xref: /openbmc/linux/fs/nilfs2/super.c (revision 901181b7)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * NILFS module and super block management.
4  *
5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6  *
7  * Written by Ryusuke Konishi.
8  */
9 /*
10  *  linux/fs/ext2/super.c
11  *
12  * Copyright (C) 1992, 1993, 1994, 1995
13  * Remy Card (card@masi.ibp.fr)
14  * Laboratoire MASI - Institut Blaise Pascal
15  * Universite Pierre et Marie Curie (Paris VI)
16  *
17  *  from
18  *
19  *  linux/fs/minix/inode.c
20  *
21  *  Copyright (C) 1991, 1992  Linus Torvalds
22  *
23  *  Big-endian to little-endian byte-swapping/bitmaps by
24  *        David S. Miller (davem@caip.rutgers.edu), 1995
25  */
26 
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/blkdev.h>
32 #include <linux/parser.h>
33 #include <linux/crc32.h>
34 #include <linux/vfs.h>
35 #include <linux/writeback.h>
36 #include <linux/seq_file.h>
37 #include <linux/mount.h>
38 #include "nilfs.h"
39 #include "export.h"
40 #include "mdt.h"
41 #include "alloc.h"
42 #include "btree.h"
43 #include "btnode.h"
44 #include "page.h"
45 #include "cpfile.h"
46 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
47 #include "ifile.h"
48 #include "dat.h"
49 #include "segment.h"
50 #include "segbuf.h"
51 
52 MODULE_AUTHOR("NTT Corp.");
53 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
54 		   "(NILFS)");
55 MODULE_LICENSE("GPL");
56 
57 static struct kmem_cache *nilfs_inode_cachep;
58 struct kmem_cache *nilfs_transaction_cachep;
59 struct kmem_cache *nilfs_segbuf_cachep;
60 struct kmem_cache *nilfs_btree_path_cache;
61 
62 static int nilfs_setup_super(struct super_block *sb, int is_mount);
63 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
64 
65 void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
66 {
67 	struct va_format vaf;
68 	va_list args;
69 	int level;
70 
71 	va_start(args, fmt);
72 
73 	level = printk_get_level(fmt);
74 	vaf.fmt = printk_skip_level(fmt);
75 	vaf.va = &args;
76 
77 	if (sb)
78 		printk("%c%cNILFS (%s): %pV\n",
79 		       KERN_SOH_ASCII, level, sb->s_id, &vaf);
80 	else
81 		printk("%c%cNILFS: %pV\n",
82 		       KERN_SOH_ASCII, level, &vaf);
83 
84 	va_end(args);
85 }
86 
87 static void nilfs_set_error(struct super_block *sb)
88 {
89 	struct the_nilfs *nilfs = sb->s_fs_info;
90 	struct nilfs_super_block **sbp;
91 
92 	down_write(&nilfs->ns_sem);
93 	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
94 		nilfs->ns_mount_state |= NILFS_ERROR_FS;
95 		sbp = nilfs_prepare_super(sb, 0);
96 		if (likely(sbp)) {
97 			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
98 			if (sbp[1])
99 				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
100 			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
101 		}
102 	}
103 	up_write(&nilfs->ns_sem);
104 }
105 
106 /**
107  * __nilfs_error() - report failure condition on a filesystem
108  *
109  * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
110  * reporting an error message.  This function should be called when
111  * NILFS detects incoherences or defects of meta data on disk.
112  *
113  * This implements the body of nilfs_error() macro.  Normally,
114  * nilfs_error() should be used.  As for sustainable errors such as a
115  * single-shot I/O error, nilfs_err() should be used instead.
116  *
117  * Callers should not add a trailing newline since this will do it.
118  */
119 void __nilfs_error(struct super_block *sb, const char *function,
120 		   const char *fmt, ...)
121 {
122 	struct the_nilfs *nilfs = sb->s_fs_info;
123 	struct va_format vaf;
124 	va_list args;
125 
126 	va_start(args, fmt);
127 
128 	vaf.fmt = fmt;
129 	vaf.va = &args;
130 
131 	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
132 	       sb->s_id, function, &vaf);
133 
134 	va_end(args);
135 
136 	if (!sb_rdonly(sb)) {
137 		nilfs_set_error(sb);
138 
139 		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
140 			printk(KERN_CRIT "Remounting filesystem read-only\n");
141 			sb->s_flags |= SB_RDONLY;
142 		}
143 	}
144 
145 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
146 		panic("NILFS (device %s): panic forced after error\n",
147 		      sb->s_id);
148 }
149 
150 struct inode *nilfs_alloc_inode(struct super_block *sb)
151 {
152 	struct nilfs_inode_info *ii;
153 
154 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
155 	if (!ii)
156 		return NULL;
157 	ii->i_bh = NULL;
158 	ii->i_state = 0;
159 	ii->i_cno = 0;
160 	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
161 	return &ii->vfs_inode;
162 }
163 
164 static void nilfs_free_inode(struct inode *inode)
165 {
166 	if (nilfs_is_metadata_file_inode(inode))
167 		nilfs_mdt_destroy(inode);
168 
169 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
170 }
171 
172 static int nilfs_sync_super(struct super_block *sb, int flag)
173 {
174 	struct the_nilfs *nilfs = sb->s_fs_info;
175 	int err;
176 
177  retry:
178 	set_buffer_dirty(nilfs->ns_sbh[0]);
179 	if (nilfs_test_opt(nilfs, BARRIER)) {
180 		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
181 					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
182 	} else {
183 		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
184 	}
185 
186 	if (unlikely(err)) {
187 		nilfs_err(sb, "unable to write superblock: err=%d", err);
188 		if (err == -EIO && nilfs->ns_sbh[1]) {
189 			/*
190 			 * sbp[0] points to newer log than sbp[1],
191 			 * so copy sbp[0] to sbp[1] to take over sbp[0].
192 			 */
193 			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
194 			       nilfs->ns_sbsize);
195 			nilfs_fall_back_super_block(nilfs);
196 			goto retry;
197 		}
198 	} else {
199 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
200 
201 		nilfs->ns_sbwcount++;
202 
203 		/*
204 		 * The latest segment becomes trailable from the position
205 		 * written in superblock.
206 		 */
207 		clear_nilfs_discontinued(nilfs);
208 
209 		/* update GC protection for recent segments */
210 		if (nilfs->ns_sbh[1]) {
211 			if (flag == NILFS_SB_COMMIT_ALL) {
212 				set_buffer_dirty(nilfs->ns_sbh[1]);
213 				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
214 					goto out;
215 			}
216 			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
217 			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
218 				sbp = nilfs->ns_sbp[1];
219 		}
220 
221 		spin_lock(&nilfs->ns_last_segment_lock);
222 		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
223 		spin_unlock(&nilfs->ns_last_segment_lock);
224 	}
225  out:
226 	return err;
227 }
228 
229 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
230 			  struct the_nilfs *nilfs)
231 {
232 	sector_t nfreeblocks;
233 
234 	/* nilfs->ns_sem must be locked by the caller. */
235 	nilfs_count_free_blocks(nilfs, &nfreeblocks);
236 	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
237 
238 	spin_lock(&nilfs->ns_last_segment_lock);
239 	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
240 	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
241 	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
242 	spin_unlock(&nilfs->ns_last_segment_lock);
243 }
244 
245 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
246 					       int flip)
247 {
248 	struct the_nilfs *nilfs = sb->s_fs_info;
249 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
250 
251 	/* nilfs->ns_sem must be locked by the caller. */
252 	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
253 		if (sbp[1] &&
254 		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
255 			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
256 		} else {
257 			nilfs_crit(sb, "superblock broke");
258 			return NULL;
259 		}
260 	} else if (sbp[1] &&
261 		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
262 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
263 	}
264 
265 	if (flip && sbp[1])
266 		nilfs_swap_super_block(nilfs);
267 
268 	return sbp;
269 }
270 
271 int nilfs_commit_super(struct super_block *sb, int flag)
272 {
273 	struct the_nilfs *nilfs = sb->s_fs_info;
274 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
275 	time64_t t;
276 
277 	/* nilfs->ns_sem must be locked by the caller. */
278 	t = ktime_get_real_seconds();
279 	nilfs->ns_sbwtime = t;
280 	sbp[0]->s_wtime = cpu_to_le64(t);
281 	sbp[0]->s_sum = 0;
282 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
283 					     (unsigned char *)sbp[0],
284 					     nilfs->ns_sbsize));
285 	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
286 		sbp[1]->s_wtime = sbp[0]->s_wtime;
287 		sbp[1]->s_sum = 0;
288 		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
289 					    (unsigned char *)sbp[1],
290 					    nilfs->ns_sbsize));
291 	}
292 	clear_nilfs_sb_dirty(nilfs);
293 	nilfs->ns_flushed_device = 1;
294 	/* make sure store to ns_flushed_device cannot be reordered */
295 	smp_wmb();
296 	return nilfs_sync_super(sb, flag);
297 }
298 
299 /**
300  * nilfs_cleanup_super() - write filesystem state for cleanup
301  * @sb: super block instance to be unmounted or degraded to read-only
302  *
303  * This function restores state flags in the on-disk super block.
304  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
305  * filesystem was not clean previously.
306  */
307 int nilfs_cleanup_super(struct super_block *sb)
308 {
309 	struct the_nilfs *nilfs = sb->s_fs_info;
310 	struct nilfs_super_block **sbp;
311 	int flag = NILFS_SB_COMMIT;
312 	int ret = -EIO;
313 
314 	sbp = nilfs_prepare_super(sb, 0);
315 	if (sbp) {
316 		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
317 		nilfs_set_log_cursor(sbp[0], nilfs);
318 		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
319 			/*
320 			 * make the "clean" flag also to the opposite
321 			 * super block if both super blocks point to
322 			 * the same checkpoint.
323 			 */
324 			sbp[1]->s_state = sbp[0]->s_state;
325 			flag = NILFS_SB_COMMIT_ALL;
326 		}
327 		ret = nilfs_commit_super(sb, flag);
328 	}
329 	return ret;
330 }
331 
332 /**
333  * nilfs_move_2nd_super - relocate secondary super block
334  * @sb: super block instance
335  * @sb2off: new offset of the secondary super block (in bytes)
336  */
337 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
338 {
339 	struct the_nilfs *nilfs = sb->s_fs_info;
340 	struct buffer_head *nsbh;
341 	struct nilfs_super_block *nsbp;
342 	sector_t blocknr, newblocknr;
343 	unsigned long offset;
344 	int sb2i;  /* array index of the secondary superblock */
345 	int ret = 0;
346 
347 	/* nilfs->ns_sem must be locked by the caller. */
348 	if (nilfs->ns_sbh[1] &&
349 	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
350 		sb2i = 1;
351 		blocknr = nilfs->ns_sbh[1]->b_blocknr;
352 	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
353 		sb2i = 0;
354 		blocknr = nilfs->ns_sbh[0]->b_blocknr;
355 	} else {
356 		sb2i = -1;
357 		blocknr = 0;
358 	}
359 	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
360 		goto out;  /* super block location is unchanged */
361 
362 	/* Get new super block buffer */
363 	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
364 	offset = sb2off & (nilfs->ns_blocksize - 1);
365 	nsbh = sb_getblk(sb, newblocknr);
366 	if (!nsbh) {
367 		nilfs_warn(sb,
368 			   "unable to move secondary superblock to block %llu",
369 			   (unsigned long long)newblocknr);
370 		ret = -EIO;
371 		goto out;
372 	}
373 	nsbp = (void *)nsbh->b_data + offset;
374 	memset(nsbp, 0, nilfs->ns_blocksize);
375 
376 	if (sb2i >= 0) {
377 		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
378 		brelse(nilfs->ns_sbh[sb2i]);
379 		nilfs->ns_sbh[sb2i] = nsbh;
380 		nilfs->ns_sbp[sb2i] = nsbp;
381 	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
382 		/* secondary super block will be restored to index 1 */
383 		nilfs->ns_sbh[1] = nsbh;
384 		nilfs->ns_sbp[1] = nsbp;
385 	} else {
386 		brelse(nsbh);
387 	}
388 out:
389 	return ret;
390 }
391 
392 /**
393  * nilfs_resize_fs - resize the filesystem
394  * @sb: super block instance
395  * @newsize: new size of the filesystem (in bytes)
396  */
397 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
398 {
399 	struct the_nilfs *nilfs = sb->s_fs_info;
400 	struct nilfs_super_block **sbp;
401 	__u64 devsize, newnsegs;
402 	loff_t sb2off;
403 	int ret;
404 
405 	ret = -ERANGE;
406 	devsize = bdev_nr_bytes(sb->s_bdev);
407 	if (newsize > devsize)
408 		goto out;
409 
410 	/*
411 	 * Write lock is required to protect some functions depending
412 	 * on the number of segments, the number of reserved segments,
413 	 * and so forth.
414 	 */
415 	down_write(&nilfs->ns_segctor_sem);
416 
417 	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
418 	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
419 	do_div(newnsegs, nilfs->ns_blocks_per_segment);
420 
421 	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
422 	up_write(&nilfs->ns_segctor_sem);
423 	if (ret < 0)
424 		goto out;
425 
426 	ret = nilfs_construct_segment(sb);
427 	if (ret < 0)
428 		goto out;
429 
430 	down_write(&nilfs->ns_sem);
431 	nilfs_move_2nd_super(sb, sb2off);
432 	ret = -EIO;
433 	sbp = nilfs_prepare_super(sb, 0);
434 	if (likely(sbp)) {
435 		nilfs_set_log_cursor(sbp[0], nilfs);
436 		/*
437 		 * Drop NILFS_RESIZE_FS flag for compatibility with
438 		 * mount-time resize which may be implemented in a
439 		 * future release.
440 		 */
441 		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
442 					      ~NILFS_RESIZE_FS);
443 		sbp[0]->s_dev_size = cpu_to_le64(newsize);
444 		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
445 		if (sbp[1])
446 			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
447 		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
448 	}
449 	up_write(&nilfs->ns_sem);
450 
451 	/*
452 	 * Reset the range of allocatable segments last.  This order
453 	 * is important in the case of expansion because the secondary
454 	 * superblock must be protected from log write until migration
455 	 * completes.
456 	 */
457 	if (!ret)
458 		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
459 out:
460 	return ret;
461 }
462 
463 static void nilfs_put_super(struct super_block *sb)
464 {
465 	struct the_nilfs *nilfs = sb->s_fs_info;
466 
467 	nilfs_detach_log_writer(sb);
468 
469 	if (!sb_rdonly(sb)) {
470 		down_write(&nilfs->ns_sem);
471 		nilfs_cleanup_super(sb);
472 		up_write(&nilfs->ns_sem);
473 	}
474 
475 	iput(nilfs->ns_sufile);
476 	iput(nilfs->ns_cpfile);
477 	iput(nilfs->ns_dat);
478 
479 	destroy_nilfs(nilfs);
480 	sb->s_fs_info = NULL;
481 }
482 
483 static int nilfs_sync_fs(struct super_block *sb, int wait)
484 {
485 	struct the_nilfs *nilfs = sb->s_fs_info;
486 	struct nilfs_super_block **sbp;
487 	int err = 0;
488 
489 	/* This function is called when super block should be written back */
490 	if (wait)
491 		err = nilfs_construct_segment(sb);
492 
493 	down_write(&nilfs->ns_sem);
494 	if (nilfs_sb_dirty(nilfs)) {
495 		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
496 		if (likely(sbp)) {
497 			nilfs_set_log_cursor(sbp[0], nilfs);
498 			nilfs_commit_super(sb, NILFS_SB_COMMIT);
499 		}
500 	}
501 	up_write(&nilfs->ns_sem);
502 
503 	if (!err)
504 		err = nilfs_flush_device(nilfs);
505 
506 	return err;
507 }
508 
509 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
510 			    struct nilfs_root **rootp)
511 {
512 	struct the_nilfs *nilfs = sb->s_fs_info;
513 	struct nilfs_root *root;
514 	struct nilfs_checkpoint *raw_cp;
515 	struct buffer_head *bh_cp;
516 	int err = -ENOMEM;
517 
518 	root = nilfs_find_or_create_root(
519 		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
520 	if (!root)
521 		return err;
522 
523 	if (root->ifile)
524 		goto reuse; /* already attached checkpoint */
525 
526 	down_read(&nilfs->ns_segctor_sem);
527 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
528 					  &bh_cp);
529 	up_read(&nilfs->ns_segctor_sem);
530 	if (unlikely(err)) {
531 		if (err == -ENOENT || err == -EINVAL) {
532 			nilfs_err(sb,
533 				  "Invalid checkpoint (checkpoint number=%llu)",
534 				  (unsigned long long)cno);
535 			err = -EINVAL;
536 		}
537 		goto failed;
538 	}
539 
540 	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
541 			       &raw_cp->cp_ifile_inode, &root->ifile);
542 	if (err)
543 		goto failed_bh;
544 
545 	atomic64_set(&root->inodes_count,
546 			le64_to_cpu(raw_cp->cp_inodes_count));
547 	atomic64_set(&root->blocks_count,
548 			le64_to_cpu(raw_cp->cp_blocks_count));
549 
550 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
551 
552  reuse:
553 	*rootp = root;
554 	return 0;
555 
556  failed_bh:
557 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
558  failed:
559 	nilfs_put_root(root);
560 
561 	return err;
562 }
563 
564 static int nilfs_freeze(struct super_block *sb)
565 {
566 	struct the_nilfs *nilfs = sb->s_fs_info;
567 	int err;
568 
569 	if (sb_rdonly(sb))
570 		return 0;
571 
572 	/* Mark super block clean */
573 	down_write(&nilfs->ns_sem);
574 	err = nilfs_cleanup_super(sb);
575 	up_write(&nilfs->ns_sem);
576 	return err;
577 }
578 
579 static int nilfs_unfreeze(struct super_block *sb)
580 {
581 	struct the_nilfs *nilfs = sb->s_fs_info;
582 
583 	if (sb_rdonly(sb))
584 		return 0;
585 
586 	down_write(&nilfs->ns_sem);
587 	nilfs_setup_super(sb, false);
588 	up_write(&nilfs->ns_sem);
589 	return 0;
590 }
591 
592 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
593 {
594 	struct super_block *sb = dentry->d_sb;
595 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
596 	struct the_nilfs *nilfs = root->nilfs;
597 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
598 	unsigned long long blocks;
599 	unsigned long overhead;
600 	unsigned long nrsvblocks;
601 	sector_t nfreeblocks;
602 	u64 nmaxinodes, nfreeinodes;
603 	int err;
604 
605 	/*
606 	 * Compute all of the segment blocks
607 	 *
608 	 * The blocks before first segment and after last segment
609 	 * are excluded.
610 	 */
611 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
612 		- nilfs->ns_first_data_block;
613 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
614 
615 	/*
616 	 * Compute the overhead
617 	 *
618 	 * When distributing meta data blocks outside segment structure,
619 	 * We must count them as the overhead.
620 	 */
621 	overhead = 0;
622 
623 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
624 	if (unlikely(err))
625 		return err;
626 
627 	err = nilfs_ifile_count_free_inodes(root->ifile,
628 					    &nmaxinodes, &nfreeinodes);
629 	if (unlikely(err)) {
630 		nilfs_warn(sb, "failed to count free inodes: err=%d", err);
631 		if (err == -ERANGE) {
632 			/*
633 			 * If nilfs_palloc_count_max_entries() returns
634 			 * -ERANGE error code then we simply treat
635 			 * curent inodes count as maximum possible and
636 			 * zero as free inodes value.
637 			 */
638 			nmaxinodes = atomic64_read(&root->inodes_count);
639 			nfreeinodes = 0;
640 			err = 0;
641 		} else
642 			return err;
643 	}
644 
645 	buf->f_type = NILFS_SUPER_MAGIC;
646 	buf->f_bsize = sb->s_blocksize;
647 	buf->f_blocks = blocks - overhead;
648 	buf->f_bfree = nfreeblocks;
649 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
650 		(buf->f_bfree - nrsvblocks) : 0;
651 	buf->f_files = nmaxinodes;
652 	buf->f_ffree = nfreeinodes;
653 	buf->f_namelen = NILFS_NAME_LEN;
654 	buf->f_fsid = u64_to_fsid(id);
655 
656 	return 0;
657 }
658 
659 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
660 {
661 	struct super_block *sb = dentry->d_sb;
662 	struct the_nilfs *nilfs = sb->s_fs_info;
663 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
664 
665 	if (!nilfs_test_opt(nilfs, BARRIER))
666 		seq_puts(seq, ",nobarrier");
667 	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
668 		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
669 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
670 		seq_puts(seq, ",errors=panic");
671 	if (nilfs_test_opt(nilfs, ERRORS_CONT))
672 		seq_puts(seq, ",errors=continue");
673 	if (nilfs_test_opt(nilfs, STRICT_ORDER))
674 		seq_puts(seq, ",order=strict");
675 	if (nilfs_test_opt(nilfs, NORECOVERY))
676 		seq_puts(seq, ",norecovery");
677 	if (nilfs_test_opt(nilfs, DISCARD))
678 		seq_puts(seq, ",discard");
679 
680 	return 0;
681 }
682 
683 static const struct super_operations nilfs_sops = {
684 	.alloc_inode    = nilfs_alloc_inode,
685 	.free_inode     = nilfs_free_inode,
686 	.dirty_inode    = nilfs_dirty_inode,
687 	.evict_inode    = nilfs_evict_inode,
688 	.put_super      = nilfs_put_super,
689 	.sync_fs        = nilfs_sync_fs,
690 	.freeze_fs	= nilfs_freeze,
691 	.unfreeze_fs	= nilfs_unfreeze,
692 	.statfs         = nilfs_statfs,
693 	.remount_fs     = nilfs_remount,
694 	.show_options = nilfs_show_options
695 };
696 
697 enum {
698 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
699 	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
700 	Opt_discard, Opt_nodiscard, Opt_err,
701 };
702 
703 static match_table_t tokens = {
704 	{Opt_err_cont, "errors=continue"},
705 	{Opt_err_panic, "errors=panic"},
706 	{Opt_err_ro, "errors=remount-ro"},
707 	{Opt_barrier, "barrier"},
708 	{Opt_nobarrier, "nobarrier"},
709 	{Opt_snapshot, "cp=%u"},
710 	{Opt_order, "order=%s"},
711 	{Opt_norecovery, "norecovery"},
712 	{Opt_discard, "discard"},
713 	{Opt_nodiscard, "nodiscard"},
714 	{Opt_err, NULL}
715 };
716 
717 static int parse_options(char *options, struct super_block *sb, int is_remount)
718 {
719 	struct the_nilfs *nilfs = sb->s_fs_info;
720 	char *p;
721 	substring_t args[MAX_OPT_ARGS];
722 
723 	if (!options)
724 		return 1;
725 
726 	while ((p = strsep(&options, ",")) != NULL) {
727 		int token;
728 
729 		if (!*p)
730 			continue;
731 
732 		token = match_token(p, tokens, args);
733 		switch (token) {
734 		case Opt_barrier:
735 			nilfs_set_opt(nilfs, BARRIER);
736 			break;
737 		case Opt_nobarrier:
738 			nilfs_clear_opt(nilfs, BARRIER);
739 			break;
740 		case Opt_order:
741 			if (strcmp(args[0].from, "relaxed") == 0)
742 				/* Ordered data semantics */
743 				nilfs_clear_opt(nilfs, STRICT_ORDER);
744 			else if (strcmp(args[0].from, "strict") == 0)
745 				/* Strict in-order semantics */
746 				nilfs_set_opt(nilfs, STRICT_ORDER);
747 			else
748 				return 0;
749 			break;
750 		case Opt_err_panic:
751 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
752 			break;
753 		case Opt_err_ro:
754 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
755 			break;
756 		case Opt_err_cont:
757 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
758 			break;
759 		case Opt_snapshot:
760 			if (is_remount) {
761 				nilfs_err(sb,
762 					  "\"%s\" option is invalid for remount",
763 					  p);
764 				return 0;
765 			}
766 			break;
767 		case Opt_norecovery:
768 			nilfs_set_opt(nilfs, NORECOVERY);
769 			break;
770 		case Opt_discard:
771 			nilfs_set_opt(nilfs, DISCARD);
772 			break;
773 		case Opt_nodiscard:
774 			nilfs_clear_opt(nilfs, DISCARD);
775 			break;
776 		default:
777 			nilfs_err(sb, "unrecognized mount option \"%s\"", p);
778 			return 0;
779 		}
780 	}
781 	return 1;
782 }
783 
784 static inline void
785 nilfs_set_default_options(struct super_block *sb,
786 			  struct nilfs_super_block *sbp)
787 {
788 	struct the_nilfs *nilfs = sb->s_fs_info;
789 
790 	nilfs->ns_mount_opt =
791 		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
792 }
793 
794 static int nilfs_setup_super(struct super_block *sb, int is_mount)
795 {
796 	struct the_nilfs *nilfs = sb->s_fs_info;
797 	struct nilfs_super_block **sbp;
798 	int max_mnt_count;
799 	int mnt_count;
800 
801 	/* nilfs->ns_sem must be locked by the caller. */
802 	sbp = nilfs_prepare_super(sb, 0);
803 	if (!sbp)
804 		return -EIO;
805 
806 	if (!is_mount)
807 		goto skip_mount_setup;
808 
809 	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
810 	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
811 
812 	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
813 		nilfs_warn(sb, "mounting fs with errors");
814 #if 0
815 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
816 		nilfs_warn(sb, "maximal mount count reached");
817 #endif
818 	}
819 	if (!max_mnt_count)
820 		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
821 
822 	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
823 	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
824 
825 skip_mount_setup:
826 	sbp[0]->s_state =
827 		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
828 	/* synchronize sbp[1] with sbp[0] */
829 	if (sbp[1])
830 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
831 	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
832 }
833 
834 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
835 						 u64 pos, int blocksize,
836 						 struct buffer_head **pbh)
837 {
838 	unsigned long long sb_index = pos;
839 	unsigned long offset;
840 
841 	offset = do_div(sb_index, blocksize);
842 	*pbh = sb_bread(sb, sb_index);
843 	if (!*pbh)
844 		return NULL;
845 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
846 }
847 
848 int nilfs_store_magic_and_option(struct super_block *sb,
849 				 struct nilfs_super_block *sbp,
850 				 char *data)
851 {
852 	struct the_nilfs *nilfs = sb->s_fs_info;
853 
854 	sb->s_magic = le16_to_cpu(sbp->s_magic);
855 
856 	/* FS independent flags */
857 #ifdef NILFS_ATIME_DISABLE
858 	sb->s_flags |= SB_NOATIME;
859 #endif
860 
861 	nilfs_set_default_options(sb, sbp);
862 
863 	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
864 	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
865 	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
866 	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
867 
868 	return !parse_options(data, sb, 0) ? -EINVAL : 0;
869 }
870 
871 int nilfs_check_feature_compatibility(struct super_block *sb,
872 				      struct nilfs_super_block *sbp)
873 {
874 	__u64 features;
875 
876 	features = le64_to_cpu(sbp->s_feature_incompat) &
877 		~NILFS_FEATURE_INCOMPAT_SUPP;
878 	if (features) {
879 		nilfs_err(sb,
880 			  "couldn't mount because of unsupported optional features (%llx)",
881 			  (unsigned long long)features);
882 		return -EINVAL;
883 	}
884 	features = le64_to_cpu(sbp->s_feature_compat_ro) &
885 		~NILFS_FEATURE_COMPAT_RO_SUPP;
886 	if (!sb_rdonly(sb) && features) {
887 		nilfs_err(sb,
888 			  "couldn't mount RDWR because of unsupported optional features (%llx)",
889 			  (unsigned long long)features);
890 		return -EINVAL;
891 	}
892 	return 0;
893 }
894 
895 static int nilfs_get_root_dentry(struct super_block *sb,
896 				 struct nilfs_root *root,
897 				 struct dentry **root_dentry)
898 {
899 	struct inode *inode;
900 	struct dentry *dentry;
901 	int ret = 0;
902 
903 	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
904 	if (IS_ERR(inode)) {
905 		ret = PTR_ERR(inode);
906 		nilfs_err(sb, "error %d getting root inode", ret);
907 		goto out;
908 	}
909 	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
910 		iput(inode);
911 		nilfs_err(sb, "corrupt root inode");
912 		ret = -EINVAL;
913 		goto out;
914 	}
915 
916 	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
917 		dentry = d_find_alias(inode);
918 		if (!dentry) {
919 			dentry = d_make_root(inode);
920 			if (!dentry) {
921 				ret = -ENOMEM;
922 				goto failed_dentry;
923 			}
924 		} else {
925 			iput(inode);
926 		}
927 	} else {
928 		dentry = d_obtain_root(inode);
929 		if (IS_ERR(dentry)) {
930 			ret = PTR_ERR(dentry);
931 			goto failed_dentry;
932 		}
933 	}
934 	*root_dentry = dentry;
935  out:
936 	return ret;
937 
938  failed_dentry:
939 	nilfs_err(sb, "error %d getting root dentry", ret);
940 	goto out;
941 }
942 
943 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
944 				 struct dentry **root_dentry)
945 {
946 	struct the_nilfs *nilfs = s->s_fs_info;
947 	struct nilfs_root *root;
948 	int ret;
949 
950 	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
951 
952 	down_read(&nilfs->ns_segctor_sem);
953 	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
954 	up_read(&nilfs->ns_segctor_sem);
955 	if (ret < 0) {
956 		ret = (ret == -ENOENT) ? -EINVAL : ret;
957 		goto out;
958 	} else if (!ret) {
959 		nilfs_err(s,
960 			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
961 			  (unsigned long long)cno);
962 		ret = -EINVAL;
963 		goto out;
964 	}
965 
966 	ret = nilfs_attach_checkpoint(s, cno, false, &root);
967 	if (ret) {
968 		nilfs_err(s,
969 			  "error %d while loading snapshot (checkpoint number=%llu)",
970 			  ret, (unsigned long long)cno);
971 		goto out;
972 	}
973 	ret = nilfs_get_root_dentry(s, root, root_dentry);
974 	nilfs_put_root(root);
975  out:
976 	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
977 	return ret;
978 }
979 
980 /**
981  * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
982  * @root_dentry: root dentry of the tree to be shrunk
983  *
984  * This function returns true if the tree was in-use.
985  */
986 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
987 {
988 	shrink_dcache_parent(root_dentry);
989 	return d_count(root_dentry) > 1;
990 }
991 
992 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
993 {
994 	struct the_nilfs *nilfs = sb->s_fs_info;
995 	struct nilfs_root *root;
996 	struct inode *inode;
997 	struct dentry *dentry;
998 	int ret;
999 
1000 	if (cno > nilfs->ns_cno)
1001 		return false;
1002 
1003 	if (cno >= nilfs_last_cno(nilfs))
1004 		return true;	/* protect recent checkpoints */
1005 
1006 	ret = false;
1007 	root = nilfs_lookup_root(nilfs, cno);
1008 	if (root) {
1009 		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1010 		if (inode) {
1011 			dentry = d_find_alias(inode);
1012 			if (dentry) {
1013 				ret = nilfs_tree_is_busy(dentry);
1014 				dput(dentry);
1015 			}
1016 			iput(inode);
1017 		}
1018 		nilfs_put_root(root);
1019 	}
1020 	return ret;
1021 }
1022 
1023 /**
1024  * nilfs_fill_super() - initialize a super block instance
1025  * @sb: super_block
1026  * @data: mount options
1027  * @silent: silent mode flag
1028  *
1029  * This function is called exclusively by nilfs->ns_mount_mutex.
1030  * So, the recovery process is protected from other simultaneous mounts.
1031  */
1032 static int
1033 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1034 {
1035 	struct the_nilfs *nilfs;
1036 	struct nilfs_root *fsroot;
1037 	__u64 cno;
1038 	int err;
1039 
1040 	nilfs = alloc_nilfs(sb);
1041 	if (!nilfs)
1042 		return -ENOMEM;
1043 
1044 	sb->s_fs_info = nilfs;
1045 
1046 	err = init_nilfs(nilfs, sb, (char *)data);
1047 	if (err)
1048 		goto failed_nilfs;
1049 
1050 	sb->s_op = &nilfs_sops;
1051 	sb->s_export_op = &nilfs_export_ops;
1052 	sb->s_root = NULL;
1053 	sb->s_time_gran = 1;
1054 	sb->s_max_links = NILFS_LINK_MAX;
1055 
1056 	sb->s_bdi = bdi_get(sb->s_bdev->bd_disk->bdi);
1057 
1058 	err = load_nilfs(nilfs, sb);
1059 	if (err)
1060 		goto failed_nilfs;
1061 
1062 	cno = nilfs_last_cno(nilfs);
1063 	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1064 	if (err) {
1065 		nilfs_err(sb,
1066 			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1067 			  err, (unsigned long long)cno);
1068 		goto failed_unload;
1069 	}
1070 
1071 	if (!sb_rdonly(sb)) {
1072 		err = nilfs_attach_log_writer(sb, fsroot);
1073 		if (err)
1074 			goto failed_checkpoint;
1075 	}
1076 
1077 	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1078 	if (err)
1079 		goto failed_segctor;
1080 
1081 	nilfs_put_root(fsroot);
1082 
1083 	if (!sb_rdonly(sb)) {
1084 		down_write(&nilfs->ns_sem);
1085 		nilfs_setup_super(sb, true);
1086 		up_write(&nilfs->ns_sem);
1087 	}
1088 
1089 	return 0;
1090 
1091  failed_segctor:
1092 	nilfs_detach_log_writer(sb);
1093 
1094  failed_checkpoint:
1095 	nilfs_put_root(fsroot);
1096 
1097  failed_unload:
1098 	iput(nilfs->ns_sufile);
1099 	iput(nilfs->ns_cpfile);
1100 	iput(nilfs->ns_dat);
1101 
1102  failed_nilfs:
1103 	destroy_nilfs(nilfs);
1104 	return err;
1105 }
1106 
1107 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1108 {
1109 	struct the_nilfs *nilfs = sb->s_fs_info;
1110 	unsigned long old_sb_flags;
1111 	unsigned long old_mount_opt;
1112 	int err;
1113 
1114 	sync_filesystem(sb);
1115 	old_sb_flags = sb->s_flags;
1116 	old_mount_opt = nilfs->ns_mount_opt;
1117 
1118 	if (!parse_options(data, sb, 1)) {
1119 		err = -EINVAL;
1120 		goto restore_opts;
1121 	}
1122 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1123 
1124 	err = -EINVAL;
1125 
1126 	if (!nilfs_valid_fs(nilfs)) {
1127 		nilfs_warn(sb,
1128 			   "couldn't remount because the filesystem is in an incomplete recovery state");
1129 		goto restore_opts;
1130 	}
1131 
1132 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1133 		goto out;
1134 	if (*flags & SB_RDONLY) {
1135 		/* Shutting down log writer */
1136 		nilfs_detach_log_writer(sb);
1137 		sb->s_flags |= SB_RDONLY;
1138 
1139 		/*
1140 		 * Remounting a valid RW partition RDONLY, so set
1141 		 * the RDONLY flag and then mark the partition as valid again.
1142 		 */
1143 		down_write(&nilfs->ns_sem);
1144 		nilfs_cleanup_super(sb);
1145 		up_write(&nilfs->ns_sem);
1146 	} else {
1147 		__u64 features;
1148 		struct nilfs_root *root;
1149 
1150 		/*
1151 		 * Mounting a RDONLY partition read-write, so reread and
1152 		 * store the current valid flag.  (It may have been changed
1153 		 * by fsck since we originally mounted the partition.)
1154 		 */
1155 		down_read(&nilfs->ns_sem);
1156 		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1157 			~NILFS_FEATURE_COMPAT_RO_SUPP;
1158 		up_read(&nilfs->ns_sem);
1159 		if (features) {
1160 			nilfs_warn(sb,
1161 				   "couldn't remount RDWR because of unsupported optional features (%llx)",
1162 				   (unsigned long long)features);
1163 			err = -EROFS;
1164 			goto restore_opts;
1165 		}
1166 
1167 		sb->s_flags &= ~SB_RDONLY;
1168 
1169 		root = NILFS_I(d_inode(sb->s_root))->i_root;
1170 		err = nilfs_attach_log_writer(sb, root);
1171 		if (err)
1172 			goto restore_opts;
1173 
1174 		down_write(&nilfs->ns_sem);
1175 		nilfs_setup_super(sb, true);
1176 		up_write(&nilfs->ns_sem);
1177 	}
1178  out:
1179 	return 0;
1180 
1181  restore_opts:
1182 	sb->s_flags = old_sb_flags;
1183 	nilfs->ns_mount_opt = old_mount_opt;
1184 	return err;
1185 }
1186 
1187 struct nilfs_super_data {
1188 	struct block_device *bdev;
1189 	__u64 cno;
1190 	int flags;
1191 };
1192 
1193 static int nilfs_parse_snapshot_option(const char *option,
1194 				       const substring_t *arg,
1195 				       struct nilfs_super_data *sd)
1196 {
1197 	unsigned long long val;
1198 	const char *msg = NULL;
1199 	int err;
1200 
1201 	if (!(sd->flags & SB_RDONLY)) {
1202 		msg = "read-only option is not specified";
1203 		goto parse_error;
1204 	}
1205 
1206 	err = kstrtoull(arg->from, 0, &val);
1207 	if (err) {
1208 		if (err == -ERANGE)
1209 			msg = "too large checkpoint number";
1210 		else
1211 			msg = "malformed argument";
1212 		goto parse_error;
1213 	} else if (val == 0) {
1214 		msg = "invalid checkpoint number 0";
1215 		goto parse_error;
1216 	}
1217 	sd->cno = val;
1218 	return 0;
1219 
1220 parse_error:
1221 	nilfs_err(NULL, "invalid option \"%s\": %s", option, msg);
1222 	return 1;
1223 }
1224 
1225 /**
1226  * nilfs_identify - pre-read mount options needed to identify mount instance
1227  * @data: mount options
1228  * @sd: nilfs_super_data
1229  */
1230 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1231 {
1232 	char *p, *options = data;
1233 	substring_t args[MAX_OPT_ARGS];
1234 	int token;
1235 	int ret = 0;
1236 
1237 	do {
1238 		p = strsep(&options, ",");
1239 		if (p != NULL && *p) {
1240 			token = match_token(p, tokens, args);
1241 			if (token == Opt_snapshot)
1242 				ret = nilfs_parse_snapshot_option(p, &args[0],
1243 								  sd);
1244 		}
1245 		if (!options)
1246 			break;
1247 		BUG_ON(options == data);
1248 		*(options - 1) = ',';
1249 	} while (!ret);
1250 	return ret;
1251 }
1252 
1253 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1254 {
1255 	s->s_bdev = data;
1256 	s->s_dev = s->s_bdev->bd_dev;
1257 	return 0;
1258 }
1259 
1260 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1261 {
1262 	return (void *)s->s_bdev == data;
1263 }
1264 
1265 static struct dentry *
1266 nilfs_mount(struct file_system_type *fs_type, int flags,
1267 	     const char *dev_name, void *data)
1268 {
1269 	struct nilfs_super_data sd;
1270 	struct super_block *s;
1271 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1272 	struct dentry *root_dentry;
1273 	int err, s_new = false;
1274 
1275 	if (!(flags & SB_RDONLY))
1276 		mode |= FMODE_WRITE;
1277 
1278 	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1279 	if (IS_ERR(sd.bdev))
1280 		return ERR_CAST(sd.bdev);
1281 
1282 	sd.cno = 0;
1283 	sd.flags = flags;
1284 	if (nilfs_identify((char *)data, &sd)) {
1285 		err = -EINVAL;
1286 		goto failed;
1287 	}
1288 
1289 	/*
1290 	 * once the super is inserted into the list by sget, s_umount
1291 	 * will protect the lockfs code from trying to start a snapshot
1292 	 * while we are mounting
1293 	 */
1294 	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1295 	if (sd.bdev->bd_fsfreeze_count > 0) {
1296 		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1297 		err = -EBUSY;
1298 		goto failed;
1299 	}
1300 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1301 		 sd.bdev);
1302 	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1303 	if (IS_ERR(s)) {
1304 		err = PTR_ERR(s);
1305 		goto failed;
1306 	}
1307 
1308 	if (!s->s_root) {
1309 		s_new = true;
1310 
1311 		/* New superblock instance created */
1312 		s->s_mode = mode;
1313 		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1314 		sb_set_blocksize(s, block_size(sd.bdev));
1315 
1316 		err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1317 		if (err)
1318 			goto failed_super;
1319 
1320 		s->s_flags |= SB_ACTIVE;
1321 	} else if (!sd.cno) {
1322 		if (nilfs_tree_is_busy(s->s_root)) {
1323 			if ((flags ^ s->s_flags) & SB_RDONLY) {
1324 				nilfs_err(s,
1325 					  "the device already has a %s mount.",
1326 					  sb_rdonly(s) ? "read-only" : "read/write");
1327 				err = -EBUSY;
1328 				goto failed_super;
1329 			}
1330 		} else {
1331 			/*
1332 			 * Try remount to setup mount states if the current
1333 			 * tree is not mounted and only snapshots use this sb.
1334 			 */
1335 			err = nilfs_remount(s, &flags, data);
1336 			if (err)
1337 				goto failed_super;
1338 		}
1339 	}
1340 
1341 	if (sd.cno) {
1342 		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1343 		if (err)
1344 			goto failed_super;
1345 	} else {
1346 		root_dentry = dget(s->s_root);
1347 	}
1348 
1349 	if (!s_new)
1350 		blkdev_put(sd.bdev, mode);
1351 
1352 	return root_dentry;
1353 
1354  failed_super:
1355 	deactivate_locked_super(s);
1356 
1357  failed:
1358 	if (!s_new)
1359 		blkdev_put(sd.bdev, mode);
1360 	return ERR_PTR(err);
1361 }
1362 
1363 struct file_system_type nilfs_fs_type = {
1364 	.owner    = THIS_MODULE,
1365 	.name     = "nilfs2",
1366 	.mount    = nilfs_mount,
1367 	.kill_sb  = kill_block_super,
1368 	.fs_flags = FS_REQUIRES_DEV,
1369 };
1370 MODULE_ALIAS_FS("nilfs2");
1371 
1372 static void nilfs_inode_init_once(void *obj)
1373 {
1374 	struct nilfs_inode_info *ii = obj;
1375 
1376 	INIT_LIST_HEAD(&ii->i_dirty);
1377 #ifdef CONFIG_NILFS_XATTR
1378 	init_rwsem(&ii->xattr_sem);
1379 #endif
1380 	address_space_init_once(&ii->i_btnode_cache);
1381 	ii->i_bmap = &ii->i_bmap_data;
1382 	inode_init_once(&ii->vfs_inode);
1383 }
1384 
1385 static void nilfs_segbuf_init_once(void *obj)
1386 {
1387 	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1388 }
1389 
1390 static void nilfs_destroy_cachep(void)
1391 {
1392 	/*
1393 	 * Make sure all delayed rcu free inodes are flushed before we
1394 	 * destroy cache.
1395 	 */
1396 	rcu_barrier();
1397 
1398 	kmem_cache_destroy(nilfs_inode_cachep);
1399 	kmem_cache_destroy(nilfs_transaction_cachep);
1400 	kmem_cache_destroy(nilfs_segbuf_cachep);
1401 	kmem_cache_destroy(nilfs_btree_path_cache);
1402 }
1403 
1404 static int __init nilfs_init_cachep(void)
1405 {
1406 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1407 			sizeof(struct nilfs_inode_info), 0,
1408 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1409 			nilfs_inode_init_once);
1410 	if (!nilfs_inode_cachep)
1411 		goto fail;
1412 
1413 	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1414 			sizeof(struct nilfs_transaction_info), 0,
1415 			SLAB_RECLAIM_ACCOUNT, NULL);
1416 	if (!nilfs_transaction_cachep)
1417 		goto fail;
1418 
1419 	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1420 			sizeof(struct nilfs_segment_buffer), 0,
1421 			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1422 	if (!nilfs_segbuf_cachep)
1423 		goto fail;
1424 
1425 	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1426 			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1427 			0, 0, NULL);
1428 	if (!nilfs_btree_path_cache)
1429 		goto fail;
1430 
1431 	return 0;
1432 
1433 fail:
1434 	nilfs_destroy_cachep();
1435 	return -ENOMEM;
1436 }
1437 
1438 static int __init init_nilfs_fs(void)
1439 {
1440 	int err;
1441 
1442 	err = nilfs_init_cachep();
1443 	if (err)
1444 		goto fail;
1445 
1446 	err = nilfs_sysfs_init();
1447 	if (err)
1448 		goto free_cachep;
1449 
1450 	err = register_filesystem(&nilfs_fs_type);
1451 	if (err)
1452 		goto deinit_sysfs_entry;
1453 
1454 	printk(KERN_INFO "NILFS version 2 loaded\n");
1455 	return 0;
1456 
1457 deinit_sysfs_entry:
1458 	nilfs_sysfs_exit();
1459 free_cachep:
1460 	nilfs_destroy_cachep();
1461 fail:
1462 	return err;
1463 }
1464 
1465 static void __exit exit_nilfs_fs(void)
1466 {
1467 	nilfs_destroy_cachep();
1468 	nilfs_sysfs_exit();
1469 	unregister_filesystem(&nilfs_fs_type);
1470 }
1471 
1472 module_init(init_nilfs_fs)
1473 module_exit(exit_nilfs_fs)
1474