xref: /openbmc/linux/fs/nilfs2/super.c (revision 0da85d1e)
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  */
22 /*
23  *  linux/fs/ext2/super.c
24  *
25  * Copyright (C) 1992, 1993, 1994, 1995
26  * Remy Card (card@masi.ibp.fr)
27  * Laboratoire MASI - Institut Blaise Pascal
28  * Universite Pierre et Marie Curie (Paris VI)
29  *
30  *  from
31  *
32  *  linux/fs/minix/inode.c
33  *
34  *  Copyright (C) 1991, 1992  Linus Torvalds
35  *
36  *  Big-endian to little-endian byte-swapping/bitmaps by
37  *        David S. Miller (davem@caip.rutgers.edu), 1995
38  */
39 
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/crc32.h>
47 #include <linux/vfs.h>
48 #include <linux/writeback.h>
49 #include <linux/seq_file.h>
50 #include <linux/mount.h>
51 #include "nilfs.h"
52 #include "export.h"
53 #include "mdt.h"
54 #include "alloc.h"
55 #include "btree.h"
56 #include "btnode.h"
57 #include "page.h"
58 #include "cpfile.h"
59 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
60 #include "ifile.h"
61 #include "dat.h"
62 #include "segment.h"
63 #include "segbuf.h"
64 
65 MODULE_AUTHOR("NTT Corp.");
66 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
67 		   "(NILFS)");
68 MODULE_LICENSE("GPL");
69 
70 static struct kmem_cache *nilfs_inode_cachep;
71 struct kmem_cache *nilfs_transaction_cachep;
72 struct kmem_cache *nilfs_segbuf_cachep;
73 struct kmem_cache *nilfs_btree_path_cache;
74 
75 static int nilfs_setup_super(struct super_block *sb, int is_mount);
76 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
77 
78 static void nilfs_set_error(struct super_block *sb)
79 {
80 	struct the_nilfs *nilfs = sb->s_fs_info;
81 	struct nilfs_super_block **sbp;
82 
83 	down_write(&nilfs->ns_sem);
84 	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
85 		nilfs->ns_mount_state |= NILFS_ERROR_FS;
86 		sbp = nilfs_prepare_super(sb, 0);
87 		if (likely(sbp)) {
88 			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
89 			if (sbp[1])
90 				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
91 			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
92 		}
93 	}
94 	up_write(&nilfs->ns_sem);
95 }
96 
97 /**
98  * nilfs_error() - report failure condition on a filesystem
99  *
100  * nilfs_error() sets an ERROR_FS flag on the superblock as well as
101  * reporting an error message.  It should be called when NILFS detects
102  * incoherences or defects of meta data on disk.  As for sustainable
103  * errors such as a single-shot I/O error, nilfs_warning() or the printk()
104  * function should be used instead.
105  *
106  * The segment constructor must not call this function because it can
107  * kill itself.
108  */
109 void nilfs_error(struct super_block *sb, const char *function,
110 		 const char *fmt, ...)
111 {
112 	struct the_nilfs *nilfs = sb->s_fs_info;
113 	struct va_format vaf;
114 	va_list args;
115 
116 	va_start(args, fmt);
117 
118 	vaf.fmt = fmt;
119 	vaf.va = &args;
120 
121 	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
122 	       sb->s_id, function, &vaf);
123 
124 	va_end(args);
125 
126 	if (!(sb->s_flags & MS_RDONLY)) {
127 		nilfs_set_error(sb);
128 
129 		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
130 			printk(KERN_CRIT "Remounting filesystem read-only\n");
131 			sb->s_flags |= MS_RDONLY;
132 		}
133 	}
134 
135 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
136 		panic("NILFS (device %s): panic forced after error\n",
137 		      sb->s_id);
138 }
139 
140 void nilfs_warning(struct super_block *sb, const char *function,
141 		   const char *fmt, ...)
142 {
143 	struct va_format vaf;
144 	va_list args;
145 
146 	va_start(args, fmt);
147 
148 	vaf.fmt = fmt;
149 	vaf.va = &args;
150 
151 	printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
152 	       sb->s_id, function, &vaf);
153 
154 	va_end(args);
155 }
156 
157 
158 struct inode *nilfs_alloc_inode(struct super_block *sb)
159 {
160 	struct nilfs_inode_info *ii;
161 
162 	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
163 	if (!ii)
164 		return NULL;
165 	ii->i_bh = NULL;
166 	ii->i_state = 0;
167 	ii->i_cno = 0;
168 	ii->vfs_inode.i_version = 1;
169 	nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
170 	return &ii->vfs_inode;
171 }
172 
173 static void nilfs_i_callback(struct rcu_head *head)
174 {
175 	struct inode *inode = container_of(head, struct inode, i_rcu);
176 	struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
177 
178 	if (mdi) {
179 		kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
180 		kfree(mdi);
181 	}
182 	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
183 }
184 
185 void nilfs_destroy_inode(struct inode *inode)
186 {
187 	call_rcu(&inode->i_rcu, nilfs_i_callback);
188 }
189 
190 static int nilfs_sync_super(struct super_block *sb, int flag)
191 {
192 	struct the_nilfs *nilfs = sb->s_fs_info;
193 	int err;
194 
195  retry:
196 	set_buffer_dirty(nilfs->ns_sbh[0]);
197 	if (nilfs_test_opt(nilfs, BARRIER)) {
198 		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
199 					  WRITE_SYNC | WRITE_FLUSH_FUA);
200 	} else {
201 		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
202 	}
203 
204 	if (unlikely(err)) {
205 		printk(KERN_ERR
206 		       "NILFS: unable to write superblock (err=%d)\n", err);
207 		if (err == -EIO && nilfs->ns_sbh[1]) {
208 			/*
209 			 * sbp[0] points to newer log than sbp[1],
210 			 * so copy sbp[0] to sbp[1] to take over sbp[0].
211 			 */
212 			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
213 			       nilfs->ns_sbsize);
214 			nilfs_fall_back_super_block(nilfs);
215 			goto retry;
216 		}
217 	} else {
218 		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
219 
220 		nilfs->ns_sbwcount++;
221 
222 		/*
223 		 * The latest segment becomes trailable from the position
224 		 * written in superblock.
225 		 */
226 		clear_nilfs_discontinued(nilfs);
227 
228 		/* update GC protection for recent segments */
229 		if (nilfs->ns_sbh[1]) {
230 			if (flag == NILFS_SB_COMMIT_ALL) {
231 				set_buffer_dirty(nilfs->ns_sbh[1]);
232 				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
233 					goto out;
234 			}
235 			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
236 			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
237 				sbp = nilfs->ns_sbp[1];
238 		}
239 
240 		spin_lock(&nilfs->ns_last_segment_lock);
241 		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
242 		spin_unlock(&nilfs->ns_last_segment_lock);
243 	}
244  out:
245 	return err;
246 }
247 
248 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
249 			  struct the_nilfs *nilfs)
250 {
251 	sector_t nfreeblocks;
252 
253 	/* nilfs->ns_sem must be locked by the caller. */
254 	nilfs_count_free_blocks(nilfs, &nfreeblocks);
255 	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
256 
257 	spin_lock(&nilfs->ns_last_segment_lock);
258 	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
259 	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
260 	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
261 	spin_unlock(&nilfs->ns_last_segment_lock);
262 }
263 
264 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
265 					       int flip)
266 {
267 	struct the_nilfs *nilfs = sb->s_fs_info;
268 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
269 
270 	/* nilfs->ns_sem must be locked by the caller. */
271 	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
272 		if (sbp[1] &&
273 		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
274 			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
275 		} else {
276 			printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
277 			       sb->s_id);
278 			return NULL;
279 		}
280 	} else if (sbp[1] &&
281 		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
282 			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
283 	}
284 
285 	if (flip && sbp[1])
286 		nilfs_swap_super_block(nilfs);
287 
288 	return sbp;
289 }
290 
291 int nilfs_commit_super(struct super_block *sb, int flag)
292 {
293 	struct the_nilfs *nilfs = sb->s_fs_info;
294 	struct nilfs_super_block **sbp = nilfs->ns_sbp;
295 	time_t t;
296 
297 	/* nilfs->ns_sem must be locked by the caller. */
298 	t = get_seconds();
299 	nilfs->ns_sbwtime = t;
300 	sbp[0]->s_wtime = cpu_to_le64(t);
301 	sbp[0]->s_sum = 0;
302 	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
303 					     (unsigned char *)sbp[0],
304 					     nilfs->ns_sbsize));
305 	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
306 		sbp[1]->s_wtime = sbp[0]->s_wtime;
307 		sbp[1]->s_sum = 0;
308 		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
309 					    (unsigned char *)sbp[1],
310 					    nilfs->ns_sbsize));
311 	}
312 	clear_nilfs_sb_dirty(nilfs);
313 	nilfs->ns_flushed_device = 1;
314 	/* make sure store to ns_flushed_device cannot be reordered */
315 	smp_wmb();
316 	return nilfs_sync_super(sb, flag);
317 }
318 
319 /**
320  * nilfs_cleanup_super() - write filesystem state for cleanup
321  * @sb: super block instance to be unmounted or degraded to read-only
322  *
323  * This function restores state flags in the on-disk super block.
324  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
325  * filesystem was not clean previously.
326  */
327 int nilfs_cleanup_super(struct super_block *sb)
328 {
329 	struct the_nilfs *nilfs = sb->s_fs_info;
330 	struct nilfs_super_block **sbp;
331 	int flag = NILFS_SB_COMMIT;
332 	int ret = -EIO;
333 
334 	sbp = nilfs_prepare_super(sb, 0);
335 	if (sbp) {
336 		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
337 		nilfs_set_log_cursor(sbp[0], nilfs);
338 		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
339 			/*
340 			 * make the "clean" flag also to the opposite
341 			 * super block if both super blocks point to
342 			 * the same checkpoint.
343 			 */
344 			sbp[1]->s_state = sbp[0]->s_state;
345 			flag = NILFS_SB_COMMIT_ALL;
346 		}
347 		ret = nilfs_commit_super(sb, flag);
348 	}
349 	return ret;
350 }
351 
352 /**
353  * nilfs_move_2nd_super - relocate secondary super block
354  * @sb: super block instance
355  * @sb2off: new offset of the secondary super block (in bytes)
356  */
357 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
358 {
359 	struct the_nilfs *nilfs = sb->s_fs_info;
360 	struct buffer_head *nsbh;
361 	struct nilfs_super_block *nsbp;
362 	sector_t blocknr, newblocknr;
363 	unsigned long offset;
364 	int sb2i = -1;  /* array index of the secondary superblock */
365 	int ret = 0;
366 
367 	/* nilfs->ns_sem must be locked by the caller. */
368 	if (nilfs->ns_sbh[1] &&
369 	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
370 		sb2i = 1;
371 		blocknr = nilfs->ns_sbh[1]->b_blocknr;
372 	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
373 		sb2i = 0;
374 		blocknr = nilfs->ns_sbh[0]->b_blocknr;
375 	}
376 	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
377 		goto out;  /* super block location is unchanged */
378 
379 	/* Get new super block buffer */
380 	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
381 	offset = sb2off & (nilfs->ns_blocksize - 1);
382 	nsbh = sb_getblk(sb, newblocknr);
383 	if (!nsbh) {
384 		printk(KERN_WARNING
385 		       "NILFS warning: unable to move secondary superblock "
386 		       "to block %llu\n", (unsigned long long)newblocknr);
387 		ret = -EIO;
388 		goto out;
389 	}
390 	nsbp = (void *)nsbh->b_data + offset;
391 	memset(nsbp, 0, nilfs->ns_blocksize);
392 
393 	if (sb2i >= 0) {
394 		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
395 		brelse(nilfs->ns_sbh[sb2i]);
396 		nilfs->ns_sbh[sb2i] = nsbh;
397 		nilfs->ns_sbp[sb2i] = nsbp;
398 	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
399 		/* secondary super block will be restored to index 1 */
400 		nilfs->ns_sbh[1] = nsbh;
401 		nilfs->ns_sbp[1] = nsbp;
402 	} else {
403 		brelse(nsbh);
404 	}
405 out:
406 	return ret;
407 }
408 
409 /**
410  * nilfs_resize_fs - resize the filesystem
411  * @sb: super block instance
412  * @newsize: new size of the filesystem (in bytes)
413  */
414 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
415 {
416 	struct the_nilfs *nilfs = sb->s_fs_info;
417 	struct nilfs_super_block **sbp;
418 	__u64 devsize, newnsegs;
419 	loff_t sb2off;
420 	int ret;
421 
422 	ret = -ERANGE;
423 	devsize = i_size_read(sb->s_bdev->bd_inode);
424 	if (newsize > devsize)
425 		goto out;
426 
427 	/*
428 	 * Write lock is required to protect some functions depending
429 	 * on the number of segments, the number of reserved segments,
430 	 * and so forth.
431 	 */
432 	down_write(&nilfs->ns_segctor_sem);
433 
434 	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
435 	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
436 	do_div(newnsegs, nilfs->ns_blocks_per_segment);
437 
438 	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
439 	up_write(&nilfs->ns_segctor_sem);
440 	if (ret < 0)
441 		goto out;
442 
443 	ret = nilfs_construct_segment(sb);
444 	if (ret < 0)
445 		goto out;
446 
447 	down_write(&nilfs->ns_sem);
448 	nilfs_move_2nd_super(sb, sb2off);
449 	ret = -EIO;
450 	sbp = nilfs_prepare_super(sb, 0);
451 	if (likely(sbp)) {
452 		nilfs_set_log_cursor(sbp[0], nilfs);
453 		/*
454 		 * Drop NILFS_RESIZE_FS flag for compatibility with
455 		 * mount-time resize which may be implemented in a
456 		 * future release.
457 		 */
458 		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
459 					      ~NILFS_RESIZE_FS);
460 		sbp[0]->s_dev_size = cpu_to_le64(newsize);
461 		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
462 		if (sbp[1])
463 			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
464 		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
465 	}
466 	up_write(&nilfs->ns_sem);
467 
468 	/*
469 	 * Reset the range of allocatable segments last.  This order
470 	 * is important in the case of expansion because the secondary
471 	 * superblock must be protected from log write until migration
472 	 * completes.
473 	 */
474 	if (!ret)
475 		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
476 out:
477 	return ret;
478 }
479 
480 static void nilfs_put_super(struct super_block *sb)
481 {
482 	struct the_nilfs *nilfs = sb->s_fs_info;
483 
484 	nilfs_detach_log_writer(sb);
485 
486 	if (!(sb->s_flags & MS_RDONLY)) {
487 		down_write(&nilfs->ns_sem);
488 		nilfs_cleanup_super(sb);
489 		up_write(&nilfs->ns_sem);
490 	}
491 
492 	iput(nilfs->ns_sufile);
493 	iput(nilfs->ns_cpfile);
494 	iput(nilfs->ns_dat);
495 
496 	destroy_nilfs(nilfs);
497 	sb->s_fs_info = NULL;
498 }
499 
500 static int nilfs_sync_fs(struct super_block *sb, int wait)
501 {
502 	struct the_nilfs *nilfs = sb->s_fs_info;
503 	struct nilfs_super_block **sbp;
504 	int err = 0;
505 
506 	/* This function is called when super block should be written back */
507 	if (wait)
508 		err = nilfs_construct_segment(sb);
509 
510 	down_write(&nilfs->ns_sem);
511 	if (nilfs_sb_dirty(nilfs)) {
512 		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
513 		if (likely(sbp)) {
514 			nilfs_set_log_cursor(sbp[0], nilfs);
515 			nilfs_commit_super(sb, NILFS_SB_COMMIT);
516 		}
517 	}
518 	up_write(&nilfs->ns_sem);
519 
520 	if (!err)
521 		err = nilfs_flush_device(nilfs);
522 
523 	return err;
524 }
525 
526 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
527 			    struct nilfs_root **rootp)
528 {
529 	struct the_nilfs *nilfs = sb->s_fs_info;
530 	struct nilfs_root *root;
531 	struct nilfs_checkpoint *raw_cp;
532 	struct buffer_head *bh_cp;
533 	int err = -ENOMEM;
534 
535 	root = nilfs_find_or_create_root(
536 		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
537 	if (!root)
538 		return err;
539 
540 	if (root->ifile)
541 		goto reuse; /* already attached checkpoint */
542 
543 	down_read(&nilfs->ns_segctor_sem);
544 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
545 					  &bh_cp);
546 	up_read(&nilfs->ns_segctor_sem);
547 	if (unlikely(err)) {
548 		if (err == -ENOENT || err == -EINVAL) {
549 			printk(KERN_ERR
550 			       "NILFS: Invalid checkpoint "
551 			       "(checkpoint number=%llu)\n",
552 			       (unsigned long long)cno);
553 			err = -EINVAL;
554 		}
555 		goto failed;
556 	}
557 
558 	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
559 			       &raw_cp->cp_ifile_inode, &root->ifile);
560 	if (err)
561 		goto failed_bh;
562 
563 	atomic64_set(&root->inodes_count,
564 			le64_to_cpu(raw_cp->cp_inodes_count));
565 	atomic64_set(&root->blocks_count,
566 			le64_to_cpu(raw_cp->cp_blocks_count));
567 
568 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
569 
570  reuse:
571 	*rootp = root;
572 	return 0;
573 
574  failed_bh:
575 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
576  failed:
577 	nilfs_put_root(root);
578 
579 	return err;
580 }
581 
582 static int nilfs_freeze(struct super_block *sb)
583 {
584 	struct the_nilfs *nilfs = sb->s_fs_info;
585 	int err;
586 
587 	if (sb->s_flags & MS_RDONLY)
588 		return 0;
589 
590 	/* Mark super block clean */
591 	down_write(&nilfs->ns_sem);
592 	err = nilfs_cleanup_super(sb);
593 	up_write(&nilfs->ns_sem);
594 	return err;
595 }
596 
597 static int nilfs_unfreeze(struct super_block *sb)
598 {
599 	struct the_nilfs *nilfs = sb->s_fs_info;
600 
601 	if (sb->s_flags & MS_RDONLY)
602 		return 0;
603 
604 	down_write(&nilfs->ns_sem);
605 	nilfs_setup_super(sb, false);
606 	up_write(&nilfs->ns_sem);
607 	return 0;
608 }
609 
610 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
611 {
612 	struct super_block *sb = dentry->d_sb;
613 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
614 	struct the_nilfs *nilfs = root->nilfs;
615 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
616 	unsigned long long blocks;
617 	unsigned long overhead;
618 	unsigned long nrsvblocks;
619 	sector_t nfreeblocks;
620 	u64 nmaxinodes, nfreeinodes;
621 	int err;
622 
623 	/*
624 	 * Compute all of the segment blocks
625 	 *
626 	 * The blocks before first segment and after last segment
627 	 * are excluded.
628 	 */
629 	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
630 		- nilfs->ns_first_data_block;
631 	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
632 
633 	/*
634 	 * Compute the overhead
635 	 *
636 	 * When distributing meta data blocks outside segment structure,
637 	 * We must count them as the overhead.
638 	 */
639 	overhead = 0;
640 
641 	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
642 	if (unlikely(err))
643 		return err;
644 
645 	err = nilfs_ifile_count_free_inodes(root->ifile,
646 					    &nmaxinodes, &nfreeinodes);
647 	if (unlikely(err)) {
648 		printk(KERN_WARNING
649 			"NILFS warning: fail to count free inodes: err %d.\n",
650 			err);
651 		if (err == -ERANGE) {
652 			/*
653 			 * If nilfs_palloc_count_max_entries() returns
654 			 * -ERANGE error code then we simply treat
655 			 * curent inodes count as maximum possible and
656 			 * zero as free inodes value.
657 			 */
658 			nmaxinodes = atomic64_read(&root->inodes_count);
659 			nfreeinodes = 0;
660 			err = 0;
661 		} else
662 			return err;
663 	}
664 
665 	buf->f_type = NILFS_SUPER_MAGIC;
666 	buf->f_bsize = sb->s_blocksize;
667 	buf->f_blocks = blocks - overhead;
668 	buf->f_bfree = nfreeblocks;
669 	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
670 		(buf->f_bfree - nrsvblocks) : 0;
671 	buf->f_files = nmaxinodes;
672 	buf->f_ffree = nfreeinodes;
673 	buf->f_namelen = NILFS_NAME_LEN;
674 	buf->f_fsid.val[0] = (u32)id;
675 	buf->f_fsid.val[1] = (u32)(id >> 32);
676 
677 	return 0;
678 }
679 
680 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
681 {
682 	struct super_block *sb = dentry->d_sb;
683 	struct the_nilfs *nilfs = sb->s_fs_info;
684 	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
685 
686 	if (!nilfs_test_opt(nilfs, BARRIER))
687 		seq_puts(seq, ",nobarrier");
688 	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
689 		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
690 	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
691 		seq_puts(seq, ",errors=panic");
692 	if (nilfs_test_opt(nilfs, ERRORS_CONT))
693 		seq_puts(seq, ",errors=continue");
694 	if (nilfs_test_opt(nilfs, STRICT_ORDER))
695 		seq_puts(seq, ",order=strict");
696 	if (nilfs_test_opt(nilfs, NORECOVERY))
697 		seq_puts(seq, ",norecovery");
698 	if (nilfs_test_opt(nilfs, DISCARD))
699 		seq_puts(seq, ",discard");
700 
701 	return 0;
702 }
703 
704 static const struct super_operations nilfs_sops = {
705 	.alloc_inode    = nilfs_alloc_inode,
706 	.destroy_inode  = nilfs_destroy_inode,
707 	.dirty_inode    = nilfs_dirty_inode,
708 	.evict_inode    = nilfs_evict_inode,
709 	.put_super      = nilfs_put_super,
710 	.sync_fs        = nilfs_sync_fs,
711 	.freeze_fs	= nilfs_freeze,
712 	.unfreeze_fs	= nilfs_unfreeze,
713 	.statfs         = nilfs_statfs,
714 	.remount_fs     = nilfs_remount,
715 	.show_options = nilfs_show_options
716 };
717 
718 enum {
719 	Opt_err_cont, Opt_err_panic, Opt_err_ro,
720 	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
721 	Opt_discard, Opt_nodiscard, Opt_err,
722 };
723 
724 static match_table_t tokens = {
725 	{Opt_err_cont, "errors=continue"},
726 	{Opt_err_panic, "errors=panic"},
727 	{Opt_err_ro, "errors=remount-ro"},
728 	{Opt_barrier, "barrier"},
729 	{Opt_nobarrier, "nobarrier"},
730 	{Opt_snapshot, "cp=%u"},
731 	{Opt_order, "order=%s"},
732 	{Opt_norecovery, "norecovery"},
733 	{Opt_discard, "discard"},
734 	{Opt_nodiscard, "nodiscard"},
735 	{Opt_err, NULL}
736 };
737 
738 static int parse_options(char *options, struct super_block *sb, int is_remount)
739 {
740 	struct the_nilfs *nilfs = sb->s_fs_info;
741 	char *p;
742 	substring_t args[MAX_OPT_ARGS];
743 
744 	if (!options)
745 		return 1;
746 
747 	while ((p = strsep(&options, ",")) != NULL) {
748 		int token;
749 		if (!*p)
750 			continue;
751 
752 		token = match_token(p, tokens, args);
753 		switch (token) {
754 		case Opt_barrier:
755 			nilfs_set_opt(nilfs, BARRIER);
756 			break;
757 		case Opt_nobarrier:
758 			nilfs_clear_opt(nilfs, BARRIER);
759 			break;
760 		case Opt_order:
761 			if (strcmp(args[0].from, "relaxed") == 0)
762 				/* Ordered data semantics */
763 				nilfs_clear_opt(nilfs, STRICT_ORDER);
764 			else if (strcmp(args[0].from, "strict") == 0)
765 				/* Strict in-order semantics */
766 				nilfs_set_opt(nilfs, STRICT_ORDER);
767 			else
768 				return 0;
769 			break;
770 		case Opt_err_panic:
771 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
772 			break;
773 		case Opt_err_ro:
774 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
775 			break;
776 		case Opt_err_cont:
777 			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
778 			break;
779 		case Opt_snapshot:
780 			if (is_remount) {
781 				printk(KERN_ERR
782 				       "NILFS: \"%s\" option is invalid "
783 				       "for remount.\n", p);
784 				return 0;
785 			}
786 			break;
787 		case Opt_norecovery:
788 			nilfs_set_opt(nilfs, NORECOVERY);
789 			break;
790 		case Opt_discard:
791 			nilfs_set_opt(nilfs, DISCARD);
792 			break;
793 		case Opt_nodiscard:
794 			nilfs_clear_opt(nilfs, DISCARD);
795 			break;
796 		default:
797 			printk(KERN_ERR
798 			       "NILFS: Unrecognized mount option \"%s\"\n", p);
799 			return 0;
800 		}
801 	}
802 	return 1;
803 }
804 
805 static inline void
806 nilfs_set_default_options(struct super_block *sb,
807 			  struct nilfs_super_block *sbp)
808 {
809 	struct the_nilfs *nilfs = sb->s_fs_info;
810 
811 	nilfs->ns_mount_opt =
812 		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
813 }
814 
815 static int nilfs_setup_super(struct super_block *sb, int is_mount)
816 {
817 	struct the_nilfs *nilfs = sb->s_fs_info;
818 	struct nilfs_super_block **sbp;
819 	int max_mnt_count;
820 	int mnt_count;
821 
822 	/* nilfs->ns_sem must be locked by the caller. */
823 	sbp = nilfs_prepare_super(sb, 0);
824 	if (!sbp)
825 		return -EIO;
826 
827 	if (!is_mount)
828 		goto skip_mount_setup;
829 
830 	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
831 	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
832 
833 	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
834 		printk(KERN_WARNING
835 		       "NILFS warning: mounting fs with errors\n");
836 #if 0
837 	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
838 		printk(KERN_WARNING
839 		       "NILFS warning: maximal mount count reached\n");
840 #endif
841 	}
842 	if (!max_mnt_count)
843 		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
844 
845 	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
846 	sbp[0]->s_mtime = cpu_to_le64(get_seconds());
847 
848 skip_mount_setup:
849 	sbp[0]->s_state =
850 		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
851 	/* synchronize sbp[1] with sbp[0] */
852 	if (sbp[1])
853 		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
854 	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
855 }
856 
857 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
858 						 u64 pos, int blocksize,
859 						 struct buffer_head **pbh)
860 {
861 	unsigned long long sb_index = pos;
862 	unsigned long offset;
863 
864 	offset = do_div(sb_index, blocksize);
865 	*pbh = sb_bread(sb, sb_index);
866 	if (!*pbh)
867 		return NULL;
868 	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
869 }
870 
871 int nilfs_store_magic_and_option(struct super_block *sb,
872 				 struct nilfs_super_block *sbp,
873 				 char *data)
874 {
875 	struct the_nilfs *nilfs = sb->s_fs_info;
876 
877 	sb->s_magic = le16_to_cpu(sbp->s_magic);
878 
879 	/* FS independent flags */
880 #ifdef NILFS_ATIME_DISABLE
881 	sb->s_flags |= MS_NOATIME;
882 #endif
883 
884 	nilfs_set_default_options(sb, sbp);
885 
886 	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
887 	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
888 	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
889 	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
890 
891 	return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
892 }
893 
894 int nilfs_check_feature_compatibility(struct super_block *sb,
895 				      struct nilfs_super_block *sbp)
896 {
897 	__u64 features;
898 
899 	features = le64_to_cpu(sbp->s_feature_incompat) &
900 		~NILFS_FEATURE_INCOMPAT_SUPP;
901 	if (features) {
902 		printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
903 		       "optional features (%llx)\n",
904 		       (unsigned long long)features);
905 		return -EINVAL;
906 	}
907 	features = le64_to_cpu(sbp->s_feature_compat_ro) &
908 		~NILFS_FEATURE_COMPAT_RO_SUPP;
909 	if (!(sb->s_flags & MS_RDONLY) && features) {
910 		printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
911 		       "unsupported optional features (%llx)\n",
912 		       (unsigned long long)features);
913 		return -EINVAL;
914 	}
915 	return 0;
916 }
917 
918 static int nilfs_get_root_dentry(struct super_block *sb,
919 				 struct nilfs_root *root,
920 				 struct dentry **root_dentry)
921 {
922 	struct inode *inode;
923 	struct dentry *dentry;
924 	int ret = 0;
925 
926 	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
927 	if (IS_ERR(inode)) {
928 		printk(KERN_ERR "NILFS: get root inode failed\n");
929 		ret = PTR_ERR(inode);
930 		goto out;
931 	}
932 	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
933 		iput(inode);
934 		printk(KERN_ERR "NILFS: corrupt root inode.\n");
935 		ret = -EINVAL;
936 		goto out;
937 	}
938 
939 	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
940 		dentry = d_find_alias(inode);
941 		if (!dentry) {
942 			dentry = d_make_root(inode);
943 			if (!dentry) {
944 				ret = -ENOMEM;
945 				goto failed_dentry;
946 			}
947 		} else {
948 			iput(inode);
949 		}
950 	} else {
951 		dentry = d_obtain_root(inode);
952 		if (IS_ERR(dentry)) {
953 			ret = PTR_ERR(dentry);
954 			goto failed_dentry;
955 		}
956 	}
957 	*root_dentry = dentry;
958  out:
959 	return ret;
960 
961  failed_dentry:
962 	printk(KERN_ERR "NILFS: get root dentry failed\n");
963 	goto out;
964 }
965 
966 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
967 				 struct dentry **root_dentry)
968 {
969 	struct the_nilfs *nilfs = s->s_fs_info;
970 	struct nilfs_root *root;
971 	int ret;
972 
973 	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
974 
975 	down_read(&nilfs->ns_segctor_sem);
976 	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
977 	up_read(&nilfs->ns_segctor_sem);
978 	if (ret < 0) {
979 		ret = (ret == -ENOENT) ? -EINVAL : ret;
980 		goto out;
981 	} else if (!ret) {
982 		printk(KERN_ERR "NILFS: The specified checkpoint is "
983 		       "not a snapshot (checkpoint number=%llu).\n",
984 		       (unsigned long long)cno);
985 		ret = -EINVAL;
986 		goto out;
987 	}
988 
989 	ret = nilfs_attach_checkpoint(s, cno, false, &root);
990 	if (ret) {
991 		printk(KERN_ERR "NILFS: error loading snapshot "
992 		       "(checkpoint number=%llu).\n",
993 	       (unsigned long long)cno);
994 		goto out;
995 	}
996 	ret = nilfs_get_root_dentry(s, root, root_dentry);
997 	nilfs_put_root(root);
998  out:
999 	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
1000 	return ret;
1001 }
1002 
1003 /**
1004  * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1005  * @root_dentry: root dentry of the tree to be shrunk
1006  *
1007  * This function returns true if the tree was in-use.
1008  */
1009 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1010 {
1011 	shrink_dcache_parent(root_dentry);
1012 	return d_count(root_dentry) > 1;
1013 }
1014 
1015 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1016 {
1017 	struct the_nilfs *nilfs = sb->s_fs_info;
1018 	struct nilfs_root *root;
1019 	struct inode *inode;
1020 	struct dentry *dentry;
1021 	int ret;
1022 
1023 	if (cno > nilfs->ns_cno)
1024 		return false;
1025 
1026 	if (cno >= nilfs_last_cno(nilfs))
1027 		return true;	/* protect recent checkpoints */
1028 
1029 	ret = false;
1030 	root = nilfs_lookup_root(nilfs, cno);
1031 	if (root) {
1032 		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1033 		if (inode) {
1034 			dentry = d_find_alias(inode);
1035 			if (dentry) {
1036 				ret = nilfs_tree_is_busy(dentry);
1037 				dput(dentry);
1038 			}
1039 			iput(inode);
1040 		}
1041 		nilfs_put_root(root);
1042 	}
1043 	return ret;
1044 }
1045 
1046 /**
1047  * nilfs_fill_super() - initialize a super block instance
1048  * @sb: super_block
1049  * @data: mount options
1050  * @silent: silent mode flag
1051  *
1052  * This function is called exclusively by nilfs->ns_mount_mutex.
1053  * So, the recovery process is protected from other simultaneous mounts.
1054  */
1055 static int
1056 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1057 {
1058 	struct the_nilfs *nilfs;
1059 	struct nilfs_root *fsroot;
1060 	__u64 cno;
1061 	int err;
1062 
1063 	nilfs = alloc_nilfs(sb->s_bdev);
1064 	if (!nilfs)
1065 		return -ENOMEM;
1066 
1067 	sb->s_fs_info = nilfs;
1068 
1069 	err = init_nilfs(nilfs, sb, (char *)data);
1070 	if (err)
1071 		goto failed_nilfs;
1072 
1073 	sb->s_op = &nilfs_sops;
1074 	sb->s_export_op = &nilfs_export_ops;
1075 	sb->s_root = NULL;
1076 	sb->s_time_gran = 1;
1077 	sb->s_max_links = NILFS_LINK_MAX;
1078 
1079 	sb->s_bdi = &bdev_get_queue(sb->s_bdev)->backing_dev_info;
1080 
1081 	err = load_nilfs(nilfs, sb);
1082 	if (err)
1083 		goto failed_nilfs;
1084 
1085 	cno = nilfs_last_cno(nilfs);
1086 	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1087 	if (err) {
1088 		printk(KERN_ERR "NILFS: error loading last checkpoint "
1089 		       "(checkpoint number=%llu).\n", (unsigned long long)cno);
1090 		goto failed_unload;
1091 	}
1092 
1093 	if (!(sb->s_flags & MS_RDONLY)) {
1094 		err = nilfs_attach_log_writer(sb, fsroot);
1095 		if (err)
1096 			goto failed_checkpoint;
1097 	}
1098 
1099 	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1100 	if (err)
1101 		goto failed_segctor;
1102 
1103 	nilfs_put_root(fsroot);
1104 
1105 	if (!(sb->s_flags & MS_RDONLY)) {
1106 		down_write(&nilfs->ns_sem);
1107 		nilfs_setup_super(sb, true);
1108 		up_write(&nilfs->ns_sem);
1109 	}
1110 
1111 	return 0;
1112 
1113  failed_segctor:
1114 	nilfs_detach_log_writer(sb);
1115 
1116  failed_checkpoint:
1117 	nilfs_put_root(fsroot);
1118 
1119  failed_unload:
1120 	iput(nilfs->ns_sufile);
1121 	iput(nilfs->ns_cpfile);
1122 	iput(nilfs->ns_dat);
1123 
1124  failed_nilfs:
1125 	destroy_nilfs(nilfs);
1126 	return err;
1127 }
1128 
1129 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1130 {
1131 	struct the_nilfs *nilfs = sb->s_fs_info;
1132 	unsigned long old_sb_flags;
1133 	unsigned long old_mount_opt;
1134 	int err;
1135 
1136 	sync_filesystem(sb);
1137 	old_sb_flags = sb->s_flags;
1138 	old_mount_opt = nilfs->ns_mount_opt;
1139 
1140 	if (!parse_options(data, sb, 1)) {
1141 		err = -EINVAL;
1142 		goto restore_opts;
1143 	}
1144 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1145 
1146 	err = -EINVAL;
1147 
1148 	if (!nilfs_valid_fs(nilfs)) {
1149 		printk(KERN_WARNING "NILFS (device %s): couldn't "
1150 		       "remount because the filesystem is in an "
1151 		       "incomplete recovery state.\n", sb->s_id);
1152 		goto restore_opts;
1153 	}
1154 
1155 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1156 		goto out;
1157 	if (*flags & MS_RDONLY) {
1158 		/* Shutting down log writer */
1159 		nilfs_detach_log_writer(sb);
1160 		sb->s_flags |= MS_RDONLY;
1161 
1162 		/*
1163 		 * Remounting a valid RW partition RDONLY, so set
1164 		 * the RDONLY flag and then mark the partition as valid again.
1165 		 */
1166 		down_write(&nilfs->ns_sem);
1167 		nilfs_cleanup_super(sb);
1168 		up_write(&nilfs->ns_sem);
1169 	} else {
1170 		__u64 features;
1171 		struct nilfs_root *root;
1172 
1173 		/*
1174 		 * Mounting a RDONLY partition read-write, so reread and
1175 		 * store the current valid flag.  (It may have been changed
1176 		 * by fsck since we originally mounted the partition.)
1177 		 */
1178 		down_read(&nilfs->ns_sem);
1179 		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1180 			~NILFS_FEATURE_COMPAT_RO_SUPP;
1181 		up_read(&nilfs->ns_sem);
1182 		if (features) {
1183 			printk(KERN_WARNING "NILFS (device %s): couldn't "
1184 			       "remount RDWR because of unsupported optional "
1185 			       "features (%llx)\n",
1186 			       sb->s_id, (unsigned long long)features);
1187 			err = -EROFS;
1188 			goto restore_opts;
1189 		}
1190 
1191 		sb->s_flags &= ~MS_RDONLY;
1192 
1193 		root = NILFS_I(d_inode(sb->s_root))->i_root;
1194 		err = nilfs_attach_log_writer(sb, root);
1195 		if (err)
1196 			goto restore_opts;
1197 
1198 		down_write(&nilfs->ns_sem);
1199 		nilfs_setup_super(sb, true);
1200 		up_write(&nilfs->ns_sem);
1201 	}
1202  out:
1203 	return 0;
1204 
1205  restore_opts:
1206 	sb->s_flags = old_sb_flags;
1207 	nilfs->ns_mount_opt = old_mount_opt;
1208 	return err;
1209 }
1210 
1211 struct nilfs_super_data {
1212 	struct block_device *bdev;
1213 	__u64 cno;
1214 	int flags;
1215 };
1216 
1217 /**
1218  * nilfs_identify - pre-read mount options needed to identify mount instance
1219  * @data: mount options
1220  * @sd: nilfs_super_data
1221  */
1222 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1223 {
1224 	char *p, *options = data;
1225 	substring_t args[MAX_OPT_ARGS];
1226 	int token;
1227 	int ret = 0;
1228 
1229 	do {
1230 		p = strsep(&options, ",");
1231 		if (p != NULL && *p) {
1232 			token = match_token(p, tokens, args);
1233 			if (token == Opt_snapshot) {
1234 				if (!(sd->flags & MS_RDONLY)) {
1235 					ret++;
1236 				} else {
1237 					sd->cno = simple_strtoull(args[0].from,
1238 								  NULL, 0);
1239 					/*
1240 					 * No need to see the end pointer;
1241 					 * match_token() has done syntax
1242 					 * checking.
1243 					 */
1244 					if (sd->cno == 0)
1245 						ret++;
1246 				}
1247 			}
1248 			if (ret)
1249 				printk(KERN_ERR
1250 				       "NILFS: invalid mount option: %s\n", p);
1251 		}
1252 		if (!options)
1253 			break;
1254 		BUG_ON(options == data);
1255 		*(options - 1) = ',';
1256 	} while (!ret);
1257 	return ret;
1258 }
1259 
1260 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1261 {
1262 	s->s_bdev = data;
1263 	s->s_dev = s->s_bdev->bd_dev;
1264 	return 0;
1265 }
1266 
1267 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1268 {
1269 	return (void *)s->s_bdev == data;
1270 }
1271 
1272 static struct dentry *
1273 nilfs_mount(struct file_system_type *fs_type, int flags,
1274 	     const char *dev_name, void *data)
1275 {
1276 	struct nilfs_super_data sd;
1277 	struct super_block *s;
1278 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1279 	struct dentry *root_dentry;
1280 	int err, s_new = false;
1281 
1282 	if (!(flags & MS_RDONLY))
1283 		mode |= FMODE_WRITE;
1284 
1285 	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1286 	if (IS_ERR(sd.bdev))
1287 		return ERR_CAST(sd.bdev);
1288 
1289 	sd.cno = 0;
1290 	sd.flags = flags;
1291 	if (nilfs_identify((char *)data, &sd)) {
1292 		err = -EINVAL;
1293 		goto failed;
1294 	}
1295 
1296 	/*
1297 	 * once the super is inserted into the list by sget, s_umount
1298 	 * will protect the lockfs code from trying to start a snapshot
1299 	 * while we are mounting
1300 	 */
1301 	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1302 	if (sd.bdev->bd_fsfreeze_count > 0) {
1303 		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1304 		err = -EBUSY;
1305 		goto failed;
1306 	}
1307 	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1308 		 sd.bdev);
1309 	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1310 	if (IS_ERR(s)) {
1311 		err = PTR_ERR(s);
1312 		goto failed;
1313 	}
1314 
1315 	if (!s->s_root) {
1316 		char b[BDEVNAME_SIZE];
1317 
1318 		s_new = true;
1319 
1320 		/* New superblock instance created */
1321 		s->s_mode = mode;
1322 		strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1323 		sb_set_blocksize(s, block_size(sd.bdev));
1324 
1325 		err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1326 		if (err)
1327 			goto failed_super;
1328 
1329 		s->s_flags |= MS_ACTIVE;
1330 	} else if (!sd.cno) {
1331 		if (nilfs_tree_is_busy(s->s_root)) {
1332 			if ((flags ^ s->s_flags) & MS_RDONLY) {
1333 				printk(KERN_ERR "NILFS: the device already "
1334 				       "has a %s mount.\n",
1335 				       (s->s_flags & MS_RDONLY) ?
1336 				       "read-only" : "read/write");
1337 				err = -EBUSY;
1338 				goto failed_super;
1339 			}
1340 		} else {
1341 			/*
1342 			 * Try remount to setup mount states if the current
1343 			 * tree is not mounted and only snapshots use this sb.
1344 			 */
1345 			err = nilfs_remount(s, &flags, data);
1346 			if (err)
1347 				goto failed_super;
1348 		}
1349 	}
1350 
1351 	if (sd.cno) {
1352 		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1353 		if (err)
1354 			goto failed_super;
1355 	} else {
1356 		root_dentry = dget(s->s_root);
1357 	}
1358 
1359 	if (!s_new)
1360 		blkdev_put(sd.bdev, mode);
1361 
1362 	return root_dentry;
1363 
1364  failed_super:
1365 	deactivate_locked_super(s);
1366 
1367  failed:
1368 	if (!s_new)
1369 		blkdev_put(sd.bdev, mode);
1370 	return ERR_PTR(err);
1371 }
1372 
1373 struct file_system_type nilfs_fs_type = {
1374 	.owner    = THIS_MODULE,
1375 	.name     = "nilfs2",
1376 	.mount    = nilfs_mount,
1377 	.kill_sb  = kill_block_super,
1378 	.fs_flags = FS_REQUIRES_DEV,
1379 };
1380 MODULE_ALIAS_FS("nilfs2");
1381 
1382 static void nilfs_inode_init_once(void *obj)
1383 {
1384 	struct nilfs_inode_info *ii = obj;
1385 
1386 	INIT_LIST_HEAD(&ii->i_dirty);
1387 #ifdef CONFIG_NILFS_XATTR
1388 	init_rwsem(&ii->xattr_sem);
1389 #endif
1390 	address_space_init_once(&ii->i_btnode_cache);
1391 	ii->i_bmap = &ii->i_bmap_data;
1392 	inode_init_once(&ii->vfs_inode);
1393 }
1394 
1395 static void nilfs_segbuf_init_once(void *obj)
1396 {
1397 	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1398 }
1399 
1400 static void nilfs_destroy_cachep(void)
1401 {
1402 	/*
1403 	 * Make sure all delayed rcu free inodes are flushed before we
1404 	 * destroy cache.
1405 	 */
1406 	rcu_barrier();
1407 
1408 	if (nilfs_inode_cachep)
1409 		kmem_cache_destroy(nilfs_inode_cachep);
1410 	if (nilfs_transaction_cachep)
1411 		kmem_cache_destroy(nilfs_transaction_cachep);
1412 	if (nilfs_segbuf_cachep)
1413 		kmem_cache_destroy(nilfs_segbuf_cachep);
1414 	if (nilfs_btree_path_cache)
1415 		kmem_cache_destroy(nilfs_btree_path_cache);
1416 }
1417 
1418 static int __init nilfs_init_cachep(void)
1419 {
1420 	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1421 			sizeof(struct nilfs_inode_info), 0,
1422 			SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1423 	if (!nilfs_inode_cachep)
1424 		goto fail;
1425 
1426 	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1427 			sizeof(struct nilfs_transaction_info), 0,
1428 			SLAB_RECLAIM_ACCOUNT, NULL);
1429 	if (!nilfs_transaction_cachep)
1430 		goto fail;
1431 
1432 	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1433 			sizeof(struct nilfs_segment_buffer), 0,
1434 			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1435 	if (!nilfs_segbuf_cachep)
1436 		goto fail;
1437 
1438 	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1439 			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1440 			0, 0, NULL);
1441 	if (!nilfs_btree_path_cache)
1442 		goto fail;
1443 
1444 	return 0;
1445 
1446 fail:
1447 	nilfs_destroy_cachep();
1448 	return -ENOMEM;
1449 }
1450 
1451 static int __init init_nilfs_fs(void)
1452 {
1453 	int err;
1454 
1455 	err = nilfs_init_cachep();
1456 	if (err)
1457 		goto fail;
1458 
1459 	err = nilfs_sysfs_init();
1460 	if (err)
1461 		goto free_cachep;
1462 
1463 	err = register_filesystem(&nilfs_fs_type);
1464 	if (err)
1465 		goto deinit_sysfs_entry;
1466 
1467 	printk(KERN_INFO "NILFS version 2 loaded\n");
1468 	return 0;
1469 
1470 deinit_sysfs_entry:
1471 	nilfs_sysfs_exit();
1472 free_cachep:
1473 	nilfs_destroy_cachep();
1474 fail:
1475 	return err;
1476 }
1477 
1478 static void __exit exit_nilfs_fs(void)
1479 {
1480 	nilfs_destroy_cachep();
1481 	nilfs_sysfs_exit();
1482 	unregister_filesystem(&nilfs_fs_type);
1483 }
1484 
1485 module_init(init_nilfs_fs)
1486 module_exit(exit_nilfs_fs)
1487