xref: /openbmc/linux/fs/nilfs2/super.c (revision 11976fe2)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * NILFS module and super block management.
4  *
5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6  *
7  * Written by Ryusuke Konishi.
8  */
9 /*
10  *  linux/fs/ext2/super.c
11  *
12  * Copyright (C) 1992, 1993, 1994, 1995
13  * Remy Card (card@masi.ibp.fr)
14  * Laboratoire MASI - Institut Blaise Pascal
15  * Universite Pierre et Marie Curie (Paris VI)
16  *
17  *  from
18  *
19  *  linux/fs/minix/inode.c
20  *
21  *  Copyright (C) 1991, 1992  Linus Torvalds
22  *
23  *  Big-endian to little-endian byte-swapping/bitmaps by
24  *        David S. Miller (davem@caip.rutgers.edu), 1995
25  */
26 
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/blkdev.h>
32 #include <linux/parser.h>
33 #include <linux/crc32.h>
34 #include <linux/vfs.h>
35 #include <linux/writeback.h>
36 #include <linux/seq_file.h>
37 #include <linux/mount.h>
38 #include "nilfs.h"
39 #include "export.h"
40 #include "mdt.h"
41 #include "alloc.h"
42 #include "btree.h"
43 #include "btnode.h"
44 #include "page.h"
45 #include "cpfile.h"
46 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
47 #include "ifile.h"
48 #include "dat.h"
49 #include "segment.h"
50 #include "segbuf.h"
51 
52 MODULE_AUTHOR("NTT Corp.");
53 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
54 		   "(NILFS)");
55 MODULE_LICENSE("GPL");
56 
57 static struct kmem_cache *nilfs_inode_cachep;
58 struct kmem_cache *nilfs_transaction_cachep;
59 struct kmem_cache *nilfs_segbuf_cachep;
60 struct kmem_cache *nilfs_btree_path_cache;
61 
62 static int nilfs_setup_super(struct super_block *sb, int is_mount);
63 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
64 
65 void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
66 {
67 	struct va_format vaf;
68 	va_list args;
69 	int level;
70 
71 	va_start(args, fmt);
72 
73 	level = printk_get_level(fmt);
74 	vaf.fmt = printk_skip_level(fmt);
75 	vaf.va = &args;
76 
77 	if (sb)
78 		printk("%c%cNILFS (%s): %pV\n",
79 		       KERN_SOH_ASCII, level, sb->s_id, &vaf);
80 	else
81 		printk("%c%cNILFS: %pV\n",
82 		       KERN_SOH_ASCII, level, &vaf);
83 
84 	va_end(args);
85 }
86 
87 static void nilfs_set_error(struct super_block *sb)
88 {
89 	struct the_nilfs *nilfs = sb->s_fs_info;
90 	struct nilfs_super_block **sbp;
91 
92 	down_write(&nilfs->ns_sem);
93 	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
94 		nilfs->ns_mount_state |= NILFS_ERROR_FS;
95 		sbp = nilfs_prepare_super(sb, 0);
96 		if (likely(sbp)) {
97 			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
98 			if (sbp[1])
99 				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
100 			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
101 		}
102 	}
103 	up_write(&nilfs->ns_sem);
104 }
105 
106 /**
107  * __nilfs_error() - report failure condition on a filesystem
108  *
109  * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
110  * reporting an error message.  This function should be called when
111  * NILFS detects incoherences or defects of meta data on disk.
112  *
113  * This implements the body of nilfs_error() macro.  Normally,
114  * nilfs_error() should be used.  As for sustainable errors such as a
115  * single-shot I/O error, nilfs_err() should be used instead.
116  *
117  * Callers should not add a trailing newline since this will do it.
118  */
119 void __nilfs_error(struct super_block *sb, const char *function,
120 		   const char *fmt, ...)
121 {
122 	struct the_nilfs *nilfs = sb->s_fs_info;
123 	struct va_format vaf;
124 	va_list args;
125 
126 	va_start(args, fmt);
127 
128 	vaf.fmt = fmt;
129 	vaf.va = &args;
130 
131 	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
132 	       sb->s_id, function, &vaf);
133 
134 	va_end(args);
135 
136 	if (!sb_rdonly(sb)) {
137 		nilfs_set_error(sb);
138 
139 		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
140 			printk(KERN_CRIT "Remounting filesystem read-only\n");
141 			sb->s_flags |= SB_RDONLY;
142 		}
143 	}
144 
145 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
146 		panic("NILFS (device %s): panic forced after error\n",
147 		      sb->s_id);
148 }
149 
150 struct inode *nilfs_alloc_inode(struct super_block *sb)
151 {
152 	struct nilfs_inode_info *ii;
153 
154 	ii = alloc_inode_sb(sb, nilfs_inode_cachep, GFP_NOFS);
155 	if (!ii)
156 		return NULL;
157 	ii->i_bh = NULL;
158 	ii->i_state = 0;
159 	ii->i_cno = 0;
160 	ii->i_assoc_inode = NULL;
161 	ii->i_bmap = &ii->i_bmap_data;
162 	return &ii->vfs_inode;
163 }
164 
165 static void nilfs_free_inode(struct inode *inode)
166 {
167 	if (nilfs_is_metadata_file_inode(inode))
168 		nilfs_mdt_destroy(inode);
169 
170 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
171 }
172 
173 static int nilfs_sync_super(struct super_block *sb, int flag)
174 {
175 	struct the_nilfs *nilfs = sb->s_fs_info;
176 	int err;
177 
178  retry:
179 	set_buffer_dirty(nilfs->ns_sbh[0]);
180 	if (nilfs_test_opt(nilfs, BARRIER)) {
181 		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
182 					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
183 	} else {
184 		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
185 	}
186 
187 	if (unlikely(err)) {
188 		nilfs_err(sb, "unable to write superblock: err=%d", err);
189 		if (err == -EIO && nilfs->ns_sbh[1]) {
190 			/*
191 			 * sbp[0] points to newer log than sbp[1],
192 			 * so copy sbp[0] to sbp[1] to take over sbp[0].
193 			 */
194 			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
195 			       nilfs->ns_sbsize);
196 			nilfs_fall_back_super_block(nilfs);
197 			goto retry;
198 		}
199 	} else {
200 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
201 
202 		nilfs->ns_sbwcount++;
203 
204 		/*
205 		 * The latest segment becomes trailable from the position
206 		 * written in superblock.
207 		 */
208 		clear_nilfs_discontinued(nilfs);
209 
210 		/* update GC protection for recent segments */
211 		if (nilfs->ns_sbh[1]) {
212 			if (flag == NILFS_SB_COMMIT_ALL) {
213 				set_buffer_dirty(nilfs->ns_sbh[1]);
214 				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
215 					goto out;
216 			}
217 			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
218 			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
219 				sbp = nilfs->ns_sbp[1];
220 		}
221 
222 		spin_lock(&nilfs->ns_last_segment_lock);
223 		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
224 		spin_unlock(&nilfs->ns_last_segment_lock);
225 	}
226  out:
227 	return err;
228 }
229 
230 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
231 			  struct the_nilfs *nilfs)
232 {
233 	sector_t nfreeblocks;
234 
235 	/* nilfs->ns_sem must be locked by the caller. */
236 	nilfs_count_free_blocks(nilfs, &nfreeblocks);
237 	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
238 
239 	spin_lock(&nilfs->ns_last_segment_lock);
240 	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
241 	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
242 	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
243 	spin_unlock(&nilfs->ns_last_segment_lock);
244 }
245 
246 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
247 					       int flip)
248 {
249 	struct the_nilfs *nilfs = sb->s_fs_info;
250 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
251 
252 	/* nilfs->ns_sem must be locked by the caller. */
253 	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
254 		if (sbp[1] &&
255 		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
256 			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
257 		} else {
258 			nilfs_crit(sb, "superblock broke");
259 			return NULL;
260 		}
261 	} else if (sbp[1] &&
262 		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
263 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
264 	}
265 
266 	if (flip && sbp[1])
267 		nilfs_swap_super_block(nilfs);
268 
269 	return sbp;
270 }
271 
272 int nilfs_commit_super(struct super_block *sb, int flag)
273 {
274 	struct the_nilfs *nilfs = sb->s_fs_info;
275 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
276 	time64_t t;
277 
278 	/* nilfs->ns_sem must be locked by the caller. */
279 	t = ktime_get_real_seconds();
280 	nilfs->ns_sbwtime = t;
281 	sbp[0]->s_wtime = cpu_to_le64(t);
282 	sbp[0]->s_sum = 0;
283 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
284 					     (unsigned char *)sbp[0],
285 					     nilfs->ns_sbsize));
286 	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
287 		sbp[1]->s_wtime = sbp[0]->s_wtime;
288 		sbp[1]->s_sum = 0;
289 		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
290 					    (unsigned char *)sbp[1],
291 					    nilfs->ns_sbsize));
292 	}
293 	clear_nilfs_sb_dirty(nilfs);
294 	nilfs->ns_flushed_device = 1;
295 	/* make sure store to ns_flushed_device cannot be reordered */
296 	smp_wmb();
297 	return nilfs_sync_super(sb, flag);
298 }
299 
300 /**
301  * nilfs_cleanup_super() - write filesystem state for cleanup
302  * @sb: super block instance to be unmounted or degraded to read-only
303  *
304  * This function restores state flags in the on-disk super block.
305  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
306  * filesystem was not clean previously.
307  */
308 int nilfs_cleanup_super(struct super_block *sb)
309 {
310 	struct the_nilfs *nilfs = sb->s_fs_info;
311 	struct nilfs_super_block **sbp;
312 	int flag = NILFS_SB_COMMIT;
313 	int ret = -EIO;
314 
315 	sbp = nilfs_prepare_super(sb, 0);
316 	if (sbp) {
317 		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
318 		nilfs_set_log_cursor(sbp[0], nilfs);
319 		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
320 			/*
321 			 * make the "clean" flag also to the opposite
322 			 * super block if both super blocks point to
323 			 * the same checkpoint.
324 			 */
325 			sbp[1]->s_state = sbp[0]->s_state;
326 			flag = NILFS_SB_COMMIT_ALL;
327 		}
328 		ret = nilfs_commit_super(sb, flag);
329 	}
330 	return ret;
331 }
332 
333 /**
334  * nilfs_move_2nd_super - relocate secondary super block
335  * @sb: super block instance
336  * @sb2off: new offset of the secondary super block (in bytes)
337  */
338 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
339 {
340 	struct the_nilfs *nilfs = sb->s_fs_info;
341 	struct buffer_head *nsbh;
342 	struct nilfs_super_block *nsbp;
343 	sector_t blocknr, newblocknr;
344 	unsigned long offset;
345 	int sb2i;  /* array index of the secondary superblock */
346 	int ret = 0;
347 
348 	/* nilfs->ns_sem must be locked by the caller. */
349 	if (nilfs->ns_sbh[1] &&
350 	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
351 		sb2i = 1;
352 		blocknr = nilfs->ns_sbh[1]->b_blocknr;
353 	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
354 		sb2i = 0;
355 		blocknr = nilfs->ns_sbh[0]->b_blocknr;
356 	} else {
357 		sb2i = -1;
358 		blocknr = 0;
359 	}
360 	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
361 		goto out;  /* super block location is unchanged */
362 
363 	/* Get new super block buffer */
364 	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
365 	offset = sb2off & (nilfs->ns_blocksize - 1);
366 	nsbh = sb_getblk(sb, newblocknr);
367 	if (!nsbh) {
368 		nilfs_warn(sb,
369 			   "unable to move secondary superblock to block %llu",
370 			   (unsigned long long)newblocknr);
371 		ret = -EIO;
372 		goto out;
373 	}
374 	nsbp = (void *)nsbh->b_data + offset;
375 	memset(nsbp, 0, nilfs->ns_blocksize);
376 
377 	if (sb2i >= 0) {
378 		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
379 		brelse(nilfs->ns_sbh[sb2i]);
380 		nilfs->ns_sbh[sb2i] = nsbh;
381 		nilfs->ns_sbp[sb2i] = nsbp;
382 	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
383 		/* secondary super block will be restored to index 1 */
384 		nilfs->ns_sbh[1] = nsbh;
385 		nilfs->ns_sbp[1] = nsbp;
386 	} else {
387 		brelse(nsbh);
388 	}
389 out:
390 	return ret;
391 }
392 
393 /**
394  * nilfs_resize_fs - resize the filesystem
395  * @sb: super block instance
396  * @newsize: new size of the filesystem (in bytes)
397  */
398 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
399 {
400 	struct the_nilfs *nilfs = sb->s_fs_info;
401 	struct nilfs_super_block **sbp;
402 	__u64 devsize, newnsegs;
403 	loff_t sb2off;
404 	int ret;
405 
406 	ret = -ERANGE;
407 	devsize = bdev_nr_bytes(sb->s_bdev);
408 	if (newsize > devsize)
409 		goto out;
410 
411 	/*
412 	 * Prevent underflow in second superblock position calculation.
413 	 * The exact minimum size check is done in nilfs_sufile_resize().
414 	 */
415 	if (newsize < 4096) {
416 		ret = -ENOSPC;
417 		goto out;
418 	}
419 
420 	/*
421 	 * Write lock is required to protect some functions depending
422 	 * on the number of segments, the number of reserved segments,
423 	 * and so forth.
424 	 */
425 	down_write(&nilfs->ns_segctor_sem);
426 
427 	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
428 	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
429 	do_div(newnsegs, nilfs->ns_blocks_per_segment);
430 
431 	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
432 	up_write(&nilfs->ns_segctor_sem);
433 	if (ret < 0)
434 		goto out;
435 
436 	ret = nilfs_construct_segment(sb);
437 	if (ret < 0)
438 		goto out;
439 
440 	down_write(&nilfs->ns_sem);
441 	nilfs_move_2nd_super(sb, sb2off);
442 	ret = -EIO;
443 	sbp = nilfs_prepare_super(sb, 0);
444 	if (likely(sbp)) {
445 		nilfs_set_log_cursor(sbp[0], nilfs);
446 		/*
447 		 * Drop NILFS_RESIZE_FS flag for compatibility with
448 		 * mount-time resize which may be implemented in a
449 		 * future release.
450 		 */
451 		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
452 					      ~NILFS_RESIZE_FS);
453 		sbp[0]->s_dev_size = cpu_to_le64(newsize);
454 		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
455 		if (sbp[1])
456 			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
457 		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
458 	}
459 	up_write(&nilfs->ns_sem);
460 
461 	/*
462 	 * Reset the range of allocatable segments last.  This order
463 	 * is important in the case of expansion because the secondary
464 	 * superblock must be protected from log write until migration
465 	 * completes.
466 	 */
467 	if (!ret)
468 		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
469 out:
470 	return ret;
471 }
472 
473 static void nilfs_put_super(struct super_block *sb)
474 {
475 	struct the_nilfs *nilfs = sb->s_fs_info;
476 
477 	nilfs_detach_log_writer(sb);
478 
479 	if (!sb_rdonly(sb)) {
480 		down_write(&nilfs->ns_sem);
481 		nilfs_cleanup_super(sb);
482 		up_write(&nilfs->ns_sem);
483 	}
484 
485 	nilfs_sysfs_delete_device_group(nilfs);
486 	iput(nilfs->ns_sufile);
487 	iput(nilfs->ns_cpfile);
488 	iput(nilfs->ns_dat);
489 
490 	destroy_nilfs(nilfs);
491 	sb->s_fs_info = NULL;
492 }
493 
494 static int nilfs_sync_fs(struct super_block *sb, int wait)
495 {
496 	struct the_nilfs *nilfs = sb->s_fs_info;
497 	struct nilfs_super_block **sbp;
498 	int err = 0;
499 
500 	/* This function is called when super block should be written back */
501 	if (wait)
502 		err = nilfs_construct_segment(sb);
503 
504 	down_write(&nilfs->ns_sem);
505 	if (nilfs_sb_dirty(nilfs)) {
506 		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
507 		if (likely(sbp)) {
508 			nilfs_set_log_cursor(sbp[0], nilfs);
509 			nilfs_commit_super(sb, NILFS_SB_COMMIT);
510 		}
511 	}
512 	up_write(&nilfs->ns_sem);
513 
514 	if (!err)
515 		err = nilfs_flush_device(nilfs);
516 
517 	return err;
518 }
519 
520 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
521 			    struct nilfs_root **rootp)
522 {
523 	struct the_nilfs *nilfs = sb->s_fs_info;
524 	struct nilfs_root *root;
525 	struct nilfs_checkpoint *raw_cp;
526 	struct buffer_head *bh_cp;
527 	int err = -ENOMEM;
528 
529 	root = nilfs_find_or_create_root(
530 		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
531 	if (!root)
532 		return err;
533 
534 	if (root->ifile)
535 		goto reuse; /* already attached checkpoint */
536 
537 	down_read(&nilfs->ns_segctor_sem);
538 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
539 					  &bh_cp);
540 	up_read(&nilfs->ns_segctor_sem);
541 	if (unlikely(err)) {
542 		if (err == -ENOENT || err == -EINVAL) {
543 			nilfs_err(sb,
544 				  "Invalid checkpoint (checkpoint number=%llu)",
545 				  (unsigned long long)cno);
546 			err = -EINVAL;
547 		}
548 		goto failed;
549 	}
550 
551 	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
552 			       &raw_cp->cp_ifile_inode, &root->ifile);
553 	if (err)
554 		goto failed_bh;
555 
556 	atomic64_set(&root->inodes_count,
557 			le64_to_cpu(raw_cp->cp_inodes_count));
558 	atomic64_set(&root->blocks_count,
559 			le64_to_cpu(raw_cp->cp_blocks_count));
560 
561 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
562 
563  reuse:
564 	*rootp = root;
565 	return 0;
566 
567  failed_bh:
568 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
569  failed:
570 	nilfs_put_root(root);
571 
572 	return err;
573 }
574 
575 static int nilfs_freeze(struct super_block *sb)
576 {
577 	struct the_nilfs *nilfs = sb->s_fs_info;
578 	int err;
579 
580 	if (sb_rdonly(sb))
581 		return 0;
582 
583 	/* Mark super block clean */
584 	down_write(&nilfs->ns_sem);
585 	err = nilfs_cleanup_super(sb);
586 	up_write(&nilfs->ns_sem);
587 	return err;
588 }
589 
590 static int nilfs_unfreeze(struct super_block *sb)
591 {
592 	struct the_nilfs *nilfs = sb->s_fs_info;
593 
594 	if (sb_rdonly(sb))
595 		return 0;
596 
597 	down_write(&nilfs->ns_sem);
598 	nilfs_setup_super(sb, false);
599 	up_write(&nilfs->ns_sem);
600 	return 0;
601 }
602 
603 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
604 {
605 	struct super_block *sb = dentry->d_sb;
606 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
607 	struct the_nilfs *nilfs = root->nilfs;
608 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
609 	unsigned long long blocks;
610 	unsigned long overhead;
611 	unsigned long nrsvblocks;
612 	sector_t nfreeblocks;
613 	u64 nmaxinodes, nfreeinodes;
614 	int err;
615 
616 	/*
617 	 * Compute all of the segment blocks
618 	 *
619 	 * The blocks before first segment and after last segment
620 	 * are excluded.
621 	 */
622 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
623 		- nilfs->ns_first_data_block;
624 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
625 
626 	/*
627 	 * Compute the overhead
628 	 *
629 	 * When distributing meta data blocks outside segment structure,
630 	 * We must count them as the overhead.
631 	 */
632 	overhead = 0;
633 
634 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
635 	if (unlikely(err))
636 		return err;
637 
638 	err = nilfs_ifile_count_free_inodes(root->ifile,
639 					    &nmaxinodes, &nfreeinodes);
640 	if (unlikely(err)) {
641 		nilfs_warn(sb, "failed to count free inodes: err=%d", err);
642 		if (err == -ERANGE) {
643 			/*
644 			 * If nilfs_palloc_count_max_entries() returns
645 			 * -ERANGE error code then we simply treat
646 			 * curent inodes count as maximum possible and
647 			 * zero as free inodes value.
648 			 */
649 			nmaxinodes = atomic64_read(&root->inodes_count);
650 			nfreeinodes = 0;
651 			err = 0;
652 		} else
653 			return err;
654 	}
655 
656 	buf->f_type = NILFS_SUPER_MAGIC;
657 	buf->f_bsize = sb->s_blocksize;
658 	buf->f_blocks = blocks - overhead;
659 	buf->f_bfree = nfreeblocks;
660 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
661 		(buf->f_bfree - nrsvblocks) : 0;
662 	buf->f_files = nmaxinodes;
663 	buf->f_ffree = nfreeinodes;
664 	buf->f_namelen = NILFS_NAME_LEN;
665 	buf->f_fsid = u64_to_fsid(id);
666 
667 	return 0;
668 }
669 
670 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
671 {
672 	struct super_block *sb = dentry->d_sb;
673 	struct the_nilfs *nilfs = sb->s_fs_info;
674 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
675 
676 	if (!nilfs_test_opt(nilfs, BARRIER))
677 		seq_puts(seq, ",nobarrier");
678 	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
679 		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
680 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
681 		seq_puts(seq, ",errors=panic");
682 	if (nilfs_test_opt(nilfs, ERRORS_CONT))
683 		seq_puts(seq, ",errors=continue");
684 	if (nilfs_test_opt(nilfs, STRICT_ORDER))
685 		seq_puts(seq, ",order=strict");
686 	if (nilfs_test_opt(nilfs, NORECOVERY))
687 		seq_puts(seq, ",norecovery");
688 	if (nilfs_test_opt(nilfs, DISCARD))
689 		seq_puts(seq, ",discard");
690 
691 	return 0;
692 }
693 
694 static const struct super_operations nilfs_sops = {
695 	.alloc_inode    = nilfs_alloc_inode,
696 	.free_inode     = nilfs_free_inode,
697 	.dirty_inode    = nilfs_dirty_inode,
698 	.evict_inode    = nilfs_evict_inode,
699 	.put_super      = nilfs_put_super,
700 	.sync_fs        = nilfs_sync_fs,
701 	.freeze_fs	= nilfs_freeze,
702 	.unfreeze_fs	= nilfs_unfreeze,
703 	.statfs         = nilfs_statfs,
704 	.remount_fs     = nilfs_remount,
705 	.show_options = nilfs_show_options
706 };
707 
708 enum {
709 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
710 	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
711 	Opt_discard, Opt_nodiscard, Opt_err,
712 };
713 
714 static match_table_t tokens = {
715 	{Opt_err_cont, "errors=continue"},
716 	{Opt_err_panic, "errors=panic"},
717 	{Opt_err_ro, "errors=remount-ro"},
718 	{Opt_barrier, "barrier"},
719 	{Opt_nobarrier, "nobarrier"},
720 	{Opt_snapshot, "cp=%u"},
721 	{Opt_order, "order=%s"},
722 	{Opt_norecovery, "norecovery"},
723 	{Opt_discard, "discard"},
724 	{Opt_nodiscard, "nodiscard"},
725 	{Opt_err, NULL}
726 };
727 
728 static int parse_options(char *options, struct super_block *sb, int is_remount)
729 {
730 	struct the_nilfs *nilfs = sb->s_fs_info;
731 	char *p;
732 	substring_t args[MAX_OPT_ARGS];
733 
734 	if (!options)
735 		return 1;
736 
737 	while ((p = strsep(&options, ",")) != NULL) {
738 		int token;
739 
740 		if (!*p)
741 			continue;
742 
743 		token = match_token(p, tokens, args);
744 		switch (token) {
745 		case Opt_barrier:
746 			nilfs_set_opt(nilfs, BARRIER);
747 			break;
748 		case Opt_nobarrier:
749 			nilfs_clear_opt(nilfs, BARRIER);
750 			break;
751 		case Opt_order:
752 			if (strcmp(args[0].from, "relaxed") == 0)
753 				/* Ordered data semantics */
754 				nilfs_clear_opt(nilfs, STRICT_ORDER);
755 			else if (strcmp(args[0].from, "strict") == 0)
756 				/* Strict in-order semantics */
757 				nilfs_set_opt(nilfs, STRICT_ORDER);
758 			else
759 				return 0;
760 			break;
761 		case Opt_err_panic:
762 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
763 			break;
764 		case Opt_err_ro:
765 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
766 			break;
767 		case Opt_err_cont:
768 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
769 			break;
770 		case Opt_snapshot:
771 			if (is_remount) {
772 				nilfs_err(sb,
773 					  "\"%s\" option is invalid for remount",
774 					  p);
775 				return 0;
776 			}
777 			break;
778 		case Opt_norecovery:
779 			nilfs_set_opt(nilfs, NORECOVERY);
780 			break;
781 		case Opt_discard:
782 			nilfs_set_opt(nilfs, DISCARD);
783 			break;
784 		case Opt_nodiscard:
785 			nilfs_clear_opt(nilfs, DISCARD);
786 			break;
787 		default:
788 			nilfs_err(sb, "unrecognized mount option \"%s\"", p);
789 			return 0;
790 		}
791 	}
792 	return 1;
793 }
794 
795 static inline void
796 nilfs_set_default_options(struct super_block *sb,
797 			  struct nilfs_super_block *sbp)
798 {
799 	struct the_nilfs *nilfs = sb->s_fs_info;
800 
801 	nilfs->ns_mount_opt =
802 		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
803 }
804 
805 static int nilfs_setup_super(struct super_block *sb, int is_mount)
806 {
807 	struct the_nilfs *nilfs = sb->s_fs_info;
808 	struct nilfs_super_block **sbp;
809 	int max_mnt_count;
810 	int mnt_count;
811 
812 	/* nilfs->ns_sem must be locked by the caller. */
813 	sbp = nilfs_prepare_super(sb, 0);
814 	if (!sbp)
815 		return -EIO;
816 
817 	if (!is_mount)
818 		goto skip_mount_setup;
819 
820 	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
821 	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
822 
823 	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
824 		nilfs_warn(sb, "mounting fs with errors");
825 #if 0
826 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
827 		nilfs_warn(sb, "maximal mount count reached");
828 #endif
829 	}
830 	if (!max_mnt_count)
831 		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
832 
833 	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
834 	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
835 
836 skip_mount_setup:
837 	sbp[0]->s_state =
838 		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
839 	/* synchronize sbp[1] with sbp[0] */
840 	if (sbp[1])
841 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
842 	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
843 }
844 
845 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
846 						 u64 pos, int blocksize,
847 						 struct buffer_head **pbh)
848 {
849 	unsigned long long sb_index = pos;
850 	unsigned long offset;
851 
852 	offset = do_div(sb_index, blocksize);
853 	*pbh = sb_bread(sb, sb_index);
854 	if (!*pbh)
855 		return NULL;
856 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
857 }
858 
859 int nilfs_store_magic_and_option(struct super_block *sb,
860 				 struct nilfs_super_block *sbp,
861 				 char *data)
862 {
863 	struct the_nilfs *nilfs = sb->s_fs_info;
864 
865 	sb->s_magic = le16_to_cpu(sbp->s_magic);
866 
867 	/* FS independent flags */
868 #ifdef NILFS_ATIME_DISABLE
869 	sb->s_flags |= SB_NOATIME;
870 #endif
871 
872 	nilfs_set_default_options(sb, sbp);
873 
874 	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
875 	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
876 	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
877 	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
878 
879 	return !parse_options(data, sb, 0) ? -EINVAL : 0;
880 }
881 
882 int nilfs_check_feature_compatibility(struct super_block *sb,
883 				      struct nilfs_super_block *sbp)
884 {
885 	__u64 features;
886 
887 	features = le64_to_cpu(sbp->s_feature_incompat) &
888 		~NILFS_FEATURE_INCOMPAT_SUPP;
889 	if (features) {
890 		nilfs_err(sb,
891 			  "couldn't mount because of unsupported optional features (%llx)",
892 			  (unsigned long long)features);
893 		return -EINVAL;
894 	}
895 	features = le64_to_cpu(sbp->s_feature_compat_ro) &
896 		~NILFS_FEATURE_COMPAT_RO_SUPP;
897 	if (!sb_rdonly(sb) && features) {
898 		nilfs_err(sb,
899 			  "couldn't mount RDWR because of unsupported optional features (%llx)",
900 			  (unsigned long long)features);
901 		return -EINVAL;
902 	}
903 	return 0;
904 }
905 
906 static int nilfs_get_root_dentry(struct super_block *sb,
907 				 struct nilfs_root *root,
908 				 struct dentry **root_dentry)
909 {
910 	struct inode *inode;
911 	struct dentry *dentry;
912 	int ret = 0;
913 
914 	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
915 	if (IS_ERR(inode)) {
916 		ret = PTR_ERR(inode);
917 		nilfs_err(sb, "error %d getting root inode", ret);
918 		goto out;
919 	}
920 	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
921 		iput(inode);
922 		nilfs_err(sb, "corrupt root inode");
923 		ret = -EINVAL;
924 		goto out;
925 	}
926 
927 	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
928 		dentry = d_find_alias(inode);
929 		if (!dentry) {
930 			dentry = d_make_root(inode);
931 			if (!dentry) {
932 				ret = -ENOMEM;
933 				goto failed_dentry;
934 			}
935 		} else {
936 			iput(inode);
937 		}
938 	} else {
939 		dentry = d_obtain_root(inode);
940 		if (IS_ERR(dentry)) {
941 			ret = PTR_ERR(dentry);
942 			goto failed_dentry;
943 		}
944 	}
945 	*root_dentry = dentry;
946  out:
947 	return ret;
948 
949  failed_dentry:
950 	nilfs_err(sb, "error %d getting root dentry", ret);
951 	goto out;
952 }
953 
954 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
955 				 struct dentry **root_dentry)
956 {
957 	struct the_nilfs *nilfs = s->s_fs_info;
958 	struct nilfs_root *root;
959 	int ret;
960 
961 	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
962 
963 	down_read(&nilfs->ns_segctor_sem);
964 	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
965 	up_read(&nilfs->ns_segctor_sem);
966 	if (ret < 0) {
967 		ret = (ret == -ENOENT) ? -EINVAL : ret;
968 		goto out;
969 	} else if (!ret) {
970 		nilfs_err(s,
971 			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
972 			  (unsigned long long)cno);
973 		ret = -EINVAL;
974 		goto out;
975 	}
976 
977 	ret = nilfs_attach_checkpoint(s, cno, false, &root);
978 	if (ret) {
979 		nilfs_err(s,
980 			  "error %d while loading snapshot (checkpoint number=%llu)",
981 			  ret, (unsigned long long)cno);
982 		goto out;
983 	}
984 	ret = nilfs_get_root_dentry(s, root, root_dentry);
985 	nilfs_put_root(root);
986  out:
987 	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
988 	return ret;
989 }
990 
991 /**
992  * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
993  * @root_dentry: root dentry of the tree to be shrunk
994  *
995  * This function returns true if the tree was in-use.
996  */
997 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
998 {
999 	shrink_dcache_parent(root_dentry);
1000 	return d_count(root_dentry) > 1;
1001 }
1002 
1003 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1004 {
1005 	struct the_nilfs *nilfs = sb->s_fs_info;
1006 	struct nilfs_root *root;
1007 	struct inode *inode;
1008 	struct dentry *dentry;
1009 	int ret;
1010 
1011 	if (cno > nilfs->ns_cno)
1012 		return false;
1013 
1014 	if (cno >= nilfs_last_cno(nilfs))
1015 		return true;	/* protect recent checkpoints */
1016 
1017 	ret = false;
1018 	root = nilfs_lookup_root(nilfs, cno);
1019 	if (root) {
1020 		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1021 		if (inode) {
1022 			dentry = d_find_alias(inode);
1023 			if (dentry) {
1024 				ret = nilfs_tree_is_busy(dentry);
1025 				dput(dentry);
1026 			}
1027 			iput(inode);
1028 		}
1029 		nilfs_put_root(root);
1030 	}
1031 	return ret;
1032 }
1033 
1034 /**
1035  * nilfs_fill_super() - initialize a super block instance
1036  * @sb: super_block
1037  * @data: mount options
1038  * @silent: silent mode flag
1039  *
1040  * This function is called exclusively by nilfs->ns_mount_mutex.
1041  * So, the recovery process is protected from other simultaneous mounts.
1042  */
1043 static int
1044 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1045 {
1046 	struct the_nilfs *nilfs;
1047 	struct nilfs_root *fsroot;
1048 	__u64 cno;
1049 	int err;
1050 
1051 	nilfs = alloc_nilfs(sb);
1052 	if (!nilfs)
1053 		return -ENOMEM;
1054 
1055 	sb->s_fs_info = nilfs;
1056 
1057 	err = init_nilfs(nilfs, sb, (char *)data);
1058 	if (err)
1059 		goto failed_nilfs;
1060 
1061 	sb->s_op = &nilfs_sops;
1062 	sb->s_export_op = &nilfs_export_ops;
1063 	sb->s_root = NULL;
1064 	sb->s_time_gran = 1;
1065 	sb->s_max_links = NILFS_LINK_MAX;
1066 
1067 	sb->s_bdi = bdi_get(sb->s_bdev->bd_disk->bdi);
1068 
1069 	err = load_nilfs(nilfs, sb);
1070 	if (err)
1071 		goto failed_nilfs;
1072 
1073 	cno = nilfs_last_cno(nilfs);
1074 	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1075 	if (err) {
1076 		nilfs_err(sb,
1077 			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1078 			  err, (unsigned long long)cno);
1079 		goto failed_unload;
1080 	}
1081 
1082 	if (!sb_rdonly(sb)) {
1083 		err = nilfs_attach_log_writer(sb, fsroot);
1084 		if (err)
1085 			goto failed_checkpoint;
1086 	}
1087 
1088 	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1089 	if (err)
1090 		goto failed_segctor;
1091 
1092 	nilfs_put_root(fsroot);
1093 
1094 	if (!sb_rdonly(sb)) {
1095 		down_write(&nilfs->ns_sem);
1096 		nilfs_setup_super(sb, true);
1097 		up_write(&nilfs->ns_sem);
1098 	}
1099 
1100 	return 0;
1101 
1102  failed_segctor:
1103 	nilfs_detach_log_writer(sb);
1104 
1105  failed_checkpoint:
1106 	nilfs_put_root(fsroot);
1107 
1108  failed_unload:
1109 	nilfs_sysfs_delete_device_group(nilfs);
1110 	iput(nilfs->ns_sufile);
1111 	iput(nilfs->ns_cpfile);
1112 	iput(nilfs->ns_dat);
1113 
1114  failed_nilfs:
1115 	destroy_nilfs(nilfs);
1116 	return err;
1117 }
1118 
1119 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1120 {
1121 	struct the_nilfs *nilfs = sb->s_fs_info;
1122 	unsigned long old_sb_flags;
1123 	unsigned long old_mount_opt;
1124 	int err;
1125 
1126 	sync_filesystem(sb);
1127 	old_sb_flags = sb->s_flags;
1128 	old_mount_opt = nilfs->ns_mount_opt;
1129 
1130 	if (!parse_options(data, sb, 1)) {
1131 		err = -EINVAL;
1132 		goto restore_opts;
1133 	}
1134 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1135 
1136 	err = -EINVAL;
1137 
1138 	if (!nilfs_valid_fs(nilfs)) {
1139 		nilfs_warn(sb,
1140 			   "couldn't remount because the filesystem is in an incomplete recovery state");
1141 		goto restore_opts;
1142 	}
1143 
1144 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1145 		goto out;
1146 	if (*flags & SB_RDONLY) {
1147 		sb->s_flags |= SB_RDONLY;
1148 
1149 		/*
1150 		 * Remounting a valid RW partition RDONLY, so set
1151 		 * the RDONLY flag and then mark the partition as valid again.
1152 		 */
1153 		down_write(&nilfs->ns_sem);
1154 		nilfs_cleanup_super(sb);
1155 		up_write(&nilfs->ns_sem);
1156 	} else {
1157 		__u64 features;
1158 		struct nilfs_root *root;
1159 
1160 		/*
1161 		 * Mounting a RDONLY partition read-write, so reread and
1162 		 * store the current valid flag.  (It may have been changed
1163 		 * by fsck since we originally mounted the partition.)
1164 		 */
1165 		down_read(&nilfs->ns_sem);
1166 		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1167 			~NILFS_FEATURE_COMPAT_RO_SUPP;
1168 		up_read(&nilfs->ns_sem);
1169 		if (features) {
1170 			nilfs_warn(sb,
1171 				   "couldn't remount RDWR because of unsupported optional features (%llx)",
1172 				   (unsigned long long)features);
1173 			err = -EROFS;
1174 			goto restore_opts;
1175 		}
1176 
1177 		sb->s_flags &= ~SB_RDONLY;
1178 
1179 		root = NILFS_I(d_inode(sb->s_root))->i_root;
1180 		err = nilfs_attach_log_writer(sb, root);
1181 		if (err)
1182 			goto restore_opts;
1183 
1184 		down_write(&nilfs->ns_sem);
1185 		nilfs_setup_super(sb, true);
1186 		up_write(&nilfs->ns_sem);
1187 	}
1188  out:
1189 	return 0;
1190 
1191  restore_opts:
1192 	sb->s_flags = old_sb_flags;
1193 	nilfs->ns_mount_opt = old_mount_opt;
1194 	return err;
1195 }
1196 
1197 struct nilfs_super_data {
1198 	struct block_device *bdev;
1199 	__u64 cno;
1200 	int flags;
1201 };
1202 
1203 static int nilfs_parse_snapshot_option(const char *option,
1204 				       const substring_t *arg,
1205 				       struct nilfs_super_data *sd)
1206 {
1207 	unsigned long long val;
1208 	const char *msg = NULL;
1209 	int err;
1210 
1211 	if (!(sd->flags & SB_RDONLY)) {
1212 		msg = "read-only option is not specified";
1213 		goto parse_error;
1214 	}
1215 
1216 	err = kstrtoull(arg->from, 0, &val);
1217 	if (err) {
1218 		if (err == -ERANGE)
1219 			msg = "too large checkpoint number";
1220 		else
1221 			msg = "malformed argument";
1222 		goto parse_error;
1223 	} else if (val == 0) {
1224 		msg = "invalid checkpoint number 0";
1225 		goto parse_error;
1226 	}
1227 	sd->cno = val;
1228 	return 0;
1229 
1230 parse_error:
1231 	nilfs_err(NULL, "invalid option \"%s\": %s", option, msg);
1232 	return 1;
1233 }
1234 
1235 /**
1236  * nilfs_identify - pre-read mount options needed to identify mount instance
1237  * @data: mount options
1238  * @sd: nilfs_super_data
1239  */
1240 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1241 {
1242 	char *p, *options = data;
1243 	substring_t args[MAX_OPT_ARGS];
1244 	int token;
1245 	int ret = 0;
1246 
1247 	do {
1248 		p = strsep(&options, ",");
1249 		if (p != NULL && *p) {
1250 			token = match_token(p, tokens, args);
1251 			if (token == Opt_snapshot)
1252 				ret = nilfs_parse_snapshot_option(p, &args[0],
1253 								  sd);
1254 		}
1255 		if (!options)
1256 			break;
1257 		BUG_ON(options == data);
1258 		*(options - 1) = ',';
1259 	} while (!ret);
1260 	return ret;
1261 }
1262 
1263 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1264 {
1265 	s->s_bdev = data;
1266 	s->s_dev = s->s_bdev->bd_dev;
1267 	return 0;
1268 }
1269 
1270 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1271 {
1272 	return (void *)s->s_bdev == data;
1273 }
1274 
1275 static struct dentry *
1276 nilfs_mount(struct file_system_type *fs_type, int flags,
1277 	     const char *dev_name, void *data)
1278 {
1279 	struct nilfs_super_data sd;
1280 	struct super_block *s;
1281 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1282 	struct dentry *root_dentry;
1283 	int err, s_new = false;
1284 
1285 	if (!(flags & SB_RDONLY))
1286 		mode |= FMODE_WRITE;
1287 
1288 	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1289 	if (IS_ERR(sd.bdev))
1290 		return ERR_CAST(sd.bdev);
1291 
1292 	sd.cno = 0;
1293 	sd.flags = flags;
1294 	if (nilfs_identify((char *)data, &sd)) {
1295 		err = -EINVAL;
1296 		goto failed;
1297 	}
1298 
1299 	/*
1300 	 * once the super is inserted into the list by sget, s_umount
1301 	 * will protect the lockfs code from trying to start a snapshot
1302 	 * while we are mounting
1303 	 */
1304 	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1305 	if (sd.bdev->bd_fsfreeze_count > 0) {
1306 		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1307 		err = -EBUSY;
1308 		goto failed;
1309 	}
1310 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1311 		 sd.bdev);
1312 	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1313 	if (IS_ERR(s)) {
1314 		err = PTR_ERR(s);
1315 		goto failed;
1316 	}
1317 
1318 	if (!s->s_root) {
1319 		s_new = true;
1320 
1321 		/* New superblock instance created */
1322 		s->s_mode = mode;
1323 		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1324 		sb_set_blocksize(s, block_size(sd.bdev));
1325 
1326 		err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1327 		if (err)
1328 			goto failed_super;
1329 
1330 		s->s_flags |= SB_ACTIVE;
1331 	} else if (!sd.cno) {
1332 		if (nilfs_tree_is_busy(s->s_root)) {
1333 			if ((flags ^ s->s_flags) & SB_RDONLY) {
1334 				nilfs_err(s,
1335 					  "the device already has a %s mount.",
1336 					  sb_rdonly(s) ? "read-only" : "read/write");
1337 				err = -EBUSY;
1338 				goto failed_super;
1339 			}
1340 		} else {
1341 			/*
1342 			 * Try remount to setup mount states if the current
1343 			 * tree is not mounted and only snapshots use this sb.
1344 			 */
1345 			err = nilfs_remount(s, &flags, data);
1346 			if (err)
1347 				goto failed_super;
1348 		}
1349 	}
1350 
1351 	if (sd.cno) {
1352 		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1353 		if (err)
1354 			goto failed_super;
1355 	} else {
1356 		root_dentry = dget(s->s_root);
1357 	}
1358 
1359 	if (!s_new)
1360 		blkdev_put(sd.bdev, mode);
1361 
1362 	return root_dentry;
1363 
1364  failed_super:
1365 	deactivate_locked_super(s);
1366 
1367  failed:
1368 	if (!s_new)
1369 		blkdev_put(sd.bdev, mode);
1370 	return ERR_PTR(err);
1371 }
1372 
1373 struct file_system_type nilfs_fs_type = {
1374 	.owner    = THIS_MODULE,
1375 	.name     = "nilfs2",
1376 	.mount    = nilfs_mount,
1377 	.kill_sb  = kill_block_super,
1378 	.fs_flags = FS_REQUIRES_DEV,
1379 };
1380 MODULE_ALIAS_FS("nilfs2");
1381 
1382 static void nilfs_inode_init_once(void *obj)
1383 {
1384 	struct nilfs_inode_info *ii = obj;
1385 
1386 	INIT_LIST_HEAD(&ii->i_dirty);
1387 #ifdef CONFIG_NILFS_XATTR
1388 	init_rwsem(&ii->xattr_sem);
1389 #endif
1390 	inode_init_once(&ii->vfs_inode);
1391 }
1392 
1393 static void nilfs_segbuf_init_once(void *obj)
1394 {
1395 	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1396 }
1397 
1398 static void nilfs_destroy_cachep(void)
1399 {
1400 	/*
1401 	 * Make sure all delayed rcu free inodes are flushed before we
1402 	 * destroy cache.
1403 	 */
1404 	rcu_barrier();
1405 
1406 	kmem_cache_destroy(nilfs_inode_cachep);
1407 	kmem_cache_destroy(nilfs_transaction_cachep);
1408 	kmem_cache_destroy(nilfs_segbuf_cachep);
1409 	kmem_cache_destroy(nilfs_btree_path_cache);
1410 }
1411 
1412 static int __init nilfs_init_cachep(void)
1413 {
1414 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1415 			sizeof(struct nilfs_inode_info), 0,
1416 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1417 			nilfs_inode_init_once);
1418 	if (!nilfs_inode_cachep)
1419 		goto fail;
1420 
1421 	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1422 			sizeof(struct nilfs_transaction_info), 0,
1423 			SLAB_RECLAIM_ACCOUNT, NULL);
1424 	if (!nilfs_transaction_cachep)
1425 		goto fail;
1426 
1427 	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1428 			sizeof(struct nilfs_segment_buffer), 0,
1429 			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1430 	if (!nilfs_segbuf_cachep)
1431 		goto fail;
1432 
1433 	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1434 			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1435 			0, 0, NULL);
1436 	if (!nilfs_btree_path_cache)
1437 		goto fail;
1438 
1439 	return 0;
1440 
1441 fail:
1442 	nilfs_destroy_cachep();
1443 	return -ENOMEM;
1444 }
1445 
1446 static int __init init_nilfs_fs(void)
1447 {
1448 	int err;
1449 
1450 	err = nilfs_init_cachep();
1451 	if (err)
1452 		goto fail;
1453 
1454 	err = nilfs_sysfs_init();
1455 	if (err)
1456 		goto free_cachep;
1457 
1458 	err = register_filesystem(&nilfs_fs_type);
1459 	if (err)
1460 		goto deinit_sysfs_entry;
1461 
1462 	printk(KERN_INFO "NILFS version 2 loaded\n");
1463 	return 0;
1464 
1465 deinit_sysfs_entry:
1466 	nilfs_sysfs_exit();
1467 free_cachep:
1468 	nilfs_destroy_cachep();
1469 fail:
1470 	return err;
1471 }
1472 
1473 static void __exit exit_nilfs_fs(void)
1474 {
1475 	nilfs_destroy_cachep();
1476 	nilfs_sysfs_exit();
1477 	unregister_filesystem(&nilfs_fs_type);
1478 }
1479 
1480 module_init(init_nilfs_fs)
1481 module_exit(exit_nilfs_fs)
1482