xref: /openbmc/linux/fs/nilfs2/super.c (revision 3805e6a1)
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * Written by Ryusuke Konishi.
17  */
18 /*
19  *  linux/fs/ext2/super.c
20  *
21  * Copyright (C) 1992, 1993, 1994, 1995
22  * Remy Card (card@masi.ibp.fr)
23  * Laboratoire MASI - Institut Blaise Pascal
24  * Universite Pierre et Marie Curie (Paris VI)
25  *
26  *  from
27  *
28  *  linux/fs/minix/inode.c
29  *
30  *  Copyright (C) 1991, 1992  Linus Torvalds
31  *
32  *  Big-endian to little-endian byte-swapping/bitmaps by
33  *        David S. Miller (davem@caip.rutgers.edu), 1995
34  */
35 
36 #include <linux/module.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/blkdev.h>
41 #include <linux/parser.h>
42 #include <linux/crc32.h>
43 #include <linux/vfs.h>
44 #include <linux/writeback.h>
45 #include <linux/seq_file.h>
46 #include <linux/mount.h>
47 #include "nilfs.h"
48 #include "export.h"
49 #include "mdt.h"
50 #include "alloc.h"
51 #include "btree.h"
52 #include "btnode.h"
53 #include "page.h"
54 #include "cpfile.h"
55 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
56 #include "ifile.h"
57 #include "dat.h"
58 #include "segment.h"
59 #include "segbuf.h"
60 
61 MODULE_AUTHOR("NTT Corp.");
62 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
63 		   "(NILFS)");
64 MODULE_LICENSE("GPL");
65 
66 static struct kmem_cache *nilfs_inode_cachep;
67 struct kmem_cache *nilfs_transaction_cachep;
68 struct kmem_cache *nilfs_segbuf_cachep;
69 struct kmem_cache *nilfs_btree_path_cache;
70 
71 static int nilfs_setup_super(struct super_block *sb, int is_mount);
72 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
73 
74 static void nilfs_set_error(struct super_block *sb)
75 {
76 	struct the_nilfs *nilfs = sb->s_fs_info;
77 	struct nilfs_super_block **sbp;
78 
79 	down_write(&nilfs->ns_sem);
80 	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
81 		nilfs->ns_mount_state |= NILFS_ERROR_FS;
82 		sbp = nilfs_prepare_super(sb, 0);
83 		if (likely(sbp)) {
84 			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
85 			if (sbp[1])
86 				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
87 			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
88 		}
89 	}
90 	up_write(&nilfs->ns_sem);
91 }
92 
93 /**
94  * nilfs_error() - report failure condition on a filesystem
95  *
96  * nilfs_error() sets an ERROR_FS flag on the superblock as well as
97  * reporting an error message.  It should be called when NILFS detects
98  * incoherences or defects of meta data on disk.  As for sustainable
99  * errors such as a single-shot I/O error, nilfs_warning() or the printk()
100  * function should be used instead.
101  *
102  * The segment constructor must not call this function because it can
103  * kill itself.
104  */
105 void nilfs_error(struct super_block *sb, const char *function,
106 		 const char *fmt, ...)
107 {
108 	struct the_nilfs *nilfs = sb->s_fs_info;
109 	struct va_format vaf;
110 	va_list args;
111 
112 	va_start(args, fmt);
113 
114 	vaf.fmt = fmt;
115 	vaf.va = &args;
116 
117 	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
118 	       sb->s_id, function, &vaf);
119 
120 	va_end(args);
121 
122 	if (!(sb->s_flags & MS_RDONLY)) {
123 		nilfs_set_error(sb);
124 
125 		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
126 			printk(KERN_CRIT "Remounting filesystem read-only\n");
127 			sb->s_flags |= MS_RDONLY;
128 		}
129 	}
130 
131 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
132 		panic("NILFS (device %s): panic forced after error\n",
133 		      sb->s_id);
134 }
135 
136 void nilfs_warning(struct super_block *sb, const char *function,
137 		   const char *fmt, ...)
138 {
139 	struct va_format vaf;
140 	va_list args;
141 
142 	va_start(args, fmt);
143 
144 	vaf.fmt = fmt;
145 	vaf.va = &args;
146 
147 	printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
148 	       sb->s_id, function, &vaf);
149 
150 	va_end(args);
151 }
152 
153 
154 struct inode *nilfs_alloc_inode(struct super_block *sb)
155 {
156 	struct nilfs_inode_info *ii;
157 
158 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
159 	if (!ii)
160 		return NULL;
161 	ii->i_bh = NULL;
162 	ii->i_state = 0;
163 	ii->i_cno = 0;
164 	ii->vfs_inode.i_version = 1;
165 	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
166 	return &ii->vfs_inode;
167 }
168 
169 static void nilfs_i_callback(struct rcu_head *head)
170 {
171 	struct inode *inode = container_of(head, struct inode, i_rcu);
172 
173 	if (nilfs_is_metadata_file_inode(inode))
174 		nilfs_mdt_destroy(inode);
175 
176 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
177 }
178 
179 void nilfs_destroy_inode(struct inode *inode)
180 {
181 	call_rcu(&inode->i_rcu, nilfs_i_callback);
182 }
183 
184 static int nilfs_sync_super(struct super_block *sb, int flag)
185 {
186 	struct the_nilfs *nilfs = sb->s_fs_info;
187 	int err;
188 
189  retry:
190 	set_buffer_dirty(nilfs->ns_sbh[0]);
191 	if (nilfs_test_opt(nilfs, BARRIER)) {
192 		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
193 					  WRITE_SYNC | WRITE_FLUSH_FUA);
194 	} else {
195 		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
196 	}
197 
198 	if (unlikely(err)) {
199 		printk(KERN_ERR
200 		       "NILFS: unable to write superblock (err=%d)\n", err);
201 		if (err == -EIO && nilfs->ns_sbh[1]) {
202 			/*
203 			 * sbp[0] points to newer log than sbp[1],
204 			 * so copy sbp[0] to sbp[1] to take over sbp[0].
205 			 */
206 			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
207 			       nilfs->ns_sbsize);
208 			nilfs_fall_back_super_block(nilfs);
209 			goto retry;
210 		}
211 	} else {
212 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
213 
214 		nilfs->ns_sbwcount++;
215 
216 		/*
217 		 * The latest segment becomes trailable from the position
218 		 * written in superblock.
219 		 */
220 		clear_nilfs_discontinued(nilfs);
221 
222 		/* update GC protection for recent segments */
223 		if (nilfs->ns_sbh[1]) {
224 			if (flag == NILFS_SB_COMMIT_ALL) {
225 				set_buffer_dirty(nilfs->ns_sbh[1]);
226 				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
227 					goto out;
228 			}
229 			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
230 			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
231 				sbp = nilfs->ns_sbp[1];
232 		}
233 
234 		spin_lock(&nilfs->ns_last_segment_lock);
235 		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
236 		spin_unlock(&nilfs->ns_last_segment_lock);
237 	}
238  out:
239 	return err;
240 }
241 
242 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
243 			  struct the_nilfs *nilfs)
244 {
245 	sector_t nfreeblocks;
246 
247 	/* nilfs->ns_sem must be locked by the caller. */
248 	nilfs_count_free_blocks(nilfs, &nfreeblocks);
249 	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
250 
251 	spin_lock(&nilfs->ns_last_segment_lock);
252 	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
253 	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
254 	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
255 	spin_unlock(&nilfs->ns_last_segment_lock);
256 }
257 
258 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
259 					       int flip)
260 {
261 	struct the_nilfs *nilfs = sb->s_fs_info;
262 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
263 
264 	/* nilfs->ns_sem must be locked by the caller. */
265 	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
266 		if (sbp[1] &&
267 		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
268 			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
269 		} else {
270 			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
271 			       sb->s_id);
272 			return NULL;
273 		}
274 	} else if (sbp[1] &&
275 		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
276 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
277 	}
278 
279 	if (flip && sbp[1])
280 		nilfs_swap_super_block(nilfs);
281 
282 	return sbp;
283 }
284 
285 int nilfs_commit_super(struct super_block *sb, int flag)
286 {
287 	struct the_nilfs *nilfs = sb->s_fs_info;
288 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
289 	time_t t;
290 
291 	/* nilfs->ns_sem must be locked by the caller. */
292 	t = get_seconds();
293 	nilfs->ns_sbwtime = t;
294 	sbp[0]->s_wtime = cpu_to_le64(t);
295 	sbp[0]->s_sum = 0;
296 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
297 					     (unsigned char *)sbp[0],
298 					     nilfs->ns_sbsize));
299 	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
300 		sbp[1]->s_wtime = sbp[0]->s_wtime;
301 		sbp[1]->s_sum = 0;
302 		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
303 					    (unsigned char *)sbp[1],
304 					    nilfs->ns_sbsize));
305 	}
306 	clear_nilfs_sb_dirty(nilfs);
307 	nilfs->ns_flushed_device = 1;
308 	/* make sure store to ns_flushed_device cannot be reordered */
309 	smp_wmb();
310 	return nilfs_sync_super(sb, flag);
311 }
312 
313 /**
314  * nilfs_cleanup_super() - write filesystem state for cleanup
315  * @sb: super block instance to be unmounted or degraded to read-only
316  *
317  * This function restores state flags in the on-disk super block.
318  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
319  * filesystem was not clean previously.
320  */
321 int nilfs_cleanup_super(struct super_block *sb)
322 {
323 	struct the_nilfs *nilfs = sb->s_fs_info;
324 	struct nilfs_super_block **sbp;
325 	int flag = NILFS_SB_COMMIT;
326 	int ret = -EIO;
327 
328 	sbp = nilfs_prepare_super(sb, 0);
329 	if (sbp) {
330 		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
331 		nilfs_set_log_cursor(sbp[0], nilfs);
332 		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
333 			/*
334 			 * make the "clean" flag also to the opposite
335 			 * super block if both super blocks point to
336 			 * the same checkpoint.
337 			 */
338 			sbp[1]->s_state = sbp[0]->s_state;
339 			flag = NILFS_SB_COMMIT_ALL;
340 		}
341 		ret = nilfs_commit_super(sb, flag);
342 	}
343 	return ret;
344 }
345 
346 /**
347  * nilfs_move_2nd_super - relocate secondary super block
348  * @sb: super block instance
349  * @sb2off: new offset of the secondary super block (in bytes)
350  */
351 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
352 {
353 	struct the_nilfs *nilfs = sb->s_fs_info;
354 	struct buffer_head *nsbh;
355 	struct nilfs_super_block *nsbp;
356 	sector_t blocknr, newblocknr;
357 	unsigned long offset;
358 	int sb2i;  /* array index of the secondary superblock */
359 	int ret = 0;
360 
361 	/* nilfs->ns_sem must be locked by the caller. */
362 	if (nilfs->ns_sbh[1] &&
363 	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
364 		sb2i = 1;
365 		blocknr = nilfs->ns_sbh[1]->b_blocknr;
366 	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
367 		sb2i = 0;
368 		blocknr = nilfs->ns_sbh[0]->b_blocknr;
369 	} else {
370 		sb2i = -1;
371 		blocknr = 0;
372 	}
373 	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
374 		goto out;  /* super block location is unchanged */
375 
376 	/* Get new super block buffer */
377 	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
378 	offset = sb2off & (nilfs->ns_blocksize - 1);
379 	nsbh = sb_getblk(sb, newblocknr);
380 	if (!nsbh) {
381 		printk(KERN_WARNING
382 		       "NILFS warning: unable to move secondary superblock "
383 		       "to block %llu\n", (unsigned long long)newblocknr);
384 		ret = -EIO;
385 		goto out;
386 	}
387 	nsbp = (void *)nsbh->b_data + offset;
388 	memset(nsbp, 0, nilfs->ns_blocksize);
389 
390 	if (sb2i >= 0) {
391 		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
392 		brelse(nilfs->ns_sbh[sb2i]);
393 		nilfs->ns_sbh[sb2i] = nsbh;
394 		nilfs->ns_sbp[sb2i] = nsbp;
395 	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
396 		/* secondary super block will be restored to index 1 */
397 		nilfs->ns_sbh[1] = nsbh;
398 		nilfs->ns_sbp[1] = nsbp;
399 	} else {
400 		brelse(nsbh);
401 	}
402 out:
403 	return ret;
404 }
405 
406 /**
407  * nilfs_resize_fs - resize the filesystem
408  * @sb: super block instance
409  * @newsize: new size of the filesystem (in bytes)
410  */
411 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
412 {
413 	struct the_nilfs *nilfs = sb->s_fs_info;
414 	struct nilfs_super_block **sbp;
415 	__u64 devsize, newnsegs;
416 	loff_t sb2off;
417 	int ret;
418 
419 	ret = -ERANGE;
420 	devsize = i_size_read(sb->s_bdev->bd_inode);
421 	if (newsize > devsize)
422 		goto out;
423 
424 	/*
425 	 * Write lock is required to protect some functions depending
426 	 * on the number of segments, the number of reserved segments,
427 	 * and so forth.
428 	 */
429 	down_write(&nilfs->ns_segctor_sem);
430 
431 	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
432 	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
433 	do_div(newnsegs, nilfs->ns_blocks_per_segment);
434 
435 	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
436 	up_write(&nilfs->ns_segctor_sem);
437 	if (ret < 0)
438 		goto out;
439 
440 	ret = nilfs_construct_segment(sb);
441 	if (ret < 0)
442 		goto out;
443 
444 	down_write(&nilfs->ns_sem);
445 	nilfs_move_2nd_super(sb, sb2off);
446 	ret = -EIO;
447 	sbp = nilfs_prepare_super(sb, 0);
448 	if (likely(sbp)) {
449 		nilfs_set_log_cursor(sbp[0], nilfs);
450 		/*
451 		 * Drop NILFS_RESIZE_FS flag for compatibility with
452 		 * mount-time resize which may be implemented in a
453 		 * future release.
454 		 */
455 		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
456 					      ~NILFS_RESIZE_FS);
457 		sbp[0]->s_dev_size = cpu_to_le64(newsize);
458 		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
459 		if (sbp[1])
460 			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
461 		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
462 	}
463 	up_write(&nilfs->ns_sem);
464 
465 	/*
466 	 * Reset the range of allocatable segments last.  This order
467 	 * is important in the case of expansion because the secondary
468 	 * superblock must be protected from log write until migration
469 	 * completes.
470 	 */
471 	if (!ret)
472 		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
473 out:
474 	return ret;
475 }
476 
477 static void nilfs_put_super(struct super_block *sb)
478 {
479 	struct the_nilfs *nilfs = sb->s_fs_info;
480 
481 	nilfs_detach_log_writer(sb);
482 
483 	if (!(sb->s_flags & MS_RDONLY)) {
484 		down_write(&nilfs->ns_sem);
485 		nilfs_cleanup_super(sb);
486 		up_write(&nilfs->ns_sem);
487 	}
488 
489 	iput(nilfs->ns_sufile);
490 	iput(nilfs->ns_cpfile);
491 	iput(nilfs->ns_dat);
492 
493 	destroy_nilfs(nilfs);
494 	sb->s_fs_info = NULL;
495 }
496 
497 static int nilfs_sync_fs(struct super_block *sb, int wait)
498 {
499 	struct the_nilfs *nilfs = sb->s_fs_info;
500 	struct nilfs_super_block **sbp;
501 	int err = 0;
502 
503 	/* This function is called when super block should be written back */
504 	if (wait)
505 		err = nilfs_construct_segment(sb);
506 
507 	down_write(&nilfs->ns_sem);
508 	if (nilfs_sb_dirty(nilfs)) {
509 		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
510 		if (likely(sbp)) {
511 			nilfs_set_log_cursor(sbp[0], nilfs);
512 			nilfs_commit_super(sb, NILFS_SB_COMMIT);
513 		}
514 	}
515 	up_write(&nilfs->ns_sem);
516 
517 	if (!err)
518 		err = nilfs_flush_device(nilfs);
519 
520 	return err;
521 }
522 
523 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
524 			    struct nilfs_root **rootp)
525 {
526 	struct the_nilfs *nilfs = sb->s_fs_info;
527 	struct nilfs_root *root;
528 	struct nilfs_checkpoint *raw_cp;
529 	struct buffer_head *bh_cp;
530 	int err = -ENOMEM;
531 
532 	root = nilfs_find_or_create_root(
533 		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
534 	if (!root)
535 		return err;
536 
537 	if (root->ifile)
538 		goto reuse; /* already attached checkpoint */
539 
540 	down_read(&nilfs->ns_segctor_sem);
541 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
542 					  &bh_cp);
543 	up_read(&nilfs->ns_segctor_sem);
544 	if (unlikely(err)) {
545 		if (err == -ENOENT || err == -EINVAL) {
546 			printk(KERN_ERR
547 			       "NILFS: Invalid checkpoint "
548 			       "(checkpoint number=%llu)\n",
549 			       (unsigned long long)cno);
550 			err = -EINVAL;
551 		}
552 		goto failed;
553 	}
554 
555 	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
556 			       &raw_cp->cp_ifile_inode, &root->ifile);
557 	if (err)
558 		goto failed_bh;
559 
560 	atomic64_set(&root->inodes_count,
561 			le64_to_cpu(raw_cp->cp_inodes_count));
562 	atomic64_set(&root->blocks_count,
563 			le64_to_cpu(raw_cp->cp_blocks_count));
564 
565 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
566 
567  reuse:
568 	*rootp = root;
569 	return 0;
570 
571  failed_bh:
572 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
573  failed:
574 	nilfs_put_root(root);
575 
576 	return err;
577 }
578 
579 static int nilfs_freeze(struct super_block *sb)
580 {
581 	struct the_nilfs *nilfs = sb->s_fs_info;
582 	int err;
583 
584 	if (sb->s_flags & MS_RDONLY)
585 		return 0;
586 
587 	/* Mark super block clean */
588 	down_write(&nilfs->ns_sem);
589 	err = nilfs_cleanup_super(sb);
590 	up_write(&nilfs->ns_sem);
591 	return err;
592 }
593 
594 static int nilfs_unfreeze(struct super_block *sb)
595 {
596 	struct the_nilfs *nilfs = sb->s_fs_info;
597 
598 	if (sb->s_flags & MS_RDONLY)
599 		return 0;
600 
601 	down_write(&nilfs->ns_sem);
602 	nilfs_setup_super(sb, false);
603 	up_write(&nilfs->ns_sem);
604 	return 0;
605 }
606 
607 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
608 {
609 	struct super_block *sb = dentry->d_sb;
610 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
611 	struct the_nilfs *nilfs = root->nilfs;
612 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
613 	unsigned long long blocks;
614 	unsigned long overhead;
615 	unsigned long nrsvblocks;
616 	sector_t nfreeblocks;
617 	u64 nmaxinodes, nfreeinodes;
618 	int err;
619 
620 	/*
621 	 * Compute all of the segment blocks
622 	 *
623 	 * The blocks before first segment and after last segment
624 	 * are excluded.
625 	 */
626 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
627 		- nilfs->ns_first_data_block;
628 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
629 
630 	/*
631 	 * Compute the overhead
632 	 *
633 	 * When distributing meta data blocks outside segment structure,
634 	 * We must count them as the overhead.
635 	 */
636 	overhead = 0;
637 
638 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
639 	if (unlikely(err))
640 		return err;
641 
642 	err = nilfs_ifile_count_free_inodes(root->ifile,
643 					    &nmaxinodes, &nfreeinodes);
644 	if (unlikely(err)) {
645 		printk(KERN_WARNING
646 			"NILFS warning: fail to count free inodes: err %d.\n",
647 			err);
648 		if (err == -ERANGE) {
649 			/*
650 			 * If nilfs_palloc_count_max_entries() returns
651 			 * -ERANGE error code then we simply treat
652 			 * curent inodes count as maximum possible and
653 			 * zero as free inodes value.
654 			 */
655 			nmaxinodes = atomic64_read(&root->inodes_count);
656 			nfreeinodes = 0;
657 			err = 0;
658 		} else
659 			return err;
660 	}
661 
662 	buf->f_type = NILFS_SUPER_MAGIC;
663 	buf->f_bsize = sb->s_blocksize;
664 	buf->f_blocks = blocks - overhead;
665 	buf->f_bfree = nfreeblocks;
666 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
667 		(buf->f_bfree - nrsvblocks) : 0;
668 	buf->f_files = nmaxinodes;
669 	buf->f_ffree = nfreeinodes;
670 	buf->f_namelen = NILFS_NAME_LEN;
671 	buf->f_fsid.val[0] = (u32)id;
672 	buf->f_fsid.val[1] = (u32)(id >> 32);
673 
674 	return 0;
675 }
676 
677 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
678 {
679 	struct super_block *sb = dentry->d_sb;
680 	struct the_nilfs *nilfs = sb->s_fs_info;
681 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
682 
683 	if (!nilfs_test_opt(nilfs, BARRIER))
684 		seq_puts(seq, ",nobarrier");
685 	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
686 		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
687 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
688 		seq_puts(seq, ",errors=panic");
689 	if (nilfs_test_opt(nilfs, ERRORS_CONT))
690 		seq_puts(seq, ",errors=continue");
691 	if (nilfs_test_opt(nilfs, STRICT_ORDER))
692 		seq_puts(seq, ",order=strict");
693 	if (nilfs_test_opt(nilfs, NORECOVERY))
694 		seq_puts(seq, ",norecovery");
695 	if (nilfs_test_opt(nilfs, DISCARD))
696 		seq_puts(seq, ",discard");
697 
698 	return 0;
699 }
700 
701 static const struct super_operations nilfs_sops = {
702 	.alloc_inode    = nilfs_alloc_inode,
703 	.destroy_inode  = nilfs_destroy_inode,
704 	.dirty_inode    = nilfs_dirty_inode,
705 	.evict_inode    = nilfs_evict_inode,
706 	.put_super      = nilfs_put_super,
707 	.sync_fs        = nilfs_sync_fs,
708 	.freeze_fs	= nilfs_freeze,
709 	.unfreeze_fs	= nilfs_unfreeze,
710 	.statfs         = nilfs_statfs,
711 	.remount_fs     = nilfs_remount,
712 	.show_options = nilfs_show_options
713 };
714 
715 enum {
716 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
717 	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
718 	Opt_discard, Opt_nodiscard, Opt_err,
719 };
720 
721 static match_table_t tokens = {
722 	{Opt_err_cont, "errors=continue"},
723 	{Opt_err_panic, "errors=panic"},
724 	{Opt_err_ro, "errors=remount-ro"},
725 	{Opt_barrier, "barrier"},
726 	{Opt_nobarrier, "nobarrier"},
727 	{Opt_snapshot, "cp=%u"},
728 	{Opt_order, "order=%s"},
729 	{Opt_norecovery, "norecovery"},
730 	{Opt_discard, "discard"},
731 	{Opt_nodiscard, "nodiscard"},
732 	{Opt_err, NULL}
733 };
734 
735 static int parse_options(char *options, struct super_block *sb, int is_remount)
736 {
737 	struct the_nilfs *nilfs = sb->s_fs_info;
738 	char *p;
739 	substring_t args[MAX_OPT_ARGS];
740 
741 	if (!options)
742 		return 1;
743 
744 	while ((p = strsep(&options, ",")) != NULL) {
745 		int token;
746 
747 		if (!*p)
748 			continue;
749 
750 		token = match_token(p, tokens, args);
751 		switch (token) {
752 		case Opt_barrier:
753 			nilfs_set_opt(nilfs, BARRIER);
754 			break;
755 		case Opt_nobarrier:
756 			nilfs_clear_opt(nilfs, BARRIER);
757 			break;
758 		case Opt_order:
759 			if (strcmp(args[0].from, "relaxed") == 0)
760 				/* Ordered data semantics */
761 				nilfs_clear_opt(nilfs, STRICT_ORDER);
762 			else if (strcmp(args[0].from, "strict") == 0)
763 				/* Strict in-order semantics */
764 				nilfs_set_opt(nilfs, STRICT_ORDER);
765 			else
766 				return 0;
767 			break;
768 		case Opt_err_panic:
769 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
770 			break;
771 		case Opt_err_ro:
772 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
773 			break;
774 		case Opt_err_cont:
775 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
776 			break;
777 		case Opt_snapshot:
778 			if (is_remount) {
779 				printk(KERN_ERR
780 				       "NILFS: \"%s\" option is invalid "
781 				       "for remount.\n", p);
782 				return 0;
783 			}
784 			break;
785 		case Opt_norecovery:
786 			nilfs_set_opt(nilfs, NORECOVERY);
787 			break;
788 		case Opt_discard:
789 			nilfs_set_opt(nilfs, DISCARD);
790 			break;
791 		case Opt_nodiscard:
792 			nilfs_clear_opt(nilfs, DISCARD);
793 			break;
794 		default:
795 			printk(KERN_ERR
796 			       "NILFS: Unrecognized mount option \"%s\"\n", p);
797 			return 0;
798 		}
799 	}
800 	return 1;
801 }
802 
803 static inline void
804 nilfs_set_default_options(struct super_block *sb,
805 			  struct nilfs_super_block *sbp)
806 {
807 	struct the_nilfs *nilfs = sb->s_fs_info;
808 
809 	nilfs->ns_mount_opt =
810 		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
811 }
812 
813 static int nilfs_setup_super(struct super_block *sb, int is_mount)
814 {
815 	struct the_nilfs *nilfs = sb->s_fs_info;
816 	struct nilfs_super_block **sbp;
817 	int max_mnt_count;
818 	int mnt_count;
819 
820 	/* nilfs->ns_sem must be locked by the caller. */
821 	sbp = nilfs_prepare_super(sb, 0);
822 	if (!sbp)
823 		return -EIO;
824 
825 	if (!is_mount)
826 		goto skip_mount_setup;
827 
828 	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
829 	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
830 
831 	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
832 		printk(KERN_WARNING
833 		       "NILFS warning: mounting fs with errors\n");
834 #if 0
835 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
836 		printk(KERN_WARNING
837 		       "NILFS warning: maximal mount count reached\n");
838 #endif
839 	}
840 	if (!max_mnt_count)
841 		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
842 
843 	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
844 	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
845 
846 skip_mount_setup:
847 	sbp[0]->s_state =
848 		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
849 	/* synchronize sbp[1] with sbp[0] */
850 	if (sbp[1])
851 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
852 	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
853 }
854 
855 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
856 						 u64 pos, int blocksize,
857 						 struct buffer_head **pbh)
858 {
859 	unsigned long long sb_index = pos;
860 	unsigned long offset;
861 
862 	offset = do_div(sb_index, blocksize);
863 	*pbh = sb_bread(sb, sb_index);
864 	if (!*pbh)
865 		return NULL;
866 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
867 }
868 
869 int nilfs_store_magic_and_option(struct super_block *sb,
870 				 struct nilfs_super_block *sbp,
871 				 char *data)
872 {
873 	struct the_nilfs *nilfs = sb->s_fs_info;
874 
875 	sb->s_magic = le16_to_cpu(sbp->s_magic);
876 
877 	/* FS independent flags */
878 #ifdef NILFS_ATIME_DISABLE
879 	sb->s_flags |= MS_NOATIME;
880 #endif
881 
882 	nilfs_set_default_options(sb, sbp);
883 
884 	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
885 	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
886 	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
887 	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
888 
889 	return !parse_options(data, sb, 0) ? -EINVAL : 0;
890 }
891 
892 int nilfs_check_feature_compatibility(struct super_block *sb,
893 				      struct nilfs_super_block *sbp)
894 {
895 	__u64 features;
896 
897 	features = le64_to_cpu(sbp->s_feature_incompat) &
898 		~NILFS_FEATURE_INCOMPAT_SUPP;
899 	if (features) {
900 		printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
901 		       "optional features (%llx)\n",
902 		       (unsigned long long)features);
903 		return -EINVAL;
904 	}
905 	features = le64_to_cpu(sbp->s_feature_compat_ro) &
906 		~NILFS_FEATURE_COMPAT_RO_SUPP;
907 	if (!(sb->s_flags & MS_RDONLY) && features) {
908 		printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
909 		       "unsupported optional features (%llx)\n",
910 		       (unsigned long long)features);
911 		return -EINVAL;
912 	}
913 	return 0;
914 }
915 
916 static int nilfs_get_root_dentry(struct super_block *sb,
917 				 struct nilfs_root *root,
918 				 struct dentry **root_dentry)
919 {
920 	struct inode *inode;
921 	struct dentry *dentry;
922 	int ret = 0;
923 
924 	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
925 	if (IS_ERR(inode)) {
926 		printk(KERN_ERR "NILFS: get root inode failed\n");
927 		ret = PTR_ERR(inode);
928 		goto out;
929 	}
930 	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
931 		iput(inode);
932 		printk(KERN_ERR "NILFS: corrupt root inode.\n");
933 		ret = -EINVAL;
934 		goto out;
935 	}
936 
937 	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
938 		dentry = d_find_alias(inode);
939 		if (!dentry) {
940 			dentry = d_make_root(inode);
941 			if (!dentry) {
942 				ret = -ENOMEM;
943 				goto failed_dentry;
944 			}
945 		} else {
946 			iput(inode);
947 		}
948 	} else {
949 		dentry = d_obtain_root(inode);
950 		if (IS_ERR(dentry)) {
951 			ret = PTR_ERR(dentry);
952 			goto failed_dentry;
953 		}
954 	}
955 	*root_dentry = dentry;
956  out:
957 	return ret;
958 
959  failed_dentry:
960 	printk(KERN_ERR "NILFS: get root dentry failed\n");
961 	goto out;
962 }
963 
964 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
965 				 struct dentry **root_dentry)
966 {
967 	struct the_nilfs *nilfs = s->s_fs_info;
968 	struct nilfs_root *root;
969 	int ret;
970 
971 	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
972 
973 	down_read(&nilfs->ns_segctor_sem);
974 	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
975 	up_read(&nilfs->ns_segctor_sem);
976 	if (ret < 0) {
977 		ret = (ret == -ENOENT) ? -EINVAL : ret;
978 		goto out;
979 	} else if (!ret) {
980 		printk(KERN_ERR "NILFS: The specified checkpoint is "
981 		       "not a snapshot (checkpoint number=%llu).\n",
982 		       (unsigned long long)cno);
983 		ret = -EINVAL;
984 		goto out;
985 	}
986 
987 	ret = nilfs_attach_checkpoint(s, cno, false, &root);
988 	if (ret) {
989 		printk(KERN_ERR "NILFS: error loading snapshot "
990 		       "(checkpoint number=%llu).\n",
991 	       (unsigned long long)cno);
992 		goto out;
993 	}
994 	ret = nilfs_get_root_dentry(s, root, root_dentry);
995 	nilfs_put_root(root);
996  out:
997 	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
998 	return ret;
999 }
1000 
1001 /**
1002  * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1003  * @root_dentry: root dentry of the tree to be shrunk
1004  *
1005  * This function returns true if the tree was in-use.
1006  */
1007 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1008 {
1009 	shrink_dcache_parent(root_dentry);
1010 	return d_count(root_dentry) > 1;
1011 }
1012 
1013 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1014 {
1015 	struct the_nilfs *nilfs = sb->s_fs_info;
1016 	struct nilfs_root *root;
1017 	struct inode *inode;
1018 	struct dentry *dentry;
1019 	int ret;
1020 
1021 	if (cno > nilfs->ns_cno)
1022 		return false;
1023 
1024 	if (cno >= nilfs_last_cno(nilfs))
1025 		return true;	/* protect recent checkpoints */
1026 
1027 	ret = false;
1028 	root = nilfs_lookup_root(nilfs, cno);
1029 	if (root) {
1030 		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1031 		if (inode) {
1032 			dentry = d_find_alias(inode);
1033 			if (dentry) {
1034 				ret = nilfs_tree_is_busy(dentry);
1035 				dput(dentry);
1036 			}
1037 			iput(inode);
1038 		}
1039 		nilfs_put_root(root);
1040 	}
1041 	return ret;
1042 }
1043 
1044 /**
1045  * nilfs_fill_super() - initialize a super block instance
1046  * @sb: super_block
1047  * @data: mount options
1048  * @silent: silent mode flag
1049  *
1050  * This function is called exclusively by nilfs->ns_mount_mutex.
1051  * So, the recovery process is protected from other simultaneous mounts.
1052  */
1053 static int
1054 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1055 {
1056 	struct the_nilfs *nilfs;
1057 	struct nilfs_root *fsroot;
1058 	__u64 cno;
1059 	int err;
1060 
1061 	nilfs = alloc_nilfs(sb->s_bdev);
1062 	if (!nilfs)
1063 		return -ENOMEM;
1064 
1065 	sb->s_fs_info = nilfs;
1066 
1067 	err = init_nilfs(nilfs, sb, (char *)data);
1068 	if (err)
1069 		goto failed_nilfs;
1070 
1071 	sb->s_op = &nilfs_sops;
1072 	sb->s_export_op = &nilfs_export_ops;
1073 	sb->s_root = NULL;
1074 	sb->s_time_gran = 1;
1075 	sb->s_max_links = NILFS_LINK_MAX;
1076 
1077 	sb->s_bdi = &bdev_get_queue(sb->s_bdev)->backing_dev_info;
1078 
1079 	err = load_nilfs(nilfs, sb);
1080 	if (err)
1081 		goto failed_nilfs;
1082 
1083 	cno = nilfs_last_cno(nilfs);
1084 	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1085 	if (err) {
1086 		printk(KERN_ERR "NILFS: error loading last checkpoint "
1087 		       "(checkpoint number=%llu).\n", (unsigned long long)cno);
1088 		goto failed_unload;
1089 	}
1090 
1091 	if (!(sb->s_flags & MS_RDONLY)) {
1092 		err = nilfs_attach_log_writer(sb, fsroot);
1093 		if (err)
1094 			goto failed_checkpoint;
1095 	}
1096 
1097 	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1098 	if (err)
1099 		goto failed_segctor;
1100 
1101 	nilfs_put_root(fsroot);
1102 
1103 	if (!(sb->s_flags & MS_RDONLY)) {
1104 		down_write(&nilfs->ns_sem);
1105 		nilfs_setup_super(sb, true);
1106 		up_write(&nilfs->ns_sem);
1107 	}
1108 
1109 	return 0;
1110 
1111  failed_segctor:
1112 	nilfs_detach_log_writer(sb);
1113 
1114  failed_checkpoint:
1115 	nilfs_put_root(fsroot);
1116 
1117  failed_unload:
1118 	iput(nilfs->ns_sufile);
1119 	iput(nilfs->ns_cpfile);
1120 	iput(nilfs->ns_dat);
1121 
1122  failed_nilfs:
1123 	destroy_nilfs(nilfs);
1124 	return err;
1125 }
1126 
1127 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1128 {
1129 	struct the_nilfs *nilfs = sb->s_fs_info;
1130 	unsigned long old_sb_flags;
1131 	unsigned long old_mount_opt;
1132 	int err;
1133 
1134 	sync_filesystem(sb);
1135 	old_sb_flags = sb->s_flags;
1136 	old_mount_opt = nilfs->ns_mount_opt;
1137 
1138 	if (!parse_options(data, sb, 1)) {
1139 		err = -EINVAL;
1140 		goto restore_opts;
1141 	}
1142 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1143 
1144 	err = -EINVAL;
1145 
1146 	if (!nilfs_valid_fs(nilfs)) {
1147 		printk(KERN_WARNING "NILFS (device %s): couldn't "
1148 		       "remount because the filesystem is in an "
1149 		       "incomplete recovery state.\n", sb->s_id);
1150 		goto restore_opts;
1151 	}
1152 
1153 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1154 		goto out;
1155 	if (*flags & MS_RDONLY) {
1156 		/* Shutting down log writer */
1157 		nilfs_detach_log_writer(sb);
1158 		sb->s_flags |= MS_RDONLY;
1159 
1160 		/*
1161 		 * Remounting a valid RW partition RDONLY, so set
1162 		 * the RDONLY flag and then mark the partition as valid again.
1163 		 */
1164 		down_write(&nilfs->ns_sem);
1165 		nilfs_cleanup_super(sb);
1166 		up_write(&nilfs->ns_sem);
1167 	} else {
1168 		__u64 features;
1169 		struct nilfs_root *root;
1170 
1171 		/*
1172 		 * Mounting a RDONLY partition read-write, so reread and
1173 		 * store the current valid flag.  (It may have been changed
1174 		 * by fsck since we originally mounted the partition.)
1175 		 */
1176 		down_read(&nilfs->ns_sem);
1177 		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1178 			~NILFS_FEATURE_COMPAT_RO_SUPP;
1179 		up_read(&nilfs->ns_sem);
1180 		if (features) {
1181 			printk(KERN_WARNING "NILFS (device %s): couldn't "
1182 			       "remount RDWR because of unsupported optional "
1183 			       "features (%llx)\n",
1184 			       sb->s_id, (unsigned long long)features);
1185 			err = -EROFS;
1186 			goto restore_opts;
1187 		}
1188 
1189 		sb->s_flags &= ~MS_RDONLY;
1190 
1191 		root = NILFS_I(d_inode(sb->s_root))->i_root;
1192 		err = nilfs_attach_log_writer(sb, root);
1193 		if (err)
1194 			goto restore_opts;
1195 
1196 		down_write(&nilfs->ns_sem);
1197 		nilfs_setup_super(sb, true);
1198 		up_write(&nilfs->ns_sem);
1199 	}
1200  out:
1201 	return 0;
1202 
1203  restore_opts:
1204 	sb->s_flags = old_sb_flags;
1205 	nilfs->ns_mount_opt = old_mount_opt;
1206 	return err;
1207 }
1208 
1209 struct nilfs_super_data {
1210 	struct block_device *bdev;
1211 	__u64 cno;
1212 	int flags;
1213 };
1214 
1215 /**
1216  * nilfs_identify - pre-read mount options needed to identify mount instance
1217  * @data: mount options
1218  * @sd: nilfs_super_data
1219  */
1220 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1221 {
1222 	char *p, *options = data;
1223 	substring_t args[MAX_OPT_ARGS];
1224 	int token;
1225 	int ret = 0;
1226 
1227 	do {
1228 		p = strsep(&options, ",");
1229 		if (p != NULL && *p) {
1230 			token = match_token(p, tokens, args);
1231 			if (token == Opt_snapshot) {
1232 				if (!(sd->flags & MS_RDONLY)) {
1233 					ret++;
1234 				} else {
1235 					sd->cno = simple_strtoull(args[0].from,
1236 								  NULL, 0);
1237 					/*
1238 					 * No need to see the end pointer;
1239 					 * match_token() has done syntax
1240 					 * checking.
1241 					 */
1242 					if (sd->cno == 0)
1243 						ret++;
1244 				}
1245 			}
1246 			if (ret)
1247 				printk(KERN_ERR
1248 				       "NILFS: invalid mount option: %s\n", p);
1249 		}
1250 		if (!options)
1251 			break;
1252 		BUG_ON(options == data);
1253 		*(options - 1) = ',';
1254 	} while (!ret);
1255 	return ret;
1256 }
1257 
1258 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1259 {
1260 	s->s_bdev = data;
1261 	s->s_dev = s->s_bdev->bd_dev;
1262 	return 0;
1263 }
1264 
1265 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1266 {
1267 	return (void *)s->s_bdev == data;
1268 }
1269 
1270 static struct dentry *
1271 nilfs_mount(struct file_system_type *fs_type, int flags,
1272 	     const char *dev_name, void *data)
1273 {
1274 	struct nilfs_super_data sd;
1275 	struct super_block *s;
1276 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1277 	struct dentry *root_dentry;
1278 	int err, s_new = false;
1279 
1280 	if (!(flags & MS_RDONLY))
1281 		mode |= FMODE_WRITE;
1282 
1283 	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1284 	if (IS_ERR(sd.bdev))
1285 		return ERR_CAST(sd.bdev);
1286 
1287 	sd.cno = 0;
1288 	sd.flags = flags;
1289 	if (nilfs_identify((char *)data, &sd)) {
1290 		err = -EINVAL;
1291 		goto failed;
1292 	}
1293 
1294 	/*
1295 	 * once the super is inserted into the list by sget, s_umount
1296 	 * will protect the lockfs code from trying to start a snapshot
1297 	 * while we are mounting
1298 	 */
1299 	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1300 	if (sd.bdev->bd_fsfreeze_count > 0) {
1301 		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1302 		err = -EBUSY;
1303 		goto failed;
1304 	}
1305 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1306 		 sd.bdev);
1307 	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1308 	if (IS_ERR(s)) {
1309 		err = PTR_ERR(s);
1310 		goto failed;
1311 	}
1312 
1313 	if (!s->s_root) {
1314 		s_new = true;
1315 
1316 		/* New superblock instance created */
1317 		s->s_mode = mode;
1318 		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1319 		sb_set_blocksize(s, block_size(sd.bdev));
1320 
1321 		err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1322 		if (err)
1323 			goto failed_super;
1324 
1325 		s->s_flags |= MS_ACTIVE;
1326 	} else if (!sd.cno) {
1327 		if (nilfs_tree_is_busy(s->s_root)) {
1328 			if ((flags ^ s->s_flags) & MS_RDONLY) {
1329 				printk(KERN_ERR "NILFS: the device already "
1330 				       "has a %s mount.\n",
1331 				       (s->s_flags & MS_RDONLY) ?
1332 				       "read-only" : "read/write");
1333 				err = -EBUSY;
1334 				goto failed_super;
1335 			}
1336 		} else {
1337 			/*
1338 			 * Try remount to setup mount states if the current
1339 			 * tree is not mounted and only snapshots use this sb.
1340 			 */
1341 			err = nilfs_remount(s, &flags, data);
1342 			if (err)
1343 				goto failed_super;
1344 		}
1345 	}
1346 
1347 	if (sd.cno) {
1348 		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1349 		if (err)
1350 			goto failed_super;
1351 	} else {
1352 		root_dentry = dget(s->s_root);
1353 	}
1354 
1355 	if (!s_new)
1356 		blkdev_put(sd.bdev, mode);
1357 
1358 	return root_dentry;
1359 
1360  failed_super:
1361 	deactivate_locked_super(s);
1362 
1363  failed:
1364 	if (!s_new)
1365 		blkdev_put(sd.bdev, mode);
1366 	return ERR_PTR(err);
1367 }
1368 
1369 struct file_system_type nilfs_fs_type = {
1370 	.owner    = THIS_MODULE,
1371 	.name     = "nilfs2",
1372 	.mount    = nilfs_mount,
1373 	.kill_sb  = kill_block_super,
1374 	.fs_flags = FS_REQUIRES_DEV,
1375 };
1376 MODULE_ALIAS_FS("nilfs2");
1377 
1378 static void nilfs_inode_init_once(void *obj)
1379 {
1380 	struct nilfs_inode_info *ii = obj;
1381 
1382 	INIT_LIST_HEAD(&ii->i_dirty);
1383 #ifdef CONFIG_NILFS_XATTR
1384 	init_rwsem(&ii->xattr_sem);
1385 #endif
1386 	address_space_init_once(&ii->i_btnode_cache);
1387 	ii->i_bmap = &ii->i_bmap_data;
1388 	inode_init_once(&ii->vfs_inode);
1389 }
1390 
1391 static void nilfs_segbuf_init_once(void *obj)
1392 {
1393 	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1394 }
1395 
1396 static void nilfs_destroy_cachep(void)
1397 {
1398 	/*
1399 	 * Make sure all delayed rcu free inodes are flushed before we
1400 	 * destroy cache.
1401 	 */
1402 	rcu_barrier();
1403 
1404 	kmem_cache_destroy(nilfs_inode_cachep);
1405 	kmem_cache_destroy(nilfs_transaction_cachep);
1406 	kmem_cache_destroy(nilfs_segbuf_cachep);
1407 	kmem_cache_destroy(nilfs_btree_path_cache);
1408 }
1409 
1410 static int __init nilfs_init_cachep(void)
1411 {
1412 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1413 			sizeof(struct nilfs_inode_info), 0,
1414 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1415 			nilfs_inode_init_once);
1416 	if (!nilfs_inode_cachep)
1417 		goto fail;
1418 
1419 	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1420 			sizeof(struct nilfs_transaction_info), 0,
1421 			SLAB_RECLAIM_ACCOUNT, NULL);
1422 	if (!nilfs_transaction_cachep)
1423 		goto fail;
1424 
1425 	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1426 			sizeof(struct nilfs_segment_buffer), 0,
1427 			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1428 	if (!nilfs_segbuf_cachep)
1429 		goto fail;
1430 
1431 	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1432 			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1433 			0, 0, NULL);
1434 	if (!nilfs_btree_path_cache)
1435 		goto fail;
1436 
1437 	return 0;
1438 
1439 fail:
1440 	nilfs_destroy_cachep();
1441 	return -ENOMEM;
1442 }
1443 
1444 static int __init init_nilfs_fs(void)
1445 {
1446 	int err;
1447 
1448 	err = nilfs_init_cachep();
1449 	if (err)
1450 		goto fail;
1451 
1452 	err = nilfs_sysfs_init();
1453 	if (err)
1454 		goto free_cachep;
1455 
1456 	err = register_filesystem(&nilfs_fs_type);
1457 	if (err)
1458 		goto deinit_sysfs_entry;
1459 
1460 	printk(KERN_INFO "NILFS version 2 loaded\n");
1461 	return 0;
1462 
1463 deinit_sysfs_entry:
1464 	nilfs_sysfs_exit();
1465 free_cachep:
1466 	nilfs_destroy_cachep();
1467 fail:
1468 	return err;
1469 }
1470 
1471 static void __exit exit_nilfs_fs(void)
1472 {
1473 	nilfs_destroy_cachep();
1474 	nilfs_sysfs_exit();
1475 	unregister_filesystem(&nilfs_fs_type);
1476 }
1477 
1478 module_init(init_nilfs_fs)
1479 module_exit(exit_nilfs_fs)
1480