); 1422 if (!nilfs_btree_path_cache) 1423 goto fail; 1424 1425 return 0; 1426 1427 fail: 1428 nilfs_destroy_cachep(); 1429 return -ENOMEM; 1430 } 1431 1432 static int __init init_nilfs_fs(void) 1433 { 1434 int err; 1435 1436 err = nilfs_init_cachep(); 1437 if (err) 1438 goto fail; 1439 1440 err = register_filesystem(&nilfs_fs_type); 1441 if (err) 1442 goto free_cachep; 1443 1444 printk(KERN_INFO "NILFS version 2 loaded\n"); 1445 return 0; 1446 1447 free_cachep: 1448 nilfs_destroy_cachep(); 1449 fail: 1450 return err; 1451 } 1452 1453 static void __exit exit_nilfs_fs(void) 1454 { 1455 nilfs_destroy_cachep(); 1456 unregister_filesystem(&nilfs_fs_type); 1457 } 1458 1459 module_init(init_nilfs_fs) 1460 module_exit(exit_nilfs_fs) 1461