xref: /openbmc/linux/fs/nilfs2/super.c (revision 1fa6ac37)
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  */
22 /*
23  *  linux/fs/ext2/super.c
24  *
25  * Copyright (C) 1992, 1993, 1994, 1995
26  * Remy Card (card@masi.ibp.fr)
27  * Laboratoire MASI - Institut Blaise Pascal
28  * Universite Pierre et Marie Curie (Paris VI)
29  *
30  *  from
31  *
32  *  linux/fs/minix/inode.c
33  *
34  *  Copyright (C) 1991, 1992  Linus Torvalds
35  *
36  *  Big-endian to little-endian byte-swapping/bitmaps by
37  *        David S. Miller (davem@caip.rutgers.edu), 1995
38  */
39 
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/smp_lock.h>
49 #include <linux/vfs.h>
50 #include <linux/writeback.h>
51 #include <linux/kobject.h>
52 #include <linux/exportfs.h>
53 #include <linux/seq_file.h>
54 #include <linux/mount.h>
55 #include "nilfs.h"
56 #include "mdt.h"
57 #include "alloc.h"
58 #include "page.h"
59 #include "cpfile.h"
60 #include "ifile.h"
61 #include "dat.h"
62 #include "segment.h"
63 #include "segbuf.h"
64 
65 MODULE_AUTHOR("NTT Corp.");
66 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
67 		   "(NILFS)");
68 MODULE_LICENSE("GPL");
69 
70 struct kmem_cache *nilfs_inode_cachep;
71 struct kmem_cache *nilfs_transaction_cachep;
72 struct kmem_cache *nilfs_segbuf_cachep;
73 struct kmem_cache *nilfs_btree_path_cache;
74 
75 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
76 
77 /**
78  * nilfs_error() - report failure condition on a filesystem
79  *
80  * nilfs_error() sets an ERROR_FS flag on the superblock as well as
81  * reporting an error message.  It should be called when NILFS detects
82  * incoherences or defects of meta data on disk.  As for sustainable
83  * errors such as a single-shot I/O error, nilfs_warning() or the printk()
84  * function should be used instead.
85  *
86  * The segment constructor must not call this function because it can
87  * kill itself.
88  */
89 void nilfs_error(struct super_block *sb, const char *function,
90 		 const char *fmt, ...)
91 {
92 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
93 	va_list args;
94 
95 	va_start(args, fmt);
96 	printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
97 	vprintk(fmt, args);
98 	printk("\n");
99 	va_end(args);
100 
101 	if (!(sb->s_flags & MS_RDONLY)) {
102 		struct the_nilfs *nilfs = sbi->s_nilfs;
103 
104 		down_write(&nilfs->ns_sem);
105 		if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
106 			nilfs->ns_mount_state |= NILFS_ERROR_FS;
107 			nilfs->ns_sbp[0]->s_state |=
108 				cpu_to_le16(NILFS_ERROR_FS);
109 			nilfs_commit_super(sbi, 1);
110 		}
111 		up_write(&nilfs->ns_sem);
112 
113 		if (nilfs_test_opt(sbi, ERRORS_RO)) {
114 			printk(KERN_CRIT "Remounting filesystem read-only\n");
115 			sb->s_flags |= MS_RDONLY;
116 		}
117 	}
118 
119 	if (nilfs_test_opt(sbi, ERRORS_PANIC))
120 		panic("NILFS (device %s): panic forced after error\n",
121 		      sb->s_id);
122 }
123 
124 void nilfs_warning(struct super_block *sb, const char *function,
125 		   const char *fmt, ...)
126 {
127 	va_list args;
128 
129 	va_start(args, fmt);
130 	printk(KERN_WARNING "NILFS warning (device %s): %s: ",
131 	       sb->s_id, function);
132 	vprintk(fmt, args);
133 	printk("\n");
134 	va_end(args);
135 }
136 
137 
138 struct inode *nilfs_alloc_inode_common(struct the_nilfs *nilfs)
139 {
140 	struct nilfs_inode_info *ii;
141 
142 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
143 	if (!ii)
144 		return NULL;
145 	ii->i_bh = NULL;
146 	ii->i_state = 0;
147 	ii->vfs_inode.i_version = 1;
148 	nilfs_btnode_cache_init(&ii->i_btnode_cache, nilfs->ns_bdi);
149 	return &ii->vfs_inode;
150 }
151 
152 struct inode *nilfs_alloc_inode(struct super_block *sb)
153 {
154 	return nilfs_alloc_inode_common(NILFS_SB(sb)->s_nilfs);
155 }
156 
157 void nilfs_destroy_inode(struct inode *inode)
158 {
159 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
160 }
161 
162 static void nilfs_clear_inode(struct inode *inode)
163 {
164 	struct nilfs_inode_info *ii = NILFS_I(inode);
165 
166 	/*
167 	 * Free resources allocated in nilfs_read_inode(), here.
168 	 */
169 	BUG_ON(!list_empty(&ii->i_dirty));
170 	brelse(ii->i_bh);
171 	ii->i_bh = NULL;
172 
173 	if (test_bit(NILFS_I_BMAP, &ii->i_state))
174 		nilfs_bmap_clear(ii->i_bmap);
175 
176 	nilfs_btnode_cache_clear(&ii->i_btnode_cache);
177 }
178 
179 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int dupsb)
180 {
181 	struct the_nilfs *nilfs = sbi->s_nilfs;
182 	int err;
183 	int barrier_done = 0;
184 
185 	if (nilfs_test_opt(sbi, BARRIER)) {
186 		set_buffer_ordered(nilfs->ns_sbh[0]);
187 		barrier_done = 1;
188 	}
189  retry:
190 	set_buffer_dirty(nilfs->ns_sbh[0]);
191 	err = sync_dirty_buffer(nilfs->ns_sbh[0]);
192 	if (err == -EOPNOTSUPP && barrier_done) {
193 		nilfs_warning(sbi->s_super, __func__,
194 			      "barrier-based sync failed. "
195 			      "disabling barriers\n");
196 		nilfs_clear_opt(sbi, BARRIER);
197 		barrier_done = 0;
198 		clear_buffer_ordered(nilfs->ns_sbh[0]);
199 		goto retry;
200 	}
201 	if (unlikely(err)) {
202 		printk(KERN_ERR
203 		       "NILFS: unable to write superblock (err=%d)\n", err);
204 		if (err == -EIO && nilfs->ns_sbh[1]) {
205 			nilfs_fall_back_super_block(nilfs);
206 			goto retry;
207 		}
208 	} else {
209 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
210 
211 		/*
212 		 * The latest segment becomes trailable from the position
213 		 * written in superblock.
214 		 */
215 		clear_nilfs_discontinued(nilfs);
216 
217 		/* update GC protection for recent segments */
218 		if (nilfs->ns_sbh[1]) {
219 			sbp = NULL;
220 			if (dupsb) {
221 				set_buffer_dirty(nilfs->ns_sbh[1]);
222 				if (!sync_dirty_buffer(nilfs->ns_sbh[1]))
223 					sbp = nilfs->ns_sbp[1];
224 			}
225 		}
226 		if (sbp) {
227 			spin_lock(&nilfs->ns_last_segment_lock);
228 			nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
229 			spin_unlock(&nilfs->ns_last_segment_lock);
230 		}
231 	}
232 
233 	return err;
234 }
235 
236 int nilfs_commit_super(struct nilfs_sb_info *sbi, int dupsb)
237 {
238 	struct the_nilfs *nilfs = sbi->s_nilfs;
239 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
240 	sector_t nfreeblocks;
241 	time_t t;
242 	int err;
243 
244 	/* nilfs->sem must be locked by the caller. */
245 	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
246 		if (sbp[1] && sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC))
247 			nilfs_swap_super_block(nilfs);
248 		else {
249 			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
250 			       sbi->s_super->s_id);
251 			return -EIO;
252 		}
253 	}
254 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
255 	if (unlikely(err)) {
256 		printk(KERN_ERR "NILFS: failed to count free blocks\n");
257 		return err;
258 	}
259 	spin_lock(&nilfs->ns_last_segment_lock);
260 	sbp[0]->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
261 	sbp[0]->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
262 	sbp[0]->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
263 	spin_unlock(&nilfs->ns_last_segment_lock);
264 
265 	t = get_seconds();
266 	nilfs->ns_sbwtime[0] = t;
267 	sbp[0]->s_free_blocks_count = cpu_to_le64(nfreeblocks);
268 	sbp[0]->s_wtime = cpu_to_le64(t);
269 	sbp[0]->s_sum = 0;
270 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
271 					     (unsigned char *)sbp[0],
272 					     nilfs->ns_sbsize));
273 	if (dupsb && sbp[1]) {
274 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
275 		nilfs->ns_sbwtime[1] = t;
276 	}
277 	clear_nilfs_sb_dirty(nilfs);
278 	return nilfs_sync_super(sbi, dupsb);
279 }
280 
281 static void nilfs_put_super(struct super_block *sb)
282 {
283 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
284 	struct the_nilfs *nilfs = sbi->s_nilfs;
285 
286 	lock_kernel();
287 
288 	nilfs_detach_segment_constructor(sbi);
289 
290 	if (!(sb->s_flags & MS_RDONLY)) {
291 		down_write(&nilfs->ns_sem);
292 		nilfs->ns_sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
293 		nilfs_commit_super(sbi, 1);
294 		up_write(&nilfs->ns_sem);
295 	}
296 	down_write(&nilfs->ns_super_sem);
297 	if (nilfs->ns_current == sbi)
298 		nilfs->ns_current = NULL;
299 	up_write(&nilfs->ns_super_sem);
300 
301 	nilfs_detach_checkpoint(sbi);
302 	put_nilfs(sbi->s_nilfs);
303 	sbi->s_super = NULL;
304 	sb->s_fs_info = NULL;
305 	nilfs_put_sbinfo(sbi);
306 
307 	unlock_kernel();
308 }
309 
310 static int nilfs_sync_fs(struct super_block *sb, int wait)
311 {
312 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
313 	struct the_nilfs *nilfs = sbi->s_nilfs;
314 	int err = 0;
315 
316 	/* This function is called when super block should be written back */
317 	if (wait)
318 		err = nilfs_construct_segment(sb);
319 
320 	down_write(&nilfs->ns_sem);
321 	if (nilfs_sb_dirty(nilfs))
322 		nilfs_commit_super(sbi, 1);
323 	up_write(&nilfs->ns_sem);
324 
325 	return err;
326 }
327 
328 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
329 {
330 	struct the_nilfs *nilfs = sbi->s_nilfs;
331 	struct nilfs_checkpoint *raw_cp;
332 	struct buffer_head *bh_cp;
333 	int err;
334 
335 	down_write(&nilfs->ns_super_sem);
336 	list_add(&sbi->s_list, &nilfs->ns_supers);
337 	up_write(&nilfs->ns_super_sem);
338 
339 	sbi->s_ifile = nilfs_ifile_new(sbi, nilfs->ns_inode_size);
340 	if (!sbi->s_ifile)
341 		return -ENOMEM;
342 
343 	down_read(&nilfs->ns_segctor_sem);
344 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
345 					  &bh_cp);
346 	up_read(&nilfs->ns_segctor_sem);
347 	if (unlikely(err)) {
348 		if (err == -ENOENT || err == -EINVAL) {
349 			printk(KERN_ERR
350 			       "NILFS: Invalid checkpoint "
351 			       "(checkpoint number=%llu)\n",
352 			       (unsigned long long)cno);
353 			err = -EINVAL;
354 		}
355 		goto failed;
356 	}
357 	err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
358 	if (unlikely(err))
359 		goto failed_bh;
360 	atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
361 	atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
362 
363 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
364 	return 0;
365 
366  failed_bh:
367 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
368  failed:
369 	nilfs_mdt_destroy(sbi->s_ifile);
370 	sbi->s_ifile = NULL;
371 
372 	down_write(&nilfs->ns_super_sem);
373 	list_del_init(&sbi->s_list);
374 	up_write(&nilfs->ns_super_sem);
375 
376 	return err;
377 }
378 
379 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
380 {
381 	struct the_nilfs *nilfs = sbi->s_nilfs;
382 
383 	nilfs_mdt_destroy(sbi->s_ifile);
384 	sbi->s_ifile = NULL;
385 	down_write(&nilfs->ns_super_sem);
386 	list_del_init(&sbi->s_list);
387 	up_write(&nilfs->ns_super_sem);
388 }
389 
390 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
391 {
392 	struct super_block *sb = dentry->d_sb;
393 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
394 	struct the_nilfs *nilfs = sbi->s_nilfs;
395 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
396 	unsigned long long blocks;
397 	unsigned long overhead;
398 	unsigned long nrsvblocks;
399 	sector_t nfreeblocks;
400 	int err;
401 
402 	/*
403 	 * Compute all of the segment blocks
404 	 *
405 	 * The blocks before first segment and after last segment
406 	 * are excluded.
407 	 */
408 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
409 		- nilfs->ns_first_data_block;
410 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
411 
412 	/*
413 	 * Compute the overhead
414 	 *
415 	 * When distributing meta data blocks outside segment structure,
416 	 * We must count them as the overhead.
417 	 */
418 	overhead = 0;
419 
420 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
421 	if (unlikely(err))
422 		return err;
423 
424 	buf->f_type = NILFS_SUPER_MAGIC;
425 	buf->f_bsize = sb->s_blocksize;
426 	buf->f_blocks = blocks - overhead;
427 	buf->f_bfree = nfreeblocks;
428 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
429 		(buf->f_bfree - nrsvblocks) : 0;
430 	buf->f_files = atomic_read(&sbi->s_inodes_count);
431 	buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
432 	buf->f_namelen = NILFS_NAME_LEN;
433 	buf->f_fsid.val[0] = (u32)id;
434 	buf->f_fsid.val[1] = (u32)(id >> 32);
435 
436 	return 0;
437 }
438 
439 static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
440 {
441 	struct super_block *sb = vfs->mnt_sb;
442 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
443 
444 	if (!nilfs_test_opt(sbi, BARRIER))
445 		seq_printf(seq, ",nobarrier");
446 	if (nilfs_test_opt(sbi, SNAPSHOT))
447 		seq_printf(seq, ",cp=%llu",
448 			   (unsigned long long int)sbi->s_snapshot_cno);
449 	if (nilfs_test_opt(sbi, ERRORS_PANIC))
450 		seq_printf(seq, ",errors=panic");
451 	if (nilfs_test_opt(sbi, ERRORS_CONT))
452 		seq_printf(seq, ",errors=continue");
453 	if (nilfs_test_opt(sbi, STRICT_ORDER))
454 		seq_printf(seq, ",order=strict");
455 	if (nilfs_test_opt(sbi, NORECOVERY))
456 		seq_printf(seq, ",norecovery");
457 	if (nilfs_test_opt(sbi, DISCARD))
458 		seq_printf(seq, ",discard");
459 
460 	return 0;
461 }
462 
463 static const struct super_operations nilfs_sops = {
464 	.alloc_inode    = nilfs_alloc_inode,
465 	.destroy_inode  = nilfs_destroy_inode,
466 	.dirty_inode    = nilfs_dirty_inode,
467 	/* .write_inode    = nilfs_write_inode, */
468 	/* .put_inode      = nilfs_put_inode, */
469 	/* .drop_inode	  = nilfs_drop_inode, */
470 	.delete_inode   = nilfs_delete_inode,
471 	.put_super      = nilfs_put_super,
472 	/* .write_super    = nilfs_write_super, */
473 	.sync_fs        = nilfs_sync_fs,
474 	/* .write_super_lockfs */
475 	/* .unlockfs */
476 	.statfs         = nilfs_statfs,
477 	.remount_fs     = nilfs_remount,
478 	.clear_inode    = nilfs_clear_inode,
479 	/* .umount_begin */
480 	.show_options = nilfs_show_options
481 };
482 
483 static struct inode *
484 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
485 {
486 	struct inode *inode;
487 
488 	if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
489 	    ino != NILFS_SKETCH_INO)
490 		return ERR_PTR(-ESTALE);
491 
492 	inode = nilfs_iget(sb, ino);
493 	if (IS_ERR(inode))
494 		return ERR_CAST(inode);
495 	if (generation && inode->i_generation != generation) {
496 		iput(inode);
497 		return ERR_PTR(-ESTALE);
498 	}
499 
500 	return inode;
501 }
502 
503 static struct dentry *
504 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
505 		   int fh_type)
506 {
507 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
508 				    nilfs_nfs_get_inode);
509 }
510 
511 static struct dentry *
512 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
513 		   int fh_type)
514 {
515 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
516 				    nilfs_nfs_get_inode);
517 }
518 
519 static const struct export_operations nilfs_export_ops = {
520 	.fh_to_dentry = nilfs_fh_to_dentry,
521 	.fh_to_parent = nilfs_fh_to_parent,
522 	.get_parent = nilfs_get_parent,
523 };
524 
525 enum {
526 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
527 	Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
528 	Opt_discard, Opt_err,
529 };
530 
531 static match_table_t tokens = {
532 	{Opt_err_cont, "errors=continue"},
533 	{Opt_err_panic, "errors=panic"},
534 	{Opt_err_ro, "errors=remount-ro"},
535 	{Opt_nobarrier, "nobarrier"},
536 	{Opt_snapshot, "cp=%u"},
537 	{Opt_order, "order=%s"},
538 	{Opt_norecovery, "norecovery"},
539 	{Opt_discard, "discard"},
540 	{Opt_err, NULL}
541 };
542 
543 static int parse_options(char *options, struct super_block *sb)
544 {
545 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
546 	char *p;
547 	substring_t args[MAX_OPT_ARGS];
548 	int option;
549 
550 	if (!options)
551 		return 1;
552 
553 	while ((p = strsep(&options, ",")) != NULL) {
554 		int token;
555 		if (!*p)
556 			continue;
557 
558 		token = match_token(p, tokens, args);
559 		switch (token) {
560 		case Opt_nobarrier:
561 			nilfs_clear_opt(sbi, BARRIER);
562 			break;
563 		case Opt_order:
564 			if (strcmp(args[0].from, "relaxed") == 0)
565 				/* Ordered data semantics */
566 				nilfs_clear_opt(sbi, STRICT_ORDER);
567 			else if (strcmp(args[0].from, "strict") == 0)
568 				/* Strict in-order semantics */
569 				nilfs_set_opt(sbi, STRICT_ORDER);
570 			else
571 				return 0;
572 			break;
573 		case Opt_err_panic:
574 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
575 			break;
576 		case Opt_err_ro:
577 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
578 			break;
579 		case Opt_err_cont:
580 			nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
581 			break;
582 		case Opt_snapshot:
583 			if (match_int(&args[0], &option) || option <= 0)
584 				return 0;
585 			if (!(sb->s_flags & MS_RDONLY))
586 				return 0;
587 			sbi->s_snapshot_cno = option;
588 			nilfs_set_opt(sbi, SNAPSHOT);
589 			break;
590 		case Opt_norecovery:
591 			nilfs_set_opt(sbi, NORECOVERY);
592 			break;
593 		case Opt_discard:
594 			nilfs_set_opt(sbi, DISCARD);
595 			break;
596 		default:
597 			printk(KERN_ERR
598 			       "NILFS: Unrecognized mount option \"%s\"\n", p);
599 			return 0;
600 		}
601 	}
602 	return 1;
603 }
604 
605 static inline void
606 nilfs_set_default_options(struct nilfs_sb_info *sbi,
607 			  struct nilfs_super_block *sbp)
608 {
609 	sbi->s_mount_opt =
610 		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
611 }
612 
613 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
614 {
615 	struct the_nilfs *nilfs = sbi->s_nilfs;
616 	struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
617 	int max_mnt_count = le16_to_cpu(sbp->s_max_mnt_count);
618 	int mnt_count = le16_to_cpu(sbp->s_mnt_count);
619 
620 	/* nilfs->sem must be locked by the caller. */
621 	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
622 		printk(KERN_WARNING
623 		       "NILFS warning: mounting fs with errors\n");
624 #if 0
625 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
626 		printk(KERN_WARNING
627 		       "NILFS warning: maximal mount count reached\n");
628 #endif
629 	}
630 	if (!max_mnt_count)
631 		sbp->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
632 
633 	sbp->s_mnt_count = cpu_to_le16(mnt_count + 1);
634 	sbp->s_state = cpu_to_le16(le16_to_cpu(sbp->s_state) & ~NILFS_VALID_FS);
635 	sbp->s_mtime = cpu_to_le64(get_seconds());
636 	return nilfs_commit_super(sbi, 1);
637 }
638 
639 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
640 						 u64 pos, int blocksize,
641 						 struct buffer_head **pbh)
642 {
643 	unsigned long long sb_index = pos;
644 	unsigned long offset;
645 
646 	offset = do_div(sb_index, blocksize);
647 	*pbh = sb_bread(sb, sb_index);
648 	if (!*pbh)
649 		return NULL;
650 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
651 }
652 
653 int nilfs_store_magic_and_option(struct super_block *sb,
654 				 struct nilfs_super_block *sbp,
655 				 char *data)
656 {
657 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
658 
659 	sb->s_magic = le16_to_cpu(sbp->s_magic);
660 
661 	/* FS independent flags */
662 #ifdef NILFS_ATIME_DISABLE
663 	sb->s_flags |= MS_NOATIME;
664 #endif
665 
666 	nilfs_set_default_options(sbi, sbp);
667 
668 	sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
669 	sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
670 	sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
671 	sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
672 
673 	return !parse_options(data, sb) ? -EINVAL : 0 ;
674 }
675 
676 /**
677  * nilfs_fill_super() - initialize a super block instance
678  * @sb: super_block
679  * @data: mount options
680  * @silent: silent mode flag
681  * @nilfs: the_nilfs struct
682  *
683  * This function is called exclusively by nilfs->ns_mount_mutex.
684  * So, the recovery process is protected from other simultaneous mounts.
685  */
686 static int
687 nilfs_fill_super(struct super_block *sb, void *data, int silent,
688 		 struct the_nilfs *nilfs)
689 {
690 	struct nilfs_sb_info *sbi;
691 	struct inode *root;
692 	__u64 cno;
693 	int err;
694 
695 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
696 	if (!sbi)
697 		return -ENOMEM;
698 
699 	sb->s_fs_info = sbi;
700 
701 	get_nilfs(nilfs);
702 	sbi->s_nilfs = nilfs;
703 	sbi->s_super = sb;
704 	atomic_set(&sbi->s_count, 1);
705 
706 	err = init_nilfs(nilfs, sbi, (char *)data);
707 	if (err)
708 		goto failed_sbi;
709 
710 	spin_lock_init(&sbi->s_inode_lock);
711 	INIT_LIST_HEAD(&sbi->s_dirty_files);
712 	INIT_LIST_HEAD(&sbi->s_list);
713 
714 	/*
715 	 * Following initialization is overlapped because
716 	 * nilfs_sb_info structure has been cleared at the beginning.
717 	 * But we reserve them to keep our interest and make ready
718 	 * for the future change.
719 	 */
720 	get_random_bytes(&sbi->s_next_generation,
721 			 sizeof(sbi->s_next_generation));
722 	spin_lock_init(&sbi->s_next_gen_lock);
723 
724 	sb->s_op = &nilfs_sops;
725 	sb->s_export_op = &nilfs_export_ops;
726 	sb->s_root = NULL;
727 	sb->s_time_gran = 1;
728 	sb->s_bdi = nilfs->ns_bdi;
729 
730 	err = load_nilfs(nilfs, sbi);
731 	if (err)
732 		goto failed_sbi;
733 
734 	cno = nilfs_last_cno(nilfs);
735 
736 	if (sb->s_flags & MS_RDONLY) {
737 		if (nilfs_test_opt(sbi, SNAPSHOT)) {
738 			down_read(&nilfs->ns_segctor_sem);
739 			err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
740 						       sbi->s_snapshot_cno);
741 			up_read(&nilfs->ns_segctor_sem);
742 			if (err < 0) {
743 				if (err == -ENOENT)
744 					err = -EINVAL;
745 				goto failed_sbi;
746 			}
747 			if (!err) {
748 				printk(KERN_ERR
749 				       "NILFS: The specified checkpoint is "
750 				       "not a snapshot "
751 				       "(checkpoint number=%llu).\n",
752 				       (unsigned long long)sbi->s_snapshot_cno);
753 				err = -EINVAL;
754 				goto failed_sbi;
755 			}
756 			cno = sbi->s_snapshot_cno;
757 		}
758 	}
759 
760 	err = nilfs_attach_checkpoint(sbi, cno);
761 	if (err) {
762 		printk(KERN_ERR "NILFS: error loading a checkpoint"
763 		       " (checkpoint number=%llu).\n", (unsigned long long)cno);
764 		goto failed_sbi;
765 	}
766 
767 	if (!(sb->s_flags & MS_RDONLY)) {
768 		err = nilfs_attach_segment_constructor(sbi);
769 		if (err)
770 			goto failed_checkpoint;
771 	}
772 
773 	root = nilfs_iget(sb, NILFS_ROOT_INO);
774 	if (IS_ERR(root)) {
775 		printk(KERN_ERR "NILFS: get root inode failed\n");
776 		err = PTR_ERR(root);
777 		goto failed_segctor;
778 	}
779 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
780 		iput(root);
781 		printk(KERN_ERR "NILFS: corrupt root inode.\n");
782 		err = -EINVAL;
783 		goto failed_segctor;
784 	}
785 	sb->s_root = d_alloc_root(root);
786 	if (!sb->s_root) {
787 		iput(root);
788 		printk(KERN_ERR "NILFS: get root dentry failed\n");
789 		err = -ENOMEM;
790 		goto failed_segctor;
791 	}
792 
793 	if (!(sb->s_flags & MS_RDONLY)) {
794 		down_write(&nilfs->ns_sem);
795 		nilfs_setup_super(sbi);
796 		up_write(&nilfs->ns_sem);
797 	}
798 
799 	down_write(&nilfs->ns_super_sem);
800 	if (!nilfs_test_opt(sbi, SNAPSHOT))
801 		nilfs->ns_current = sbi;
802 	up_write(&nilfs->ns_super_sem);
803 
804 	return 0;
805 
806  failed_segctor:
807 	nilfs_detach_segment_constructor(sbi);
808 
809  failed_checkpoint:
810 	nilfs_detach_checkpoint(sbi);
811 
812  failed_sbi:
813 	put_nilfs(nilfs);
814 	sb->s_fs_info = NULL;
815 	nilfs_put_sbinfo(sbi);
816 	return err;
817 }
818 
819 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
820 {
821 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
822 	struct nilfs_super_block *sbp;
823 	struct the_nilfs *nilfs = sbi->s_nilfs;
824 	unsigned long old_sb_flags;
825 	struct nilfs_mount_options old_opts;
826 	int was_snapshot, err;
827 
828 	lock_kernel();
829 
830 	down_write(&nilfs->ns_super_sem);
831 	old_sb_flags = sb->s_flags;
832 	old_opts.mount_opt = sbi->s_mount_opt;
833 	old_opts.snapshot_cno = sbi->s_snapshot_cno;
834 	was_snapshot = nilfs_test_opt(sbi, SNAPSHOT);
835 
836 	if (!parse_options(data, sb)) {
837 		err = -EINVAL;
838 		goto restore_opts;
839 	}
840 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
841 
842 	err = -EINVAL;
843 	if (was_snapshot) {
844 		if (!(*flags & MS_RDONLY)) {
845 			printk(KERN_ERR "NILFS (device %s): cannot remount "
846 			       "snapshot read/write.\n",
847 			       sb->s_id);
848 			goto restore_opts;
849 		} else if (sbi->s_snapshot_cno != old_opts.snapshot_cno) {
850 			printk(KERN_ERR "NILFS (device %s): cannot "
851 			       "remount to a different snapshot.\n",
852 			       sb->s_id);
853 			goto restore_opts;
854 		}
855 	} else {
856 		if (nilfs_test_opt(sbi, SNAPSHOT)) {
857 			printk(KERN_ERR "NILFS (device %s): cannot change "
858 			       "a regular mount to a snapshot.\n",
859 			       sb->s_id);
860 			goto restore_opts;
861 		}
862 	}
863 
864 	if (!nilfs_valid_fs(nilfs)) {
865 		printk(KERN_WARNING "NILFS (device %s): couldn't "
866 		       "remount because the filesystem is in an "
867 		       "incomplete recovery state.\n", sb->s_id);
868 		goto restore_opts;
869 	}
870 
871 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
872 		goto out;
873 	if (*flags & MS_RDONLY) {
874 		/* Shutting down the segment constructor */
875 		nilfs_detach_segment_constructor(sbi);
876 		sb->s_flags |= MS_RDONLY;
877 
878 		/*
879 		 * Remounting a valid RW partition RDONLY, so set
880 		 * the RDONLY flag and then mark the partition as valid again.
881 		 */
882 		down_write(&nilfs->ns_sem);
883 		sbp = nilfs->ns_sbp[0];
884 		if (!(sbp->s_state & le16_to_cpu(NILFS_VALID_FS)) &&
885 		    (nilfs->ns_mount_state & NILFS_VALID_FS))
886 			sbp->s_state = cpu_to_le16(nilfs->ns_mount_state);
887 		sbp->s_mtime = cpu_to_le64(get_seconds());
888 		nilfs_commit_super(sbi, 1);
889 		up_write(&nilfs->ns_sem);
890 	} else {
891 		/*
892 		 * Mounting a RDONLY partition read-write, so reread and
893 		 * store the current valid flag.  (It may have been changed
894 		 * by fsck since we originally mounted the partition.)
895 		 */
896 		sb->s_flags &= ~MS_RDONLY;
897 
898 		err = nilfs_attach_segment_constructor(sbi);
899 		if (err)
900 			goto restore_opts;
901 
902 		down_write(&nilfs->ns_sem);
903 		nilfs_setup_super(sbi);
904 		up_write(&nilfs->ns_sem);
905 	}
906  out:
907 	up_write(&nilfs->ns_super_sem);
908 	unlock_kernel();
909 	return 0;
910 
911  restore_opts:
912 	sb->s_flags = old_sb_flags;
913 	sbi->s_mount_opt = old_opts.mount_opt;
914 	sbi->s_snapshot_cno = old_opts.snapshot_cno;
915 	up_write(&nilfs->ns_super_sem);
916 	unlock_kernel();
917 	return err;
918 }
919 
920 struct nilfs_super_data {
921 	struct block_device *bdev;
922 	struct nilfs_sb_info *sbi;
923 	__u64 cno;
924 	int flags;
925 };
926 
927 /**
928  * nilfs_identify - pre-read mount options needed to identify mount instance
929  * @data: mount options
930  * @sd: nilfs_super_data
931  */
932 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
933 {
934 	char *p, *options = data;
935 	substring_t args[MAX_OPT_ARGS];
936 	int option, token;
937 	int ret = 0;
938 
939 	do {
940 		p = strsep(&options, ",");
941 		if (p != NULL && *p) {
942 			token = match_token(p, tokens, args);
943 			if (token == Opt_snapshot) {
944 				if (!(sd->flags & MS_RDONLY))
945 					ret++;
946 				else {
947 					ret = match_int(&args[0], &option);
948 					if (!ret) {
949 						if (option > 0)
950 							sd->cno = option;
951 						else
952 							ret++;
953 					}
954 				}
955 			}
956 			if (ret)
957 				printk(KERN_ERR
958 				       "NILFS: invalid mount option: %s\n", p);
959 		}
960 		if (!options)
961 			break;
962 		BUG_ON(options == data);
963 		*(options - 1) = ',';
964 	} while (!ret);
965 	return ret;
966 }
967 
968 static int nilfs_set_bdev_super(struct super_block *s, void *data)
969 {
970 	struct nilfs_super_data *sd = data;
971 
972 	s->s_bdev = sd->bdev;
973 	s->s_dev = s->s_bdev->bd_dev;
974 	return 0;
975 }
976 
977 static int nilfs_test_bdev_super(struct super_block *s, void *data)
978 {
979 	struct nilfs_super_data *sd = data;
980 
981 	return sd->sbi && s->s_fs_info == (void *)sd->sbi;
982 }
983 
984 static int
985 nilfs_get_sb(struct file_system_type *fs_type, int flags,
986 	     const char *dev_name, void *data, struct vfsmount *mnt)
987 {
988 	struct nilfs_super_data sd;
989 	struct super_block *s;
990 	fmode_t mode = FMODE_READ;
991 	struct the_nilfs *nilfs;
992 	int err, need_to_close = 1;
993 
994 	if (!(flags & MS_RDONLY))
995 		mode |= FMODE_WRITE;
996 
997 	sd.bdev = open_bdev_exclusive(dev_name, mode, fs_type);
998 	if (IS_ERR(sd.bdev))
999 		return PTR_ERR(sd.bdev);
1000 
1001 	/*
1002 	 * To get mount instance using sget() vfs-routine, NILFS needs
1003 	 * much more information than normal filesystems to identify mount
1004 	 * instance.  For snapshot mounts, not only a mount type (ro-mount
1005 	 * or rw-mount) but also a checkpoint number is required.
1006 	 */
1007 	sd.cno = 0;
1008 	sd.flags = flags;
1009 	if (nilfs_identify((char *)data, &sd)) {
1010 		err = -EINVAL;
1011 		goto failed;
1012 	}
1013 
1014 	nilfs = find_or_create_nilfs(sd.bdev);
1015 	if (!nilfs) {
1016 		err = -ENOMEM;
1017 		goto failed;
1018 	}
1019 
1020 	mutex_lock(&nilfs->ns_mount_mutex);
1021 
1022 	if (!sd.cno) {
1023 		/*
1024 		 * Check if an exclusive mount exists or not.
1025 		 * Snapshot mounts coexist with a current mount
1026 		 * (i.e. rw-mount or ro-mount), whereas rw-mount and
1027 		 * ro-mount are mutually exclusive.
1028 		 */
1029 		down_read(&nilfs->ns_super_sem);
1030 		if (nilfs->ns_current &&
1031 		    ((nilfs->ns_current->s_super->s_flags ^ flags)
1032 		     & MS_RDONLY)) {
1033 			up_read(&nilfs->ns_super_sem);
1034 			err = -EBUSY;
1035 			goto failed_unlock;
1036 		}
1037 		up_read(&nilfs->ns_super_sem);
1038 	}
1039 
1040 	/*
1041 	 * Find existing nilfs_sb_info struct
1042 	 */
1043 	sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno);
1044 
1045 	/*
1046 	 * Get super block instance holding the nilfs_sb_info struct.
1047 	 * A new instance is allocated if no existing mount is present or
1048 	 * existing instance has been unmounted.
1049 	 */
1050 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1051 	if (sd.sbi)
1052 		nilfs_put_sbinfo(sd.sbi);
1053 
1054 	if (IS_ERR(s)) {
1055 		err = PTR_ERR(s);
1056 		goto failed_unlock;
1057 	}
1058 
1059 	if (!s->s_root) {
1060 		char b[BDEVNAME_SIZE];
1061 
1062 		/* New superblock instance created */
1063 		s->s_flags = flags;
1064 		s->s_mode = mode;
1065 		strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1066 		sb_set_blocksize(s, block_size(sd.bdev));
1067 
1068 		err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0,
1069 				       nilfs);
1070 		if (err)
1071 			goto cancel_new;
1072 
1073 		s->s_flags |= MS_ACTIVE;
1074 		need_to_close = 0;
1075 	}
1076 
1077 	mutex_unlock(&nilfs->ns_mount_mutex);
1078 	put_nilfs(nilfs);
1079 	if (need_to_close)
1080 		close_bdev_exclusive(sd.bdev, mode);
1081 	simple_set_mnt(mnt, s);
1082 	return 0;
1083 
1084  failed_unlock:
1085 	mutex_unlock(&nilfs->ns_mount_mutex);
1086 	put_nilfs(nilfs);
1087  failed:
1088 	close_bdev_exclusive(sd.bdev, mode);
1089 
1090 	return err;
1091 
1092  cancel_new:
1093 	/* Abandoning the newly allocated superblock */
1094 	mutex_unlock(&nilfs->ns_mount_mutex);
1095 	put_nilfs(nilfs);
1096 	deactivate_locked_super(s);
1097 	/*
1098 	 * deactivate_locked_super() invokes close_bdev_exclusive().
1099 	 * We must finish all post-cleaning before this call;
1100 	 * put_nilfs() needs the block device.
1101 	 */
1102 	return err;
1103 }
1104 
1105 struct file_system_type nilfs_fs_type = {
1106 	.owner    = THIS_MODULE,
1107 	.name     = "nilfs2",
1108 	.get_sb   = nilfs_get_sb,
1109 	.kill_sb  = kill_block_super,
1110 	.fs_flags = FS_REQUIRES_DEV,
1111 };
1112 
1113 static void nilfs_inode_init_once(void *obj)
1114 {
1115 	struct nilfs_inode_info *ii = obj;
1116 
1117 	INIT_LIST_HEAD(&ii->i_dirty);
1118 #ifdef CONFIG_NILFS_XATTR
1119 	init_rwsem(&ii->xattr_sem);
1120 #endif
1121 	nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
1122 	ii->i_bmap = (struct nilfs_bmap *)&ii->i_bmap_union;
1123 	inode_init_once(&ii->vfs_inode);
1124 }
1125 
1126 static void nilfs_segbuf_init_once(void *obj)
1127 {
1128 	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1129 }
1130 
1131 static void nilfs_destroy_cachep(void)
1132 {
1133 	if (nilfs_inode_cachep)
1134 		kmem_cache_destroy(nilfs_inode_cachep);
1135 	if (nilfs_transaction_cachep)
1136 		kmem_cache_destroy(nilfs_transaction_cachep);
1137 	if (nilfs_segbuf_cachep)
1138 		kmem_cache_destroy(nilfs_segbuf_cachep);
1139 	if (nilfs_btree_path_cache)
1140 		kmem_cache_destroy(nilfs_btree_path_cache);
1141 }
1142 
1143 static int __init nilfs_init_cachep(void)
1144 {
1145 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1146 			sizeof(struct nilfs_inode_info), 0,
1147 			SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1148 	if (!nilfs_inode_cachep)
1149 		goto fail;
1150 
1151 	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1152 			sizeof(struct nilfs_transaction_info), 0,
1153 			SLAB_RECLAIM_ACCOUNT, NULL);
1154 	if (!nilfs_transaction_cachep)
1155 		goto fail;
1156 
1157 	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1158 			sizeof(struct nilfs_segment_buffer), 0,
1159 			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1160 	if (!nilfs_segbuf_cachep)
1161 		goto fail;
1162 
1163 	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1164 			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1165 			0, 0, NULL);
1166 	if (!nilfs_btree_path_cache)
1167 		goto fail;
1168 
1169 	return 0;
1170 
1171 fail:
1172 	nilfs_destroy_cachep();
1173 	return -ENOMEM;
1174 }
1175 
1176 static int __init init_nilfs_fs(void)
1177 {
1178 	int err;
1179 
1180 	err = nilfs_init_cachep();
1181 	if (err)
1182 		goto fail;
1183 
1184 	err = register_filesystem(&nilfs_fs_type);
1185 	if (err)
1186 		goto free_cachep;
1187 
1188 	printk(KERN_INFO "NILFS version 2 loaded\n");
1189 	return 0;
1190 
1191 free_cachep:
1192 	nilfs_destroy_cachep();
1193 fail:
1194 	return err;
1195 }
1196 
1197 static void __exit exit_nilfs_fs(void)
1198 {
1199 	nilfs_destroy_cachep();
1200 	unregister_filesystem(&nilfs_fs_type);
1201 }
1202 
1203 module_init(init_nilfs_fs)
1204 module_exit(exit_nilfs_fs)
1205