1 /* 2 * super.c - NILFS module and super block management. 3 * 4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * Written by Ryusuke Konishi. 17 */ 18 /* 19 * linux/fs/ext2/super.c 20 * 21 * Copyright (C) 1992, 1993, 1994, 1995 22 * Remy Card (card@masi.ibp.fr) 23 * Laboratoire MASI - Institut Blaise Pascal 24 * Universite Pierre et Marie Curie (Paris VI) 25 * 26 * from 27 * 28 * linux/fs/minix/inode.c 29 * 30 * Copyright (C) 1991, 1992 Linus Torvalds 31 * 32 * Big-endian to little-endian byte-swapping/bitmaps by 33 * David S. Miller (davem@caip.rutgers.edu), 1995 34 */ 35 36 #include <linux/module.h> 37 #include <linux/string.h> 38 #include <linux/slab.h> 39 #include <linux/init.h> 40 #include <linux/blkdev.h> 41 #include <linux/parser.h> 42 #include <linux/crc32.h> 43 #include <linux/vfs.h> 44 #include <linux/writeback.h> 45 #include <linux/seq_file.h> 46 #include <linux/mount.h> 47 #include "nilfs.h" 48 #include "export.h" 49 #include "mdt.h" 50 #include "alloc.h" 51 #include "btree.h" 52 #include "btnode.h" 53 #include "page.h" 54 #include "cpfile.h" 55 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */ 56 #include "ifile.h" 57 #include "dat.h" 58 #include "segment.h" 59 #include "segbuf.h" 60 61 MODULE_AUTHOR("NTT Corp."); 62 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem " 63 "(NILFS)"); 64 MODULE_LICENSE("GPL"); 65 66 static struct kmem_cache *nilfs_inode_cachep; 67 struct kmem_cache *nilfs_transaction_cachep; 68 struct kmem_cache *nilfs_segbuf_cachep; 69 struct kmem_cache *nilfs_btree_path_cache; 70 71 static int nilfs_setup_super(struct super_block *sb, int is_mount); 72 static int nilfs_remount(struct super_block *sb, int *flags, char *data); 73 74 void __nilfs_msg(struct super_block *sb, const char *level, const char *fmt, 75 ...) 76 { 77 struct va_format vaf; 78 va_list args; 79 80 va_start(args, fmt); 81 vaf.fmt = fmt; 82 vaf.va = &args; 83 if (sb) 84 printk("%sNILFS (%s): %pV\n", level, sb->s_id, &vaf); 85 else 86 printk("%sNILFS: %pV\n", level, &vaf); 87 va_end(args); 88 } 89 90 static void nilfs_set_error(struct super_block *sb) 91 { 92 struct the_nilfs *nilfs = sb->s_fs_info; 93 struct nilfs_super_block **sbp; 94 95 down_write(&nilfs->ns_sem); 96 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) { 97 nilfs->ns_mount_state |= NILFS_ERROR_FS; 98 sbp = nilfs_prepare_super(sb, 0); 99 if (likely(sbp)) { 100 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 101 if (sbp[1]) 102 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 103 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 104 } 105 } 106 up_write(&nilfs->ns_sem); 107 } 108 109 /** 110 * __nilfs_error() - report failure condition on a filesystem 111 * 112 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as 113 * reporting an error message. This function should be called when 114 * NILFS detects incoherences or defects of meta data on disk. 115 * 116 * This implements the body of nilfs_error() macro. Normally, 117 * nilfs_error() should be used. As for sustainable errors such as a 118 * single-shot I/O error, nilfs_msg() should be used instead. 119 * 120 * Callers should not add a trailing newline since this will do it. 121 */ 122 void __nilfs_error(struct super_block *sb, const char *function, 123 const char *fmt, ...) 124 { 125 struct the_nilfs *nilfs = sb->s_fs_info; 126 struct va_format vaf; 127 va_list args; 128 129 va_start(args, fmt); 130 131 vaf.fmt = fmt; 132 vaf.va = &args; 133 134 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n", 135 sb->s_id, function, &vaf); 136 137 va_end(args); 138 139 if (!sb_rdonly(sb)) { 140 nilfs_set_error(sb); 141 142 if (nilfs_test_opt(nilfs, ERRORS_RO)) { 143 printk(KERN_CRIT "Remounting filesystem read-only\n"); 144 sb->s_flags |= SB_RDONLY; 145 } 146 } 147 148 if (nilfs_test_opt(nilfs, ERRORS_PANIC)) 149 panic("NILFS (device %s): panic forced after error\n", 150 sb->s_id); 151 } 152 153 struct inode *nilfs_alloc_inode(struct super_block *sb) 154 { 155 struct nilfs_inode_info *ii; 156 157 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS); 158 if (!ii) 159 return NULL; 160 ii->i_bh = NULL; 161 ii->i_state = 0; 162 ii->i_cno = 0; 163 nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode); 164 return &ii->vfs_inode; 165 } 166 167 static void nilfs_i_callback(struct rcu_head *head) 168 { 169 struct inode *inode = container_of(head, struct inode, i_rcu); 170 171 if (nilfs_is_metadata_file_inode(inode)) 172 nilfs_mdt_destroy(inode); 173 174 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode)); 175 } 176 177 void nilfs_destroy_inode(struct inode *inode) 178 { 179 call_rcu(&inode->i_rcu, nilfs_i_callback); 180 } 181 182 static int nilfs_sync_super(struct super_block *sb, int flag) 183 { 184 struct the_nilfs *nilfs = sb->s_fs_info; 185 int err; 186 187 retry: 188 set_buffer_dirty(nilfs->ns_sbh[0]); 189 if (nilfs_test_opt(nilfs, BARRIER)) { 190 err = __sync_dirty_buffer(nilfs->ns_sbh[0], 191 REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 192 } else { 193 err = sync_dirty_buffer(nilfs->ns_sbh[0]); 194 } 195 196 if (unlikely(err)) { 197 nilfs_msg(sb, KERN_ERR, "unable to write superblock: err=%d", 198 err); 199 if (err == -EIO && nilfs->ns_sbh[1]) { 200 /* 201 * sbp[0] points to newer log than sbp[1], 202 * so copy sbp[0] to sbp[1] to take over sbp[0]. 203 */ 204 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0], 205 nilfs->ns_sbsize); 206 nilfs_fall_back_super_block(nilfs); 207 goto retry; 208 } 209 } else { 210 struct nilfs_super_block *sbp = nilfs->ns_sbp[0]; 211 212 nilfs->ns_sbwcount++; 213 214 /* 215 * The latest segment becomes trailable from the position 216 * written in superblock. 217 */ 218 clear_nilfs_discontinued(nilfs); 219 220 /* update GC protection for recent segments */ 221 if (nilfs->ns_sbh[1]) { 222 if (flag == NILFS_SB_COMMIT_ALL) { 223 set_buffer_dirty(nilfs->ns_sbh[1]); 224 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0) 225 goto out; 226 } 227 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) < 228 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno)) 229 sbp = nilfs->ns_sbp[1]; 230 } 231 232 spin_lock(&nilfs->ns_last_segment_lock); 233 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq); 234 spin_unlock(&nilfs->ns_last_segment_lock); 235 } 236 out: 237 return err; 238 } 239 240 void nilfs_set_log_cursor(struct nilfs_super_block *sbp, 241 struct the_nilfs *nilfs) 242 { 243 sector_t nfreeblocks; 244 245 /* nilfs->ns_sem must be locked by the caller. */ 246 nilfs_count_free_blocks(nilfs, &nfreeblocks); 247 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks); 248 249 spin_lock(&nilfs->ns_last_segment_lock); 250 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq); 251 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg); 252 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno); 253 spin_unlock(&nilfs->ns_last_segment_lock); 254 } 255 256 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb, 257 int flip) 258 { 259 struct the_nilfs *nilfs = sb->s_fs_info; 260 struct nilfs_super_block **sbp = nilfs->ns_sbp; 261 262 /* nilfs->ns_sem must be locked by the caller. */ 263 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 264 if (sbp[1] && 265 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) { 266 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize); 267 } else { 268 nilfs_msg(sb, KERN_CRIT, "superblock broke"); 269 return NULL; 270 } 271 } else if (sbp[1] && 272 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 273 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 274 } 275 276 if (flip && sbp[1]) 277 nilfs_swap_super_block(nilfs); 278 279 return sbp; 280 } 281 282 int nilfs_commit_super(struct super_block *sb, int flag) 283 { 284 struct the_nilfs *nilfs = sb->s_fs_info; 285 struct nilfs_super_block **sbp = nilfs->ns_sbp; 286 time_t t; 287 288 /* nilfs->ns_sem must be locked by the caller. */ 289 t = get_seconds(); 290 nilfs->ns_sbwtime = t; 291 sbp[0]->s_wtime = cpu_to_le64(t); 292 sbp[0]->s_sum = 0; 293 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 294 (unsigned char *)sbp[0], 295 nilfs->ns_sbsize)); 296 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) { 297 sbp[1]->s_wtime = sbp[0]->s_wtime; 298 sbp[1]->s_sum = 0; 299 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 300 (unsigned char *)sbp[1], 301 nilfs->ns_sbsize)); 302 } 303 clear_nilfs_sb_dirty(nilfs); 304 nilfs->ns_flushed_device = 1; 305 /* make sure store to ns_flushed_device cannot be reordered */ 306 smp_wmb(); 307 return nilfs_sync_super(sb, flag); 308 } 309 310 /** 311 * nilfs_cleanup_super() - write filesystem state for cleanup 312 * @sb: super block instance to be unmounted or degraded to read-only 313 * 314 * This function restores state flags in the on-disk super block. 315 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the 316 * filesystem was not clean previously. 317 */ 318 int nilfs_cleanup_super(struct super_block *sb) 319 { 320 struct the_nilfs *nilfs = sb->s_fs_info; 321 struct nilfs_super_block **sbp; 322 int flag = NILFS_SB_COMMIT; 323 int ret = -EIO; 324 325 sbp = nilfs_prepare_super(sb, 0); 326 if (sbp) { 327 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state); 328 nilfs_set_log_cursor(sbp[0], nilfs); 329 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) { 330 /* 331 * make the "clean" flag also to the opposite 332 * super block if both super blocks point to 333 * the same checkpoint. 334 */ 335 sbp[1]->s_state = sbp[0]->s_state; 336 flag = NILFS_SB_COMMIT_ALL; 337 } 338 ret = nilfs_commit_super(sb, flag); 339 } 340 return ret; 341 } 342 343 /** 344 * nilfs_move_2nd_super - relocate secondary super block 345 * @sb: super block instance 346 * @sb2off: new offset of the secondary super block (in bytes) 347 */ 348 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off) 349 { 350 struct the_nilfs *nilfs = sb->s_fs_info; 351 struct buffer_head *nsbh; 352 struct nilfs_super_block *nsbp; 353 sector_t blocknr, newblocknr; 354 unsigned long offset; 355 int sb2i; /* array index of the secondary superblock */ 356 int ret = 0; 357 358 /* nilfs->ns_sem must be locked by the caller. */ 359 if (nilfs->ns_sbh[1] && 360 nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) { 361 sb2i = 1; 362 blocknr = nilfs->ns_sbh[1]->b_blocknr; 363 } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) { 364 sb2i = 0; 365 blocknr = nilfs->ns_sbh[0]->b_blocknr; 366 } else { 367 sb2i = -1; 368 blocknr = 0; 369 } 370 if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off) 371 goto out; /* super block location is unchanged */ 372 373 /* Get new super block buffer */ 374 newblocknr = sb2off >> nilfs->ns_blocksize_bits; 375 offset = sb2off & (nilfs->ns_blocksize - 1); 376 nsbh = sb_getblk(sb, newblocknr); 377 if (!nsbh) { 378 nilfs_msg(sb, KERN_WARNING, 379 "unable to move secondary superblock to block %llu", 380 (unsigned long long)newblocknr); 381 ret = -EIO; 382 goto out; 383 } 384 nsbp = (void *)nsbh->b_data + offset; 385 memset(nsbp, 0, nilfs->ns_blocksize); 386 387 if (sb2i >= 0) { 388 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize); 389 brelse(nilfs->ns_sbh[sb2i]); 390 nilfs->ns_sbh[sb2i] = nsbh; 391 nilfs->ns_sbp[sb2i] = nsbp; 392 } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) { 393 /* secondary super block will be restored to index 1 */ 394 nilfs->ns_sbh[1] = nsbh; 395 nilfs->ns_sbp[1] = nsbp; 396 } else { 397 brelse(nsbh); 398 } 399 out: 400 return ret; 401 } 402 403 /** 404 * nilfs_resize_fs - resize the filesystem 405 * @sb: super block instance 406 * @newsize: new size of the filesystem (in bytes) 407 */ 408 int nilfs_resize_fs(struct super_block *sb, __u64 newsize) 409 { 410 struct the_nilfs *nilfs = sb->s_fs_info; 411 struct nilfs_super_block **sbp; 412 __u64 devsize, newnsegs; 413 loff_t sb2off; 414 int ret; 415 416 ret = -ERANGE; 417 devsize = i_size_read(sb->s_bdev->bd_inode); 418 if (newsize > devsize) 419 goto out; 420 421 /* 422 * Write lock is required to protect some functions depending 423 * on the number of segments, the number of reserved segments, 424 * and so forth. 425 */ 426 down_write(&nilfs->ns_segctor_sem); 427 428 sb2off = NILFS_SB2_OFFSET_BYTES(newsize); 429 newnsegs = sb2off >> nilfs->ns_blocksize_bits; 430 do_div(newnsegs, nilfs->ns_blocks_per_segment); 431 432 ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs); 433 up_write(&nilfs->ns_segctor_sem); 434 if (ret < 0) 435 goto out; 436 437 ret = nilfs_construct_segment(sb); 438 if (ret < 0) 439 goto out; 440 441 down_write(&nilfs->ns_sem); 442 nilfs_move_2nd_super(sb, sb2off); 443 ret = -EIO; 444 sbp = nilfs_prepare_super(sb, 0); 445 if (likely(sbp)) { 446 nilfs_set_log_cursor(sbp[0], nilfs); 447 /* 448 * Drop NILFS_RESIZE_FS flag for compatibility with 449 * mount-time resize which may be implemented in a 450 * future release. 451 */ 452 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & 453 ~NILFS_RESIZE_FS); 454 sbp[0]->s_dev_size = cpu_to_le64(newsize); 455 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments); 456 if (sbp[1]) 457 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 458 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 459 } 460 up_write(&nilfs->ns_sem); 461 462 /* 463 * Reset the range of allocatable segments last. This order 464 * is important in the case of expansion because the secondary 465 * superblock must be protected from log write until migration 466 * completes. 467 */ 468 if (!ret) 469 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1); 470 out: 471 return ret; 472 } 473 474 static void nilfs_put_super(struct super_block *sb) 475 { 476 struct the_nilfs *nilfs = sb->s_fs_info; 477 478 nilfs_detach_log_writer(sb); 479 480 if (!sb_rdonly(sb)) { 481 down_write(&nilfs->ns_sem); 482 nilfs_cleanup_super(sb); 483 up_write(&nilfs->ns_sem); 484 } 485 486 iput(nilfs->ns_sufile); 487 iput(nilfs->ns_cpfile); 488 iput(nilfs->ns_dat); 489 490 destroy_nilfs(nilfs); 491 sb->s_fs_info = NULL; 492 } 493 494 static int nilfs_sync_fs(struct super_block *sb, int wait) 495 { 496 struct the_nilfs *nilfs = sb->s_fs_info; 497 struct nilfs_super_block **sbp; 498 int err = 0; 499 500 /* This function is called when super block should be written back */ 501 if (wait) 502 err = nilfs_construct_segment(sb); 503 504 down_write(&nilfs->ns_sem); 505 if (nilfs_sb_dirty(nilfs)) { 506 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs)); 507 if (likely(sbp)) { 508 nilfs_set_log_cursor(sbp[0], nilfs); 509 nilfs_commit_super(sb, NILFS_SB_COMMIT); 510 } 511 } 512 up_write(&nilfs->ns_sem); 513 514 if (!err) 515 err = nilfs_flush_device(nilfs); 516 517 return err; 518 } 519 520 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt, 521 struct nilfs_root **rootp) 522 { 523 struct the_nilfs *nilfs = sb->s_fs_info; 524 struct nilfs_root *root; 525 struct nilfs_checkpoint *raw_cp; 526 struct buffer_head *bh_cp; 527 int err = -ENOMEM; 528 529 root = nilfs_find_or_create_root( 530 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno); 531 if (!root) 532 return err; 533 534 if (root->ifile) 535 goto reuse; /* already attached checkpoint */ 536 537 down_read(&nilfs->ns_segctor_sem); 538 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp, 539 &bh_cp); 540 up_read(&nilfs->ns_segctor_sem); 541 if (unlikely(err)) { 542 if (err == -ENOENT || err == -EINVAL) { 543 nilfs_msg(sb, KERN_ERR, 544 "Invalid checkpoint (checkpoint number=%llu)", 545 (unsigned long long)cno); 546 err = -EINVAL; 547 } 548 goto failed; 549 } 550 551 err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size, 552 &raw_cp->cp_ifile_inode, &root->ifile); 553 if (err) 554 goto failed_bh; 555 556 atomic64_set(&root->inodes_count, 557 le64_to_cpu(raw_cp->cp_inodes_count)); 558 atomic64_set(&root->blocks_count, 559 le64_to_cpu(raw_cp->cp_blocks_count)); 560 561 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); 562 563 reuse: 564 *rootp = root; 565 return 0; 566 567 failed_bh: 568 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); 569 failed: 570 nilfs_put_root(root); 571 572 return err; 573 } 574 575 static int nilfs_freeze(struct super_block *sb) 576 { 577 struct the_nilfs *nilfs = sb->s_fs_info; 578 int err; 579 580 if (sb_rdonly(sb)) 581 return 0; 582 583 /* Mark super block clean */ 584 down_write(&nilfs->ns_sem); 585 err = nilfs_cleanup_super(sb); 586 up_write(&nilfs->ns_sem); 587 return err; 588 } 589 590 static int nilfs_unfreeze(struct super_block *sb) 591 { 592 struct the_nilfs *nilfs = sb->s_fs_info; 593 594 if (sb_rdonly(sb)) 595 return 0; 596 597 down_write(&nilfs->ns_sem); 598 nilfs_setup_super(sb, false); 599 up_write(&nilfs->ns_sem); 600 return 0; 601 } 602 603 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf) 604 { 605 struct super_block *sb = dentry->d_sb; 606 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root; 607 struct the_nilfs *nilfs = root->nilfs; 608 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 609 unsigned long long blocks; 610 unsigned long overhead; 611 unsigned long nrsvblocks; 612 sector_t nfreeblocks; 613 u64 nmaxinodes, nfreeinodes; 614 int err; 615 616 /* 617 * Compute all of the segment blocks 618 * 619 * The blocks before first segment and after last segment 620 * are excluded. 621 */ 622 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments 623 - nilfs->ns_first_data_block; 624 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment; 625 626 /* 627 * Compute the overhead 628 * 629 * When distributing meta data blocks outside segment structure, 630 * We must count them as the overhead. 631 */ 632 overhead = 0; 633 634 err = nilfs_count_free_blocks(nilfs, &nfreeblocks); 635 if (unlikely(err)) 636 return err; 637 638 err = nilfs_ifile_count_free_inodes(root->ifile, 639 &nmaxinodes, &nfreeinodes); 640 if (unlikely(err)) { 641 nilfs_msg(sb, KERN_WARNING, 642 "failed to count free inodes: err=%d", err); 643 if (err == -ERANGE) { 644 /* 645 * If nilfs_palloc_count_max_entries() returns 646 * -ERANGE error code then we simply treat 647 * curent inodes count as maximum possible and 648 * zero as free inodes value. 649 */ 650 nmaxinodes = atomic64_read(&root->inodes_count); 651 nfreeinodes = 0; 652 err = 0; 653 } else 654 return err; 655 } 656 657 buf->f_type = NILFS_SUPER_MAGIC; 658 buf->f_bsize = sb->s_blocksize; 659 buf->f_blocks = blocks - overhead; 660 buf->f_bfree = nfreeblocks; 661 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ? 662 (buf->f_bfree - nrsvblocks) : 0; 663 buf->f_files = nmaxinodes; 664 buf->f_ffree = nfreeinodes; 665 buf->f_namelen = NILFS_NAME_LEN; 666 buf->f_fsid.val[0] = (u32)id; 667 buf->f_fsid.val[1] = (u32)(id >> 32); 668 669 return 0; 670 } 671 672 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry) 673 { 674 struct super_block *sb = dentry->d_sb; 675 struct the_nilfs *nilfs = sb->s_fs_info; 676 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root; 677 678 if (!nilfs_test_opt(nilfs, BARRIER)) 679 seq_puts(seq, ",nobarrier"); 680 if (root->cno != NILFS_CPTREE_CURRENT_CNO) 681 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno); 682 if (nilfs_test_opt(nilfs, ERRORS_PANIC)) 683 seq_puts(seq, ",errors=panic"); 684 if (nilfs_test_opt(nilfs, ERRORS_CONT)) 685 seq_puts(seq, ",errors=continue"); 686 if (nilfs_test_opt(nilfs, STRICT_ORDER)) 687 seq_puts(seq, ",order=strict"); 688 if (nilfs_test_opt(nilfs, NORECOVERY)) 689 seq_puts(seq, ",norecovery"); 690 if (nilfs_test_opt(nilfs, DISCARD)) 691 seq_puts(seq, ",discard"); 692 693 return 0; 694 } 695 696 static const struct super_operations nilfs_sops = { 697 .alloc_inode = nilfs_alloc_inode, 698 .destroy_inode = nilfs_destroy_inode, 699 .dirty_inode = nilfs_dirty_inode, 700 .evict_inode = nilfs_evict_inode, 701 .put_super = nilfs_put_super, 702 .sync_fs = nilfs_sync_fs, 703 .freeze_fs = nilfs_freeze, 704 .unfreeze_fs = nilfs_unfreeze, 705 .statfs = nilfs_statfs, 706 .remount_fs = nilfs_remount, 707 .show_options = nilfs_show_options 708 }; 709 710 enum { 711 Opt_err_cont, Opt_err_panic, Opt_err_ro, 712 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery, 713 Opt_discard, Opt_nodiscard, Opt_err, 714 }; 715 716 static match_table_t tokens = { 717 {Opt_err_cont, "errors=continue"}, 718 {Opt_err_panic, "errors=panic"}, 719 {Opt_err_ro, "errors=remount-ro"}, 720 {Opt_barrier, "barrier"}, 721 {Opt_nobarrier, "nobarrier"}, 722 {Opt_snapshot, "cp=%u"}, 723 {Opt_order, "order=%s"}, 724 {Opt_norecovery, "norecovery"}, 725 {Opt_discard, "discard"}, 726 {Opt_nodiscard, "nodiscard"}, 727 {Opt_err, NULL} 728 }; 729 730 static int parse_options(char *options, struct super_block *sb, int is_remount) 731 { 732 struct the_nilfs *nilfs = sb->s_fs_info; 733 char *p; 734 substring_t args[MAX_OPT_ARGS]; 735 736 if (!options) 737 return 1; 738 739 while ((p = strsep(&options, ",")) != NULL) { 740 int token; 741 742 if (!*p) 743 continue; 744 745 token = match_token(p, tokens, args); 746 switch (token) { 747 case Opt_barrier: 748 nilfs_set_opt(nilfs, BARRIER); 749 break; 750 case Opt_nobarrier: 751 nilfs_clear_opt(nilfs, BARRIER); 752 break; 753 case Opt_order: 754 if (strcmp(args[0].from, "relaxed") == 0) 755 /* Ordered data semantics */ 756 nilfs_clear_opt(nilfs, STRICT_ORDER); 757 else if (strcmp(args[0].from, "strict") == 0) 758 /* Strict in-order semantics */ 759 nilfs_set_opt(nilfs, STRICT_ORDER); 760 else 761 return 0; 762 break; 763 case Opt_err_panic: 764 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC); 765 break; 766 case Opt_err_ro: 767 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO); 768 break; 769 case Opt_err_cont: 770 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT); 771 break; 772 case Opt_snapshot: 773 if (is_remount) { 774 nilfs_msg(sb, KERN_ERR, 775 "\"%s\" option is invalid for remount", 776 p); 777 return 0; 778 } 779 break; 780 case Opt_norecovery: 781 nilfs_set_opt(nilfs, NORECOVERY); 782 break; 783 case Opt_discard: 784 nilfs_set_opt(nilfs, DISCARD); 785 break; 786 case Opt_nodiscard: 787 nilfs_clear_opt(nilfs, DISCARD); 788 break; 789 default: 790 nilfs_msg(sb, KERN_ERR, 791 "unrecognized mount option \"%s\"", p); 792 return 0; 793 } 794 } 795 return 1; 796 } 797 798 static inline void 799 nilfs_set_default_options(struct super_block *sb, 800 struct nilfs_super_block *sbp) 801 { 802 struct the_nilfs *nilfs = sb->s_fs_info; 803 804 nilfs->ns_mount_opt = 805 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER; 806 } 807 808 static int nilfs_setup_super(struct super_block *sb, int is_mount) 809 { 810 struct the_nilfs *nilfs = sb->s_fs_info; 811 struct nilfs_super_block **sbp; 812 int max_mnt_count; 813 int mnt_count; 814 815 /* nilfs->ns_sem must be locked by the caller. */ 816 sbp = nilfs_prepare_super(sb, 0); 817 if (!sbp) 818 return -EIO; 819 820 if (!is_mount) 821 goto skip_mount_setup; 822 823 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count); 824 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count); 825 826 if (nilfs->ns_mount_state & NILFS_ERROR_FS) { 827 nilfs_msg(sb, KERN_WARNING, "mounting fs with errors"); 828 #if 0 829 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) { 830 nilfs_msg(sb, KERN_WARNING, "maximal mount count reached"); 831 #endif 832 } 833 if (!max_mnt_count) 834 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT); 835 836 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1); 837 sbp[0]->s_mtime = cpu_to_le64(get_seconds()); 838 839 skip_mount_setup: 840 sbp[0]->s_state = 841 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS); 842 /* synchronize sbp[1] with sbp[0] */ 843 if (sbp[1]) 844 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 845 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 846 } 847 848 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb, 849 u64 pos, int blocksize, 850 struct buffer_head **pbh) 851 { 852 unsigned long long sb_index = pos; 853 unsigned long offset; 854 855 offset = do_div(sb_index, blocksize); 856 *pbh = sb_bread(sb, sb_index); 857 if (!*pbh) 858 return NULL; 859 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset); 860 } 861 862 int nilfs_store_magic_and_option(struct super_block *sb, 863 struct nilfs_super_block *sbp, 864 char *data) 865 { 866 struct the_nilfs *nilfs = sb->s_fs_info; 867 868 sb->s_magic = le16_to_cpu(sbp->s_magic); 869 870 /* FS independent flags */ 871 #ifdef NILFS_ATIME_DISABLE 872 sb->s_flags |= SB_NOATIME; 873 #endif 874 875 nilfs_set_default_options(sb, sbp); 876 877 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid); 878 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid); 879 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval); 880 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max); 881 882 return !parse_options(data, sb, 0) ? -EINVAL : 0; 883 } 884 885 int nilfs_check_feature_compatibility(struct super_block *sb, 886 struct nilfs_super_block *sbp) 887 { 888 __u64 features; 889 890 features = le64_to_cpu(sbp->s_feature_incompat) & 891 ~NILFS_FEATURE_INCOMPAT_SUPP; 892 if (features) { 893 nilfs_msg(sb, KERN_ERR, 894 "couldn't mount because of unsupported optional features (%llx)", 895 (unsigned long long)features); 896 return -EINVAL; 897 } 898 features = le64_to_cpu(sbp->s_feature_compat_ro) & 899 ~NILFS_FEATURE_COMPAT_RO_SUPP; 900 if (!sb_rdonly(sb) && features) { 901 nilfs_msg(sb, KERN_ERR, 902 "couldn't mount RDWR because of unsupported optional features (%llx)", 903 (unsigned long long)features); 904 return -EINVAL; 905 } 906 return 0; 907 } 908 909 static int nilfs_get_root_dentry(struct super_block *sb, 910 struct nilfs_root *root, 911 struct dentry **root_dentry) 912 { 913 struct inode *inode; 914 struct dentry *dentry; 915 int ret = 0; 916 917 inode = nilfs_iget(sb, root, NILFS_ROOT_INO); 918 if (IS_ERR(inode)) { 919 ret = PTR_ERR(inode); 920 nilfs_msg(sb, KERN_ERR, "error %d getting root inode", ret); 921 goto out; 922 } 923 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) { 924 iput(inode); 925 nilfs_msg(sb, KERN_ERR, "corrupt root inode"); 926 ret = -EINVAL; 927 goto out; 928 } 929 930 if (root->cno == NILFS_CPTREE_CURRENT_CNO) { 931 dentry = d_find_alias(inode); 932 if (!dentry) { 933 dentry = d_make_root(inode); 934 if (!dentry) { 935 ret = -ENOMEM; 936 goto failed_dentry; 937 } 938 } else { 939 iput(inode); 940 } 941 } else { 942 dentry = d_obtain_root(inode); 943 if (IS_ERR(dentry)) { 944 ret = PTR_ERR(dentry); 945 goto failed_dentry; 946 } 947 } 948 *root_dentry = dentry; 949 out: 950 return ret; 951 952 failed_dentry: 953 nilfs_msg(sb, KERN_ERR, "error %d getting root dentry", ret); 954 goto out; 955 } 956 957 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno, 958 struct dentry **root_dentry) 959 { 960 struct the_nilfs *nilfs = s->s_fs_info; 961 struct nilfs_root *root; 962 int ret; 963 964 mutex_lock(&nilfs->ns_snapshot_mount_mutex); 965 966 down_read(&nilfs->ns_segctor_sem); 967 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno); 968 up_read(&nilfs->ns_segctor_sem); 969 if (ret < 0) { 970 ret = (ret == -ENOENT) ? -EINVAL : ret; 971 goto out; 972 } else if (!ret) { 973 nilfs_msg(s, KERN_ERR, 974 "The specified checkpoint is not a snapshot (checkpoint number=%llu)", 975 (unsigned long long)cno); 976 ret = -EINVAL; 977 goto out; 978 } 979 980 ret = nilfs_attach_checkpoint(s, cno, false, &root); 981 if (ret) { 982 nilfs_msg(s, KERN_ERR, 983 "error %d while loading snapshot (checkpoint number=%llu)", 984 ret, (unsigned long long)cno); 985 goto out; 986 } 987 ret = nilfs_get_root_dentry(s, root, root_dentry); 988 nilfs_put_root(root); 989 out: 990 mutex_unlock(&nilfs->ns_snapshot_mount_mutex); 991 return ret; 992 } 993 994 /** 995 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint 996 * @root_dentry: root dentry of the tree to be shrunk 997 * 998 * This function returns true if the tree was in-use. 999 */ 1000 static bool nilfs_tree_is_busy(struct dentry *root_dentry) 1001 { 1002 shrink_dcache_parent(root_dentry); 1003 return d_count(root_dentry) > 1; 1004 } 1005 1006 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno) 1007 { 1008 struct the_nilfs *nilfs = sb->s_fs_info; 1009 struct nilfs_root *root; 1010 struct inode *inode; 1011 struct dentry *dentry; 1012 int ret; 1013 1014 if (cno > nilfs->ns_cno) 1015 return false; 1016 1017 if (cno >= nilfs_last_cno(nilfs)) 1018 return true; /* protect recent checkpoints */ 1019 1020 ret = false; 1021 root = nilfs_lookup_root(nilfs, cno); 1022 if (root) { 1023 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO); 1024 if (inode) { 1025 dentry = d_find_alias(inode); 1026 if (dentry) { 1027 ret = nilfs_tree_is_busy(dentry); 1028 dput(dentry); 1029 } 1030 iput(inode); 1031 } 1032 nilfs_put_root(root); 1033 } 1034 return ret; 1035 } 1036 1037 /** 1038 * nilfs_fill_super() - initialize a super block instance 1039 * @sb: super_block 1040 * @data: mount options 1041 * @silent: silent mode flag 1042 * 1043 * This function is called exclusively by nilfs->ns_mount_mutex. 1044 * So, the recovery process is protected from other simultaneous mounts. 1045 */ 1046 static int 1047 nilfs_fill_super(struct super_block *sb, void *data, int silent) 1048 { 1049 struct the_nilfs *nilfs; 1050 struct nilfs_root *fsroot; 1051 __u64 cno; 1052 int err; 1053 1054 nilfs = alloc_nilfs(sb); 1055 if (!nilfs) 1056 return -ENOMEM; 1057 1058 sb->s_fs_info = nilfs; 1059 1060 err = init_nilfs(nilfs, sb, (char *)data); 1061 if (err) 1062 goto failed_nilfs; 1063 1064 sb->s_op = &nilfs_sops; 1065 sb->s_export_op = &nilfs_export_ops; 1066 sb->s_root = NULL; 1067 sb->s_time_gran = 1; 1068 sb->s_max_links = NILFS_LINK_MAX; 1069 1070 sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi); 1071 1072 err = load_nilfs(nilfs, sb); 1073 if (err) 1074 goto failed_nilfs; 1075 1076 cno = nilfs_last_cno(nilfs); 1077 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot); 1078 if (err) { 1079 nilfs_msg(sb, KERN_ERR, 1080 "error %d while loading last checkpoint (checkpoint number=%llu)", 1081 err, (unsigned long long)cno); 1082 goto failed_unload; 1083 } 1084 1085 if (!sb_rdonly(sb)) { 1086 err = nilfs_attach_log_writer(sb, fsroot); 1087 if (err) 1088 goto failed_checkpoint; 1089 } 1090 1091 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root); 1092 if (err) 1093 goto failed_segctor; 1094 1095 nilfs_put_root(fsroot); 1096 1097 if (!sb_rdonly(sb)) { 1098 down_write(&nilfs->ns_sem); 1099 nilfs_setup_super(sb, true); 1100 up_write(&nilfs->ns_sem); 1101 } 1102 1103 return 0; 1104 1105 failed_segctor: 1106 nilfs_detach_log_writer(sb); 1107 1108 failed_checkpoint: 1109 nilfs_put_root(fsroot); 1110 1111 failed_unload: 1112 iput(nilfs->ns_sufile); 1113 iput(nilfs->ns_cpfile); 1114 iput(nilfs->ns_dat); 1115 1116 failed_nilfs: 1117 destroy_nilfs(nilfs); 1118 return err; 1119 } 1120 1121 static int nilfs_remount(struct super_block *sb, int *flags, char *data) 1122 { 1123 struct the_nilfs *nilfs = sb->s_fs_info; 1124 unsigned long old_sb_flags; 1125 unsigned long old_mount_opt; 1126 int err; 1127 1128 sync_filesystem(sb); 1129 old_sb_flags = sb->s_flags; 1130 old_mount_opt = nilfs->ns_mount_opt; 1131 1132 if (!parse_options(data, sb, 1)) { 1133 err = -EINVAL; 1134 goto restore_opts; 1135 } 1136 sb->s_flags = (sb->s_flags & ~SB_POSIXACL); 1137 1138 err = -EINVAL; 1139 1140 if (!nilfs_valid_fs(nilfs)) { 1141 nilfs_msg(sb, KERN_WARNING, 1142 "couldn't remount because the filesystem is in an incomplete recovery state"); 1143 goto restore_opts; 1144 } 1145 1146 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1147 goto out; 1148 if (*flags & SB_RDONLY) { 1149 /* Shutting down log writer */ 1150 nilfs_detach_log_writer(sb); 1151 sb->s_flags |= SB_RDONLY; 1152 1153 /* 1154 * Remounting a valid RW partition RDONLY, so set 1155 * the RDONLY flag and then mark the partition as valid again. 1156 */ 1157 down_write(&nilfs->ns_sem); 1158 nilfs_cleanup_super(sb); 1159 up_write(&nilfs->ns_sem); 1160 } else { 1161 __u64 features; 1162 struct nilfs_root *root; 1163 1164 /* 1165 * Mounting a RDONLY partition read-write, so reread and 1166 * store the current valid flag. (It may have been changed 1167 * by fsck since we originally mounted the partition.) 1168 */ 1169 down_read(&nilfs->ns_sem); 1170 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) & 1171 ~NILFS_FEATURE_COMPAT_RO_SUPP; 1172 up_read(&nilfs->ns_sem); 1173 if (features) { 1174 nilfs_msg(sb, KERN_WARNING, 1175 "couldn't remount RDWR because of unsupported optional features (%llx)", 1176 (unsigned long long)features); 1177 err = -EROFS; 1178 goto restore_opts; 1179 } 1180 1181 sb->s_flags &= ~SB_RDONLY; 1182 1183 root = NILFS_I(d_inode(sb->s_root))->i_root; 1184 err = nilfs_attach_log_writer(sb, root); 1185 if (err) 1186 goto restore_opts; 1187 1188 down_write(&nilfs->ns_sem); 1189 nilfs_setup_super(sb, true); 1190 up_write(&nilfs->ns_sem); 1191 } 1192 out: 1193 return 0; 1194 1195 restore_opts: 1196 sb->s_flags = old_sb_flags; 1197 nilfs->ns_mount_opt = old_mount_opt; 1198 return err; 1199 } 1200 1201 struct nilfs_super_data { 1202 struct block_device *bdev; 1203 __u64 cno; 1204 int flags; 1205 }; 1206 1207 static int nilfs_parse_snapshot_option(const char *option, 1208 const substring_t *arg, 1209 struct nilfs_super_data *sd) 1210 { 1211 unsigned long long val; 1212 const char *msg = NULL; 1213 int err; 1214 1215 if (!(sd->flags & SB_RDONLY)) { 1216 msg = "read-only option is not specified"; 1217 goto parse_error; 1218 } 1219 1220 err = kstrtoull(arg->from, 0, &val); 1221 if (err) { 1222 if (err == -ERANGE) 1223 msg = "too large checkpoint number"; 1224 else 1225 msg = "malformed argument"; 1226 goto parse_error; 1227 } else if (val == 0) { 1228 msg = "invalid checkpoint number 0"; 1229 goto parse_error; 1230 } 1231 sd->cno = val; 1232 return 0; 1233 1234 parse_error: 1235 nilfs_msg(NULL, KERN_ERR, "invalid option \"%s\": %s", option, msg); 1236 return 1; 1237 } 1238 1239 /** 1240 * nilfs_identify - pre-read mount options needed to identify mount instance 1241 * @data: mount options 1242 * @sd: nilfs_super_data 1243 */ 1244 static int nilfs_identify(char *data, struct nilfs_super_data *sd) 1245 { 1246 char *p, *options = data; 1247 substring_t args[MAX_OPT_ARGS]; 1248 int token; 1249 int ret = 0; 1250 1251 do { 1252 p = strsep(&options, ","); 1253 if (p != NULL && *p) { 1254 token = match_token(p, tokens, args); 1255 if (token == Opt_snapshot) 1256 ret = nilfs_parse_snapshot_option(p, &args[0], 1257 sd); 1258 } 1259 if (!options) 1260 break; 1261 BUG_ON(options == data); 1262 *(options - 1) = ','; 1263 } while (!ret); 1264 return ret; 1265 } 1266 1267 static int nilfs_set_bdev_super(struct super_block *s, void *data) 1268 { 1269 s->s_bdev = data; 1270 s->s_dev = s->s_bdev->bd_dev; 1271 return 0; 1272 } 1273 1274 static int nilfs_test_bdev_super(struct super_block *s, void *data) 1275 { 1276 return (void *)s->s_bdev == data; 1277 } 1278 1279 static struct dentry * 1280 nilfs_mount(struct file_system_type *fs_type, int flags, 1281 const char *dev_name, void *data) 1282 { 1283 struct nilfs_super_data sd; 1284 struct super_block *s; 1285 fmode_t mode = FMODE_READ | FMODE_EXCL; 1286 struct dentry *root_dentry; 1287 int err, s_new = false; 1288 1289 if (!(flags & SB_RDONLY)) 1290 mode |= FMODE_WRITE; 1291 1292 sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1293 if (IS_ERR(sd.bdev)) 1294 return ERR_CAST(sd.bdev); 1295 1296 sd.cno = 0; 1297 sd.flags = flags; 1298 if (nilfs_identify((char *)data, &sd)) { 1299 err = -EINVAL; 1300 goto failed; 1301 } 1302 1303 /* 1304 * once the super is inserted into the list by sget, s_umount 1305 * will protect the lockfs code from trying to start a snapshot 1306 * while we are mounting 1307 */ 1308 mutex_lock(&sd.bdev->bd_fsfreeze_mutex); 1309 if (sd.bdev->bd_fsfreeze_count > 0) { 1310 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex); 1311 err = -EBUSY; 1312 goto failed; 1313 } 1314 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags, 1315 sd.bdev); 1316 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex); 1317 if (IS_ERR(s)) { 1318 err = PTR_ERR(s); 1319 goto failed; 1320 } 1321 1322 if (!s->s_root) { 1323 s_new = true; 1324 1325 /* New superblock instance created */ 1326 s->s_mode = mode; 1327 snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev); 1328 sb_set_blocksize(s, block_size(sd.bdev)); 1329 1330 err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1331 if (err) 1332 goto failed_super; 1333 1334 s->s_flags |= SB_ACTIVE; 1335 } else if (!sd.cno) { 1336 if (nilfs_tree_is_busy(s->s_root)) { 1337 if ((flags ^ s->s_flags) & SB_RDONLY) { 1338 nilfs_msg(s, KERN_ERR, 1339 "the device already has a %s mount.", 1340 sb_rdonly(s) ? "read-only" : "read/write"); 1341 err = -EBUSY; 1342 goto failed_super; 1343 } 1344 } else { 1345 /* 1346 * Try remount to setup mount states if the current 1347 * tree is not mounted and only snapshots use this sb. 1348 */ 1349 err = nilfs_remount(s, &flags, data); 1350 if (err) 1351 goto failed_super; 1352 } 1353 } 1354 1355 if (sd.cno) { 1356 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry); 1357 if (err) 1358 goto failed_super; 1359 } else { 1360 root_dentry = dget(s->s_root); 1361 } 1362 1363 if (!s_new) 1364 blkdev_put(sd.bdev, mode); 1365 1366 return root_dentry; 1367 1368 failed_super: 1369 deactivate_locked_super(s); 1370 1371 failed: 1372 if (!s_new) 1373 blkdev_put(sd.bdev, mode); 1374 return ERR_PTR(err); 1375 } 1376 1377 struct file_system_type nilfs_fs_type = { 1378 .owner = THIS_MODULE, 1379 .name = "nilfs2", 1380 .mount = nilfs_mount, 1381 .kill_sb = kill_block_super, 1382 .fs_flags = FS_REQUIRES_DEV, 1383 }; 1384 MODULE_ALIAS_FS("nilfs2"); 1385 1386 static void nilfs_inode_init_once(void *obj) 1387 { 1388 struct nilfs_inode_info *ii = obj; 1389 1390 INIT_LIST_HEAD(&ii->i_dirty); 1391 #ifdef CONFIG_NILFS_XATTR 1392 init_rwsem(&ii->xattr_sem); 1393 #endif 1394 address_space_init_once(&ii->i_btnode_cache); 1395 ii->i_bmap = &ii->i_bmap_data; 1396 inode_init_once(&ii->vfs_inode); 1397 } 1398 1399 static void nilfs_segbuf_init_once(void *obj) 1400 { 1401 memset(obj, 0, sizeof(struct nilfs_segment_buffer)); 1402 } 1403 1404 static void nilfs_destroy_cachep(void) 1405 { 1406 /* 1407 * Make sure all delayed rcu free inodes are flushed before we 1408 * destroy cache. 1409 */ 1410 rcu_barrier(); 1411 1412 kmem_cache_destroy(nilfs_inode_cachep); 1413 kmem_cache_destroy(nilfs_transaction_cachep); 1414 kmem_cache_destroy(nilfs_segbuf_cachep); 1415 kmem_cache_destroy(nilfs_btree_path_cache); 1416 } 1417 1418 static int __init nilfs_init_cachep(void) 1419 { 1420 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache", 1421 sizeof(struct nilfs_inode_info), 0, 1422 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, 1423 nilfs_inode_init_once); 1424 if (!nilfs_inode_cachep) 1425 goto fail; 1426 1427 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache", 1428 sizeof(struct nilfs_transaction_info), 0, 1429 SLAB_RECLAIM_ACCOUNT, NULL); 1430 if (!nilfs_transaction_cachep) 1431 goto fail; 1432 1433 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache", 1434 sizeof(struct nilfs_segment_buffer), 0, 1435 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once); 1436 if (!nilfs_segbuf_cachep) 1437 goto fail; 1438 1439 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache", 1440 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX, 1441 0, 0, NULL); 1442 if (!nilfs_btree_path_cache) 1443 goto fail; 1444 1445 return 0; 1446 1447 fail: 1448 nilfs_destroy_cachep(); 1449 return -ENOMEM; 1450 } 1451 1452 static int __init init_nilfs_fs(void) 1453 { 1454 int err; 1455 1456 err = nilfs_init_cachep(); 1457 if (err) 1458 goto fail; 1459 1460 err = nilfs_sysfs_init(); 1461 if (err) 1462 goto free_cachep; 1463 1464 err = register_filesystem(&nilfs_fs_type); 1465 if (err) 1466 goto deinit_sysfs_entry; 1467 1468 printk(KERN_INFO "NILFS version 2 loaded\n"); 1469 return 0; 1470 1471 deinit_sysfs_entry: 1472 nilfs_sysfs_exit(); 1473 free_cachep: 1474 nilfs_destroy_cachep(); 1475 fail: 1476 return err; 1477 } 1478 1479 static void __exit exit_nilfs_fs(void) 1480 { 1481 nilfs_destroy_cachep(); 1482 nilfs_sysfs_exit(); 1483 unregister_filesystem(&nilfs_fs_type); 1484 } 1485 1486 module_init(init_nilfs_fs) 1487 module_exit(exit_nilfs_fs) 1488