1 /* 2 * super.c - NILFS module and super block management. 3 * 4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 19 * 20 * Written by Ryusuke Konishi <ryusuke@osrg.net> 21 */ 22 /* 23 * linux/fs/ext2/super.c 24 * 25 * Copyright (C) 1992, 1993, 1994, 1995 26 * Remy Card (card@masi.ibp.fr) 27 * Laboratoire MASI - Institut Blaise Pascal 28 * Universite Pierre et Marie Curie (Paris VI) 29 * 30 * from 31 * 32 * linux/fs/minix/inode.c 33 * 34 * Copyright (C) 1991, 1992 Linus Torvalds 35 * 36 * Big-endian to little-endian byte-swapping/bitmaps by 37 * David S. Miller (davem@caip.rutgers.edu), 1995 38 */ 39 40 #include <linux/module.h> 41 #include <linux/string.h> 42 #include <linux/slab.h> 43 #include <linux/init.h> 44 #include <linux/blkdev.h> 45 #include <linux/parser.h> 46 #include <linux/crc32.h> 47 #include <linux/vfs.h> 48 #include <linux/writeback.h> 49 #include <linux/seq_file.h> 50 #include <linux/mount.h> 51 #include "nilfs.h" 52 #include "export.h" 53 #include "mdt.h" 54 #include "alloc.h" 55 #include "btree.h" 56 #include "btnode.h" 57 #include "page.h" 58 #include "cpfile.h" 59 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */ 60 #include "ifile.h" 61 #include "dat.h" 62 #include "segment.h" 63 #include "segbuf.h" 64 65 MODULE_AUTHOR("NTT Corp."); 66 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem " 67 "(NILFS)"); 68 MODULE_LICENSE("GPL"); 69 70 static struct kmem_cache *nilfs_inode_cachep; 71 struct kmem_cache *nilfs_transaction_cachep; 72 struct kmem_cache *nilfs_segbuf_cachep; 73 struct kmem_cache *nilfs_btree_path_cache; 74 75 static int nilfs_setup_super(struct super_block *sb, int is_mount); 76 static int nilfs_remount(struct super_block *sb, int *flags, char *data); 77 78 static void nilfs_set_error(struct super_block *sb) 79 { 80 struct the_nilfs *nilfs = sb->s_fs_info; 81 struct nilfs_super_block **sbp; 82 83 down_write(&nilfs->ns_sem); 84 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) { 85 nilfs->ns_mount_state |= NILFS_ERROR_FS; 86 sbp = nilfs_prepare_super(sb, 0); 87 if (likely(sbp)) { 88 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 89 if (sbp[1]) 90 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 91 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 92 } 93 } 94 up_write(&nilfs->ns_sem); 95 } 96 97 /** 98 * nilfs_error() - report failure condition on a filesystem 99 * 100 * nilfs_error() sets an ERROR_FS flag on the superblock as well as 101 * reporting an error message. It should be called when NILFS detects 102 * incoherences or defects of meta data on disk. As for sustainable 103 * errors such as a single-shot I/O error, nilfs_warning() or the printk() 104 * function should be used instead. 105 * 106 * The segment constructor must not call this function because it can 107 * kill itself. 108 */ 109 void nilfs_error(struct super_block *sb, const char *function, 110 const char *fmt, ...) 111 { 112 struct the_nilfs *nilfs = sb->s_fs_info; 113 struct va_format vaf; 114 va_list args; 115 116 va_start(args, fmt); 117 118 vaf.fmt = fmt; 119 vaf.va = &args; 120 121 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n", 122 sb->s_id, function, &vaf); 123 124 va_end(args); 125 126 if (!(sb->s_flags & MS_RDONLY)) { 127 nilfs_set_error(sb); 128 129 if (nilfs_test_opt(nilfs, ERRORS_RO)) { 130 printk(KERN_CRIT "Remounting filesystem read-only\n"); 131 sb->s_flags |= MS_RDONLY; 132 } 133 } 134 135 if (nilfs_test_opt(nilfs, ERRORS_PANIC)) 136 panic("NILFS (device %s): panic forced after error\n", 137 sb->s_id); 138 } 139 140 void nilfs_warning(struct super_block *sb, const char *function, 141 const char *fmt, ...) 142 { 143 struct va_format vaf; 144 va_list args; 145 146 va_start(args, fmt); 147 148 vaf.fmt = fmt; 149 vaf.va = &args; 150 151 printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n", 152 sb->s_id, function, &vaf); 153 154 va_end(args); 155 } 156 157 158 struct inode *nilfs_alloc_inode(struct super_block *sb) 159 { 160 struct nilfs_inode_info *ii; 161 162 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS); 163 if (!ii) 164 return NULL; 165 ii->i_bh = NULL; 166 ii->i_state = 0; 167 ii->i_cno = 0; 168 ii->vfs_inode.i_version = 1; 169 nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode, sb->s_bdi); 170 return &ii->vfs_inode; 171 } 172 173 static void nilfs_i_callback(struct rcu_head *head) 174 { 175 struct inode *inode = container_of(head, struct inode, i_rcu); 176 struct nilfs_mdt_info *mdi = NILFS_MDT(inode); 177 178 INIT_LIST_HEAD(&inode->i_dentry); 179 180 if (mdi) { 181 kfree(mdi->mi_bgl); /* kfree(NULL) is safe */ 182 kfree(mdi); 183 } 184 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode)); 185 } 186 187 void nilfs_destroy_inode(struct inode *inode) 188 { 189 call_rcu(&inode->i_rcu, nilfs_i_callback); 190 } 191 192 static int nilfs_sync_super(struct super_block *sb, int flag) 193 { 194 struct the_nilfs *nilfs = sb->s_fs_info; 195 int err; 196 197 retry: 198 set_buffer_dirty(nilfs->ns_sbh[0]); 199 if (nilfs_test_opt(nilfs, BARRIER)) { 200 err = __sync_dirty_buffer(nilfs->ns_sbh[0], 201 WRITE_SYNC | WRITE_FLUSH_FUA); 202 } else { 203 err = sync_dirty_buffer(nilfs->ns_sbh[0]); 204 } 205 206 if (unlikely(err)) { 207 printk(KERN_ERR 208 "NILFS: unable to write superblock (err=%d)\n", err); 209 if (err == -EIO && nilfs->ns_sbh[1]) { 210 /* 211 * sbp[0] points to newer log than sbp[1], 212 * so copy sbp[0] to sbp[1] to take over sbp[0]. 213 */ 214 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0], 215 nilfs->ns_sbsize); 216 nilfs_fall_back_super_block(nilfs); 217 goto retry; 218 } 219 } else { 220 struct nilfs_super_block *sbp = nilfs->ns_sbp[0]; 221 222 nilfs->ns_sbwcount++; 223 224 /* 225 * The latest segment becomes trailable from the position 226 * written in superblock. 227 */ 228 clear_nilfs_discontinued(nilfs); 229 230 /* update GC protection for recent segments */ 231 if (nilfs->ns_sbh[1]) { 232 if (flag == NILFS_SB_COMMIT_ALL) { 233 set_buffer_dirty(nilfs->ns_sbh[1]); 234 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0) 235 goto out; 236 } 237 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) < 238 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno)) 239 sbp = nilfs->ns_sbp[1]; 240 } 241 242 spin_lock(&nilfs->ns_last_segment_lock); 243 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq); 244 spin_unlock(&nilfs->ns_last_segment_lock); 245 } 246 out: 247 return err; 248 } 249 250 void nilfs_set_log_cursor(struct nilfs_super_block *sbp, 251 struct the_nilfs *nilfs) 252 { 253 sector_t nfreeblocks; 254 255 /* nilfs->ns_sem must be locked by the caller. */ 256 nilfs_count_free_blocks(nilfs, &nfreeblocks); 257 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks); 258 259 spin_lock(&nilfs->ns_last_segment_lock); 260 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq); 261 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg); 262 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno); 263 spin_unlock(&nilfs->ns_last_segment_lock); 264 } 265 266 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb, 267 int flip) 268 { 269 struct the_nilfs *nilfs = sb->s_fs_info; 270 struct nilfs_super_block **sbp = nilfs->ns_sbp; 271 272 /* nilfs->ns_sem must be locked by the caller. */ 273 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 274 if (sbp[1] && 275 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) { 276 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize); 277 } else { 278 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n", 279 sb->s_id); 280 return NULL; 281 } 282 } else if (sbp[1] && 283 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 284 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 285 } 286 287 if (flip && sbp[1]) 288 nilfs_swap_super_block(nilfs); 289 290 return sbp; 291 } 292 293 int nilfs_commit_super(struct super_block *sb, int flag) 294 { 295 struct the_nilfs *nilfs = sb->s_fs_info; 296 struct nilfs_super_block **sbp = nilfs->ns_sbp; 297 time_t t; 298 299 /* nilfs->ns_sem must be locked by the caller. */ 300 t = get_seconds(); 301 nilfs->ns_sbwtime = t; 302 sbp[0]->s_wtime = cpu_to_le64(t); 303 sbp[0]->s_sum = 0; 304 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 305 (unsigned char *)sbp[0], 306 nilfs->ns_sbsize)); 307 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) { 308 sbp[1]->s_wtime = sbp[0]->s_wtime; 309 sbp[1]->s_sum = 0; 310 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 311 (unsigned char *)sbp[1], 312 nilfs->ns_sbsize)); 313 } 314 clear_nilfs_sb_dirty(nilfs); 315 return nilfs_sync_super(sb, flag); 316 } 317 318 /** 319 * nilfs_cleanup_super() - write filesystem state for cleanup 320 * @sb: super block instance to be unmounted or degraded to read-only 321 * 322 * This function restores state flags in the on-disk super block. 323 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the 324 * filesystem was not clean previously. 325 */ 326 int nilfs_cleanup_super(struct super_block *sb) 327 { 328 struct the_nilfs *nilfs = sb->s_fs_info; 329 struct nilfs_super_block **sbp; 330 int flag = NILFS_SB_COMMIT; 331 int ret = -EIO; 332 333 sbp = nilfs_prepare_super(sb, 0); 334 if (sbp) { 335 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state); 336 nilfs_set_log_cursor(sbp[0], nilfs); 337 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) { 338 /* 339 * make the "clean" flag also to the opposite 340 * super block if both super blocks point to 341 * the same checkpoint. 342 */ 343 sbp[1]->s_state = sbp[0]->s_state; 344 flag = NILFS_SB_COMMIT_ALL; 345 } 346 ret = nilfs_commit_super(sb, flag); 347 } 348 return ret; 349 } 350 351 /** 352 * nilfs_move_2nd_super - relocate secondary super block 353 * @sb: super block instance 354 * @sb2off: new offset of the secondary super block (in bytes) 355 */ 356 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off) 357 { 358 struct the_nilfs *nilfs = sb->s_fs_info; 359 struct buffer_head *nsbh; 360 struct nilfs_super_block *nsbp; 361 sector_t blocknr, newblocknr; 362 unsigned long offset; 363 int sb2i = -1; /* array index of the secondary superblock */ 364 int ret = 0; 365 366 /* nilfs->ns_sem must be locked by the caller. */ 367 if (nilfs->ns_sbh[1] && 368 nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) { 369 sb2i = 1; 370 blocknr = nilfs->ns_sbh[1]->b_blocknr; 371 } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) { 372 sb2i = 0; 373 blocknr = nilfs->ns_sbh[0]->b_blocknr; 374 } 375 if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off) 376 goto out; /* super block location is unchanged */ 377 378 /* Get new super block buffer */ 379 newblocknr = sb2off >> nilfs->ns_blocksize_bits; 380 offset = sb2off & (nilfs->ns_blocksize - 1); 381 nsbh = sb_getblk(sb, newblocknr); 382 if (!nsbh) { 383 printk(KERN_WARNING 384 "NILFS warning: unable to move secondary superblock " 385 "to block %llu\n", (unsigned long long)newblocknr); 386 ret = -EIO; 387 goto out; 388 } 389 nsbp = (void *)nsbh->b_data + offset; 390 memset(nsbp, 0, nilfs->ns_blocksize); 391 392 if (sb2i >= 0) { 393 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize); 394 brelse(nilfs->ns_sbh[sb2i]); 395 nilfs->ns_sbh[sb2i] = nsbh; 396 nilfs->ns_sbp[sb2i] = nsbp; 397 } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) { 398 /* secondary super block will be restored to index 1 */ 399 nilfs->ns_sbh[1] = nsbh; 400 nilfs->ns_sbp[1] = nsbp; 401 } else { 402 brelse(nsbh); 403 } 404 out: 405 return ret; 406 } 407 408 /** 409 * nilfs_resize_fs - resize the filesystem 410 * @sb: super block instance 411 * @newsize: new size of the filesystem (in bytes) 412 */ 413 int nilfs_resize_fs(struct super_block *sb, __u64 newsize) 414 { 415 struct the_nilfs *nilfs = sb->s_fs_info; 416 struct nilfs_super_block **sbp; 417 __u64 devsize, newnsegs; 418 loff_t sb2off; 419 int ret; 420 421 ret = -ERANGE; 422 devsize = i_size_read(sb->s_bdev->bd_inode); 423 if (newsize > devsize) 424 goto out; 425 426 /* 427 * Write lock is required to protect some functions depending 428 * on the number of segments, the number of reserved segments, 429 * and so forth. 430 */ 431 down_write(&nilfs->ns_segctor_sem); 432 433 sb2off = NILFS_SB2_OFFSET_BYTES(newsize); 434 newnsegs = sb2off >> nilfs->ns_blocksize_bits; 435 do_div(newnsegs, nilfs->ns_blocks_per_segment); 436 437 ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs); 438 up_write(&nilfs->ns_segctor_sem); 439 if (ret < 0) 440 goto out; 441 442 ret = nilfs_construct_segment(sb); 443 if (ret < 0) 444 goto out; 445 446 down_write(&nilfs->ns_sem); 447 nilfs_move_2nd_super(sb, sb2off); 448 ret = -EIO; 449 sbp = nilfs_prepare_super(sb, 0); 450 if (likely(sbp)) { 451 nilfs_set_log_cursor(sbp[0], nilfs); 452 /* 453 * Drop NILFS_RESIZE_FS flag for compatibility with 454 * mount-time resize which may be implemented in a 455 * future release. 456 */ 457 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & 458 ~NILFS_RESIZE_FS); 459 sbp[0]->s_dev_size = cpu_to_le64(newsize); 460 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments); 461 if (sbp[1]) 462 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 463 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 464 } 465 up_write(&nilfs->ns_sem); 466 467 /* 468 * Reset the range of allocatable segments last. This order 469 * is important in the case of expansion because the secondary 470 * superblock must be protected from log write until migration 471 * completes. 472 */ 473 if (!ret) 474 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1); 475 out: 476 return ret; 477 } 478 479 static void nilfs_put_super(struct super_block *sb) 480 { 481 struct the_nilfs *nilfs = sb->s_fs_info; 482 483 nilfs_detach_log_writer(sb); 484 485 if (!(sb->s_flags & MS_RDONLY)) { 486 down_write(&nilfs->ns_sem); 487 nilfs_cleanup_super(sb); 488 up_write(&nilfs->ns_sem); 489 } 490 491 iput(nilfs->ns_sufile); 492 iput(nilfs->ns_cpfile); 493 iput(nilfs->ns_dat); 494 495 destroy_nilfs(nilfs); 496 sb->s_fs_info = NULL; 497 } 498 499 static int nilfs_sync_fs(struct super_block *sb, int wait) 500 { 501 struct the_nilfs *nilfs = sb->s_fs_info; 502 struct nilfs_super_block **sbp; 503 int err = 0; 504 505 /* This function is called when super block should be written back */ 506 if (wait) 507 err = nilfs_construct_segment(sb); 508 509 down_write(&nilfs->ns_sem); 510 if (nilfs_sb_dirty(nilfs)) { 511 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs)); 512 if (likely(sbp)) { 513 nilfs_set_log_cursor(sbp[0], nilfs); 514 nilfs_commit_super(sb, NILFS_SB_COMMIT); 515 } 516 } 517 up_write(&nilfs->ns_sem); 518 519 return err; 520 } 521 522 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt, 523 struct nilfs_root **rootp) 524 { 525 struct the_nilfs *nilfs = sb->s_fs_info; 526 struct nilfs_root *root; 527 struct nilfs_checkpoint *raw_cp; 528 struct buffer_head *bh_cp; 529 int err = -ENOMEM; 530 531 root = nilfs_find_or_create_root( 532 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno); 533 if (!root) 534 return err; 535 536 if (root->ifile) 537 goto reuse; /* already attached checkpoint */ 538 539 down_read(&nilfs->ns_segctor_sem); 540 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp, 541 &bh_cp); 542 up_read(&nilfs->ns_segctor_sem); 543 if (unlikely(err)) { 544 if (err == -ENOENT || err == -EINVAL) { 545 printk(KERN_ERR 546 "NILFS: Invalid checkpoint " 547 "(checkpoint number=%llu)\n", 548 (unsigned long long)cno); 549 err = -EINVAL; 550 } 551 goto failed; 552 } 553 554 err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size, 555 &raw_cp->cp_ifile_inode, &root->ifile); 556 if (err) 557 goto failed_bh; 558 559 atomic_set(&root->inodes_count, le64_to_cpu(raw_cp->cp_inodes_count)); 560 atomic_set(&root->blocks_count, le64_to_cpu(raw_cp->cp_blocks_count)); 561 562 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); 563 564 reuse: 565 *rootp = root; 566 return 0; 567 568 failed_bh: 569 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); 570 failed: 571 nilfs_put_root(root); 572 573 return err; 574 } 575 576 static int nilfs_freeze(struct super_block *sb) 577 { 578 struct the_nilfs *nilfs = sb->s_fs_info; 579 int err; 580 581 if (sb->s_flags & MS_RDONLY) 582 return 0; 583 584 /* Mark super block clean */ 585 down_write(&nilfs->ns_sem); 586 err = nilfs_cleanup_super(sb); 587 up_write(&nilfs->ns_sem); 588 return err; 589 } 590 591 static int nilfs_unfreeze(struct super_block *sb) 592 { 593 struct the_nilfs *nilfs = sb->s_fs_info; 594 595 if (sb->s_flags & MS_RDONLY) 596 return 0; 597 598 down_write(&nilfs->ns_sem); 599 nilfs_setup_super(sb, false); 600 up_write(&nilfs->ns_sem); 601 return 0; 602 } 603 604 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf) 605 { 606 struct super_block *sb = dentry->d_sb; 607 struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root; 608 struct the_nilfs *nilfs = root->nilfs; 609 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 610 unsigned long long blocks; 611 unsigned long overhead; 612 unsigned long nrsvblocks; 613 sector_t nfreeblocks; 614 int err; 615 616 /* 617 * Compute all of the segment blocks 618 * 619 * The blocks before first segment and after last segment 620 * are excluded. 621 */ 622 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments 623 - nilfs->ns_first_data_block; 624 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment; 625 626 /* 627 * Compute the overhead 628 * 629 * When distributing meta data blocks outside segment structure, 630 * We must count them as the overhead. 631 */ 632 overhead = 0; 633 634 err = nilfs_count_free_blocks(nilfs, &nfreeblocks); 635 if (unlikely(err)) 636 return err; 637 638 buf->f_type = NILFS_SUPER_MAGIC; 639 buf->f_bsize = sb->s_blocksize; 640 buf->f_blocks = blocks - overhead; 641 buf->f_bfree = nfreeblocks; 642 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ? 643 (buf->f_bfree - nrsvblocks) : 0; 644 buf->f_files = atomic_read(&root->inodes_count); 645 buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */ 646 buf->f_namelen = NILFS_NAME_LEN; 647 buf->f_fsid.val[0] = (u32)id; 648 buf->f_fsid.val[1] = (u32)(id >> 32); 649 650 return 0; 651 } 652 653 static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs) 654 { 655 struct super_block *sb = vfs->mnt_sb; 656 struct the_nilfs *nilfs = sb->s_fs_info; 657 struct nilfs_root *root = NILFS_I(vfs->mnt_root->d_inode)->i_root; 658 659 if (!nilfs_test_opt(nilfs, BARRIER)) 660 seq_puts(seq, ",nobarrier"); 661 if (root->cno != NILFS_CPTREE_CURRENT_CNO) 662 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno); 663 if (nilfs_test_opt(nilfs, ERRORS_PANIC)) 664 seq_puts(seq, ",errors=panic"); 665 if (nilfs_test_opt(nilfs, ERRORS_CONT)) 666 seq_puts(seq, ",errors=continue"); 667 if (nilfs_test_opt(nilfs, STRICT_ORDER)) 668 seq_puts(seq, ",order=strict"); 669 if (nilfs_test_opt(nilfs, NORECOVERY)) 670 seq_puts(seq, ",norecovery"); 671 if (nilfs_test_opt(nilfs, DISCARD)) 672 seq_puts(seq, ",discard"); 673 674 return 0; 675 } 676 677 static const struct super_operations nilfs_sops = { 678 .alloc_inode = nilfs_alloc_inode, 679 .destroy_inode = nilfs_destroy_inode, 680 .dirty_inode = nilfs_dirty_inode, 681 /* .write_inode = nilfs_write_inode, */ 682 /* .put_inode = nilfs_put_inode, */ 683 /* .drop_inode = nilfs_drop_inode, */ 684 .evict_inode = nilfs_evict_inode, 685 .put_super = nilfs_put_super, 686 /* .write_super = nilfs_write_super, */ 687 .sync_fs = nilfs_sync_fs, 688 .freeze_fs = nilfs_freeze, 689 .unfreeze_fs = nilfs_unfreeze, 690 /* .write_super_lockfs */ 691 /* .unlockfs */ 692 .statfs = nilfs_statfs, 693 .remount_fs = nilfs_remount, 694 /* .umount_begin */ 695 .show_options = nilfs_show_options 696 }; 697 698 enum { 699 Opt_err_cont, Opt_err_panic, Opt_err_ro, 700 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery, 701 Opt_discard, Opt_nodiscard, Opt_err, 702 }; 703 704 static match_table_t tokens = { 705 {Opt_err_cont, "errors=continue"}, 706 {Opt_err_panic, "errors=panic"}, 707 {Opt_err_ro, "errors=remount-ro"}, 708 {Opt_barrier, "barrier"}, 709 {Opt_nobarrier, "nobarrier"}, 710 {Opt_snapshot, "cp=%u"}, 711 {Opt_order, "order=%s"}, 712 {Opt_norecovery, "norecovery"}, 713 {Opt_discard, "discard"}, 714 {Opt_nodiscard, "nodiscard"}, 715 {Opt_err, NULL} 716 }; 717 718 static int parse_options(char *options, struct super_block *sb, int is_remount) 719 { 720 struct the_nilfs *nilfs = sb->s_fs_info; 721 char *p; 722 substring_t args[MAX_OPT_ARGS]; 723 724 if (!options) 725 return 1; 726 727 while ((p = strsep(&options, ",")) != NULL) { 728 int token; 729 if (!*p) 730 continue; 731 732 token = match_token(p, tokens, args); 733 switch (token) { 734 case Opt_barrier: 735 nilfs_set_opt(nilfs, BARRIER); 736 break; 737 case Opt_nobarrier: 738 nilfs_clear_opt(nilfs, BARRIER); 739 break; 740 case Opt_order: 741 if (strcmp(args[0].from, "relaxed") == 0) 742 /* Ordered data semantics */ 743 nilfs_clear_opt(nilfs, STRICT_ORDER); 744 else if (strcmp(args[0].from, "strict") == 0) 745 /* Strict in-order semantics */ 746 nilfs_set_opt(nilfs, STRICT_ORDER); 747 else 748 return 0; 749 break; 750 case Opt_err_panic: 751 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC); 752 break; 753 case Opt_err_ro: 754 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO); 755 break; 756 case Opt_err_cont: 757 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT); 758 break; 759 case Opt_snapshot: 760 if (is_remount) { 761 printk(KERN_ERR 762 "NILFS: \"%s\" option is invalid " 763 "for remount.\n", p); 764 return 0; 765 } 766 break; 767 case Opt_norecovery: 768 nilfs_set_opt(nilfs, NORECOVERY); 769 break; 770 case Opt_discard: 771 nilfs_set_opt(nilfs, DISCARD); 772 break; 773 case Opt_nodiscard: 774 nilfs_clear_opt(nilfs, DISCARD); 775 break; 776 default: 777 printk(KERN_ERR 778 "NILFS: Unrecognized mount option \"%s\"\n", p); 779 return 0; 780 } 781 } 782 return 1; 783 } 784 785 static inline void 786 nilfs_set_default_options(struct super_block *sb, 787 struct nilfs_super_block *sbp) 788 { 789 struct the_nilfs *nilfs = sb->s_fs_info; 790 791 nilfs->ns_mount_opt = 792 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER; 793 } 794 795 static int nilfs_setup_super(struct super_block *sb, int is_mount) 796 { 797 struct the_nilfs *nilfs = sb->s_fs_info; 798 struct nilfs_super_block **sbp; 799 int max_mnt_count; 800 int mnt_count; 801 802 /* nilfs->ns_sem must be locked by the caller. */ 803 sbp = nilfs_prepare_super(sb, 0); 804 if (!sbp) 805 return -EIO; 806 807 if (!is_mount) 808 goto skip_mount_setup; 809 810 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count); 811 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count); 812 813 if (nilfs->ns_mount_state & NILFS_ERROR_FS) { 814 printk(KERN_WARNING 815 "NILFS warning: mounting fs with errors\n"); 816 #if 0 817 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) { 818 printk(KERN_WARNING 819 "NILFS warning: maximal mount count reached\n"); 820 #endif 821 } 822 if (!max_mnt_count) 823 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT); 824 825 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1); 826 sbp[0]->s_mtime = cpu_to_le64(get_seconds()); 827 828 skip_mount_setup: 829 sbp[0]->s_state = 830 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS); 831 /* synchronize sbp[1] with sbp[0] */ 832 if (sbp[1]) 833 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 834 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 835 } 836 837 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb, 838 u64 pos, int blocksize, 839 struct buffer_head **pbh) 840 { 841 unsigned long long sb_index = pos; 842 unsigned long offset; 843 844 offset = do_div(sb_index, blocksize); 845 *pbh = sb_bread(sb, sb_index); 846 if (!*pbh) 847 return NULL; 848 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset); 849 } 850 851 int nilfs_store_magic_and_option(struct super_block *sb, 852 struct nilfs_super_block *sbp, 853 char *data) 854 { 855 struct the_nilfs *nilfs = sb->s_fs_info; 856 857 sb->s_magic = le16_to_cpu(sbp->s_magic); 858 859 /* FS independent flags */ 860 #ifdef NILFS_ATIME_DISABLE 861 sb->s_flags |= MS_NOATIME; 862 #endif 863 864 nilfs_set_default_options(sb, sbp); 865 866 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid); 867 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid); 868 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval); 869 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max); 870 871 return !parse_options(data, sb, 0) ? -EINVAL : 0 ; 872 } 873 874 int nilfs_check_feature_compatibility(struct super_block *sb, 875 struct nilfs_super_block *sbp) 876 { 877 __u64 features; 878 879 features = le64_to_cpu(sbp->s_feature_incompat) & 880 ~NILFS_FEATURE_INCOMPAT_SUPP; 881 if (features) { 882 printk(KERN_ERR "NILFS: couldn't mount because of unsupported " 883 "optional features (%llx)\n", 884 (unsigned long long)features); 885 return -EINVAL; 886 } 887 features = le64_to_cpu(sbp->s_feature_compat_ro) & 888 ~NILFS_FEATURE_COMPAT_RO_SUPP; 889 if (!(sb->s_flags & MS_RDONLY) && features) { 890 printk(KERN_ERR "NILFS: couldn't mount RDWR because of " 891 "unsupported optional features (%llx)\n", 892 (unsigned long long)features); 893 return -EINVAL; 894 } 895 return 0; 896 } 897 898 static int nilfs_get_root_dentry(struct super_block *sb, 899 struct nilfs_root *root, 900 struct dentry **root_dentry) 901 { 902 struct inode *inode; 903 struct dentry *dentry; 904 int ret = 0; 905 906 inode = nilfs_iget(sb, root, NILFS_ROOT_INO); 907 if (IS_ERR(inode)) { 908 printk(KERN_ERR "NILFS: get root inode failed\n"); 909 ret = PTR_ERR(inode); 910 goto out; 911 } 912 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) { 913 iput(inode); 914 printk(KERN_ERR "NILFS: corrupt root inode.\n"); 915 ret = -EINVAL; 916 goto out; 917 } 918 919 if (root->cno == NILFS_CPTREE_CURRENT_CNO) { 920 dentry = d_find_alias(inode); 921 if (!dentry) { 922 dentry = d_alloc_root(inode); 923 if (!dentry) { 924 iput(inode); 925 ret = -ENOMEM; 926 goto failed_dentry; 927 } 928 } else { 929 iput(inode); 930 } 931 } else { 932 dentry = d_obtain_alias(inode); 933 if (IS_ERR(dentry)) { 934 ret = PTR_ERR(dentry); 935 goto failed_dentry; 936 } 937 } 938 *root_dentry = dentry; 939 out: 940 return ret; 941 942 failed_dentry: 943 printk(KERN_ERR "NILFS: get root dentry failed\n"); 944 goto out; 945 } 946 947 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno, 948 struct dentry **root_dentry) 949 { 950 struct the_nilfs *nilfs = s->s_fs_info; 951 struct nilfs_root *root; 952 int ret; 953 954 down_read(&nilfs->ns_segctor_sem); 955 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno); 956 up_read(&nilfs->ns_segctor_sem); 957 if (ret < 0) { 958 ret = (ret == -ENOENT) ? -EINVAL : ret; 959 goto out; 960 } else if (!ret) { 961 printk(KERN_ERR "NILFS: The specified checkpoint is " 962 "not a snapshot (checkpoint number=%llu).\n", 963 (unsigned long long)cno); 964 ret = -EINVAL; 965 goto out; 966 } 967 968 ret = nilfs_attach_checkpoint(s, cno, false, &root); 969 if (ret) { 970 printk(KERN_ERR "NILFS: error loading snapshot " 971 "(checkpoint number=%llu).\n", 972 (unsigned long long)cno); 973 goto out; 974 } 975 ret = nilfs_get_root_dentry(s, root, root_dentry); 976 nilfs_put_root(root); 977 out: 978 return ret; 979 } 980 981 static int nilfs_tree_was_touched(struct dentry *root_dentry) 982 { 983 return root_dentry->d_count > 1; 984 } 985 986 /** 987 * nilfs_try_to_shrink_tree() - try to shrink dentries of a checkpoint 988 * @root_dentry: root dentry of the tree to be shrunk 989 * 990 * This function returns true if the tree was in-use. 991 */ 992 static int nilfs_try_to_shrink_tree(struct dentry *root_dentry) 993 { 994 if (have_submounts(root_dentry)) 995 return true; 996 shrink_dcache_parent(root_dentry); 997 return nilfs_tree_was_touched(root_dentry); 998 } 999 1000 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno) 1001 { 1002 struct the_nilfs *nilfs = sb->s_fs_info; 1003 struct nilfs_root *root; 1004 struct inode *inode; 1005 struct dentry *dentry; 1006 int ret; 1007 1008 if (cno < 0 || cno > nilfs->ns_cno) 1009 return false; 1010 1011 if (cno >= nilfs_last_cno(nilfs)) 1012 return true; /* protect recent checkpoints */ 1013 1014 ret = false; 1015 root = nilfs_lookup_root(nilfs, cno); 1016 if (root) { 1017 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO); 1018 if (inode) { 1019 dentry = d_find_alias(inode); 1020 if (dentry) { 1021 if (nilfs_tree_was_touched(dentry)) 1022 ret = nilfs_try_to_shrink_tree(dentry); 1023 dput(dentry); 1024 } 1025 iput(inode); 1026 } 1027 nilfs_put_root(root); 1028 } 1029 return ret; 1030 } 1031 1032 /** 1033 * nilfs_fill_super() - initialize a super block instance 1034 * @sb: super_block 1035 * @data: mount options 1036 * @silent: silent mode flag 1037 * 1038 * This function is called exclusively by nilfs->ns_mount_mutex. 1039 * So, the recovery process is protected from other simultaneous mounts. 1040 */ 1041 static int 1042 nilfs_fill_super(struct super_block *sb, void *data, int silent) 1043 { 1044 struct the_nilfs *nilfs; 1045 struct nilfs_root *fsroot; 1046 struct backing_dev_info *bdi; 1047 __u64 cno; 1048 int err; 1049 1050 nilfs = alloc_nilfs(sb->s_bdev); 1051 if (!nilfs) 1052 return -ENOMEM; 1053 1054 sb->s_fs_info = nilfs; 1055 1056 err = init_nilfs(nilfs, sb, (char *)data); 1057 if (err) 1058 goto failed_nilfs; 1059 1060 sb->s_op = &nilfs_sops; 1061 sb->s_export_op = &nilfs_export_ops; 1062 sb->s_root = NULL; 1063 sb->s_time_gran = 1; 1064 1065 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 1066 sb->s_bdi = bdi ? : &default_backing_dev_info; 1067 1068 err = load_nilfs(nilfs, sb); 1069 if (err) 1070 goto failed_nilfs; 1071 1072 cno = nilfs_last_cno(nilfs); 1073 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot); 1074 if (err) { 1075 printk(KERN_ERR "NILFS: error loading last checkpoint " 1076 "(checkpoint number=%llu).\n", (unsigned long long)cno); 1077 goto failed_unload; 1078 } 1079 1080 if (!(sb->s_flags & MS_RDONLY)) { 1081 err = nilfs_attach_log_writer(sb, fsroot); 1082 if (err) 1083 goto failed_checkpoint; 1084 } 1085 1086 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root); 1087 if (err) 1088 goto failed_segctor; 1089 1090 nilfs_put_root(fsroot); 1091 1092 if (!(sb->s_flags & MS_RDONLY)) { 1093 down_write(&nilfs->ns_sem); 1094 nilfs_setup_super(sb, true); 1095 up_write(&nilfs->ns_sem); 1096 } 1097 1098 return 0; 1099 1100 failed_segctor: 1101 nilfs_detach_log_writer(sb); 1102 1103 failed_checkpoint: 1104 nilfs_put_root(fsroot); 1105 1106 failed_unload: 1107 iput(nilfs->ns_sufile); 1108 iput(nilfs->ns_cpfile); 1109 iput(nilfs->ns_dat); 1110 1111 failed_nilfs: 1112 destroy_nilfs(nilfs); 1113 return err; 1114 } 1115 1116 static int nilfs_remount(struct super_block *sb, int *flags, char *data) 1117 { 1118 struct the_nilfs *nilfs = sb->s_fs_info; 1119 unsigned long old_sb_flags; 1120 unsigned long old_mount_opt; 1121 int err; 1122 1123 old_sb_flags = sb->s_flags; 1124 old_mount_opt = nilfs->ns_mount_opt; 1125 1126 if (!parse_options(data, sb, 1)) { 1127 err = -EINVAL; 1128 goto restore_opts; 1129 } 1130 sb->s_flags = (sb->s_flags & ~MS_POSIXACL); 1131 1132 err = -EINVAL; 1133 1134 if (!nilfs_valid_fs(nilfs)) { 1135 printk(KERN_WARNING "NILFS (device %s): couldn't " 1136 "remount because the filesystem is in an " 1137 "incomplete recovery state.\n", sb->s_id); 1138 goto restore_opts; 1139 } 1140 1141 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1142 goto out; 1143 if (*flags & MS_RDONLY) { 1144 /* Shutting down log writer */ 1145 nilfs_detach_log_writer(sb); 1146 sb->s_flags |= MS_RDONLY; 1147 1148 /* 1149 * Remounting a valid RW partition RDONLY, so set 1150 * the RDONLY flag and then mark the partition as valid again. 1151 */ 1152 down_write(&nilfs->ns_sem); 1153 nilfs_cleanup_super(sb); 1154 up_write(&nilfs->ns_sem); 1155 } else { 1156 __u64 features; 1157 struct nilfs_root *root; 1158 1159 /* 1160 * Mounting a RDONLY partition read-write, so reread and 1161 * store the current valid flag. (It may have been changed 1162 * by fsck since we originally mounted the partition.) 1163 */ 1164 down_read(&nilfs->ns_sem); 1165 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) & 1166 ~NILFS_FEATURE_COMPAT_RO_SUPP; 1167 up_read(&nilfs->ns_sem); 1168 if (features) { 1169 printk(KERN_WARNING "NILFS (device %s): couldn't " 1170 "remount RDWR because of unsupported optional " 1171 "features (%llx)\n", 1172 sb->s_id, (unsigned long long)features); 1173 err = -EROFS; 1174 goto restore_opts; 1175 } 1176 1177 sb->s_flags &= ~MS_RDONLY; 1178 1179 root = NILFS_I(sb->s_root->d_inode)->i_root; 1180 err = nilfs_attach_log_writer(sb, root); 1181 if (err) 1182 goto restore_opts; 1183 1184 down_write(&nilfs->ns_sem); 1185 nilfs_setup_super(sb, true); 1186 up_write(&nilfs->ns_sem); 1187 } 1188 out: 1189 return 0; 1190 1191 restore_opts: 1192 sb->s_flags = old_sb_flags; 1193 nilfs->ns_mount_opt = old_mount_opt; 1194 return err; 1195 } 1196 1197 struct nilfs_super_data { 1198 struct block_device *bdev; 1199 __u64 cno; 1200 int flags; 1201 }; 1202 1203 /** 1204 * nilfs_identify - pre-read mount options needed to identify mount instance 1205 * @data: mount options 1206 * @sd: nilfs_super_data 1207 */ 1208 static int nilfs_identify(char *data, struct nilfs_super_data *sd) 1209 { 1210 char *p, *options = data; 1211 substring_t args[MAX_OPT_ARGS]; 1212 int token; 1213 int ret = 0; 1214 1215 do { 1216 p = strsep(&options, ","); 1217 if (p != NULL && *p) { 1218 token = match_token(p, tokens, args); 1219 if (token == Opt_snapshot) { 1220 if (!(sd->flags & MS_RDONLY)) { 1221 ret++; 1222 } else { 1223 sd->cno = simple_strtoull(args[0].from, 1224 NULL, 0); 1225 /* 1226 * No need to see the end pointer; 1227 * match_token() has done syntax 1228 * checking. 1229 */ 1230 if (sd->cno == 0) 1231 ret++; 1232 } 1233 } 1234 if (ret) 1235 printk(KERN_ERR 1236 "NILFS: invalid mount option: %s\n", p); 1237 } 1238 if (!options) 1239 break; 1240 BUG_ON(options == data); 1241 *(options - 1) = ','; 1242 } while (!ret); 1243 return ret; 1244 } 1245 1246 static int nilfs_set_bdev_super(struct super_block *s, void *data) 1247 { 1248 s->s_bdev = data; 1249 s->s_dev = s->s_bdev->bd_dev; 1250 return 0; 1251 } 1252 1253 static int nilfs_test_bdev_super(struct super_block *s, void *data) 1254 { 1255 return (void *)s->s_bdev == data; 1256 } 1257 1258 static struct dentry * 1259 nilfs_mount(struct file_system_type *fs_type, int flags, 1260 const char *dev_name, void *data) 1261 { 1262 struct nilfs_super_data sd; 1263 struct super_block *s; 1264 fmode_t mode = FMODE_READ | FMODE_EXCL; 1265 struct dentry *root_dentry; 1266 int err, s_new = false; 1267 1268 if (!(flags & MS_RDONLY)) 1269 mode |= FMODE_WRITE; 1270 1271 sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1272 if (IS_ERR(sd.bdev)) 1273 return ERR_CAST(sd.bdev); 1274 1275 sd.cno = 0; 1276 sd.flags = flags; 1277 if (nilfs_identify((char *)data, &sd)) { 1278 err = -EINVAL; 1279 goto failed; 1280 } 1281 1282 /* 1283 * once the super is inserted into the list by sget, s_umount 1284 * will protect the lockfs code from trying to start a snapshot 1285 * while we are mounting 1286 */ 1287 mutex_lock(&sd.bdev->bd_fsfreeze_mutex); 1288 if (sd.bdev->bd_fsfreeze_count > 0) { 1289 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex); 1290 err = -EBUSY; 1291 goto failed; 1292 } 1293 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, sd.bdev); 1294 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex); 1295 if (IS_ERR(s)) { 1296 err = PTR_ERR(s); 1297 goto failed; 1298 } 1299 1300 if (!s->s_root) { 1301 char b[BDEVNAME_SIZE]; 1302 1303 s_new = true; 1304 1305 /* New superblock instance created */ 1306 s->s_flags = flags; 1307 s->s_mode = mode; 1308 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id)); 1309 sb_set_blocksize(s, block_size(sd.bdev)); 1310 1311 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1312 if (err) 1313 goto failed_super; 1314 1315 s->s_flags |= MS_ACTIVE; 1316 } else if (!sd.cno) { 1317 int busy = false; 1318 1319 if (nilfs_tree_was_touched(s->s_root)) { 1320 busy = nilfs_try_to_shrink_tree(s->s_root); 1321 if (busy && (flags ^ s->s_flags) & MS_RDONLY) { 1322 printk(KERN_ERR "NILFS: the device already " 1323 "has a %s mount.\n", 1324 (s->s_flags & MS_RDONLY) ? 1325 "read-only" : "read/write"); 1326 err = -EBUSY; 1327 goto failed_super; 1328 } 1329 } 1330 if (!busy) { 1331 /* 1332 * Try remount to setup mount states if the current 1333 * tree is not mounted and only snapshots use this sb. 1334 */ 1335 err = nilfs_remount(s, &flags, data); 1336 if (err) 1337 goto failed_super; 1338 } 1339 } 1340 1341 if (sd.cno) { 1342 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry); 1343 if (err) 1344 goto failed_super; 1345 } else { 1346 root_dentry = dget(s->s_root); 1347 } 1348 1349 if (!s_new) 1350 blkdev_put(sd.bdev, mode); 1351 1352 return root_dentry; 1353 1354 failed_super: 1355 deactivate_locked_super(s); 1356 1357 failed: 1358 if (!s_new) 1359 blkdev_put(sd.bdev, mode); 1360 return ERR_PTR(err); 1361 } 1362 1363 struct file_system_type nilfs_fs_type = { 1364 .owner = THIS_MODULE, 1365 .name = "nilfs2", 1366 .mount = nilfs_mount, 1367 .kill_sb = kill_block_super, 1368 .fs_flags = FS_REQUIRES_DEV, 1369 }; 1370 1371 static void nilfs_inode_init_once(void *obj) 1372 { 1373 struct nilfs_inode_info *ii = obj; 1374 1375 INIT_LIST_HEAD(&ii->i_dirty); 1376 #ifdef CONFIG_NILFS_XATTR 1377 init_rwsem(&ii->xattr_sem); 1378 #endif 1379 address_space_init_once(&ii->i_btnode_cache); 1380 ii->i_bmap = &ii->i_bmap_data; 1381 inode_init_once(&ii->vfs_inode); 1382 } 1383 1384 static void nilfs_segbuf_init_once(void *obj) 1385 { 1386 memset(obj, 0, sizeof(struct nilfs_segment_buffer)); 1387 } 1388 1389 static void nilfs_destroy_cachep(void) 1390 { 1391 if (nilfs_inode_cachep) 1392 kmem_cache_destroy(nilfs_inode_cachep); 1393 if (nilfs_transaction_cachep) 1394 kmem_cache_destroy(nilfs_transaction_cachep); 1395 if (nilfs_segbuf_cachep) 1396 kmem_cache_destroy(nilfs_segbuf_cachep); 1397 if (nilfs_btree_path_cache) 1398 kmem_cache_destroy(nilfs_btree_path_cache); 1399 } 1400 1401 static int __init nilfs_init_cachep(void) 1402 { 1403 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache", 1404 sizeof(struct nilfs_inode_info), 0, 1405 SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once); 1406 if (!nilfs_inode_cachep) 1407 goto fail; 1408 1409 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache", 1410 sizeof(struct nilfs_transaction_info), 0, 1411 SLAB_RECLAIM_ACCOUNT, NULL); 1412 if (!nilfs_transaction_cachep) 1413 goto fail; 1414 1415 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache", 1416 sizeof(struct nilfs_segment_buffer), 0, 1417 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once); 1418 if (!nilfs_segbuf_cachep) 1419 goto fail; 1420 1421 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache", 1422 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX, 1423 0, 0, NULL); 1424 if (!nilfs_btree_path_cache) 1425 goto fail; 1426 1427 return 0; 1428 1429 fail: 1430 nilfs_destroy_cachep(); 1431 return -ENOMEM; 1432 } 1433 1434 static int __init init_nilfs_fs(void) 1435 { 1436 int err; 1437 1438 err = nilfs_init_cachep(); 1439 if (err) 1440 goto fail; 1441 1442 err = register_filesystem(&nilfs_fs_type); 1443 if (err) 1444 goto free_cachep; 1445 1446 printk(KERN_INFO "NILFS version 2 loaded\n"); 1447 return 0; 1448 1449 free_cachep: 1450 nilfs_destroy_cachep(); 1451 fail: 1452 return err; 1453 } 1454 1455 static void __exit exit_nilfs_fs(void) 1456 { 1457 nilfs_destroy_cachep(); 1458 unregister_filesystem(&nilfs_fs_type); 1459 } 1460 1461 module_init(init_nilfs_fs) 1462 module_exit(exit_nilfs_fs) 1463