1 /* 2 * super.c - NILFS module and super block management. 3 * 4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 19 * 20 * Written by Ryusuke Konishi <ryusuke@osrg.net> 21 */ 22 /* 23 * linux/fs/ext2/super.c 24 * 25 * Copyright (C) 1992, 1993, 1994, 1995 26 * Remy Card (card@masi.ibp.fr) 27 * Laboratoire MASI - Institut Blaise Pascal 28 * Universite Pierre et Marie Curie (Paris VI) 29 * 30 * from 31 * 32 * linux/fs/minix/inode.c 33 * 34 * Copyright (C) 1991, 1992 Linus Torvalds 35 * 36 * Big-endian to little-endian byte-swapping/bitmaps by 37 * David S. Miller (davem@caip.rutgers.edu), 1995 38 */ 39 40 #include <linux/module.h> 41 #include <linux/string.h> 42 #include <linux/slab.h> 43 #include <linux/init.h> 44 #include <linux/blkdev.h> 45 #include <linux/parser.h> 46 #include <linux/random.h> 47 #include <linux/crc32.h> 48 #include <linux/vfs.h> 49 #include <linux/writeback.h> 50 #include <linux/seq_file.h> 51 #include <linux/mount.h> 52 #include "nilfs.h" 53 #include "export.h" 54 #include "mdt.h" 55 #include "alloc.h" 56 #include "btree.h" 57 #include "btnode.h" 58 #include "page.h" 59 #include "cpfile.h" 60 #include "ifile.h" 61 #include "dat.h" 62 #include "segment.h" 63 #include "segbuf.h" 64 65 MODULE_AUTHOR("NTT Corp."); 66 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem " 67 "(NILFS)"); 68 MODULE_LICENSE("GPL"); 69 70 static struct kmem_cache *nilfs_inode_cachep; 71 struct kmem_cache *nilfs_transaction_cachep; 72 struct kmem_cache *nilfs_segbuf_cachep; 73 struct kmem_cache *nilfs_btree_path_cache; 74 75 static int nilfs_setup_super(struct nilfs_sb_info *sbi, int is_mount); 76 static int nilfs_remount(struct super_block *sb, int *flags, char *data); 77 78 static void nilfs_set_error(struct nilfs_sb_info *sbi) 79 { 80 struct the_nilfs *nilfs = sbi->s_nilfs; 81 struct nilfs_super_block **sbp; 82 83 down_write(&nilfs->ns_sem); 84 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) { 85 nilfs->ns_mount_state |= NILFS_ERROR_FS; 86 sbp = nilfs_prepare_super(sbi, 0); 87 if (likely(sbp)) { 88 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 89 if (sbp[1]) 90 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 91 nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL); 92 } 93 } 94 up_write(&nilfs->ns_sem); 95 } 96 97 /** 98 * nilfs_error() - report failure condition on a filesystem 99 * 100 * nilfs_error() sets an ERROR_FS flag on the superblock as well as 101 * reporting an error message. It should be called when NILFS detects 102 * incoherences or defects of meta data on disk. As for sustainable 103 * errors such as a single-shot I/O error, nilfs_warning() or the printk() 104 * function should be used instead. 105 * 106 * The segment constructor must not call this function because it can 107 * kill itself. 108 */ 109 void nilfs_error(struct super_block *sb, const char *function, 110 const char *fmt, ...) 111 { 112 struct nilfs_sb_info *sbi = NILFS_SB(sb); 113 struct va_format vaf; 114 va_list args; 115 116 va_start(args, fmt); 117 118 vaf.fmt = fmt; 119 vaf.va = &args; 120 121 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n", 122 sb->s_id, function, &vaf); 123 124 va_end(args); 125 126 if (!(sb->s_flags & MS_RDONLY)) { 127 nilfs_set_error(sbi); 128 129 if (nilfs_test_opt(sbi, ERRORS_RO)) { 130 printk(KERN_CRIT "Remounting filesystem read-only\n"); 131 sb->s_flags |= MS_RDONLY; 132 } 133 } 134 135 if (nilfs_test_opt(sbi, ERRORS_PANIC)) 136 panic("NILFS (device %s): panic forced after error\n", 137 sb->s_id); 138 } 139 140 void nilfs_warning(struct super_block *sb, const char *function, 141 const char *fmt, ...) 142 { 143 struct va_format vaf; 144 va_list args; 145 146 va_start(args, fmt); 147 148 vaf.fmt = fmt; 149 vaf.va = &args; 150 151 printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n", 152 sb->s_id, function, &vaf); 153 154 va_end(args); 155 } 156 157 158 struct inode *nilfs_alloc_inode(struct super_block *sb) 159 { 160 struct nilfs_inode_info *ii; 161 162 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS); 163 if (!ii) 164 return NULL; 165 ii->i_bh = NULL; 166 ii->i_state = 0; 167 ii->i_cno = 0; 168 ii->vfs_inode.i_version = 1; 169 nilfs_btnode_cache_init(&ii->i_btnode_cache, sb->s_bdi); 170 return &ii->vfs_inode; 171 } 172 173 static void nilfs_i_callback(struct rcu_head *head) 174 { 175 struct inode *inode = container_of(head, struct inode, i_rcu); 176 struct nilfs_mdt_info *mdi = NILFS_MDT(inode); 177 178 INIT_LIST_HEAD(&inode->i_dentry); 179 180 if (mdi) { 181 kfree(mdi->mi_bgl); /* kfree(NULL) is safe */ 182 kfree(mdi); 183 } 184 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode)); 185 } 186 187 void nilfs_destroy_inode(struct inode *inode) 188 { 189 call_rcu(&inode->i_rcu, nilfs_i_callback); 190 } 191 192 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int flag) 193 { 194 struct the_nilfs *nilfs = sbi->s_nilfs; 195 int err; 196 197 retry: 198 set_buffer_dirty(nilfs->ns_sbh[0]); 199 if (nilfs_test_opt(sbi, BARRIER)) { 200 err = __sync_dirty_buffer(nilfs->ns_sbh[0], 201 WRITE_SYNC | WRITE_FLUSH_FUA); 202 } else { 203 err = sync_dirty_buffer(nilfs->ns_sbh[0]); 204 } 205 206 if (unlikely(err)) { 207 printk(KERN_ERR 208 "NILFS: unable to write superblock (err=%d)\n", err); 209 if (err == -EIO && nilfs->ns_sbh[1]) { 210 /* 211 * sbp[0] points to newer log than sbp[1], 212 * so copy sbp[0] to sbp[1] to take over sbp[0]. 213 */ 214 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0], 215 nilfs->ns_sbsize); 216 nilfs_fall_back_super_block(nilfs); 217 goto retry; 218 } 219 } else { 220 struct nilfs_super_block *sbp = nilfs->ns_sbp[0]; 221 222 nilfs->ns_sbwcount++; 223 224 /* 225 * The latest segment becomes trailable from the position 226 * written in superblock. 227 */ 228 clear_nilfs_discontinued(nilfs); 229 230 /* update GC protection for recent segments */ 231 if (nilfs->ns_sbh[1]) { 232 if (flag == NILFS_SB_COMMIT_ALL) { 233 set_buffer_dirty(nilfs->ns_sbh[1]); 234 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0) 235 goto out; 236 } 237 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) < 238 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno)) 239 sbp = nilfs->ns_sbp[1]; 240 } 241 242 spin_lock(&nilfs->ns_last_segment_lock); 243 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq); 244 spin_unlock(&nilfs->ns_last_segment_lock); 245 } 246 out: 247 return err; 248 } 249 250 void nilfs_set_log_cursor(struct nilfs_super_block *sbp, 251 struct the_nilfs *nilfs) 252 { 253 sector_t nfreeblocks; 254 255 /* nilfs->ns_sem must be locked by the caller. */ 256 nilfs_count_free_blocks(nilfs, &nfreeblocks); 257 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks); 258 259 spin_lock(&nilfs->ns_last_segment_lock); 260 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq); 261 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg); 262 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno); 263 spin_unlock(&nilfs->ns_last_segment_lock); 264 } 265 266 struct nilfs_super_block **nilfs_prepare_super(struct nilfs_sb_info *sbi, 267 int flip) 268 { 269 struct the_nilfs *nilfs = sbi->s_nilfs; 270 struct nilfs_super_block **sbp = nilfs->ns_sbp; 271 272 /* nilfs->ns_sem must be locked by the caller. */ 273 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 274 if (sbp[1] && 275 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) { 276 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize); 277 } else { 278 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n", 279 sbi->s_super->s_id); 280 return NULL; 281 } 282 } else if (sbp[1] && 283 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 284 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 285 } 286 287 if (flip && sbp[1]) 288 nilfs_swap_super_block(nilfs); 289 290 return sbp; 291 } 292 293 int nilfs_commit_super(struct nilfs_sb_info *sbi, int flag) 294 { 295 struct the_nilfs *nilfs = sbi->s_nilfs; 296 struct nilfs_super_block **sbp = nilfs->ns_sbp; 297 time_t t; 298 299 /* nilfs->ns_sem must be locked by the caller. */ 300 t = get_seconds(); 301 nilfs->ns_sbwtime = t; 302 sbp[0]->s_wtime = cpu_to_le64(t); 303 sbp[0]->s_sum = 0; 304 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 305 (unsigned char *)sbp[0], 306 nilfs->ns_sbsize)); 307 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) { 308 sbp[1]->s_wtime = sbp[0]->s_wtime; 309 sbp[1]->s_sum = 0; 310 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 311 (unsigned char *)sbp[1], 312 nilfs->ns_sbsize)); 313 } 314 clear_nilfs_sb_dirty(nilfs); 315 return nilfs_sync_super(sbi, flag); 316 } 317 318 /** 319 * nilfs_cleanup_super() - write filesystem state for cleanup 320 * @sbi: nilfs_sb_info to be unmounted or degraded to read-only 321 * 322 * This function restores state flags in the on-disk super block. 323 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the 324 * filesystem was not clean previously. 325 */ 326 int nilfs_cleanup_super(struct nilfs_sb_info *sbi) 327 { 328 struct nilfs_super_block **sbp; 329 int flag = NILFS_SB_COMMIT; 330 int ret = -EIO; 331 332 sbp = nilfs_prepare_super(sbi, 0); 333 if (sbp) { 334 sbp[0]->s_state = cpu_to_le16(sbi->s_nilfs->ns_mount_state); 335 nilfs_set_log_cursor(sbp[0], sbi->s_nilfs); 336 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) { 337 /* 338 * make the "clean" flag also to the opposite 339 * super block if both super blocks point to 340 * the same checkpoint. 341 */ 342 sbp[1]->s_state = sbp[0]->s_state; 343 flag = NILFS_SB_COMMIT_ALL; 344 } 345 ret = nilfs_commit_super(sbi, flag); 346 } 347 return ret; 348 } 349 350 static void nilfs_put_super(struct super_block *sb) 351 { 352 struct nilfs_sb_info *sbi = NILFS_SB(sb); 353 struct the_nilfs *nilfs = sbi->s_nilfs; 354 355 nilfs_detach_segment_constructor(sbi); 356 357 if (!(sb->s_flags & MS_RDONLY)) { 358 down_write(&nilfs->ns_sem); 359 nilfs_cleanup_super(sbi); 360 up_write(&nilfs->ns_sem); 361 } 362 363 iput(nilfs->ns_sufile); 364 iput(nilfs->ns_cpfile); 365 iput(nilfs->ns_dat); 366 367 destroy_nilfs(nilfs); 368 sbi->s_super = NULL; 369 sb->s_fs_info = NULL; 370 kfree(sbi); 371 } 372 373 static int nilfs_sync_fs(struct super_block *sb, int wait) 374 { 375 struct nilfs_sb_info *sbi = NILFS_SB(sb); 376 struct the_nilfs *nilfs = sbi->s_nilfs; 377 struct nilfs_super_block **sbp; 378 int err = 0; 379 380 /* This function is called when super block should be written back */ 381 if (wait) 382 err = nilfs_construct_segment(sb); 383 384 down_write(&nilfs->ns_sem); 385 if (nilfs_sb_dirty(nilfs)) { 386 sbp = nilfs_prepare_super(sbi, nilfs_sb_will_flip(nilfs)); 387 if (likely(sbp)) { 388 nilfs_set_log_cursor(sbp[0], nilfs); 389 nilfs_commit_super(sbi, NILFS_SB_COMMIT); 390 } 391 } 392 up_write(&nilfs->ns_sem); 393 394 return err; 395 } 396 397 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno, int curr_mnt, 398 struct nilfs_root **rootp) 399 { 400 struct the_nilfs *nilfs = sbi->s_nilfs; 401 struct nilfs_root *root; 402 struct nilfs_checkpoint *raw_cp; 403 struct buffer_head *bh_cp; 404 int err = -ENOMEM; 405 406 root = nilfs_find_or_create_root( 407 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno); 408 if (!root) 409 return err; 410 411 if (root->ifile) 412 goto reuse; /* already attached checkpoint */ 413 414 down_read(&nilfs->ns_segctor_sem); 415 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp, 416 &bh_cp); 417 up_read(&nilfs->ns_segctor_sem); 418 if (unlikely(err)) { 419 if (err == -ENOENT || err == -EINVAL) { 420 printk(KERN_ERR 421 "NILFS: Invalid checkpoint " 422 "(checkpoint number=%llu)\n", 423 (unsigned long long)cno); 424 err = -EINVAL; 425 } 426 goto failed; 427 } 428 429 err = nilfs_ifile_read(sbi->s_super, root, nilfs->ns_inode_size, 430 &raw_cp->cp_ifile_inode, &root->ifile); 431 if (err) 432 goto failed_bh; 433 434 atomic_set(&root->inodes_count, le64_to_cpu(raw_cp->cp_inodes_count)); 435 atomic_set(&root->blocks_count, le64_to_cpu(raw_cp->cp_blocks_count)); 436 437 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); 438 439 reuse: 440 *rootp = root; 441 return 0; 442 443 failed_bh: 444 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); 445 failed: 446 nilfs_put_root(root); 447 448 return err; 449 } 450 451 static int nilfs_freeze(struct super_block *sb) 452 { 453 struct nilfs_sb_info *sbi = NILFS_SB(sb); 454 struct the_nilfs *nilfs = sbi->s_nilfs; 455 int err; 456 457 if (sb->s_flags & MS_RDONLY) 458 return 0; 459 460 /* Mark super block clean */ 461 down_write(&nilfs->ns_sem); 462 err = nilfs_cleanup_super(sbi); 463 up_write(&nilfs->ns_sem); 464 return err; 465 } 466 467 static int nilfs_unfreeze(struct super_block *sb) 468 { 469 struct nilfs_sb_info *sbi = NILFS_SB(sb); 470 struct the_nilfs *nilfs = sbi->s_nilfs; 471 472 if (sb->s_flags & MS_RDONLY) 473 return 0; 474 475 down_write(&nilfs->ns_sem); 476 nilfs_setup_super(sbi, false); 477 up_write(&nilfs->ns_sem); 478 return 0; 479 } 480 481 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf) 482 { 483 struct super_block *sb = dentry->d_sb; 484 struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root; 485 struct the_nilfs *nilfs = root->nilfs; 486 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 487 unsigned long long blocks; 488 unsigned long overhead; 489 unsigned long nrsvblocks; 490 sector_t nfreeblocks; 491 int err; 492 493 /* 494 * Compute all of the segment blocks 495 * 496 * The blocks before first segment and after last segment 497 * are excluded. 498 */ 499 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments 500 - nilfs->ns_first_data_block; 501 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment; 502 503 /* 504 * Compute the overhead 505 * 506 * When distributing meta data blocks outside segment structure, 507 * We must count them as the overhead. 508 */ 509 overhead = 0; 510 511 err = nilfs_count_free_blocks(nilfs, &nfreeblocks); 512 if (unlikely(err)) 513 return err; 514 515 buf->f_type = NILFS_SUPER_MAGIC; 516 buf->f_bsize = sb->s_blocksize; 517 buf->f_blocks = blocks - overhead; 518 buf->f_bfree = nfreeblocks; 519 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ? 520 (buf->f_bfree - nrsvblocks) : 0; 521 buf->f_files = atomic_read(&root->inodes_count); 522 buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */ 523 buf->f_namelen = NILFS_NAME_LEN; 524 buf->f_fsid.val[0] = (u32)id; 525 buf->f_fsid.val[1] = (u32)(id >> 32); 526 527 return 0; 528 } 529 530 static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs) 531 { 532 struct super_block *sb = vfs->mnt_sb; 533 struct nilfs_sb_info *sbi = NILFS_SB(sb); 534 struct nilfs_root *root = NILFS_I(vfs->mnt_root->d_inode)->i_root; 535 536 if (!nilfs_test_opt(sbi, BARRIER)) 537 seq_puts(seq, ",nobarrier"); 538 if (root->cno != NILFS_CPTREE_CURRENT_CNO) 539 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno); 540 if (nilfs_test_opt(sbi, ERRORS_PANIC)) 541 seq_puts(seq, ",errors=panic"); 542 if (nilfs_test_opt(sbi, ERRORS_CONT)) 543 seq_puts(seq, ",errors=continue"); 544 if (nilfs_test_opt(sbi, STRICT_ORDER)) 545 seq_puts(seq, ",order=strict"); 546 if (nilfs_test_opt(sbi, NORECOVERY)) 547 seq_puts(seq, ",norecovery"); 548 if (nilfs_test_opt(sbi, DISCARD)) 549 seq_puts(seq, ",discard"); 550 551 return 0; 552 } 553 554 static const struct super_operations nilfs_sops = { 555 .alloc_inode = nilfs_alloc_inode, 556 .destroy_inode = nilfs_destroy_inode, 557 .dirty_inode = nilfs_dirty_inode, 558 /* .write_inode = nilfs_write_inode, */ 559 /* .put_inode = nilfs_put_inode, */ 560 /* .drop_inode = nilfs_drop_inode, */ 561 .evict_inode = nilfs_evict_inode, 562 .put_super = nilfs_put_super, 563 /* .write_super = nilfs_write_super, */ 564 .sync_fs = nilfs_sync_fs, 565 .freeze_fs = nilfs_freeze, 566 .unfreeze_fs = nilfs_unfreeze, 567 /* .write_super_lockfs */ 568 /* .unlockfs */ 569 .statfs = nilfs_statfs, 570 .remount_fs = nilfs_remount, 571 /* .umount_begin */ 572 .show_options = nilfs_show_options 573 }; 574 575 enum { 576 Opt_err_cont, Opt_err_panic, Opt_err_ro, 577 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery, 578 Opt_discard, Opt_nodiscard, Opt_err, 579 }; 580 581 static match_table_t tokens = { 582 {Opt_err_cont, "errors=continue"}, 583 {Opt_err_panic, "errors=panic"}, 584 {Opt_err_ro, "errors=remount-ro"}, 585 {Opt_barrier, "barrier"}, 586 {Opt_nobarrier, "nobarrier"}, 587 {Opt_snapshot, "cp=%u"}, 588 {Opt_order, "order=%s"}, 589 {Opt_norecovery, "norecovery"}, 590 {Opt_discard, "discard"}, 591 {Opt_nodiscard, "nodiscard"}, 592 {Opt_err, NULL} 593 }; 594 595 static int parse_options(char *options, struct super_block *sb, int is_remount) 596 { 597 struct nilfs_sb_info *sbi = NILFS_SB(sb); 598 char *p; 599 substring_t args[MAX_OPT_ARGS]; 600 601 if (!options) 602 return 1; 603 604 while ((p = strsep(&options, ",")) != NULL) { 605 int token; 606 if (!*p) 607 continue; 608 609 token = match_token(p, tokens, args); 610 switch (token) { 611 case Opt_barrier: 612 nilfs_set_opt(sbi, BARRIER); 613 break; 614 case Opt_nobarrier: 615 nilfs_clear_opt(sbi, BARRIER); 616 break; 617 case Opt_order: 618 if (strcmp(args[0].from, "relaxed") == 0) 619 /* Ordered data semantics */ 620 nilfs_clear_opt(sbi, STRICT_ORDER); 621 else if (strcmp(args[0].from, "strict") == 0) 622 /* Strict in-order semantics */ 623 nilfs_set_opt(sbi, STRICT_ORDER); 624 else 625 return 0; 626 break; 627 case Opt_err_panic: 628 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC); 629 break; 630 case Opt_err_ro: 631 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO); 632 break; 633 case Opt_err_cont: 634 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT); 635 break; 636 case Opt_snapshot: 637 if (is_remount) { 638 printk(KERN_ERR 639 "NILFS: \"%s\" option is invalid " 640 "for remount.\n", p); 641 return 0; 642 } 643 break; 644 case Opt_norecovery: 645 nilfs_set_opt(sbi, NORECOVERY); 646 break; 647 case Opt_discard: 648 nilfs_set_opt(sbi, DISCARD); 649 break; 650 case Opt_nodiscard: 651 nilfs_clear_opt(sbi, DISCARD); 652 break; 653 default: 654 printk(KERN_ERR 655 "NILFS: Unrecognized mount option \"%s\"\n", p); 656 return 0; 657 } 658 } 659 return 1; 660 } 661 662 static inline void 663 nilfs_set_default_options(struct nilfs_sb_info *sbi, 664 struct nilfs_super_block *sbp) 665 { 666 sbi->s_mount_opt = 667 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER; 668 } 669 670 static int nilfs_setup_super(struct nilfs_sb_info *sbi, int is_mount) 671 { 672 struct the_nilfs *nilfs = sbi->s_nilfs; 673 struct nilfs_super_block **sbp; 674 int max_mnt_count; 675 int mnt_count; 676 677 /* nilfs->ns_sem must be locked by the caller. */ 678 sbp = nilfs_prepare_super(sbi, 0); 679 if (!sbp) 680 return -EIO; 681 682 if (!is_mount) 683 goto skip_mount_setup; 684 685 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count); 686 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count); 687 688 if (nilfs->ns_mount_state & NILFS_ERROR_FS) { 689 printk(KERN_WARNING 690 "NILFS warning: mounting fs with errors\n"); 691 #if 0 692 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) { 693 printk(KERN_WARNING 694 "NILFS warning: maximal mount count reached\n"); 695 #endif 696 } 697 if (!max_mnt_count) 698 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT); 699 700 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1); 701 sbp[0]->s_mtime = cpu_to_le64(get_seconds()); 702 703 skip_mount_setup: 704 sbp[0]->s_state = 705 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS); 706 /* synchronize sbp[1] with sbp[0] */ 707 if (sbp[1]) 708 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 709 return nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL); 710 } 711 712 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb, 713 u64 pos, int blocksize, 714 struct buffer_head **pbh) 715 { 716 unsigned long long sb_index = pos; 717 unsigned long offset; 718 719 offset = do_div(sb_index, blocksize); 720 *pbh = sb_bread(sb, sb_index); 721 if (!*pbh) 722 return NULL; 723 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset); 724 } 725 726 int nilfs_store_magic_and_option(struct super_block *sb, 727 struct nilfs_super_block *sbp, 728 char *data) 729 { 730 struct nilfs_sb_info *sbi = NILFS_SB(sb); 731 732 sb->s_magic = le16_to_cpu(sbp->s_magic); 733 734 /* FS independent flags */ 735 #ifdef NILFS_ATIME_DISABLE 736 sb->s_flags |= MS_NOATIME; 737 #endif 738 739 nilfs_set_default_options(sbi, sbp); 740 741 sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid); 742 sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid); 743 sbi->s_interval = le32_to_cpu(sbp->s_c_interval); 744 sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max); 745 746 return !parse_options(data, sb, 0) ? -EINVAL : 0 ; 747 } 748 749 int nilfs_check_feature_compatibility(struct super_block *sb, 750 struct nilfs_super_block *sbp) 751 { 752 __u64 features; 753 754 features = le64_to_cpu(sbp->s_feature_incompat) & 755 ~NILFS_FEATURE_INCOMPAT_SUPP; 756 if (features) { 757 printk(KERN_ERR "NILFS: couldn't mount because of unsupported " 758 "optional features (%llx)\n", 759 (unsigned long long)features); 760 return -EINVAL; 761 } 762 features = le64_to_cpu(sbp->s_feature_compat_ro) & 763 ~NILFS_FEATURE_COMPAT_RO_SUPP; 764 if (!(sb->s_flags & MS_RDONLY) && features) { 765 printk(KERN_ERR "NILFS: couldn't mount RDWR because of " 766 "unsupported optional features (%llx)\n", 767 (unsigned long long)features); 768 return -EINVAL; 769 } 770 return 0; 771 } 772 773 static int nilfs_get_root_dentry(struct super_block *sb, 774 struct nilfs_root *root, 775 struct dentry **root_dentry) 776 { 777 struct inode *inode; 778 struct dentry *dentry; 779 int ret = 0; 780 781 inode = nilfs_iget(sb, root, NILFS_ROOT_INO); 782 if (IS_ERR(inode)) { 783 printk(KERN_ERR "NILFS: get root inode failed\n"); 784 ret = PTR_ERR(inode); 785 goto out; 786 } 787 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) { 788 iput(inode); 789 printk(KERN_ERR "NILFS: corrupt root inode.\n"); 790 ret = -EINVAL; 791 goto out; 792 } 793 794 if (root->cno == NILFS_CPTREE_CURRENT_CNO) { 795 dentry = d_find_alias(inode); 796 if (!dentry) { 797 dentry = d_alloc_root(inode); 798 if (!dentry) { 799 iput(inode); 800 ret = -ENOMEM; 801 goto failed_dentry; 802 } 803 } else { 804 iput(inode); 805 } 806 } else { 807 dentry = d_obtain_alias(inode); 808 if (IS_ERR(dentry)) { 809 ret = PTR_ERR(dentry); 810 goto failed_dentry; 811 } 812 } 813 *root_dentry = dentry; 814 out: 815 return ret; 816 817 failed_dentry: 818 printk(KERN_ERR "NILFS: get root dentry failed\n"); 819 goto out; 820 } 821 822 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno, 823 struct dentry **root_dentry) 824 { 825 struct the_nilfs *nilfs = NILFS_SB(s)->s_nilfs; 826 struct nilfs_root *root; 827 int ret; 828 829 down_read(&nilfs->ns_segctor_sem); 830 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno); 831 up_read(&nilfs->ns_segctor_sem); 832 if (ret < 0) { 833 ret = (ret == -ENOENT) ? -EINVAL : ret; 834 goto out; 835 } else if (!ret) { 836 printk(KERN_ERR "NILFS: The specified checkpoint is " 837 "not a snapshot (checkpoint number=%llu).\n", 838 (unsigned long long)cno); 839 ret = -EINVAL; 840 goto out; 841 } 842 843 ret = nilfs_attach_checkpoint(NILFS_SB(s), cno, false, &root); 844 if (ret) { 845 printk(KERN_ERR "NILFS: error loading snapshot " 846 "(checkpoint number=%llu).\n", 847 (unsigned long long)cno); 848 goto out; 849 } 850 ret = nilfs_get_root_dentry(s, root, root_dentry); 851 nilfs_put_root(root); 852 out: 853 return ret; 854 } 855 856 static int nilfs_tree_was_touched(struct dentry *root_dentry) 857 { 858 return root_dentry->d_count > 1; 859 } 860 861 /** 862 * nilfs_try_to_shrink_tree() - try to shrink dentries of a checkpoint 863 * @root_dentry: root dentry of the tree to be shrunk 864 * 865 * This function returns true if the tree was in-use. 866 */ 867 static int nilfs_try_to_shrink_tree(struct dentry *root_dentry) 868 { 869 if (have_submounts(root_dentry)) 870 return true; 871 shrink_dcache_parent(root_dentry); 872 return nilfs_tree_was_touched(root_dentry); 873 } 874 875 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno) 876 { 877 struct the_nilfs *nilfs = NILFS_SB(sb)->s_nilfs; 878 struct nilfs_root *root; 879 struct inode *inode; 880 struct dentry *dentry; 881 int ret; 882 883 if (cno < 0 || cno > nilfs->ns_cno) 884 return false; 885 886 if (cno >= nilfs_last_cno(nilfs)) 887 return true; /* protect recent checkpoints */ 888 889 ret = false; 890 root = nilfs_lookup_root(NILFS_SB(sb)->s_nilfs, cno); 891 if (root) { 892 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO); 893 if (inode) { 894 dentry = d_find_alias(inode); 895 if (dentry) { 896 if (nilfs_tree_was_touched(dentry)) 897 ret = nilfs_try_to_shrink_tree(dentry); 898 dput(dentry); 899 } 900 iput(inode); 901 } 902 nilfs_put_root(root); 903 } 904 return ret; 905 } 906 907 /** 908 * nilfs_fill_super() - initialize a super block instance 909 * @sb: super_block 910 * @data: mount options 911 * @silent: silent mode flag 912 * 913 * This function is called exclusively by nilfs->ns_mount_mutex. 914 * So, the recovery process is protected from other simultaneous mounts. 915 */ 916 static int 917 nilfs_fill_super(struct super_block *sb, void *data, int silent) 918 { 919 struct the_nilfs *nilfs; 920 struct nilfs_sb_info *sbi; 921 struct nilfs_root *fsroot; 922 struct backing_dev_info *bdi; 923 __u64 cno; 924 int err; 925 926 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 927 if (!sbi) 928 return -ENOMEM; 929 930 sb->s_fs_info = sbi; 931 sbi->s_super = sb; 932 933 nilfs = alloc_nilfs(sb->s_bdev); 934 if (!nilfs) { 935 err = -ENOMEM; 936 goto failed_sbi; 937 } 938 sbi->s_nilfs = nilfs; 939 940 err = init_nilfs(nilfs, sbi, (char *)data); 941 if (err) 942 goto failed_nilfs; 943 944 spin_lock_init(&sbi->s_inode_lock); 945 INIT_LIST_HEAD(&sbi->s_dirty_files); 946 947 /* 948 * Following initialization is overlapped because 949 * nilfs_sb_info structure has been cleared at the beginning. 950 * But we reserve them to keep our interest and make ready 951 * for the future change. 952 */ 953 get_random_bytes(&sbi->s_next_generation, 954 sizeof(sbi->s_next_generation)); 955 spin_lock_init(&sbi->s_next_gen_lock); 956 957 sb->s_op = &nilfs_sops; 958 sb->s_export_op = &nilfs_export_ops; 959 sb->s_root = NULL; 960 sb->s_time_gran = 1; 961 962 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 963 sb->s_bdi = bdi ? : &default_backing_dev_info; 964 965 err = load_nilfs(nilfs, sbi); 966 if (err) 967 goto failed_nilfs; 968 969 cno = nilfs_last_cno(nilfs); 970 err = nilfs_attach_checkpoint(sbi, cno, true, &fsroot); 971 if (err) { 972 printk(KERN_ERR "NILFS: error loading last checkpoint " 973 "(checkpoint number=%llu).\n", (unsigned long long)cno); 974 goto failed_unload; 975 } 976 977 if (!(sb->s_flags & MS_RDONLY)) { 978 err = nilfs_attach_segment_constructor(sbi, fsroot); 979 if (err) 980 goto failed_checkpoint; 981 } 982 983 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root); 984 if (err) 985 goto failed_segctor; 986 987 nilfs_put_root(fsroot); 988 989 if (!(sb->s_flags & MS_RDONLY)) { 990 down_write(&nilfs->ns_sem); 991 nilfs_setup_super(sbi, true); 992 up_write(&nilfs->ns_sem); 993 } 994 995 return 0; 996 997 failed_segctor: 998 nilfs_detach_segment_constructor(sbi); 999 1000 failed_checkpoint: 1001 nilfs_put_root(fsroot); 1002 1003 failed_unload: 1004 iput(nilfs->ns_sufile); 1005 iput(nilfs->ns_cpfile); 1006 iput(nilfs->ns_dat); 1007 1008 failed_nilfs: 1009 destroy_nilfs(nilfs); 1010 1011 failed_sbi: 1012 sb->s_fs_info = NULL; 1013 kfree(sbi); 1014 return err; 1015 } 1016 1017 static int nilfs_remount(struct super_block *sb, int *flags, char *data) 1018 { 1019 struct nilfs_sb_info *sbi = NILFS_SB(sb); 1020 struct the_nilfs *nilfs = sbi->s_nilfs; 1021 unsigned long old_sb_flags; 1022 unsigned long old_mount_opt; 1023 int err; 1024 1025 old_sb_flags = sb->s_flags; 1026 old_mount_opt = sbi->s_mount_opt; 1027 1028 if (!parse_options(data, sb, 1)) { 1029 err = -EINVAL; 1030 goto restore_opts; 1031 } 1032 sb->s_flags = (sb->s_flags & ~MS_POSIXACL); 1033 1034 err = -EINVAL; 1035 1036 if (!nilfs_valid_fs(nilfs)) { 1037 printk(KERN_WARNING "NILFS (device %s): couldn't " 1038 "remount because the filesystem is in an " 1039 "incomplete recovery state.\n", sb->s_id); 1040 goto restore_opts; 1041 } 1042 1043 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1044 goto out; 1045 if (*flags & MS_RDONLY) { 1046 /* Shutting down the segment constructor */ 1047 nilfs_detach_segment_constructor(sbi); 1048 sb->s_flags |= MS_RDONLY; 1049 1050 /* 1051 * Remounting a valid RW partition RDONLY, so set 1052 * the RDONLY flag and then mark the partition as valid again. 1053 */ 1054 down_write(&nilfs->ns_sem); 1055 nilfs_cleanup_super(sbi); 1056 up_write(&nilfs->ns_sem); 1057 } else { 1058 __u64 features; 1059 struct nilfs_root *root; 1060 1061 /* 1062 * Mounting a RDONLY partition read-write, so reread and 1063 * store the current valid flag. (It may have been changed 1064 * by fsck since we originally mounted the partition.) 1065 */ 1066 down_read(&nilfs->ns_sem); 1067 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) & 1068 ~NILFS_FEATURE_COMPAT_RO_SUPP; 1069 up_read(&nilfs->ns_sem); 1070 if (features) { 1071 printk(KERN_WARNING "NILFS (device %s): couldn't " 1072 "remount RDWR because of unsupported optional " 1073 "features (%llx)\n", 1074 sb->s_id, (unsigned long long)features); 1075 err = -EROFS; 1076 goto restore_opts; 1077 } 1078 1079 sb->s_flags &= ~MS_RDONLY; 1080 1081 root = NILFS_I(sb->s_root->d_inode)->i_root; 1082 err = nilfs_attach_segment_constructor(sbi, root); 1083 if (err) 1084 goto restore_opts; 1085 1086 down_write(&nilfs->ns_sem); 1087 nilfs_setup_super(sbi, true); 1088 up_write(&nilfs->ns_sem); 1089 } 1090 out: 1091 return 0; 1092 1093 restore_opts: 1094 sb->s_flags = old_sb_flags; 1095 sbi->s_mount_opt = old_mount_opt; 1096 return err; 1097 } 1098 1099 struct nilfs_super_data { 1100 struct block_device *bdev; 1101 struct nilfs_sb_info *sbi; 1102 __u64 cno; 1103 int flags; 1104 }; 1105 1106 /** 1107 * nilfs_identify - pre-read mount options needed to identify mount instance 1108 * @data: mount options 1109 * @sd: nilfs_super_data 1110 */ 1111 static int nilfs_identify(char *data, struct nilfs_super_data *sd) 1112 { 1113 char *p, *options = data; 1114 substring_t args[MAX_OPT_ARGS]; 1115 int token; 1116 int ret = 0; 1117 1118 do { 1119 p = strsep(&options, ","); 1120 if (p != NULL && *p) { 1121 token = match_token(p, tokens, args); 1122 if (token == Opt_snapshot) { 1123 if (!(sd->flags & MS_RDONLY)) { 1124 ret++; 1125 } else { 1126 sd->cno = simple_strtoull(args[0].from, 1127 NULL, 0); 1128 /* 1129 * No need to see the end pointer; 1130 * match_token() has done syntax 1131 * checking. 1132 */ 1133 if (sd->cno == 0) 1134 ret++; 1135 } 1136 } 1137 if (ret) 1138 printk(KERN_ERR 1139 "NILFS: invalid mount option: %s\n", p); 1140 } 1141 if (!options) 1142 break; 1143 BUG_ON(options == data); 1144 *(options - 1) = ','; 1145 } while (!ret); 1146 return ret; 1147 } 1148 1149 static int nilfs_set_bdev_super(struct super_block *s, void *data) 1150 { 1151 s->s_bdev = data; 1152 s->s_dev = s->s_bdev->bd_dev; 1153 return 0; 1154 } 1155 1156 static int nilfs_test_bdev_super(struct super_block *s, void *data) 1157 { 1158 return (void *)s->s_bdev == data; 1159 } 1160 1161 static struct dentry * 1162 nilfs_mount(struct file_system_type *fs_type, int flags, 1163 const char *dev_name, void *data) 1164 { 1165 struct nilfs_super_data sd; 1166 struct super_block *s; 1167 fmode_t mode = FMODE_READ | FMODE_EXCL; 1168 struct dentry *root_dentry; 1169 int err, s_new = false; 1170 1171 if (!(flags & MS_RDONLY)) 1172 mode |= FMODE_WRITE; 1173 1174 sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1175 if (IS_ERR(sd.bdev)) 1176 return ERR_CAST(sd.bdev); 1177 1178 sd.cno = 0; 1179 sd.flags = flags; 1180 if (nilfs_identify((char *)data, &sd)) { 1181 err = -EINVAL; 1182 goto failed; 1183 } 1184 1185 /* 1186 * once the super is inserted into the list by sget, s_umount 1187 * will protect the lockfs code from trying to start a snapshot 1188 * while we are mounting 1189 */ 1190 mutex_lock(&sd.bdev->bd_fsfreeze_mutex); 1191 if (sd.bdev->bd_fsfreeze_count > 0) { 1192 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex); 1193 err = -EBUSY; 1194 goto failed; 1195 } 1196 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, sd.bdev); 1197 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex); 1198 if (IS_ERR(s)) { 1199 err = PTR_ERR(s); 1200 goto failed; 1201 } 1202 1203 if (!s->s_root) { 1204 char b[BDEVNAME_SIZE]; 1205 1206 s_new = true; 1207 1208 /* New superblock instance created */ 1209 s->s_flags = flags; 1210 s->s_mode = mode; 1211 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id)); 1212 sb_set_blocksize(s, block_size(sd.bdev)); 1213 1214 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1215 if (err) 1216 goto failed_super; 1217 1218 s->s_flags |= MS_ACTIVE; 1219 } else if (!sd.cno) { 1220 int busy = false; 1221 1222 if (nilfs_tree_was_touched(s->s_root)) { 1223 busy = nilfs_try_to_shrink_tree(s->s_root); 1224 if (busy && (flags ^ s->s_flags) & MS_RDONLY) { 1225 printk(KERN_ERR "NILFS: the device already " 1226 "has a %s mount.\n", 1227 (s->s_flags & MS_RDONLY) ? 1228 "read-only" : "read/write"); 1229 err = -EBUSY; 1230 goto failed_super; 1231 } 1232 } 1233 if (!busy) { 1234 /* 1235 * Try remount to setup mount states if the current 1236 * tree is not mounted and only snapshots use this sb. 1237 */ 1238 err = nilfs_remount(s, &flags, data); 1239 if (err) 1240 goto failed_super; 1241 } 1242 } 1243 1244 if (sd.cno) { 1245 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry); 1246 if (err) 1247 goto failed_super; 1248 } else { 1249 root_dentry = dget(s->s_root); 1250 } 1251 1252 if (!s_new) 1253 blkdev_put(sd.bdev, mode); 1254 1255 return root_dentry; 1256 1257 failed_super: 1258 deactivate_locked_super(s); 1259 1260 failed: 1261 if (!s_new) 1262 blkdev_put(sd.bdev, mode); 1263 return ERR_PTR(err); 1264 } 1265 1266 struct file_system_type nilfs_fs_type = { 1267 .owner = THIS_MODULE, 1268 .name = "nilfs2", 1269 .mount = nilfs_mount, 1270 .kill_sb = kill_block_super, 1271 .fs_flags = FS_REQUIRES_DEV, 1272 }; 1273 1274 static void nilfs_inode_init_once(void *obj) 1275 { 1276 struct nilfs_inode_info *ii = obj; 1277 1278 INIT_LIST_HEAD(&ii->i_dirty); 1279 #ifdef CONFIG_NILFS_XATTR 1280 init_rwsem(&ii->xattr_sem); 1281 #endif 1282 address_space_init_once(&ii->i_btnode_cache); 1283 ii->i_bmap = &ii->i_bmap_data; 1284 inode_init_once(&ii->vfs_inode); 1285 } 1286 1287 static void nilfs_segbuf_init_once(void *obj) 1288 { 1289 memset(obj, 0, sizeof(struct nilfs_segment_buffer)); 1290 } 1291 1292 static void nilfs_destroy_cachep(void) 1293 { 1294 if (nilfs_inode_cachep) 1295 kmem_cache_destroy(nilfs_inode_cachep); 1296 if (nilfs_transaction_cachep) 1297 kmem_cache_destroy(nilfs_transaction_cachep); 1298 if (nilfs_segbuf_cachep) 1299 kmem_cache_destroy(nilfs_segbuf_cachep); 1300 if (nilfs_btree_path_cache) 1301 kmem_cache_destroy(nilfs_btree_path_cache); 1302 } 1303 1304 static int __init nilfs_init_cachep(void) 1305 { 1306 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache", 1307 sizeof(struct nilfs_inode_info), 0, 1308 SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once); 1309 if (!nilfs_inode_cachep) 1310 goto fail; 1311 1312 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache", 1313 sizeof(struct nilfs_transaction_info), 0, 1314 SLAB_RECLAIM_ACCOUNT, NULL); 1315 if (!nilfs_transaction_cachep) 1316 goto fail; 1317 1318 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache", 1319 sizeof(struct nilfs_segment_buffer), 0, 1320 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once); 1321 if (!nilfs_segbuf_cachep) 1322 goto fail; 1323 1324 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache", 1325 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX, 1326 0, 0, NULL); 1327 if (!nilfs_btree_path_cache) 1328 goto fail; 1329 1330 return 0; 1331 1332 fail: 1333 nilfs_destroy_cachep(); 1334 return -ENOMEM; 1335 } 1336 1337 static int __init init_nilfs_fs(void) 1338 { 1339 int err; 1340 1341 err = nilfs_init_cachep(); 1342 if (err) 1343 goto fail; 1344 1345 err = register_filesystem(&nilfs_fs_type); 1346 if (err) 1347 goto free_cachep; 1348 1349 printk(KERN_INFO "NILFS version 2 loaded\n"); 1350 return 0; 1351 1352 free_cachep: 1353 nilfs_destroy_cachep(); 1354 fail: 1355 return err; 1356 } 1357 1358 static void __exit exit_nilfs_fs(void) 1359 { 1360 nilfs_destroy_cachep(); 1361 unregister_filesystem(&nilfs_fs_type); 1362 } 1363 1364 module_init(init_nilfs_fs) 1365 module_exit(exit_nilfs_fs) 1366