1 /* 2 * super.c - NILFS module and super block management. 3 * 4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * Written by Ryusuke Konishi. 17 */ 18 /* 19 * linux/fs/ext2/super.c 20 * 21 * Copyright (C) 1992, 1993, 1994, 1995 22 * Remy Card (card@masi.ibp.fr) 23 * Laboratoire MASI - Institut Blaise Pascal 24 * Universite Pierre et Marie Curie (Paris VI) 25 * 26 * from 27 * 28 * linux/fs/minix/inode.c 29 * 30 * Copyright (C) 1991, 1992 Linus Torvalds 31 * 32 * Big-endian to little-endian byte-swapping/bitmaps by 33 * David S. Miller (davem@caip.rutgers.edu), 1995 34 */ 35 36 #include <linux/module.h> 37 #include <linux/string.h> 38 #include <linux/slab.h> 39 #include <linux/init.h> 40 #include <linux/blkdev.h> 41 #include <linux/parser.h> 42 #include <linux/crc32.h> 43 #include <linux/vfs.h> 44 #include <linux/writeback.h> 45 #include <linux/seq_file.h> 46 #include <linux/mount.h> 47 #include "nilfs.h" 48 #include "export.h" 49 #include "mdt.h" 50 #include "alloc.h" 51 #include "btree.h" 52 #include "btnode.h" 53 #include "page.h" 54 #include "cpfile.h" 55 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */ 56 #include "ifile.h" 57 #include "dat.h" 58 #include "segment.h" 59 #include "segbuf.h" 60 61 MODULE_AUTHOR("NTT Corp."); 62 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem " 63 "(NILFS)"); 64 MODULE_LICENSE("GPL"); 65 66 static struct kmem_cache *nilfs_inode_cachep; 67 struct kmem_cache *nilfs_transaction_cachep; 68 struct kmem_cache *nilfs_segbuf_cachep; 69 struct kmem_cache *nilfs_btree_path_cache; 70 71 static int nilfs_setup_super(struct super_block *sb, int is_mount); 72 static int nilfs_remount(struct super_block *sb, int *flags, char *data); 73 74 static void nilfs_set_error(struct super_block *sb) 75 { 76 struct the_nilfs *nilfs = sb->s_fs_info; 77 struct nilfs_super_block **sbp; 78 79 down_write(&nilfs->ns_sem); 80 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) { 81 nilfs->ns_mount_state |= NILFS_ERROR_FS; 82 sbp = nilfs_prepare_super(sb, 0); 83 if (likely(sbp)) { 84 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 85 if (sbp[1]) 86 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 87 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 88 } 89 } 90 up_write(&nilfs->ns_sem); 91 } 92 93 /** 94 * nilfs_error() - report failure condition on a filesystem 95 * 96 * nilfs_error() sets an ERROR_FS flag on the superblock as well as 97 * reporting an error message. It should be called when NILFS detects 98 * incoherences or defects of meta data on disk. As for sustainable 99 * errors such as a single-shot I/O error, nilfs_warning() or the printk() 100 * function should be used instead. 101 * 102 * The segment constructor must not call this function because it can 103 * kill itself. 104 */ 105 void nilfs_error(struct super_block *sb, const char *function, 106 const char *fmt, ...) 107 { 108 struct the_nilfs *nilfs = sb->s_fs_info; 109 struct va_format vaf; 110 va_list args; 111 112 va_start(args, fmt); 113 114 vaf.fmt = fmt; 115 vaf.va = &args; 116 117 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n", 118 sb->s_id, function, &vaf); 119 120 va_end(args); 121 122 if (!(sb->s_flags & MS_RDONLY)) { 123 nilfs_set_error(sb); 124 125 if (nilfs_test_opt(nilfs, ERRORS_RO)) { 126 printk(KERN_CRIT "Remounting filesystem read-only\n"); 127 sb->s_flags |= MS_RDONLY; 128 } 129 } 130 131 if (nilfs_test_opt(nilfs, ERRORS_PANIC)) 132 panic("NILFS (device %s): panic forced after error\n", 133 sb->s_id); 134 } 135 136 void nilfs_warning(struct super_block *sb, const char *function, 137 const char *fmt, ...) 138 { 139 struct va_format vaf; 140 va_list args; 141 142 va_start(args, fmt); 143 144 vaf.fmt = fmt; 145 vaf.va = &args; 146 147 printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n", 148 sb->s_id, function, &vaf); 149 150 va_end(args); 151 } 152 153 154 struct inode *nilfs_alloc_inode(struct super_block *sb) 155 { 156 struct nilfs_inode_info *ii; 157 158 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS); 159 if (!ii) 160 return NULL; 161 ii->i_bh = NULL; 162 ii->i_state = 0; 163 ii->i_cno = 0; 164 ii->vfs_inode.i_version = 1; 165 nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode); 166 return &ii->vfs_inode; 167 } 168 169 static void nilfs_i_callback(struct rcu_head *head) 170 { 171 struct inode *inode = container_of(head, struct inode, i_rcu); 172 173 if (nilfs_is_metadata_file_inode(inode)) 174 nilfs_mdt_destroy(inode); 175 176 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode)); 177 } 178 179 void nilfs_destroy_inode(struct inode *inode) 180 { 181 call_rcu(&inode->i_rcu, nilfs_i_callback); 182 } 183 184 static int nilfs_sync_super(struct super_block *sb, int flag) 185 { 186 struct the_nilfs *nilfs = sb->s_fs_info; 187 int err; 188 189 retry: 190 set_buffer_dirty(nilfs->ns_sbh[0]); 191 if (nilfs_test_opt(nilfs, BARRIER)) { 192 err = __sync_dirty_buffer(nilfs->ns_sbh[0], 193 WRITE_SYNC | WRITE_FLUSH_FUA); 194 } else { 195 err = sync_dirty_buffer(nilfs->ns_sbh[0]); 196 } 197 198 if (unlikely(err)) { 199 printk(KERN_ERR 200 "NILFS: unable to write superblock (err=%d)\n", err); 201 if (err == -EIO && nilfs->ns_sbh[1]) { 202 /* 203 * sbp[0] points to newer log than sbp[1], 204 * so copy sbp[0] to sbp[1] to take over sbp[0]. 205 */ 206 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0], 207 nilfs->ns_sbsize); 208 nilfs_fall_back_super_block(nilfs); 209 goto retry; 210 } 211 } else { 212 struct nilfs_super_block *sbp = nilfs->ns_sbp[0]; 213 214 nilfs->ns_sbwcount++; 215 216 /* 217 * The latest segment becomes trailable from the position 218 * written in superblock. 219 */ 220 clear_nilfs_discontinued(nilfs); 221 222 /* update GC protection for recent segments */ 223 if (nilfs->ns_sbh[1]) { 224 if (flag == NILFS_SB_COMMIT_ALL) { 225 set_buffer_dirty(nilfs->ns_sbh[1]); 226 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0) 227 goto out; 228 } 229 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) < 230 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno)) 231 sbp = nilfs->ns_sbp[1]; 232 } 233 234 spin_lock(&nilfs->ns_last_segment_lock); 235 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq); 236 spin_unlock(&nilfs->ns_last_segment_lock); 237 } 238 out: 239 return err; 240 } 241 242 void nilfs_set_log_cursor(struct nilfs_super_block *sbp, 243 struct the_nilfs *nilfs) 244 { 245 sector_t nfreeblocks; 246 247 /* nilfs->ns_sem must be locked by the caller. */ 248 nilfs_count_free_blocks(nilfs, &nfreeblocks); 249 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks); 250 251 spin_lock(&nilfs->ns_last_segment_lock); 252 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq); 253 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg); 254 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno); 255 spin_unlock(&nilfs->ns_last_segment_lock); 256 } 257 258 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb, 259 int flip) 260 { 261 struct the_nilfs *nilfs = sb->s_fs_info; 262 struct nilfs_super_block **sbp = nilfs->ns_sbp; 263 264 /* nilfs->ns_sem must be locked by the caller. */ 265 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 266 if (sbp[1] && 267 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) { 268 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize); 269 } else { 270 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n", 271 sb->s_id); 272 return NULL; 273 } 274 } else if (sbp[1] && 275 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 276 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 277 } 278 279 if (flip && sbp[1]) 280 nilfs_swap_super_block(nilfs); 281 282 return sbp; 283 } 284 285 int nilfs_commit_super(struct super_block *sb, int flag) 286 { 287 struct the_nilfs *nilfs = sb->s_fs_info; 288 struct nilfs_super_block **sbp = nilfs->ns_sbp; 289 time_t t; 290 291 /* nilfs->ns_sem must be locked by the caller. */ 292 t = get_seconds(); 293 nilfs->ns_sbwtime = t; 294 sbp[0]->s_wtime = cpu_to_le64(t); 295 sbp[0]->s_sum = 0; 296 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 297 (unsigned char *)sbp[0], 298 nilfs->ns_sbsize)); 299 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) { 300 sbp[1]->s_wtime = sbp[0]->s_wtime; 301 sbp[1]->s_sum = 0; 302 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 303 (unsigned char *)sbp[1], 304 nilfs->ns_sbsize)); 305 } 306 clear_nilfs_sb_dirty(nilfs); 307 nilfs->ns_flushed_device = 1; 308 /* make sure store to ns_flushed_device cannot be reordered */ 309 smp_wmb(); 310 return nilfs_sync_super(sb, flag); 311 } 312 313 /** 314 * nilfs_cleanup_super() - write filesystem state for cleanup 315 * @sb: super block instance to be unmounted or degraded to read-only 316 * 317 * This function restores state flags in the on-disk super block. 318 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the 319 * filesystem was not clean previously. 320 */ 321 int nilfs_cleanup_super(struct super_block *sb) 322 { 323 struct the_nilfs *nilfs = sb->s_fs_info; 324 struct nilfs_super_block **sbp; 325 int flag = NILFS_SB_COMMIT; 326 int ret = -EIO; 327 328 sbp = nilfs_prepare_super(sb, 0); 329 if (sbp) { 330 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state); 331 nilfs_set_log_cursor(sbp[0], nilfs); 332 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) { 333 /* 334 * make the "clean" flag also to the opposite 335 * super block if both super blocks point to 336 * the same checkpoint. 337 */ 338 sbp[1]->s_state = sbp[0]->s_state; 339 flag = NILFS_SB_COMMIT_ALL; 340 } 341 ret = nilfs_commit_super(sb, flag); 342 } 343 return ret; 344 } 345 346 /** 347 * nilfs_move_2nd_super - relocate secondary super block 348 * @sb: super block instance 349 * @sb2off: new offset of the secondary super block (in bytes) 350 */ 351 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off) 352 { 353 struct the_nilfs *nilfs = sb->s_fs_info; 354 struct buffer_head *nsbh; 355 struct nilfs_super_block *nsbp; 356 sector_t blocknr, newblocknr; 357 unsigned long offset; 358 int sb2i; /* array index of the secondary superblock */ 359 int ret = 0; 360 361 /* nilfs->ns_sem must be locked by the caller. */ 362 if (nilfs->ns_sbh[1] && 363 nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) { 364 sb2i = 1; 365 blocknr = nilfs->ns_sbh[1]->b_blocknr; 366 } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) { 367 sb2i = 0; 368 blocknr = nilfs->ns_sbh[0]->b_blocknr; 369 } else { 370 sb2i = -1; 371 blocknr = 0; 372 } 373 if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off) 374 goto out; /* super block location is unchanged */ 375 376 /* Get new super block buffer */ 377 newblocknr = sb2off >> nilfs->ns_blocksize_bits; 378 offset = sb2off & (nilfs->ns_blocksize - 1); 379 nsbh = sb_getblk(sb, newblocknr); 380 if (!nsbh) { 381 printk(KERN_WARNING 382 "NILFS warning: unable to move secondary superblock " 383 "to block %llu\n", (unsigned long long)newblocknr); 384 ret = -EIO; 385 goto out; 386 } 387 nsbp = (void *)nsbh->b_data + offset; 388 memset(nsbp, 0, nilfs->ns_blocksize); 389 390 if (sb2i >= 0) { 391 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize); 392 brelse(nilfs->ns_sbh[sb2i]); 393 nilfs->ns_sbh[sb2i] = nsbh; 394 nilfs->ns_sbp[sb2i] = nsbp; 395 } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) { 396 /* secondary super block will be restored to index 1 */ 397 nilfs->ns_sbh[1] = nsbh; 398 nilfs->ns_sbp[1] = nsbp; 399 } else { 400 brelse(nsbh); 401 } 402 out: 403 return ret; 404 } 405 406 /** 407 * nilfs_resize_fs - resize the filesystem 408 * @sb: super block instance 409 * @newsize: new size of the filesystem (in bytes) 410 */ 411 int nilfs_resize_fs(struct super_block *sb, __u64 newsize) 412 { 413 struct the_nilfs *nilfs = sb->s_fs_info; 414 struct nilfs_super_block **sbp; 415 __u64 devsize, newnsegs; 416 loff_t sb2off; 417 int ret; 418 419 ret = -ERANGE; 420 devsize = i_size_read(sb->s_bdev->bd_inode); 421 if (newsize > devsize) 422 goto out; 423 424 /* 425 * Write lock is required to protect some functions depending 426 * on the number of segments, the number of reserved segments, 427 * and so forth. 428 */ 429 down_write(&nilfs->ns_segctor_sem); 430 431 sb2off = NILFS_SB2_OFFSET_BYTES(newsize); 432 newnsegs = sb2off >> nilfs->ns_blocksize_bits; 433 do_div(newnsegs, nilfs->ns_blocks_per_segment); 434 435 ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs); 436 up_write(&nilfs->ns_segctor_sem); 437 if (ret < 0) 438 goto out; 439 440 ret = nilfs_construct_segment(sb); 441 if (ret < 0) 442 goto out; 443 444 down_write(&nilfs->ns_sem); 445 nilfs_move_2nd_super(sb, sb2off); 446 ret = -EIO; 447 sbp = nilfs_prepare_super(sb, 0); 448 if (likely(sbp)) { 449 nilfs_set_log_cursor(sbp[0], nilfs); 450 /* 451 * Drop NILFS_RESIZE_FS flag for compatibility with 452 * mount-time resize which may be implemented in a 453 * future release. 454 */ 455 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & 456 ~NILFS_RESIZE_FS); 457 sbp[0]->s_dev_size = cpu_to_le64(newsize); 458 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments); 459 if (sbp[1]) 460 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 461 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 462 } 463 up_write(&nilfs->ns_sem); 464 465 /* 466 * Reset the range of allocatable segments last. This order 467 * is important in the case of expansion because the secondary 468 * superblock must be protected from log write until migration 469 * completes. 470 */ 471 if (!ret) 472 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1); 473 out: 474 return ret; 475 } 476 477 static void nilfs_put_super(struct super_block *sb) 478 { 479 struct the_nilfs *nilfs = sb->s_fs_info; 480 481 nilfs_detach_log_writer(sb); 482 483 if (!(sb->s_flags & MS_RDONLY)) { 484 down_write(&nilfs->ns_sem); 485 nilfs_cleanup_super(sb); 486 up_write(&nilfs->ns_sem); 487 } 488 489 iput(nilfs->ns_sufile); 490 iput(nilfs->ns_cpfile); 491 iput(nilfs->ns_dat); 492 493 destroy_nilfs(nilfs); 494 sb->s_fs_info = NULL; 495 } 496 497 static int nilfs_sync_fs(struct super_block *sb, int wait) 498 { 499 struct the_nilfs *nilfs = sb->s_fs_info; 500 struct nilfs_super_block **sbp; 501 int err = 0; 502 503 /* This function is called when super block should be written back */ 504 if (wait) 505 err = nilfs_construct_segment(sb); 506 507 down_write(&nilfs->ns_sem); 508 if (nilfs_sb_dirty(nilfs)) { 509 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs)); 510 if (likely(sbp)) { 511 nilfs_set_log_cursor(sbp[0], nilfs); 512 nilfs_commit_super(sb, NILFS_SB_COMMIT); 513 } 514 } 515 up_write(&nilfs->ns_sem); 516 517 if (!err) 518 err = nilfs_flush_device(nilfs); 519 520 return err; 521 } 522 523 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt, 524 struct nilfs_root **rootp) 525 { 526 struct the_nilfs *nilfs = sb->s_fs_info; 527 struct nilfs_root *root; 528 struct nilfs_checkpoint *raw_cp; 529 struct buffer_head *bh_cp; 530 int err = -ENOMEM; 531 532 root = nilfs_find_or_create_root( 533 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno); 534 if (!root) 535 return err; 536 537 if (root->ifile) 538 goto reuse; /* already attached checkpoint */ 539 540 down_read(&nilfs->ns_segctor_sem); 541 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp, 542 &bh_cp); 543 up_read(&nilfs->ns_segctor_sem); 544 if (unlikely(err)) { 545 if (err == -ENOENT || err == -EINVAL) { 546 printk(KERN_ERR 547 "NILFS: Invalid checkpoint " 548 "(checkpoint number=%llu)\n", 549 (unsigned long long)cno); 550 err = -EINVAL; 551 } 552 goto failed; 553 } 554 555 err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size, 556 &raw_cp->cp_ifile_inode, &root->ifile); 557 if (err) 558 goto failed_bh; 559 560 atomic64_set(&root->inodes_count, 561 le64_to_cpu(raw_cp->cp_inodes_count)); 562 atomic64_set(&root->blocks_count, 563 le64_to_cpu(raw_cp->cp_blocks_count)); 564 565 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); 566 567 reuse: 568 *rootp = root; 569 return 0; 570 571 failed_bh: 572 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); 573 failed: 574 nilfs_put_root(root); 575 576 return err; 577 } 578 579 static int nilfs_freeze(struct super_block *sb) 580 { 581 struct the_nilfs *nilfs = sb->s_fs_info; 582 int err; 583 584 if (sb->s_flags & MS_RDONLY) 585 return 0; 586 587 /* Mark super block clean */ 588 down_write(&nilfs->ns_sem); 589 err = nilfs_cleanup_super(sb); 590 up_write(&nilfs->ns_sem); 591 return err; 592 } 593 594 static int nilfs_unfreeze(struct super_block *sb) 595 { 596 struct the_nilfs *nilfs = sb->s_fs_info; 597 598 if (sb->s_flags & MS_RDONLY) 599 return 0; 600 601 down_write(&nilfs->ns_sem); 602 nilfs_setup_super(sb, false); 603 up_write(&nilfs->ns_sem); 604 return 0; 605 } 606 607 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf) 608 { 609 struct super_block *sb = dentry->d_sb; 610 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root; 611 struct the_nilfs *nilfs = root->nilfs; 612 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 613 unsigned long long blocks; 614 unsigned long overhead; 615 unsigned long nrsvblocks; 616 sector_t nfreeblocks; 617 u64 nmaxinodes, nfreeinodes; 618 int err; 619 620 /* 621 * Compute all of the segment blocks 622 * 623 * The blocks before first segment and after last segment 624 * are excluded. 625 */ 626 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments 627 - nilfs->ns_first_data_block; 628 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment; 629 630 /* 631 * Compute the overhead 632 * 633 * When distributing meta data blocks outside segment structure, 634 * We must count them as the overhead. 635 */ 636 overhead = 0; 637 638 err = nilfs_count_free_blocks(nilfs, &nfreeblocks); 639 if (unlikely(err)) 640 return err; 641 642 err = nilfs_ifile_count_free_inodes(root->ifile, 643 &nmaxinodes, &nfreeinodes); 644 if (unlikely(err)) { 645 printk(KERN_WARNING 646 "NILFS warning: fail to count free inodes: err %d.\n", 647 err); 648 if (err == -ERANGE) { 649 /* 650 * If nilfs_palloc_count_max_entries() returns 651 * -ERANGE error code then we simply treat 652 * curent inodes count as maximum possible and 653 * zero as free inodes value. 654 */ 655 nmaxinodes = atomic64_read(&root->inodes_count); 656 nfreeinodes = 0; 657 err = 0; 658 } else 659 return err; 660 } 661 662 buf->f_type = NILFS_SUPER_MAGIC; 663 buf->f_bsize = sb->s_blocksize; 664 buf->f_blocks = blocks - overhead; 665 buf->f_bfree = nfreeblocks; 666 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ? 667 (buf->f_bfree - nrsvblocks) : 0; 668 buf->f_files = nmaxinodes; 669 buf->f_ffree = nfreeinodes; 670 buf->f_namelen = NILFS_NAME_LEN; 671 buf->f_fsid.val[0] = (u32)id; 672 buf->f_fsid.val[1] = (u32)(id >> 32); 673 674 return 0; 675 } 676 677 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry) 678 { 679 struct super_block *sb = dentry->d_sb; 680 struct the_nilfs *nilfs = sb->s_fs_info; 681 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root; 682 683 if (!nilfs_test_opt(nilfs, BARRIER)) 684 seq_puts(seq, ",nobarrier"); 685 if (root->cno != NILFS_CPTREE_CURRENT_CNO) 686 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno); 687 if (nilfs_test_opt(nilfs, ERRORS_PANIC)) 688 seq_puts(seq, ",errors=panic"); 689 if (nilfs_test_opt(nilfs, ERRORS_CONT)) 690 seq_puts(seq, ",errors=continue"); 691 if (nilfs_test_opt(nilfs, STRICT_ORDER)) 692 seq_puts(seq, ",order=strict"); 693 if (nilfs_test_opt(nilfs, NORECOVERY)) 694 seq_puts(seq, ",norecovery"); 695 if (nilfs_test_opt(nilfs, DISCARD)) 696 seq_puts(seq, ",discard"); 697 698 return 0; 699 } 700 701 static const struct super_operations nilfs_sops = { 702 .alloc_inode = nilfs_alloc_inode, 703 .destroy_inode = nilfs_destroy_inode, 704 .dirty_inode = nilfs_dirty_inode, 705 .evict_inode = nilfs_evict_inode, 706 .put_super = nilfs_put_super, 707 .sync_fs = nilfs_sync_fs, 708 .freeze_fs = nilfs_freeze, 709 .unfreeze_fs = nilfs_unfreeze, 710 .statfs = nilfs_statfs, 711 .remount_fs = nilfs_remount, 712 .show_options = nilfs_show_options 713 }; 714 715 enum { 716 Opt_err_cont, Opt_err_panic, Opt_err_ro, 717 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery, 718 Opt_discard, Opt_nodiscard, Opt_err, 719 }; 720 721 static match_table_t tokens = { 722 {Opt_err_cont, "errors=continue"}, 723 {Opt_err_panic, "errors=panic"}, 724 {Opt_err_ro, "errors=remount-ro"}, 725 {Opt_barrier, "barrier"}, 726 {Opt_nobarrier, "nobarrier"}, 727 {Opt_snapshot, "cp=%u"}, 728 {Opt_order, "order=%s"}, 729 {Opt_norecovery, "norecovery"}, 730 {Opt_discard, "discard"}, 731 {Opt_nodiscard, "nodiscard"}, 732 {Opt_err, NULL} 733 }; 734 735 static int parse_options(char *options, struct super_block *sb, int is_remount) 736 { 737 struct the_nilfs *nilfs = sb->s_fs_info; 738 char *p; 739 substring_t args[MAX_OPT_ARGS]; 740 741 if (!options) 742 return 1; 743 744 while ((p = strsep(&options, ",")) != NULL) { 745 int token; 746 747 if (!*p) 748 continue; 749 750 token = match_token(p, tokens, args); 751 switch (token) { 752 case Opt_barrier: 753 nilfs_set_opt(nilfs, BARRIER); 754 break; 755 case Opt_nobarrier: 756 nilfs_clear_opt(nilfs, BARRIER); 757 break; 758 case Opt_order: 759 if (strcmp(args[0].from, "relaxed") == 0) 760 /* Ordered data semantics */ 761 nilfs_clear_opt(nilfs, STRICT_ORDER); 762 else if (strcmp(args[0].from, "strict") == 0) 763 /* Strict in-order semantics */ 764 nilfs_set_opt(nilfs, STRICT_ORDER); 765 else 766 return 0; 767 break; 768 case Opt_err_panic: 769 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC); 770 break; 771 case Opt_err_ro: 772 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO); 773 break; 774 case Opt_err_cont: 775 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT); 776 break; 777 case Opt_snapshot: 778 if (is_remount) { 779 printk(KERN_ERR 780 "NILFS: \"%s\" option is invalid " 781 "for remount.\n", p); 782 return 0; 783 } 784 break; 785 case Opt_norecovery: 786 nilfs_set_opt(nilfs, NORECOVERY); 787 break; 788 case Opt_discard: 789 nilfs_set_opt(nilfs, DISCARD); 790 break; 791 case Opt_nodiscard: 792 nilfs_clear_opt(nilfs, DISCARD); 793 break; 794 default: 795 printk(KERN_ERR 796 "NILFS: Unrecognized mount option \"%s\"\n", p); 797 return 0; 798 } 799 } 800 return 1; 801 } 802 803 static inline void 804 nilfs_set_default_options(struct super_block *sb, 805 struct nilfs_super_block *sbp) 806 { 807 struct the_nilfs *nilfs = sb->s_fs_info; 808 809 nilfs->ns_mount_opt = 810 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER; 811 } 812 813 static int nilfs_setup_super(struct super_block *sb, int is_mount) 814 { 815 struct the_nilfs *nilfs = sb->s_fs_info; 816 struct nilfs_super_block **sbp; 817 int max_mnt_count; 818 int mnt_count; 819 820 /* nilfs->ns_sem must be locked by the caller. */ 821 sbp = nilfs_prepare_super(sb, 0); 822 if (!sbp) 823 return -EIO; 824 825 if (!is_mount) 826 goto skip_mount_setup; 827 828 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count); 829 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count); 830 831 if (nilfs->ns_mount_state & NILFS_ERROR_FS) { 832 printk(KERN_WARNING 833 "NILFS warning: mounting fs with errors\n"); 834 #if 0 835 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) { 836 printk(KERN_WARNING 837 "NILFS warning: maximal mount count reached\n"); 838 #endif 839 } 840 if (!max_mnt_count) 841 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT); 842 843 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1); 844 sbp[0]->s_mtime = cpu_to_le64(get_seconds()); 845 846 skip_mount_setup: 847 sbp[0]->s_state = 848 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS); 849 /* synchronize sbp[1] with sbp[0] */ 850 if (sbp[1]) 851 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 852 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 853 } 854 855 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb, 856 u64 pos, int blocksize, 857 struct buffer_head **pbh) 858 { 859 unsigned long long sb_index = pos; 860 unsigned long offset; 861 862 offset = do_div(sb_index, blocksize); 863 *pbh = sb_bread(sb, sb_index); 864 if (!*pbh) 865 return NULL; 866 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset); 867 } 868 869 int nilfs_store_magic_and_option(struct super_block *sb, 870 struct nilfs_super_block *sbp, 871 char *data) 872 { 873 struct the_nilfs *nilfs = sb->s_fs_info; 874 875 sb->s_magic = le16_to_cpu(sbp->s_magic); 876 877 /* FS independent flags */ 878 #ifdef NILFS_ATIME_DISABLE 879 sb->s_flags |= MS_NOATIME; 880 #endif 881 882 nilfs_set_default_options(sb, sbp); 883 884 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid); 885 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid); 886 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval); 887 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max); 888 889 return !parse_options(data, sb, 0) ? -EINVAL : 0; 890 } 891 892 int nilfs_check_feature_compatibility(struct super_block *sb, 893 struct nilfs_super_block *sbp) 894 { 895 __u64 features; 896 897 features = le64_to_cpu(sbp->s_feature_incompat) & 898 ~NILFS_FEATURE_INCOMPAT_SUPP; 899 if (features) { 900 printk(KERN_ERR "NILFS: couldn't mount because of unsupported " 901 "optional features (%llx)\n", 902 (unsigned long long)features); 903 return -EINVAL; 904 } 905 features = le64_to_cpu(sbp->s_feature_compat_ro) & 906 ~NILFS_FEATURE_COMPAT_RO_SUPP; 907 if (!(sb->s_flags & MS_RDONLY) && features) { 908 printk(KERN_ERR "NILFS: couldn't mount RDWR because of " 909 "unsupported optional features (%llx)\n", 910 (unsigned long long)features); 911 return -EINVAL; 912 } 913 return 0; 914 } 915 916 static int nilfs_get_root_dentry(struct super_block *sb, 917 struct nilfs_root *root, 918 struct dentry **root_dentry) 919 { 920 struct inode *inode; 921 struct dentry *dentry; 922 int ret = 0; 923 924 inode = nilfs_iget(sb, root, NILFS_ROOT_INO); 925 if (IS_ERR(inode)) { 926 printk(KERN_ERR "NILFS: get root inode failed\n"); 927 ret = PTR_ERR(inode); 928 goto out; 929 } 930 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) { 931 iput(inode); 932 printk(KERN_ERR "NILFS: corrupt root inode.\n"); 933 ret = -EINVAL; 934 goto out; 935 } 936 937 if (root->cno == NILFS_CPTREE_CURRENT_CNO) { 938 dentry = d_find_alias(inode); 939 if (!dentry) { 940 dentry = d_make_root(inode); 941 if (!dentry) { 942 ret = -ENOMEM; 943 goto failed_dentry; 944 } 945 } else { 946 iput(inode); 947 } 948 } else { 949 dentry = d_obtain_root(inode); 950 if (IS_ERR(dentry)) { 951 ret = PTR_ERR(dentry); 952 goto failed_dentry; 953 } 954 } 955 *root_dentry = dentry; 956 out: 957 return ret; 958 959 failed_dentry: 960 printk(KERN_ERR "NILFS: get root dentry failed\n"); 961 goto out; 962 } 963 964 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno, 965 struct dentry **root_dentry) 966 { 967 struct the_nilfs *nilfs = s->s_fs_info; 968 struct nilfs_root *root; 969 int ret; 970 971 mutex_lock(&nilfs->ns_snapshot_mount_mutex); 972 973 down_read(&nilfs->ns_segctor_sem); 974 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno); 975 up_read(&nilfs->ns_segctor_sem); 976 if (ret < 0) { 977 ret = (ret == -ENOENT) ? -EINVAL : ret; 978 goto out; 979 } else if (!ret) { 980 printk(KERN_ERR "NILFS: The specified checkpoint is " 981 "not a snapshot (checkpoint number=%llu).\n", 982 (unsigned long long)cno); 983 ret = -EINVAL; 984 goto out; 985 } 986 987 ret = nilfs_attach_checkpoint(s, cno, false, &root); 988 if (ret) { 989 printk(KERN_ERR "NILFS: error loading snapshot " 990 "(checkpoint number=%llu).\n", 991 (unsigned long long)cno); 992 goto out; 993 } 994 ret = nilfs_get_root_dentry(s, root, root_dentry); 995 nilfs_put_root(root); 996 out: 997 mutex_unlock(&nilfs->ns_snapshot_mount_mutex); 998 return ret; 999 } 1000 1001 /** 1002 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint 1003 * @root_dentry: root dentry of the tree to be shrunk 1004 * 1005 * This function returns true if the tree was in-use. 1006 */ 1007 static bool nilfs_tree_is_busy(struct dentry *root_dentry) 1008 { 1009 shrink_dcache_parent(root_dentry); 1010 return d_count(root_dentry) > 1; 1011 } 1012 1013 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno) 1014 { 1015 struct the_nilfs *nilfs = sb->s_fs_info; 1016 struct nilfs_root *root; 1017 struct inode *inode; 1018 struct dentry *dentry; 1019 int ret; 1020 1021 if (cno > nilfs->ns_cno) 1022 return false; 1023 1024 if (cno >= nilfs_last_cno(nilfs)) 1025 return true; /* protect recent checkpoints */ 1026 1027 ret = false; 1028 root = nilfs_lookup_root(nilfs, cno); 1029 if (root) { 1030 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO); 1031 if (inode) { 1032 dentry = d_find_alias(inode); 1033 if (dentry) { 1034 ret = nilfs_tree_is_busy(dentry); 1035 dput(dentry); 1036 } 1037 iput(inode); 1038 } 1039 nilfs_put_root(root); 1040 } 1041 return ret; 1042 } 1043 1044 /** 1045 * nilfs_fill_super() - initialize a super block instance 1046 * @sb: super_block 1047 * @data: mount options 1048 * @silent: silent mode flag 1049 * 1050 * This function is called exclusively by nilfs->ns_mount_mutex. 1051 * So, the recovery process is protected from other simultaneous mounts. 1052 */ 1053 static int 1054 nilfs_fill_super(struct super_block *sb, void *data, int silent) 1055 { 1056 struct the_nilfs *nilfs; 1057 struct nilfs_root *fsroot; 1058 __u64 cno; 1059 int err; 1060 1061 nilfs = alloc_nilfs(sb->s_bdev); 1062 if (!nilfs) 1063 return -ENOMEM; 1064 1065 sb->s_fs_info = nilfs; 1066 1067 err = init_nilfs(nilfs, sb, (char *)data); 1068 if (err) 1069 goto failed_nilfs; 1070 1071 sb->s_op = &nilfs_sops; 1072 sb->s_export_op = &nilfs_export_ops; 1073 sb->s_root = NULL; 1074 sb->s_time_gran = 1; 1075 sb->s_max_links = NILFS_LINK_MAX; 1076 1077 sb->s_bdi = &bdev_get_queue(sb->s_bdev)->backing_dev_info; 1078 1079 err = load_nilfs(nilfs, sb); 1080 if (err) 1081 goto failed_nilfs; 1082 1083 cno = nilfs_last_cno(nilfs); 1084 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot); 1085 if (err) { 1086 printk(KERN_ERR "NILFS: error loading last checkpoint " 1087 "(checkpoint number=%llu).\n", (unsigned long long)cno); 1088 goto failed_unload; 1089 } 1090 1091 if (!(sb->s_flags & MS_RDONLY)) { 1092 err = nilfs_attach_log_writer(sb, fsroot); 1093 if (err) 1094 goto failed_checkpoint; 1095 } 1096 1097 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root); 1098 if (err) 1099 goto failed_segctor; 1100 1101 nilfs_put_root(fsroot); 1102 1103 if (!(sb->s_flags & MS_RDONLY)) { 1104 down_write(&nilfs->ns_sem); 1105 nilfs_setup_super(sb, true); 1106 up_write(&nilfs->ns_sem); 1107 } 1108 1109 return 0; 1110 1111 failed_segctor: 1112 nilfs_detach_log_writer(sb); 1113 1114 failed_checkpoint: 1115 nilfs_put_root(fsroot); 1116 1117 failed_unload: 1118 iput(nilfs->ns_sufile); 1119 iput(nilfs->ns_cpfile); 1120 iput(nilfs->ns_dat); 1121 1122 failed_nilfs: 1123 destroy_nilfs(nilfs); 1124 return err; 1125 } 1126 1127 static int nilfs_remount(struct super_block *sb, int *flags, char *data) 1128 { 1129 struct the_nilfs *nilfs = sb->s_fs_info; 1130 unsigned long old_sb_flags; 1131 unsigned long old_mount_opt; 1132 int err; 1133 1134 sync_filesystem(sb); 1135 old_sb_flags = sb->s_flags; 1136 old_mount_opt = nilfs->ns_mount_opt; 1137 1138 if (!parse_options(data, sb, 1)) { 1139 err = -EINVAL; 1140 goto restore_opts; 1141 } 1142 sb->s_flags = (sb->s_flags & ~MS_POSIXACL); 1143 1144 err = -EINVAL; 1145 1146 if (!nilfs_valid_fs(nilfs)) { 1147 printk(KERN_WARNING "NILFS (device %s): couldn't " 1148 "remount because the filesystem is in an " 1149 "incomplete recovery state.\n", sb->s_id); 1150 goto restore_opts; 1151 } 1152 1153 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1154 goto out; 1155 if (*flags & MS_RDONLY) { 1156 /* Shutting down log writer */ 1157 nilfs_detach_log_writer(sb); 1158 sb->s_flags |= MS_RDONLY; 1159 1160 /* 1161 * Remounting a valid RW partition RDONLY, so set 1162 * the RDONLY flag and then mark the partition as valid again. 1163 */ 1164 down_write(&nilfs->ns_sem); 1165 nilfs_cleanup_super(sb); 1166 up_write(&nilfs->ns_sem); 1167 } else { 1168 __u64 features; 1169 struct nilfs_root *root; 1170 1171 /* 1172 * Mounting a RDONLY partition read-write, so reread and 1173 * store the current valid flag. (It may have been changed 1174 * by fsck since we originally mounted the partition.) 1175 */ 1176 down_read(&nilfs->ns_sem); 1177 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) & 1178 ~NILFS_FEATURE_COMPAT_RO_SUPP; 1179 up_read(&nilfs->ns_sem); 1180 if (features) { 1181 printk(KERN_WARNING "NILFS (device %s): couldn't " 1182 "remount RDWR because of unsupported optional " 1183 "features (%llx)\n", 1184 sb->s_id, (unsigned long long)features); 1185 err = -EROFS; 1186 goto restore_opts; 1187 } 1188 1189 sb->s_flags &= ~MS_RDONLY; 1190 1191 root = NILFS_I(d_inode(sb->s_root))->i_root; 1192 err = nilfs_attach_log_writer(sb, root); 1193 if (err) 1194 goto restore_opts; 1195 1196 down_write(&nilfs->ns_sem); 1197 nilfs_setup_super(sb, true); 1198 up_write(&nilfs->ns_sem); 1199 } 1200 out: 1201 return 0; 1202 1203 restore_opts: 1204 sb->s_flags = old_sb_flags; 1205 nilfs->ns_mount_opt = old_mount_opt; 1206 return err; 1207 } 1208 1209 struct nilfs_super_data { 1210 struct block_device *bdev; 1211 __u64 cno; 1212 int flags; 1213 }; 1214 1215 /** 1216 * nilfs_identify - pre-read mount options needed to identify mount instance 1217 * @data: mount options 1218 * @sd: nilfs_super_data 1219 */ 1220 static int nilfs_identify(char *data, struct nilfs_super_data *sd) 1221 { 1222 char *p, *options = data; 1223 substring_t args[MAX_OPT_ARGS]; 1224 int token; 1225 int ret = 0; 1226 1227 do { 1228 p = strsep(&options, ","); 1229 if (p != NULL && *p) { 1230 token = match_token(p, tokens, args); 1231 if (token == Opt_snapshot) { 1232 if (!(sd->flags & MS_RDONLY)) { 1233 ret++; 1234 } else { 1235 sd->cno = simple_strtoull(args[0].from, 1236 NULL, 0); 1237 /* 1238 * No need to see the end pointer; 1239 * match_token() has done syntax 1240 * checking. 1241 */ 1242 if (sd->cno == 0) 1243 ret++; 1244 } 1245 } 1246 if (ret) 1247 printk(KERN_ERR 1248 "NILFS: invalid mount option: %s\n", p); 1249 } 1250 if (!options) 1251 break; 1252 BUG_ON(options == data); 1253 *(options - 1) = ','; 1254 } while (!ret); 1255 return ret; 1256 } 1257 1258 static int nilfs_set_bdev_super(struct super_block *s, void *data) 1259 { 1260 s->s_bdev = data; 1261 s->s_dev = s->s_bdev->bd_dev; 1262 return 0; 1263 } 1264 1265 static int nilfs_test_bdev_super(struct super_block *s, void *data) 1266 { 1267 return (void *)s->s_bdev == data; 1268 } 1269 1270 static struct dentry * 1271 nilfs_mount(struct file_system_type *fs_type, int flags, 1272 const char *dev_name, void *data) 1273 { 1274 struct nilfs_super_data sd; 1275 struct super_block *s; 1276 fmode_t mode = FMODE_READ | FMODE_EXCL; 1277 struct dentry *root_dentry; 1278 int err, s_new = false; 1279 1280 if (!(flags & MS_RDONLY)) 1281 mode |= FMODE_WRITE; 1282 1283 sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1284 if (IS_ERR(sd.bdev)) 1285 return ERR_CAST(sd.bdev); 1286 1287 sd.cno = 0; 1288 sd.flags = flags; 1289 if (nilfs_identify((char *)data, &sd)) { 1290 err = -EINVAL; 1291 goto failed; 1292 } 1293 1294 /* 1295 * once the super is inserted into the list by sget, s_umount 1296 * will protect the lockfs code from trying to start a snapshot 1297 * while we are mounting 1298 */ 1299 mutex_lock(&sd.bdev->bd_fsfreeze_mutex); 1300 if (sd.bdev->bd_fsfreeze_count > 0) { 1301 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex); 1302 err = -EBUSY; 1303 goto failed; 1304 } 1305 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags, 1306 sd.bdev); 1307 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex); 1308 if (IS_ERR(s)) { 1309 err = PTR_ERR(s); 1310 goto failed; 1311 } 1312 1313 if (!s->s_root) { 1314 s_new = true; 1315 1316 /* New superblock instance created */ 1317 s->s_mode = mode; 1318 snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev); 1319 sb_set_blocksize(s, block_size(sd.bdev)); 1320 1321 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0); 1322 if (err) 1323 goto failed_super; 1324 1325 s->s_flags |= MS_ACTIVE; 1326 } else if (!sd.cno) { 1327 if (nilfs_tree_is_busy(s->s_root)) { 1328 if ((flags ^ s->s_flags) & MS_RDONLY) { 1329 printk(KERN_ERR "NILFS: the device already " 1330 "has a %s mount.\n", 1331 (s->s_flags & MS_RDONLY) ? 1332 "read-only" : "read/write"); 1333 err = -EBUSY; 1334 goto failed_super; 1335 } 1336 } else { 1337 /* 1338 * Try remount to setup mount states if the current 1339 * tree is not mounted and only snapshots use this sb. 1340 */ 1341 err = nilfs_remount(s, &flags, data); 1342 if (err) 1343 goto failed_super; 1344 } 1345 } 1346 1347 if (sd.cno) { 1348 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry); 1349 if (err) 1350 goto failed_super; 1351 } else { 1352 root_dentry = dget(s->s_root); 1353 } 1354 1355 if (!s_new) 1356 blkdev_put(sd.bdev, mode); 1357 1358 return root_dentry; 1359 1360 failed_super: 1361 deactivate_locked_super(s); 1362 1363 failed: 1364 if (!s_new) 1365 blkdev_put(sd.bdev, mode); 1366 return ERR_PTR(err); 1367 } 1368 1369 struct file_system_type nilfs_fs_type = { 1370 .owner = THIS_MODULE, 1371 .name = "nilfs2", 1372 .mount = nilfs_mount, 1373 .kill_sb = kill_block_super, 1374 .fs_flags = FS_REQUIRES_DEV, 1375 }; 1376 MODULE_ALIAS_FS("nilfs2"); 1377 1378 static void nilfs_inode_init_once(void *obj) 1379 { 1380 struct nilfs_inode_info *ii = obj; 1381 1382 INIT_LIST_HEAD(&ii->i_dirty); 1383 #ifdef CONFIG_NILFS_XATTR 1384 init_rwsem(&ii->xattr_sem); 1385 #endif 1386 address_space_init_once(&ii->i_btnode_cache); 1387 ii->i_bmap = &ii->i_bmap_data; 1388 inode_init_once(&ii->vfs_inode); 1389 } 1390 1391 static void nilfs_segbuf_init_once(void *obj) 1392 { 1393 memset(obj, 0, sizeof(struct nilfs_segment_buffer)); 1394 } 1395 1396 static void nilfs_destroy_cachep(void) 1397 { 1398 /* 1399 * Make sure all delayed rcu free inodes are flushed before we 1400 * destroy cache. 1401 */ 1402 rcu_barrier(); 1403 1404 kmem_cache_destroy(nilfs_inode_cachep); 1405 kmem_cache_destroy(nilfs_transaction_cachep); 1406 kmem_cache_destroy(nilfs_segbuf_cachep); 1407 kmem_cache_destroy(nilfs_btree_path_cache); 1408 } 1409 1410 static int __init nilfs_init_cachep(void) 1411 { 1412 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache", 1413 sizeof(struct nilfs_inode_info), 0, 1414 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, 1415 nilfs_inode_init_once); 1416 if (!nilfs_inode_cachep) 1417 goto fail; 1418 1419 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache", 1420 sizeof(struct nilfs_transaction_info), 0, 1421 SLAB_RECLAIM_ACCOUNT, NULL); 1422 if (!nilfs_transaction_cachep) 1423 goto fail; 1424 1425 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache", 1426 sizeof(struct nilfs_segment_buffer), 0, 1427 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once); 1428 if (!nilfs_segbuf_cachep) 1429 goto fail; 1430 1431 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache", 1432 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX, 1433 0, 0, NULL); 1434 if (!nilfs_btree_path_cache) 1435 goto fail; 1436 1437 return 0; 1438 1439 fail: 1440 nilfs_destroy_cachep(); 1441 return -ENOMEM; 1442 } 1443 1444 static int __init init_nilfs_fs(void) 1445 { 1446 int err; 1447 1448 err = nilfs_init_cachep(); 1449 if (err) 1450 goto fail; 1451 1452 err = nilfs_sysfs_init(); 1453 if (err) 1454 goto free_cachep; 1455 1456 err = register_filesystem(&nilfs_fs_type); 1457 if (err) 1458 goto deinit_sysfs_entry; 1459 1460 printk(KERN_INFO "NILFS version 2 loaded\n"); 1461 return 0; 1462 1463 deinit_sysfs_entry: 1464 nilfs_sysfs_exit(); 1465 free_cachep: 1466 nilfs_destroy_cachep(); 1467 fail: 1468 return err; 1469 } 1470 1471 static void __exit exit_nilfs_fs(void) 1472 { 1473 nilfs_destroy_cachep(); 1474 nilfs_sysfs_exit(); 1475 unregister_filesystem(&nilfs_fs_type); 1476 } 1477 1478 module_init(init_nilfs_fs) 1479 module_exit(exit_nilfs_fs) 1480