xref: /openbmc/linux/fs/nilfs2/super.c (revision 81d67439)
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  */
22 /*
23  *  linux/fs/ext2/super.c
24  *
25  * Copyright (C) 1992, 1993, 1994, 1995
26  * Remy Card (card@masi.ibp.fr)
27  * Laboratoire MASI - Institut Blaise Pascal
28  * Universite Pierre et Marie Curie (Paris VI)
29  *
30  *  from
31  *
32  *  linux/fs/minix/inode.c
33  *
34  *  Copyright (C) 1991, 1992  Linus Torvalds
35  *
36  *  Big-endian to little-endian byte-swapping/bitmaps by
37  *        David S. Miller (davem@caip.rutgers.edu), 1995
38  */
39 
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/crc32.h>
47 #include <linux/vfs.h>
48 #include <linux/writeback.h>
49 #include <linux/seq_file.h>
50 #include <linux/mount.h>
51 #include "nilfs.h"
52 #include "export.h"
53 #include "mdt.h"
54 #include "alloc.h"
55 #include "btree.h"
56 #include "btnode.h"
57 #include "page.h"
58 #include "cpfile.h"
59 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
60 #include "ifile.h"
61 #include "dat.h"
62 #include "segment.h"
63 #include "segbuf.h"
64 
65 MODULE_AUTHOR("NTT Corp.");
66 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
67 		   "(NILFS)");
68 MODULE_LICENSE("GPL");
69 
70 static struct kmem_cache *nilfs_inode_cachep;
71 struct kmem_cache *nilfs_transaction_cachep;
72 struct kmem_cache *nilfs_segbuf_cachep;
73 struct kmem_cache *nilfs_btree_path_cache;
74 
75 static int nilfs_setup_super(struct super_block *sb, int is_mount);
76 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
77 
78 static void nilfs_set_error(struct super_block *sb)
79 {
80 	struct the_nilfs *nilfs = sb->s_fs_info;
81 	struct nilfs_super_block **sbp;
82 
83 	down_write(&nilfs->ns_sem);
84 	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
85 		nilfs->ns_mount_state |= NILFS_ERROR_FS;
86 		sbp = nilfs_prepare_super(sb, 0);
87 		if (likely(sbp)) {
88 			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
89 			if (sbp[1])
90 				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
91 			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
92 		}
93 	}
94 	up_write(&nilfs->ns_sem);
95 }
96 
97 /**
98  * nilfs_error() - report failure condition on a filesystem
99  *
100  * nilfs_error() sets an ERROR_FS flag on the superblock as well as
101  * reporting an error message.  It should be called when NILFS detects
102  * incoherences or defects of meta data on disk.  As for sustainable
103  * errors such as a single-shot I/O error, nilfs_warning() or the printk()
104  * function should be used instead.
105  *
106  * The segment constructor must not call this function because it can
107  * kill itself.
108  */
109 void nilfs_error(struct super_block *sb, const char *function,
110 		 const char *fmt, ...)
111 {
112 	struct the_nilfs *nilfs = sb->s_fs_info;
113 	struct va_format vaf;
114 	va_list args;
115 
116 	va_start(args, fmt);
117 
118 	vaf.fmt = fmt;
119 	vaf.va = &args;
120 
121 	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
122 	       sb->s_id, function, &vaf);
123 
124 	va_end(args);
125 
126 	if (!(sb->s_flags & MS_RDONLY)) {
127 		nilfs_set_error(sb);
128 
129 		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
130 			printk(KERN_CRIT "Remounting filesystem read-only\n");
131 			sb->s_flags |= MS_RDONLY;
132 		}
133 	}
134 
135 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
136 		panic("NILFS (device %s): panic forced after error\n",
137 		      sb->s_id);
138 }
139 
140 void nilfs_warning(struct super_block *sb, const char *function,
141 		   const char *fmt, ...)
142 {
143 	struct va_format vaf;
144 	va_list args;
145 
146 	va_start(args, fmt);
147 
148 	vaf.fmt = fmt;
149 	vaf.va = &args;
150 
151 	printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
152 	       sb->s_id, function, &vaf);
153 
154 	va_end(args);
155 }
156 
157 
158 struct inode *nilfs_alloc_inode(struct super_block *sb)
159 {
160 	struct nilfs_inode_info *ii;
161 
162 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
163 	if (!ii)
164 		return NULL;
165 	ii->i_bh = NULL;
166 	ii->i_state = 0;
167 	ii->i_cno = 0;
168 	ii->vfs_inode.i_version = 1;
169 	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode, sb->s_bdi);
170 	return &ii->vfs_inode;
171 }
172 
173 static void nilfs_i_callback(struct rcu_head *head)
174 {
175 	struct inode *inode = container_of(head, struct inode, i_rcu);
176 	struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
177 
178 	INIT_LIST_HEAD(&inode->i_dentry);
179 
180 	if (mdi) {
181 		kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
182 		kfree(mdi);
183 	}
184 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
185 }
186 
187 void nilfs_destroy_inode(struct inode *inode)
188 {
189 	call_rcu(&inode->i_rcu, nilfs_i_callback);
190 }
191 
192 static int nilfs_sync_super(struct super_block *sb, int flag)
193 {
194 	struct the_nilfs *nilfs = sb->s_fs_info;
195 	int err;
196 
197  retry:
198 	set_buffer_dirty(nilfs->ns_sbh[0]);
199 	if (nilfs_test_opt(nilfs, BARRIER)) {
200 		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
201 					  WRITE_SYNC | WRITE_FLUSH_FUA);
202 	} else {
203 		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
204 	}
205 
206 	if (unlikely(err)) {
207 		printk(KERN_ERR
208 		       "NILFS: unable to write superblock (err=%d)\n", err);
209 		if (err == -EIO && nilfs->ns_sbh[1]) {
210 			/*
211 			 * sbp[0] points to newer log than sbp[1],
212 			 * so copy sbp[0] to sbp[1] to take over sbp[0].
213 			 */
214 			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
215 			       nilfs->ns_sbsize);
216 			nilfs_fall_back_super_block(nilfs);
217 			goto retry;
218 		}
219 	} else {
220 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
221 
222 		nilfs->ns_sbwcount++;
223 
224 		/*
225 		 * The latest segment becomes trailable from the position
226 		 * written in superblock.
227 		 */
228 		clear_nilfs_discontinued(nilfs);
229 
230 		/* update GC protection for recent segments */
231 		if (nilfs->ns_sbh[1]) {
232 			if (flag == NILFS_SB_COMMIT_ALL) {
233 				set_buffer_dirty(nilfs->ns_sbh[1]);
234 				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
235 					goto out;
236 			}
237 			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
238 			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
239 				sbp = nilfs->ns_sbp[1];
240 		}
241 
242 		spin_lock(&nilfs->ns_last_segment_lock);
243 		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
244 		spin_unlock(&nilfs->ns_last_segment_lock);
245 	}
246  out:
247 	return err;
248 }
249 
250 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
251 			  struct the_nilfs *nilfs)
252 {
253 	sector_t nfreeblocks;
254 
255 	/* nilfs->ns_sem must be locked by the caller. */
256 	nilfs_count_free_blocks(nilfs, &nfreeblocks);
257 	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
258 
259 	spin_lock(&nilfs->ns_last_segment_lock);
260 	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
261 	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
262 	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
263 	spin_unlock(&nilfs->ns_last_segment_lock);
264 }
265 
266 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
267 					       int flip)
268 {
269 	struct the_nilfs *nilfs = sb->s_fs_info;
270 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
271 
272 	/* nilfs->ns_sem must be locked by the caller. */
273 	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
274 		if (sbp[1] &&
275 		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
276 			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
277 		} else {
278 			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
279 			       sb->s_id);
280 			return NULL;
281 		}
282 	} else if (sbp[1] &&
283 		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
284 			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
285 	}
286 
287 	if (flip && sbp[1])
288 		nilfs_swap_super_block(nilfs);
289 
290 	return sbp;
291 }
292 
293 int nilfs_commit_super(struct super_block *sb, int flag)
294 {
295 	struct the_nilfs *nilfs = sb->s_fs_info;
296 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
297 	time_t t;
298 
299 	/* nilfs->ns_sem must be locked by the caller. */
300 	t = get_seconds();
301 	nilfs->ns_sbwtime = t;
302 	sbp[0]->s_wtime = cpu_to_le64(t);
303 	sbp[0]->s_sum = 0;
304 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
305 					     (unsigned char *)sbp[0],
306 					     nilfs->ns_sbsize));
307 	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
308 		sbp[1]->s_wtime = sbp[0]->s_wtime;
309 		sbp[1]->s_sum = 0;
310 		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
311 					    (unsigned char *)sbp[1],
312 					    nilfs->ns_sbsize));
313 	}
314 	clear_nilfs_sb_dirty(nilfs);
315 	return nilfs_sync_super(sb, flag);
316 }
317 
318 /**
319  * nilfs_cleanup_super() - write filesystem state for cleanup
320  * @sb: super block instance to be unmounted or degraded to read-only
321  *
322  * This function restores state flags in the on-disk super block.
323  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
324  * filesystem was not clean previously.
325  */
326 int nilfs_cleanup_super(struct super_block *sb)
327 {
328 	struct the_nilfs *nilfs = sb->s_fs_info;
329 	struct nilfs_super_block **sbp;
330 	int flag = NILFS_SB_COMMIT;
331 	int ret = -EIO;
332 
333 	sbp = nilfs_prepare_super(sb, 0);
334 	if (sbp) {
335 		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
336 		nilfs_set_log_cursor(sbp[0], nilfs);
337 		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
338 			/*
339 			 * make the "clean" flag also to the opposite
340 			 * super block if both super blocks point to
341 			 * the same checkpoint.
342 			 */
343 			sbp[1]->s_state = sbp[0]->s_state;
344 			flag = NILFS_SB_COMMIT_ALL;
345 		}
346 		ret = nilfs_commit_super(sb, flag);
347 	}
348 	return ret;
349 }
350 
351 /**
352  * nilfs_move_2nd_super - relocate secondary super block
353  * @sb: super block instance
354  * @sb2off: new offset of the secondary super block (in bytes)
355  */
356 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
357 {
358 	struct the_nilfs *nilfs = sb->s_fs_info;
359 	struct buffer_head *nsbh;
360 	struct nilfs_super_block *nsbp;
361 	sector_t blocknr, newblocknr;
362 	unsigned long offset;
363 	int sb2i = -1;  /* array index of the secondary superblock */
364 	int ret = 0;
365 
366 	/* nilfs->ns_sem must be locked by the caller. */
367 	if (nilfs->ns_sbh[1] &&
368 	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
369 		sb2i = 1;
370 		blocknr = nilfs->ns_sbh[1]->b_blocknr;
371 	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
372 		sb2i = 0;
373 		blocknr = nilfs->ns_sbh[0]->b_blocknr;
374 	}
375 	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
376 		goto out;  /* super block location is unchanged */
377 
378 	/* Get new super block buffer */
379 	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
380 	offset = sb2off & (nilfs->ns_blocksize - 1);
381 	nsbh = sb_getblk(sb, newblocknr);
382 	if (!nsbh) {
383 		printk(KERN_WARNING
384 		       "NILFS warning: unable to move secondary superblock "
385 		       "to block %llu\n", (unsigned long long)newblocknr);
386 		ret = -EIO;
387 		goto out;
388 	}
389 	nsbp = (void *)nsbh->b_data + offset;
390 	memset(nsbp, 0, nilfs->ns_blocksize);
391 
392 	if (sb2i >= 0) {
393 		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
394 		brelse(nilfs->ns_sbh[sb2i]);
395 		nilfs->ns_sbh[sb2i] = nsbh;
396 		nilfs->ns_sbp[sb2i] = nsbp;
397 	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
398 		/* secondary super block will be restored to index 1 */
399 		nilfs->ns_sbh[1] = nsbh;
400 		nilfs->ns_sbp[1] = nsbp;
401 	} else {
402 		brelse(nsbh);
403 	}
404 out:
405 	return ret;
406 }
407 
408 /**
409  * nilfs_resize_fs - resize the filesystem
410  * @sb: super block instance
411  * @newsize: new size of the filesystem (in bytes)
412  */
413 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
414 {
415 	struct the_nilfs *nilfs = sb->s_fs_info;
416 	struct nilfs_super_block **sbp;
417 	__u64 devsize, newnsegs;
418 	loff_t sb2off;
419 	int ret;
420 
421 	ret = -ERANGE;
422 	devsize = i_size_read(sb->s_bdev->bd_inode);
423 	if (newsize > devsize)
424 		goto out;
425 
426 	/*
427 	 * Write lock is required to protect some functions depending
428 	 * on the number of segments, the number of reserved segments,
429 	 * and so forth.
430 	 */
431 	down_write(&nilfs->ns_segctor_sem);
432 
433 	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
434 	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
435 	do_div(newnsegs, nilfs->ns_blocks_per_segment);
436 
437 	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
438 	up_write(&nilfs->ns_segctor_sem);
439 	if (ret < 0)
440 		goto out;
441 
442 	ret = nilfs_construct_segment(sb);
443 	if (ret < 0)
444 		goto out;
445 
446 	down_write(&nilfs->ns_sem);
447 	nilfs_move_2nd_super(sb, sb2off);
448 	ret = -EIO;
449 	sbp = nilfs_prepare_super(sb, 0);
450 	if (likely(sbp)) {
451 		nilfs_set_log_cursor(sbp[0], nilfs);
452 		/*
453 		 * Drop NILFS_RESIZE_FS flag for compatibility with
454 		 * mount-time resize which may be implemented in a
455 		 * future release.
456 		 */
457 		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
458 					      ~NILFS_RESIZE_FS);
459 		sbp[0]->s_dev_size = cpu_to_le64(newsize);
460 		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
461 		if (sbp[1])
462 			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
463 		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
464 	}
465 	up_write(&nilfs->ns_sem);
466 
467 	/*
468 	 * Reset the range of allocatable segments last.  This order
469 	 * is important in the case of expansion because the secondary
470 	 * superblock must be protected from log write until migration
471 	 * completes.
472 	 */
473 	if (!ret)
474 		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
475 out:
476 	return ret;
477 }
478 
479 static void nilfs_put_super(struct super_block *sb)
480 {
481 	struct the_nilfs *nilfs = sb->s_fs_info;
482 
483 	nilfs_detach_log_writer(sb);
484 
485 	if (!(sb->s_flags & MS_RDONLY)) {
486 		down_write(&nilfs->ns_sem);
487 		nilfs_cleanup_super(sb);
488 		up_write(&nilfs->ns_sem);
489 	}
490 
491 	iput(nilfs->ns_sufile);
492 	iput(nilfs->ns_cpfile);
493 	iput(nilfs->ns_dat);
494 
495 	destroy_nilfs(nilfs);
496 	sb->s_fs_info = NULL;
497 }
498 
499 static int nilfs_sync_fs(struct super_block *sb, int wait)
500 {
501 	struct the_nilfs *nilfs = sb->s_fs_info;
502 	struct nilfs_super_block **sbp;
503 	int err = 0;
504 
505 	/* This function is called when super block should be written back */
506 	if (wait)
507 		err = nilfs_construct_segment(sb);
508 
509 	down_write(&nilfs->ns_sem);
510 	if (nilfs_sb_dirty(nilfs)) {
511 		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
512 		if (likely(sbp)) {
513 			nilfs_set_log_cursor(sbp[0], nilfs);
514 			nilfs_commit_super(sb, NILFS_SB_COMMIT);
515 		}
516 	}
517 	up_write(&nilfs->ns_sem);
518 
519 	return err;
520 }
521 
522 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
523 			    struct nilfs_root **rootp)
524 {
525 	struct the_nilfs *nilfs = sb->s_fs_info;
526 	struct nilfs_root *root;
527 	struct nilfs_checkpoint *raw_cp;
528 	struct buffer_head *bh_cp;
529 	int err = -ENOMEM;
530 
531 	root = nilfs_find_or_create_root(
532 		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
533 	if (!root)
534 		return err;
535 
536 	if (root->ifile)
537 		goto reuse; /* already attached checkpoint */
538 
539 	down_read(&nilfs->ns_segctor_sem);
540 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
541 					  &bh_cp);
542 	up_read(&nilfs->ns_segctor_sem);
543 	if (unlikely(err)) {
544 		if (err == -ENOENT || err == -EINVAL) {
545 			printk(KERN_ERR
546 			       "NILFS: Invalid checkpoint "
547 			       "(checkpoint number=%llu)\n",
548 			       (unsigned long long)cno);
549 			err = -EINVAL;
550 		}
551 		goto failed;
552 	}
553 
554 	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
555 			       &raw_cp->cp_ifile_inode, &root->ifile);
556 	if (err)
557 		goto failed_bh;
558 
559 	atomic_set(&root->inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
560 	atomic_set(&root->blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
561 
562 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
563 
564  reuse:
565 	*rootp = root;
566 	return 0;
567 
568  failed_bh:
569 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
570  failed:
571 	nilfs_put_root(root);
572 
573 	return err;
574 }
575 
576 static int nilfs_freeze(struct super_block *sb)
577 {
578 	struct the_nilfs *nilfs = sb->s_fs_info;
579 	int err;
580 
581 	if (sb->s_flags & MS_RDONLY)
582 		return 0;
583 
584 	/* Mark super block clean */
585 	down_write(&nilfs->ns_sem);
586 	err = nilfs_cleanup_super(sb);
587 	up_write(&nilfs->ns_sem);
588 	return err;
589 }
590 
591 static int nilfs_unfreeze(struct super_block *sb)
592 {
593 	struct the_nilfs *nilfs = sb->s_fs_info;
594 
595 	if (sb->s_flags & MS_RDONLY)
596 		return 0;
597 
598 	down_write(&nilfs->ns_sem);
599 	nilfs_setup_super(sb, false);
600 	up_write(&nilfs->ns_sem);
601 	return 0;
602 }
603 
604 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
605 {
606 	struct super_block *sb = dentry->d_sb;
607 	struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root;
608 	struct the_nilfs *nilfs = root->nilfs;
609 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
610 	unsigned long long blocks;
611 	unsigned long overhead;
612 	unsigned long nrsvblocks;
613 	sector_t nfreeblocks;
614 	int err;
615 
616 	/*
617 	 * Compute all of the segment blocks
618 	 *
619 	 * The blocks before first segment and after last segment
620 	 * are excluded.
621 	 */
622 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
623 		- nilfs->ns_first_data_block;
624 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
625 
626 	/*
627 	 * Compute the overhead
628 	 *
629 	 * When distributing meta data blocks outside segment structure,
630 	 * We must count them as the overhead.
631 	 */
632 	overhead = 0;
633 
634 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
635 	if (unlikely(err))
636 		return err;
637 
638 	buf->f_type = NILFS_SUPER_MAGIC;
639 	buf->f_bsize = sb->s_blocksize;
640 	buf->f_blocks = blocks - overhead;
641 	buf->f_bfree = nfreeblocks;
642 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
643 		(buf->f_bfree - nrsvblocks) : 0;
644 	buf->f_files = atomic_read(&root->inodes_count);
645 	buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
646 	buf->f_namelen = NILFS_NAME_LEN;
647 	buf->f_fsid.val[0] = (u32)id;
648 	buf->f_fsid.val[1] = (u32)(id >> 32);
649 
650 	return 0;
651 }
652 
653 static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
654 {
655 	struct super_block *sb = vfs->mnt_sb;
656 	struct the_nilfs *nilfs = sb->s_fs_info;
657 	struct nilfs_root *root = NILFS_I(vfs->mnt_root->d_inode)->i_root;
658 
659 	if (!nilfs_test_opt(nilfs, BARRIER))
660 		seq_puts(seq, ",nobarrier");
661 	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
662 		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
663 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
664 		seq_puts(seq, ",errors=panic");
665 	if (nilfs_test_opt(nilfs, ERRORS_CONT))
666 		seq_puts(seq, ",errors=continue");
667 	if (nilfs_test_opt(nilfs, STRICT_ORDER))
668 		seq_puts(seq, ",order=strict");
669 	if (nilfs_test_opt(nilfs, NORECOVERY))
670 		seq_puts(seq, ",norecovery");
671 	if (nilfs_test_opt(nilfs, DISCARD))
672 		seq_puts(seq, ",discard");
673 
674 	return 0;
675 }
676 
677 static const struct super_operations nilfs_sops = {
678 	.alloc_inode    = nilfs_alloc_inode,
679 	.destroy_inode  = nilfs_destroy_inode,
680 	.dirty_inode    = nilfs_dirty_inode,
681 	/* .write_inode    = nilfs_write_inode, */
682 	/* .put_inode      = nilfs_put_inode, */
683 	/* .drop_inode	  = nilfs_drop_inode, */
684 	.evict_inode    = nilfs_evict_inode,
685 	.put_super      = nilfs_put_super,
686 	/* .write_super    = nilfs_write_super, */
687 	.sync_fs        = nilfs_sync_fs,
688 	.freeze_fs	= nilfs_freeze,
689 	.unfreeze_fs	= nilfs_unfreeze,
690 	/* .write_super_lockfs */
691 	/* .unlockfs */
692 	.statfs         = nilfs_statfs,
693 	.remount_fs     = nilfs_remount,
694 	/* .umount_begin */
695 	.show_options = nilfs_show_options
696 };
697 
698 enum {
699 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
700 	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
701 	Opt_discard, Opt_nodiscard, Opt_err,
702 };
703 
704 static match_table_t tokens = {
705 	{Opt_err_cont, "errors=continue"},
706 	{Opt_err_panic, "errors=panic"},
707 	{Opt_err_ro, "errors=remount-ro"},
708 	{Opt_barrier, "barrier"},
709 	{Opt_nobarrier, "nobarrier"},
710 	{Opt_snapshot, "cp=%u"},
711 	{Opt_order, "order=%s"},
712 	{Opt_norecovery, "norecovery"},
713 	{Opt_discard, "discard"},
714 	{Opt_nodiscard, "nodiscard"},
715 	{Opt_err, NULL}
716 };
717 
718 static int parse_options(char *options, struct super_block *sb, int is_remount)
719 {
720 	struct the_nilfs *nilfs = sb->s_fs_info;
721 	char *p;
722 	substring_t args[MAX_OPT_ARGS];
723 
724 	if (!options)
725 		return 1;
726 
727 	while ((p = strsep(&options, ",")) != NULL) {
728 		int token;
729 		if (!*p)
730 			continue;
731 
732 		token = match_token(p, tokens, args);
733 		switch (token) {
734 		case Opt_barrier:
735 			nilfs_set_opt(nilfs, BARRIER);
736 			break;
737 		case Opt_nobarrier:
738 			nilfs_clear_opt(nilfs, BARRIER);
739 			break;
740 		case Opt_order:
741 			if (strcmp(args[0].from, "relaxed") == 0)
742 				/* Ordered data semantics */
743 				nilfs_clear_opt(nilfs, STRICT_ORDER);
744 			else if (strcmp(args[0].from, "strict") == 0)
745 				/* Strict in-order semantics */
746 				nilfs_set_opt(nilfs, STRICT_ORDER);
747 			else
748 				return 0;
749 			break;
750 		case Opt_err_panic:
751 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
752 			break;
753 		case Opt_err_ro:
754 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
755 			break;
756 		case Opt_err_cont:
757 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
758 			break;
759 		case Opt_snapshot:
760 			if (is_remount) {
761 				printk(KERN_ERR
762 				       "NILFS: \"%s\" option is invalid "
763 				       "for remount.\n", p);
764 				return 0;
765 			}
766 			break;
767 		case Opt_norecovery:
768 			nilfs_set_opt(nilfs, NORECOVERY);
769 			break;
770 		case Opt_discard:
771 			nilfs_set_opt(nilfs, DISCARD);
772 			break;
773 		case Opt_nodiscard:
774 			nilfs_clear_opt(nilfs, DISCARD);
775 			break;
776 		default:
777 			printk(KERN_ERR
778 			       "NILFS: Unrecognized mount option \"%s\"\n", p);
779 			return 0;
780 		}
781 	}
782 	return 1;
783 }
784 
785 static inline void
786 nilfs_set_default_options(struct super_block *sb,
787 			  struct nilfs_super_block *sbp)
788 {
789 	struct the_nilfs *nilfs = sb->s_fs_info;
790 
791 	nilfs->ns_mount_opt =
792 		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
793 }
794 
795 static int nilfs_setup_super(struct super_block *sb, int is_mount)
796 {
797 	struct the_nilfs *nilfs = sb->s_fs_info;
798 	struct nilfs_super_block **sbp;
799 	int max_mnt_count;
800 	int mnt_count;
801 
802 	/* nilfs->ns_sem must be locked by the caller. */
803 	sbp = nilfs_prepare_super(sb, 0);
804 	if (!sbp)
805 		return -EIO;
806 
807 	if (!is_mount)
808 		goto skip_mount_setup;
809 
810 	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
811 	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
812 
813 	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
814 		printk(KERN_WARNING
815 		       "NILFS warning: mounting fs with errors\n");
816 #if 0
817 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
818 		printk(KERN_WARNING
819 		       "NILFS warning: maximal mount count reached\n");
820 #endif
821 	}
822 	if (!max_mnt_count)
823 		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
824 
825 	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
826 	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
827 
828 skip_mount_setup:
829 	sbp[0]->s_state =
830 		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
831 	/* synchronize sbp[1] with sbp[0] */
832 	if (sbp[1])
833 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
834 	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
835 }
836 
837 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
838 						 u64 pos, int blocksize,
839 						 struct buffer_head **pbh)
840 {
841 	unsigned long long sb_index = pos;
842 	unsigned long offset;
843 
844 	offset = do_div(sb_index, blocksize);
845 	*pbh = sb_bread(sb, sb_index);
846 	if (!*pbh)
847 		return NULL;
848 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
849 }
850 
851 int nilfs_store_magic_and_option(struct super_block *sb,
852 				 struct nilfs_super_block *sbp,
853 				 char *data)
854 {
855 	struct the_nilfs *nilfs = sb->s_fs_info;
856 
857 	sb->s_magic = le16_to_cpu(sbp->s_magic);
858 
859 	/* FS independent flags */
860 #ifdef NILFS_ATIME_DISABLE
861 	sb->s_flags |= MS_NOATIME;
862 #endif
863 
864 	nilfs_set_default_options(sb, sbp);
865 
866 	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
867 	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
868 	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
869 	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
870 
871 	return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
872 }
873 
874 int nilfs_check_feature_compatibility(struct super_block *sb,
875 				      struct nilfs_super_block *sbp)
876 {
877 	__u64 features;
878 
879 	features = le64_to_cpu(sbp->s_feature_incompat) &
880 		~NILFS_FEATURE_INCOMPAT_SUPP;
881 	if (features) {
882 		printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
883 		       "optional features (%llx)\n",
884 		       (unsigned long long)features);
885 		return -EINVAL;
886 	}
887 	features = le64_to_cpu(sbp->s_feature_compat_ro) &
888 		~NILFS_FEATURE_COMPAT_RO_SUPP;
889 	if (!(sb->s_flags & MS_RDONLY) && features) {
890 		printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
891 		       "unsupported optional features (%llx)\n",
892 		       (unsigned long long)features);
893 		return -EINVAL;
894 	}
895 	return 0;
896 }
897 
898 static int nilfs_get_root_dentry(struct super_block *sb,
899 				 struct nilfs_root *root,
900 				 struct dentry **root_dentry)
901 {
902 	struct inode *inode;
903 	struct dentry *dentry;
904 	int ret = 0;
905 
906 	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
907 	if (IS_ERR(inode)) {
908 		printk(KERN_ERR "NILFS: get root inode failed\n");
909 		ret = PTR_ERR(inode);
910 		goto out;
911 	}
912 	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
913 		iput(inode);
914 		printk(KERN_ERR "NILFS: corrupt root inode.\n");
915 		ret = -EINVAL;
916 		goto out;
917 	}
918 
919 	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
920 		dentry = d_find_alias(inode);
921 		if (!dentry) {
922 			dentry = d_alloc_root(inode);
923 			if (!dentry) {
924 				iput(inode);
925 				ret = -ENOMEM;
926 				goto failed_dentry;
927 			}
928 		} else {
929 			iput(inode);
930 		}
931 	} else {
932 		dentry = d_obtain_alias(inode);
933 		if (IS_ERR(dentry)) {
934 			ret = PTR_ERR(dentry);
935 			goto failed_dentry;
936 		}
937 	}
938 	*root_dentry = dentry;
939  out:
940 	return ret;
941 
942  failed_dentry:
943 	printk(KERN_ERR "NILFS: get root dentry failed\n");
944 	goto out;
945 }
946 
947 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
948 				 struct dentry **root_dentry)
949 {
950 	struct the_nilfs *nilfs = s->s_fs_info;
951 	struct nilfs_root *root;
952 	int ret;
953 
954 	down_read(&nilfs->ns_segctor_sem);
955 	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
956 	up_read(&nilfs->ns_segctor_sem);
957 	if (ret < 0) {
958 		ret = (ret == -ENOENT) ? -EINVAL : ret;
959 		goto out;
960 	} else if (!ret) {
961 		printk(KERN_ERR "NILFS: The specified checkpoint is "
962 		       "not a snapshot (checkpoint number=%llu).\n",
963 		       (unsigned long long)cno);
964 		ret = -EINVAL;
965 		goto out;
966 	}
967 
968 	ret = nilfs_attach_checkpoint(s, cno, false, &root);
969 	if (ret) {
970 		printk(KERN_ERR "NILFS: error loading snapshot "
971 		       "(checkpoint number=%llu).\n",
972 	       (unsigned long long)cno);
973 		goto out;
974 	}
975 	ret = nilfs_get_root_dentry(s, root, root_dentry);
976 	nilfs_put_root(root);
977  out:
978 	return ret;
979 }
980 
981 static int nilfs_tree_was_touched(struct dentry *root_dentry)
982 {
983 	return root_dentry->d_count > 1;
984 }
985 
986 /**
987  * nilfs_try_to_shrink_tree() - try to shrink dentries of a checkpoint
988  * @root_dentry: root dentry of the tree to be shrunk
989  *
990  * This function returns true if the tree was in-use.
991  */
992 static int nilfs_try_to_shrink_tree(struct dentry *root_dentry)
993 {
994 	if (have_submounts(root_dentry))
995 		return true;
996 	shrink_dcache_parent(root_dentry);
997 	return nilfs_tree_was_touched(root_dentry);
998 }
999 
1000 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1001 {
1002 	struct the_nilfs *nilfs = sb->s_fs_info;
1003 	struct nilfs_root *root;
1004 	struct inode *inode;
1005 	struct dentry *dentry;
1006 	int ret;
1007 
1008 	if (cno < 0 || cno > nilfs->ns_cno)
1009 		return false;
1010 
1011 	if (cno >= nilfs_last_cno(nilfs))
1012 		return true;	/* protect recent checkpoints */
1013 
1014 	ret = false;
1015 	root = nilfs_lookup_root(nilfs, cno);
1016 	if (root) {
1017 		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1018 		if (inode) {
1019 			dentry = d_find_alias(inode);
1020 			if (dentry) {
1021 				if (nilfs_tree_was_touched(dentry))
1022 					ret = nilfs_try_to_shrink_tree(dentry);
1023 				dput(dentry);
1024 			}
1025 			iput(inode);
1026 		}
1027 		nilfs_put_root(root);
1028 	}
1029 	return ret;
1030 }
1031 
1032 /**
1033  * nilfs_fill_super() - initialize a super block instance
1034  * @sb: super_block
1035  * @data: mount options
1036  * @silent: silent mode flag
1037  *
1038  * This function is called exclusively by nilfs->ns_mount_mutex.
1039  * So, the recovery process is protected from other simultaneous mounts.
1040  */
1041 static int
1042 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1043 {
1044 	struct the_nilfs *nilfs;
1045 	struct nilfs_root *fsroot;
1046 	struct backing_dev_info *bdi;
1047 	__u64 cno;
1048 	int err;
1049 
1050 	nilfs = alloc_nilfs(sb->s_bdev);
1051 	if (!nilfs)
1052 		return -ENOMEM;
1053 
1054 	sb->s_fs_info = nilfs;
1055 
1056 	err = init_nilfs(nilfs, sb, (char *)data);
1057 	if (err)
1058 		goto failed_nilfs;
1059 
1060 	sb->s_op = &nilfs_sops;
1061 	sb->s_export_op = &nilfs_export_ops;
1062 	sb->s_root = NULL;
1063 	sb->s_time_gran = 1;
1064 
1065 	bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
1066 	sb->s_bdi = bdi ? : &default_backing_dev_info;
1067 
1068 	err = load_nilfs(nilfs, sb);
1069 	if (err)
1070 		goto failed_nilfs;
1071 
1072 	cno = nilfs_last_cno(nilfs);
1073 	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1074 	if (err) {
1075 		printk(KERN_ERR "NILFS: error loading last checkpoint "
1076 		       "(checkpoint number=%llu).\n", (unsigned long long)cno);
1077 		goto failed_unload;
1078 	}
1079 
1080 	if (!(sb->s_flags & MS_RDONLY)) {
1081 		err = nilfs_attach_log_writer(sb, fsroot);
1082 		if (err)
1083 			goto failed_checkpoint;
1084 	}
1085 
1086 	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1087 	if (err)
1088 		goto failed_segctor;
1089 
1090 	nilfs_put_root(fsroot);
1091 
1092 	if (!(sb->s_flags & MS_RDONLY)) {
1093 		down_write(&nilfs->ns_sem);
1094 		nilfs_setup_super(sb, true);
1095 		up_write(&nilfs->ns_sem);
1096 	}
1097 
1098 	return 0;
1099 
1100  failed_segctor:
1101 	nilfs_detach_log_writer(sb);
1102 
1103  failed_checkpoint:
1104 	nilfs_put_root(fsroot);
1105 
1106  failed_unload:
1107 	iput(nilfs->ns_sufile);
1108 	iput(nilfs->ns_cpfile);
1109 	iput(nilfs->ns_dat);
1110 
1111  failed_nilfs:
1112 	destroy_nilfs(nilfs);
1113 	return err;
1114 }
1115 
1116 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1117 {
1118 	struct the_nilfs *nilfs = sb->s_fs_info;
1119 	unsigned long old_sb_flags;
1120 	unsigned long old_mount_opt;
1121 	int err;
1122 
1123 	old_sb_flags = sb->s_flags;
1124 	old_mount_opt = nilfs->ns_mount_opt;
1125 
1126 	if (!parse_options(data, sb, 1)) {
1127 		err = -EINVAL;
1128 		goto restore_opts;
1129 	}
1130 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1131 
1132 	err = -EINVAL;
1133 
1134 	if (!nilfs_valid_fs(nilfs)) {
1135 		printk(KERN_WARNING "NILFS (device %s): couldn't "
1136 		       "remount because the filesystem is in an "
1137 		       "incomplete recovery state.\n", sb->s_id);
1138 		goto restore_opts;
1139 	}
1140 
1141 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1142 		goto out;
1143 	if (*flags & MS_RDONLY) {
1144 		/* Shutting down log writer */
1145 		nilfs_detach_log_writer(sb);
1146 		sb->s_flags |= MS_RDONLY;
1147 
1148 		/*
1149 		 * Remounting a valid RW partition RDONLY, so set
1150 		 * the RDONLY flag and then mark the partition as valid again.
1151 		 */
1152 		down_write(&nilfs->ns_sem);
1153 		nilfs_cleanup_super(sb);
1154 		up_write(&nilfs->ns_sem);
1155 	} else {
1156 		__u64 features;
1157 		struct nilfs_root *root;
1158 
1159 		/*
1160 		 * Mounting a RDONLY partition read-write, so reread and
1161 		 * store the current valid flag.  (It may have been changed
1162 		 * by fsck since we originally mounted the partition.)
1163 		 */
1164 		down_read(&nilfs->ns_sem);
1165 		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1166 			~NILFS_FEATURE_COMPAT_RO_SUPP;
1167 		up_read(&nilfs->ns_sem);
1168 		if (features) {
1169 			printk(KERN_WARNING "NILFS (device %s): couldn't "
1170 			       "remount RDWR because of unsupported optional "
1171 			       "features (%llx)\n",
1172 			       sb->s_id, (unsigned long long)features);
1173 			err = -EROFS;
1174 			goto restore_opts;
1175 		}
1176 
1177 		sb->s_flags &= ~MS_RDONLY;
1178 
1179 		root = NILFS_I(sb->s_root->d_inode)->i_root;
1180 		err = nilfs_attach_log_writer(sb, root);
1181 		if (err)
1182 			goto restore_opts;
1183 
1184 		down_write(&nilfs->ns_sem);
1185 		nilfs_setup_super(sb, true);
1186 		up_write(&nilfs->ns_sem);
1187 	}
1188  out:
1189 	return 0;
1190 
1191  restore_opts:
1192 	sb->s_flags = old_sb_flags;
1193 	nilfs->ns_mount_opt = old_mount_opt;
1194 	return err;
1195 }
1196 
1197 struct nilfs_super_data {
1198 	struct block_device *bdev;
1199 	__u64 cno;
1200 	int flags;
1201 };
1202 
1203 /**
1204  * nilfs_identify - pre-read mount options needed to identify mount instance
1205  * @data: mount options
1206  * @sd: nilfs_super_data
1207  */
1208 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1209 {
1210 	char *p, *options = data;
1211 	substring_t args[MAX_OPT_ARGS];
1212 	int token;
1213 	int ret = 0;
1214 
1215 	do {
1216 		p = strsep(&options, ",");
1217 		if (p != NULL && *p) {
1218 			token = match_token(p, tokens, args);
1219 			if (token == Opt_snapshot) {
1220 				if (!(sd->flags & MS_RDONLY)) {
1221 					ret++;
1222 				} else {
1223 					sd->cno = simple_strtoull(args[0].from,
1224 								  NULL, 0);
1225 					/*
1226 					 * No need to see the end pointer;
1227 					 * match_token() has done syntax
1228 					 * checking.
1229 					 */
1230 					if (sd->cno == 0)
1231 						ret++;
1232 				}
1233 			}
1234 			if (ret)
1235 				printk(KERN_ERR
1236 				       "NILFS: invalid mount option: %s\n", p);
1237 		}
1238 		if (!options)
1239 			break;
1240 		BUG_ON(options == data);
1241 		*(options - 1) = ',';
1242 	} while (!ret);
1243 	return ret;
1244 }
1245 
1246 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1247 {
1248 	s->s_bdev = data;
1249 	s->s_dev = s->s_bdev->bd_dev;
1250 	return 0;
1251 }
1252 
1253 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1254 {
1255 	return (void *)s->s_bdev == data;
1256 }
1257 
1258 static struct dentry *
1259 nilfs_mount(struct file_system_type *fs_type, int flags,
1260 	     const char *dev_name, void *data)
1261 {
1262 	struct nilfs_super_data sd;
1263 	struct super_block *s;
1264 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1265 	struct dentry *root_dentry;
1266 	int err, s_new = false;
1267 
1268 	if (!(flags & MS_RDONLY))
1269 		mode |= FMODE_WRITE;
1270 
1271 	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1272 	if (IS_ERR(sd.bdev))
1273 		return ERR_CAST(sd.bdev);
1274 
1275 	sd.cno = 0;
1276 	sd.flags = flags;
1277 	if (nilfs_identify((char *)data, &sd)) {
1278 		err = -EINVAL;
1279 		goto failed;
1280 	}
1281 
1282 	/*
1283 	 * once the super is inserted into the list by sget, s_umount
1284 	 * will protect the lockfs code from trying to start a snapshot
1285 	 * while we are mounting
1286 	 */
1287 	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1288 	if (sd.bdev->bd_fsfreeze_count > 0) {
1289 		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1290 		err = -EBUSY;
1291 		goto failed;
1292 	}
1293 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, sd.bdev);
1294 	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1295 	if (IS_ERR(s)) {
1296 		err = PTR_ERR(s);
1297 		goto failed;
1298 	}
1299 
1300 	if (!s->s_root) {
1301 		char b[BDEVNAME_SIZE];
1302 
1303 		s_new = true;
1304 
1305 		/* New superblock instance created */
1306 		s->s_flags = flags;
1307 		s->s_mode = mode;
1308 		strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1309 		sb_set_blocksize(s, block_size(sd.bdev));
1310 
1311 		err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1312 		if (err)
1313 			goto failed_super;
1314 
1315 		s->s_flags |= MS_ACTIVE;
1316 	} else if (!sd.cno) {
1317 		int busy = false;
1318 
1319 		if (nilfs_tree_was_touched(s->s_root)) {
1320 			busy = nilfs_try_to_shrink_tree(s->s_root);
1321 			if (busy && (flags ^ s->s_flags) & MS_RDONLY) {
1322 				printk(KERN_ERR "NILFS: the device already "
1323 				       "has a %s mount.\n",
1324 				       (s->s_flags & MS_RDONLY) ?
1325 				       "read-only" : "read/write");
1326 				err = -EBUSY;
1327 				goto failed_super;
1328 			}
1329 		}
1330 		if (!busy) {
1331 			/*
1332 			 * Try remount to setup mount states if the current
1333 			 * tree is not mounted and only snapshots use this sb.
1334 			 */
1335 			err = nilfs_remount(s, &flags, data);
1336 			if (err)
1337 				goto failed_super;
1338 		}
1339 	}
1340 
1341 	if (sd.cno) {
1342 		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1343 		if (err)
1344 			goto failed_super;
1345 	} else {
1346 		root_dentry = dget(s->s_root);
1347 	}
1348 
1349 	if (!s_new)
1350 		blkdev_put(sd.bdev, mode);
1351 
1352 	return root_dentry;
1353 
1354  failed_super:
1355 	deactivate_locked_super(s);
1356 
1357  failed:
1358 	if (!s_new)
1359 		blkdev_put(sd.bdev, mode);
1360 	return ERR_PTR(err);
1361 }
1362 
1363 struct file_system_type nilfs_fs_type = {
1364 	.owner    = THIS_MODULE,
1365 	.name     = "nilfs2",
1366 	.mount    = nilfs_mount,
1367 	.kill_sb  = kill_block_super,
1368 	.fs_flags = FS_REQUIRES_DEV,
1369 };
1370 
1371 static void nilfs_inode_init_once(void *obj)
1372 {
1373 	struct nilfs_inode_info *ii = obj;
1374 
1375 	INIT_LIST_HEAD(&ii->i_dirty);
1376 #ifdef CONFIG_NILFS_XATTR
1377 	init_rwsem(&ii->xattr_sem);
1378 #endif
1379 	address_space_init_once(&ii->i_btnode_cache);
1380 	ii->i_bmap = &ii->i_bmap_data;
1381 	inode_init_once(&ii->vfs_inode);
1382 }
1383 
1384 static void nilfs_segbuf_init_once(void *obj)
1385 {
1386 	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1387 }
1388 
1389 static void nilfs_destroy_cachep(void)
1390 {
1391 	if (nilfs_inode_cachep)
1392 		kmem_cache_destroy(nilfs_inode_cachep);
1393 	if (nilfs_transaction_cachep)
1394 		kmem_cache_destroy(nilfs_transaction_cachep);
1395 	if (nilfs_segbuf_cachep)
1396 		kmem_cache_destroy(nilfs_segbuf_cachep);
1397 	if (nilfs_btree_path_cache)
1398 		kmem_cache_destroy(nilfs_btree_path_cache);
1399 }
1400 
1401 static int __init nilfs_init_cachep(void)
1402 {
1403 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1404 			sizeof(struct nilfs_inode_info), 0,
1405 			SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1406 	if (!nilfs_inode_cachep)
1407 		goto fail;
1408 
1409 	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1410 			sizeof(struct nilfs_transaction_info), 0,
1411 			SLAB_RECLAIM_ACCOUNT, NULL);
1412 	if (!nilfs_transaction_cachep)
1413 		goto fail;
1414 
1415 	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1416 			sizeof(struct nilfs_segment_buffer), 0,
1417 			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1418 	if (!nilfs_segbuf_cachep)
1419 		goto fail;
1420 
1421 	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1422 			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1423 			0, 0, NULL);
1424 	if (!nilfs_btree_path_cache)
1425 		goto fail;
1426 
1427 	return 0;
1428 
1429 fail:
1430 	nilfs_destroy_cachep();
1431 	return -ENOMEM;
1432 }
1433 
1434 static int __init init_nilfs_fs(void)
1435 {
1436 	int err;
1437 
1438 	err = nilfs_init_cachep();
1439 	if (err)
1440 		goto fail;
1441 
1442 	err = register_filesystem(&nilfs_fs_type);
1443 	if (err)
1444 		goto free_cachep;
1445 
1446 	printk(KERN_INFO "NILFS version 2 loaded\n");
1447 	return 0;
1448 
1449 free_cachep:
1450 	nilfs_destroy_cachep();
1451 fail:
1452 	return err;
1453 }
1454 
1455 static void __exit exit_nilfs_fs(void)
1456 {
1457 	nilfs_destroy_cachep();
1458 	unregister_filesystem(&nilfs_fs_type);
1459 }
1460 
1461 module_init(init_nilfs_fs)
1462 module_exit(exit_nilfs_fs)
1463