1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * NILFS module and super block management. 4 * 5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 6 * 7 * Written by Ryusuke Konishi. 8 */ 9 /* 10 * linux/fs/ext2/super.c 11 * 12 * Copyright (C) 1992, 1993, 1994, 1995 13 * Remy Card (card@masi.ibp.fr) 14 * Laboratoire MASI - Institut Blaise Pascal 15 * Universite Pierre et Marie Curie (Paris VI) 16 * 17 * from 18 * 19 * linux/fs/minix/inode.c 20 * 21 * Copyright (C) 1991, 1992 Linus Torvalds 22 * 23 * Big-endian to little-endian byte-swapping/bitmaps by 24 * David S. Miller (davem@caip.rutgers.edu), 1995 25 */ 26 27 #include <linux/module.h> 28 #include <linux/string.h> 29 #include <linux/slab.h> 30 #include <linux/init.h> 31 #include <linux/blkdev.h> 32 #include <linux/parser.h> 33 #include <linux/crc32.h> 34 #include <linux/vfs.h> 35 #include <linux/writeback.h> 36 #include <linux/seq_file.h> 37 #include <linux/mount.h> 38 #include "nilfs.h" 39 #include "export.h" 40 #include "mdt.h" 41 #include "alloc.h" 42 #include "btree.h" 43 #include "btnode.h" 44 #include "page.h" 45 #include "cpfile.h" 46 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */ 47 #include "ifile.h" 48 #include "dat.h" 49 #include "segment.h" 50 #include "segbuf.h" 51 52 MODULE_AUTHOR("NTT Corp."); 53 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem " 54 "(NILFS)"); 55 MODULE_LICENSE("GPL"); 56 57 static struct kmem_cache *nilfs_inode_cachep; 58 struct kmem_cache *nilfs_transaction_cachep; 59 struct kmem_cache *nilfs_segbuf_cachep; 60 struct kmem_cache *nilfs_btree_path_cache; 61 62 static int nilfs_setup_super(struct super_block *sb, int is_mount); 63 static int nilfs_remount(struct super_block *sb, int *flags, char *data); 64 65 void __nilfs_msg(struct super_block *sb, const char *fmt, ...) 66 { 67 struct va_format vaf; 68 va_list args; 69 int level; 70 71 va_start(args, fmt); 72 73 level = printk_get_level(fmt); 74 vaf.fmt = printk_skip_level(fmt); 75 vaf.va = &args; 76 77 if (sb) 78 printk("%c%cNILFS (%s): %pV\n", 79 KERN_SOH_ASCII, level, sb->s_id, &vaf); 80 else 81 printk("%c%cNILFS: %pV\n", 82 KERN_SOH_ASCII, level, &vaf); 83 84 va_end(args); 85 } 86 87 static void nilfs_set_error(struct super_block *sb) 88 { 89 struct the_nilfs *nilfs = sb->s_fs_info; 90 struct nilfs_super_block **sbp; 91 92 down_write(&nilfs->ns_sem); 93 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) { 94 nilfs->ns_mount_state |= NILFS_ERROR_FS; 95 sbp = nilfs_prepare_super(sb, 0); 96 if (likely(sbp)) { 97 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 98 if (sbp[1]) 99 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS); 100 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 101 } 102 } 103 up_write(&nilfs->ns_sem); 104 } 105 106 /** 107 * __nilfs_error() - report failure condition on a filesystem 108 * 109 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as 110 * reporting an error message. This function should be called when 111 * NILFS detects incoherences or defects of meta data on disk. 112 * 113 * This implements the body of nilfs_error() macro. Normally, 114 * nilfs_error() should be used. As for sustainable errors such as a 115 * single-shot I/O error, nilfs_err() should be used instead. 116 * 117 * Callers should not add a trailing newline since this will do it. 118 */ 119 void __nilfs_error(struct super_block *sb, const char *function, 120 const char *fmt, ...) 121 { 122 struct the_nilfs *nilfs = sb->s_fs_info; 123 struct va_format vaf; 124 va_list args; 125 126 va_start(args, fmt); 127 128 vaf.fmt = fmt; 129 vaf.va = &args; 130 131 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n", 132 sb->s_id, function, &vaf); 133 134 va_end(args); 135 136 if (!sb_rdonly(sb)) { 137 nilfs_set_error(sb); 138 139 if (nilfs_test_opt(nilfs, ERRORS_RO)) { 140 printk(KERN_CRIT "Remounting filesystem read-only\n"); 141 sb->s_flags |= SB_RDONLY; 142 } 143 } 144 145 if (nilfs_test_opt(nilfs, ERRORS_PANIC)) 146 panic("NILFS (device %s): panic forced after error\n", 147 sb->s_id); 148 } 149 150 struct inode *nilfs_alloc_inode(struct super_block *sb) 151 { 152 struct nilfs_inode_info *ii; 153 154 ii = alloc_inode_sb(sb, nilfs_inode_cachep, GFP_NOFS); 155 if (!ii) 156 return NULL; 157 ii->i_bh = NULL; 158 ii->i_state = 0; 159 ii->i_cno = 0; 160 ii->i_assoc_inode = NULL; 161 ii->i_bmap = &ii->i_bmap_data; 162 return &ii->vfs_inode; 163 } 164 165 static void nilfs_free_inode(struct inode *inode) 166 { 167 if (nilfs_is_metadata_file_inode(inode)) 168 nilfs_mdt_destroy(inode); 169 170 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode)); 171 } 172 173 static int nilfs_sync_super(struct super_block *sb, int flag) 174 { 175 struct the_nilfs *nilfs = sb->s_fs_info; 176 int err; 177 178 retry: 179 set_buffer_dirty(nilfs->ns_sbh[0]); 180 if (nilfs_test_opt(nilfs, BARRIER)) { 181 err = __sync_dirty_buffer(nilfs->ns_sbh[0], 182 REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 183 } else { 184 err = sync_dirty_buffer(nilfs->ns_sbh[0]); 185 } 186 187 if (unlikely(err)) { 188 nilfs_err(sb, "unable to write superblock: err=%d", err); 189 if (err == -EIO && nilfs->ns_sbh[1]) { 190 /* 191 * sbp[0] points to newer log than sbp[1], 192 * so copy sbp[0] to sbp[1] to take over sbp[0]. 193 */ 194 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0], 195 nilfs->ns_sbsize); 196 nilfs_fall_back_super_block(nilfs); 197 goto retry; 198 } 199 } else { 200 struct nilfs_super_block *sbp = nilfs->ns_sbp[0]; 201 202 nilfs->ns_sbwcount++; 203 204 /* 205 * The latest segment becomes trailable from the position 206 * written in superblock. 207 */ 208 clear_nilfs_discontinued(nilfs); 209 210 /* update GC protection for recent segments */ 211 if (nilfs->ns_sbh[1]) { 212 if (flag == NILFS_SB_COMMIT_ALL) { 213 set_buffer_dirty(nilfs->ns_sbh[1]); 214 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0) 215 goto out; 216 } 217 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) < 218 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno)) 219 sbp = nilfs->ns_sbp[1]; 220 } 221 222 spin_lock(&nilfs->ns_last_segment_lock); 223 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq); 224 spin_unlock(&nilfs->ns_last_segment_lock); 225 } 226 out: 227 return err; 228 } 229 230 void nilfs_set_log_cursor(struct nilfs_super_block *sbp, 231 struct the_nilfs *nilfs) 232 { 233 sector_t nfreeblocks; 234 235 /* nilfs->ns_sem must be locked by the caller. */ 236 nilfs_count_free_blocks(nilfs, &nfreeblocks); 237 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks); 238 239 spin_lock(&nilfs->ns_last_segment_lock); 240 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq); 241 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg); 242 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno); 243 spin_unlock(&nilfs->ns_last_segment_lock); 244 } 245 246 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb, 247 int flip) 248 { 249 struct the_nilfs *nilfs = sb->s_fs_info; 250 struct nilfs_super_block **sbp = nilfs->ns_sbp; 251 252 /* nilfs->ns_sem must be locked by the caller. */ 253 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 254 if (sbp[1] && 255 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) { 256 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize); 257 } else { 258 nilfs_crit(sb, "superblock broke"); 259 return NULL; 260 } 261 } else if (sbp[1] && 262 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { 263 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 264 } 265 266 if (flip && sbp[1]) 267 nilfs_swap_super_block(nilfs); 268 269 return sbp; 270 } 271 272 int nilfs_commit_super(struct super_block *sb, int flag) 273 { 274 struct the_nilfs *nilfs = sb->s_fs_info; 275 struct nilfs_super_block **sbp = nilfs->ns_sbp; 276 time64_t t; 277 278 /* nilfs->ns_sem must be locked by the caller. */ 279 t = ktime_get_real_seconds(); 280 nilfs->ns_sbwtime = t; 281 sbp[0]->s_wtime = cpu_to_le64(t); 282 sbp[0]->s_sum = 0; 283 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 284 (unsigned char *)sbp[0], 285 nilfs->ns_sbsize)); 286 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) { 287 sbp[1]->s_wtime = sbp[0]->s_wtime; 288 sbp[1]->s_sum = 0; 289 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, 290 (unsigned char *)sbp[1], 291 nilfs->ns_sbsize)); 292 } 293 clear_nilfs_sb_dirty(nilfs); 294 nilfs->ns_flushed_device = 1; 295 /* make sure store to ns_flushed_device cannot be reordered */ 296 smp_wmb(); 297 return nilfs_sync_super(sb, flag); 298 } 299 300 /** 301 * nilfs_cleanup_super() - write filesystem state for cleanup 302 * @sb: super block instance to be unmounted or degraded to read-only 303 * 304 * This function restores state flags in the on-disk super block. 305 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the 306 * filesystem was not clean previously. 307 */ 308 int nilfs_cleanup_super(struct super_block *sb) 309 { 310 struct the_nilfs *nilfs = sb->s_fs_info; 311 struct nilfs_super_block **sbp; 312 int flag = NILFS_SB_COMMIT; 313 int ret = -EIO; 314 315 sbp = nilfs_prepare_super(sb, 0); 316 if (sbp) { 317 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state); 318 nilfs_set_log_cursor(sbp[0], nilfs); 319 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) { 320 /* 321 * make the "clean" flag also to the opposite 322 * super block if both super blocks point to 323 * the same checkpoint. 324 */ 325 sbp[1]->s_state = sbp[0]->s_state; 326 flag = NILFS_SB_COMMIT_ALL; 327 } 328 ret = nilfs_commit_super(sb, flag); 329 } 330 return ret; 331 } 332 333 /** 334 * nilfs_move_2nd_super - relocate secondary super block 335 * @sb: super block instance 336 * @sb2off: new offset of the secondary super block (in bytes) 337 */ 338 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off) 339 { 340 struct the_nilfs *nilfs = sb->s_fs_info; 341 struct buffer_head *nsbh; 342 struct nilfs_super_block *nsbp; 343 sector_t blocknr, newblocknr; 344 unsigned long offset; 345 int sb2i; /* array index of the secondary superblock */ 346 int ret = 0; 347 348 /* nilfs->ns_sem must be locked by the caller. */ 349 if (nilfs->ns_sbh[1] && 350 nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) { 351 sb2i = 1; 352 blocknr = nilfs->ns_sbh[1]->b_blocknr; 353 } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) { 354 sb2i = 0; 355 blocknr = nilfs->ns_sbh[0]->b_blocknr; 356 } else { 357 sb2i = -1; 358 blocknr = 0; 359 } 360 if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off) 361 goto out; /* super block location is unchanged */ 362 363 /* Get new super block buffer */ 364 newblocknr = sb2off >> nilfs->ns_blocksize_bits; 365 offset = sb2off & (nilfs->ns_blocksize - 1); 366 nsbh = sb_getblk(sb, newblocknr); 367 if (!nsbh) { 368 nilfs_warn(sb, 369 "unable to move secondary superblock to block %llu", 370 (unsigned long long)newblocknr); 371 ret = -EIO; 372 goto out; 373 } 374 nsbp = (void *)nsbh->b_data + offset; 375 memset(nsbp, 0, nilfs->ns_blocksize); 376 377 if (sb2i >= 0) { 378 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize); 379 brelse(nilfs->ns_sbh[sb2i]); 380 nilfs->ns_sbh[sb2i] = nsbh; 381 nilfs->ns_sbp[sb2i] = nsbp; 382 } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) { 383 /* secondary super block will be restored to index 1 */ 384 nilfs->ns_sbh[1] = nsbh; 385 nilfs->ns_sbp[1] = nsbp; 386 } else { 387 brelse(nsbh); 388 } 389 out: 390 return ret; 391 } 392 393 /** 394 * nilfs_resize_fs - resize the filesystem 395 * @sb: super block instance 396 * @newsize: new size of the filesystem (in bytes) 397 */ 398 int nilfs_resize_fs(struct super_block *sb, __u64 newsize) 399 { 400 struct the_nilfs *nilfs = sb->s_fs_info; 401 struct nilfs_super_block **sbp; 402 __u64 devsize, newnsegs; 403 loff_t sb2off; 404 int ret; 405 406 ret = -ERANGE; 407 devsize = bdev_nr_bytes(sb->s_bdev); 408 if (newsize > devsize) 409 goto out; 410 411 /* 412 * Prevent underflow in second superblock position calculation. 413 * The exact minimum size check is done in nilfs_sufile_resize(). 414 */ 415 if (newsize < 4096) { 416 ret = -ENOSPC; 417 goto out; 418 } 419 420 /* 421 * Write lock is required to protect some functions depending 422 * on the number of segments, the number of reserved segments, 423 * and so forth. 424 */ 425 down_write(&nilfs->ns_segctor_sem); 426 427 sb2off = NILFS_SB2_OFFSET_BYTES(newsize); 428 newnsegs = sb2off >> nilfs->ns_blocksize_bits; 429 do_div(newnsegs, nilfs->ns_blocks_per_segment); 430 431 ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs); 432 up_write(&nilfs->ns_segctor_sem); 433 if (ret < 0) 434 goto out; 435 436 ret = nilfs_construct_segment(sb); 437 if (ret < 0) 438 goto out; 439 440 down_write(&nilfs->ns_sem); 441 nilfs_move_2nd_super(sb, sb2off); 442 ret = -EIO; 443 sbp = nilfs_prepare_super(sb, 0); 444 if (likely(sbp)) { 445 nilfs_set_log_cursor(sbp[0], nilfs); 446 /* 447 * Drop NILFS_RESIZE_FS flag for compatibility with 448 * mount-time resize which may be implemented in a 449 * future release. 450 */ 451 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & 452 ~NILFS_RESIZE_FS); 453 sbp[0]->s_dev_size = cpu_to_le64(newsize); 454 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments); 455 if (sbp[1]) 456 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 457 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 458 } 459 up_write(&nilfs->ns_sem); 460 461 /* 462 * Reset the range of allocatable segments last. This order 463 * is important in the case of expansion because the secondary 464 * superblock must be protected from log write until migration 465 * completes. 466 */ 467 if (!ret) 468 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1); 469 out: 470 return ret; 471 } 472 473 static void nilfs_put_super(struct super_block *sb) 474 { 475 struct the_nilfs *nilfs = sb->s_fs_info; 476 477 nilfs_detach_log_writer(sb); 478 479 if (!sb_rdonly(sb)) { 480 down_write(&nilfs->ns_sem); 481 nilfs_cleanup_super(sb); 482 up_write(&nilfs->ns_sem); 483 } 484 485 nilfs_sysfs_delete_device_group(nilfs); 486 iput(nilfs->ns_sufile); 487 iput(nilfs->ns_cpfile); 488 iput(nilfs->ns_dat); 489 490 destroy_nilfs(nilfs); 491 sb->s_fs_info = NULL; 492 } 493 494 static int nilfs_sync_fs(struct super_block *sb, int wait) 495 { 496 struct the_nilfs *nilfs = sb->s_fs_info; 497 struct nilfs_super_block **sbp; 498 int err = 0; 499 500 /* This function is called when super block should be written back */ 501 if (wait) 502 err = nilfs_construct_segment(sb); 503 504 down_write(&nilfs->ns_sem); 505 if (nilfs_sb_dirty(nilfs)) { 506 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs)); 507 if (likely(sbp)) { 508 nilfs_set_log_cursor(sbp[0], nilfs); 509 nilfs_commit_super(sb, NILFS_SB_COMMIT); 510 } 511 } 512 up_write(&nilfs->ns_sem); 513 514 if (!err) 515 err = nilfs_flush_device(nilfs); 516 517 return err; 518 } 519 520 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt, 521 struct nilfs_root **rootp) 522 { 523 struct the_nilfs *nilfs = sb->s_fs_info; 524 struct nilfs_root *root; 525 struct nilfs_checkpoint *raw_cp; 526 struct buffer_head *bh_cp; 527 int err = -ENOMEM; 528 529 root = nilfs_find_or_create_root( 530 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno); 531 if (!root) 532 return err; 533 534 if (root->ifile) 535 goto reuse; /* already attached checkpoint */ 536 537 down_read(&nilfs->ns_segctor_sem); 538 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp, 539 &bh_cp); 540 up_read(&nilfs->ns_segctor_sem); 541 if (unlikely(err)) { 542 if (err == -ENOENT || err == -EINVAL) { 543 nilfs_err(sb, 544 "Invalid checkpoint (checkpoint number=%llu)", 545 (unsigned long long)cno); 546 err = -EINVAL; 547 } 548 goto failed; 549 } 550 551 err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size, 552 &raw_cp->cp_ifile_inode, &root->ifile); 553 if (err) 554 goto failed_bh; 555 556 atomic64_set(&root->inodes_count, 557 le64_to_cpu(raw_cp->cp_inodes_count)); 558 atomic64_set(&root->blocks_count, 559 le64_to_cpu(raw_cp->cp_blocks_count)); 560 561 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); 562 563 reuse: 564 *rootp = root; 565 return 0; 566 567 failed_bh: 568 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); 569 failed: 570 nilfs_put_root(root); 571 572 return err; 573 } 574 575 static int nilfs_freeze(struct super_block *sb) 576 { 577 struct the_nilfs *nilfs = sb->s_fs_info; 578 int err; 579 580 if (sb_rdonly(sb)) 581 return 0; 582 583 /* Mark super block clean */ 584 down_write(&nilfs->ns_sem); 585 err = nilfs_cleanup_super(sb); 586 up_write(&nilfs->ns_sem); 587 return err; 588 } 589 590 static int nilfs_unfreeze(struct super_block *sb) 591 { 592 struct the_nilfs *nilfs = sb->s_fs_info; 593 594 if (sb_rdonly(sb)) 595 return 0; 596 597 down_write(&nilfs->ns_sem); 598 nilfs_setup_super(sb, false); 599 up_write(&nilfs->ns_sem); 600 return 0; 601 } 602 603 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf) 604 { 605 struct super_block *sb = dentry->d_sb; 606 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root; 607 struct the_nilfs *nilfs = root->nilfs; 608 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 609 unsigned long long blocks; 610 unsigned long overhead; 611 unsigned long nrsvblocks; 612 sector_t nfreeblocks; 613 u64 nmaxinodes, nfreeinodes; 614 int err; 615 616 /* 617 * Compute all of the segment blocks 618 * 619 * The blocks before first segment and after last segment 620 * are excluded. 621 */ 622 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments 623 - nilfs->ns_first_data_block; 624 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment; 625 626 /* 627 * Compute the overhead 628 * 629 * When distributing meta data blocks outside segment structure, 630 * We must count them as the overhead. 631 */ 632 overhead = 0; 633 634 err = nilfs_count_free_blocks(nilfs, &nfreeblocks); 635 if (unlikely(err)) 636 return err; 637 638 err = nilfs_ifile_count_free_inodes(root->ifile, 639 &nmaxinodes, &nfreeinodes); 640 if (unlikely(err)) { 641 nilfs_warn(sb, "failed to count free inodes: err=%d", err); 642 if (err == -ERANGE) { 643 /* 644 * If nilfs_palloc_count_max_entries() returns 645 * -ERANGE error code then we simply treat 646 * curent inodes count as maximum possible and 647 * zero as free inodes value. 648 */ 649 nmaxinodes = atomic64_read(&root->inodes_count); 650 nfreeinodes = 0; 651 err = 0; 652 } else 653 return err; 654 } 655 656 buf->f_type = NILFS_SUPER_MAGIC; 657 buf->f_bsize = sb->s_blocksize; 658 buf->f_blocks = blocks - overhead; 659 buf->f_bfree = nfreeblocks; 660 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ? 661 (buf->f_bfree - nrsvblocks) : 0; 662 buf->f_files = nmaxinodes; 663 buf->f_ffree = nfreeinodes; 664 buf->f_namelen = NILFS_NAME_LEN; 665 buf->f_fsid = u64_to_fsid(id); 666 667 return 0; 668 } 669 670 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry) 671 { 672 struct super_block *sb = dentry->d_sb; 673 struct the_nilfs *nilfs = sb->s_fs_info; 674 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root; 675 676 if (!nilfs_test_opt(nilfs, BARRIER)) 677 seq_puts(seq, ",nobarrier"); 678 if (root->cno != NILFS_CPTREE_CURRENT_CNO) 679 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno); 680 if (nilfs_test_opt(nilfs, ERRORS_PANIC)) 681 seq_puts(seq, ",errors=panic"); 682 if (nilfs_test_opt(nilfs, ERRORS_CONT)) 683 seq_puts(seq, ",errors=continue"); 684 if (nilfs_test_opt(nilfs, STRICT_ORDER)) 685 seq_puts(seq, ",order=strict"); 686 if (nilfs_test_opt(nilfs, NORECOVERY)) 687 seq_puts(seq, ",norecovery"); 688 if (nilfs_test_opt(nilfs, DISCARD)) 689 seq_puts(seq, ",discard"); 690 691 return 0; 692 } 693 694 static const struct super_operations nilfs_sops = { 695 .alloc_inode = nilfs_alloc_inode, 696 .free_inode = nilfs_free_inode, 697 .dirty_inode = nilfs_dirty_inode, 698 .evict_inode = nilfs_evict_inode, 699 .put_super = nilfs_put_super, 700 .sync_fs = nilfs_sync_fs, 701 .freeze_fs = nilfs_freeze, 702 .unfreeze_fs = nilfs_unfreeze, 703 .statfs = nilfs_statfs, 704 .remount_fs = nilfs_remount, 705 .show_options = nilfs_show_options 706 }; 707 708 enum { 709 Opt_err_cont, Opt_err_panic, Opt_err_ro, 710 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery, 711 Opt_discard, Opt_nodiscard, Opt_err, 712 }; 713 714 static match_table_t tokens = { 715 {Opt_err_cont, "errors=continue"}, 716 {Opt_err_panic, "errors=panic"}, 717 {Opt_err_ro, "errors=remount-ro"}, 718 {Opt_barrier, "barrier"}, 719 {Opt_nobarrier, "nobarrier"}, 720 {Opt_snapshot, "cp=%u"}, 721 {Opt_order, "order=%s"}, 722 {Opt_norecovery, "norecovery"}, 723 {Opt_discard, "discard"}, 724 {Opt_nodiscard, "nodiscard"}, 725 {Opt_err, NULL} 726 }; 727 728 static int parse_options(char *options, struct super_block *sb, int is_remount) 729 { 730 struct the_nilfs *nilfs = sb->s_fs_info; 731 char *p; 732 substring_t args[MAX_OPT_ARGS]; 733 734 if (!options) 735 return 1; 736 737 while ((p = strsep(&options, ",")) != NULL) { 738 int token; 739 740 if (!*p) 741 continue; 742 743 token = match_token(p, tokens, args); 744 switch (token) { 745 case Opt_barrier: 746 nilfs_set_opt(nilfs, BARRIER); 747 break; 748 case Opt_nobarrier: 749 nilfs_clear_opt(nilfs, BARRIER); 750 break; 751 case Opt_order: 752 if (strcmp(args[0].from, "relaxed") == 0) 753 /* Ordered data semantics */ 754 nilfs_clear_opt(nilfs, STRICT_ORDER); 755 else if (strcmp(args[0].from, "strict") == 0) 756 /* Strict in-order semantics */ 757 nilfs_set_opt(nilfs, STRICT_ORDER); 758 else 759 return 0; 760 break; 761 case Opt_err_panic: 762 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC); 763 break; 764 case Opt_err_ro: 765 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO); 766 break; 767 case Opt_err_cont: 768 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT); 769 break; 770 case Opt_snapshot: 771 if (is_remount) { 772 nilfs_err(sb, 773 "\"%s\" option is invalid for remount", 774 p); 775 return 0; 776 } 777 break; 778 case Opt_norecovery: 779 nilfs_set_opt(nilfs, NORECOVERY); 780 break; 781 case Opt_discard: 782 nilfs_set_opt(nilfs, DISCARD); 783 break; 784 case Opt_nodiscard: 785 nilfs_clear_opt(nilfs, DISCARD); 786 break; 787 default: 788 nilfs_err(sb, "unrecognized mount option \"%s\"", p); 789 return 0; 790 } 791 } 792 return 1; 793 } 794 795 static inline void 796 nilfs_set_default_options(struct super_block *sb, 797 struct nilfs_super_block *sbp) 798 { 799 struct the_nilfs *nilfs = sb->s_fs_info; 800 801 nilfs->ns_mount_opt = 802 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER; 803 } 804 805 static int nilfs_setup_super(struct super_block *sb, int is_mount) 806 { 807 struct the_nilfs *nilfs = sb->s_fs_info; 808 struct nilfs_super_block **sbp; 809 int max_mnt_count; 810 int mnt_count; 811 812 /* nilfs->ns_sem must be locked by the caller. */ 813 sbp = nilfs_prepare_super(sb, 0); 814 if (!sbp) 815 return -EIO; 816 817 if (!is_mount) 818 goto skip_mount_setup; 819 820 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count); 821 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count); 822 823 if (nilfs->ns_mount_state & NILFS_ERROR_FS) { 824 nilfs_warn(sb, "mounting fs with errors"); 825 #if 0 826 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) { 827 nilfs_warn(sb, "maximal mount count reached"); 828 #endif 829 } 830 if (!max_mnt_count) 831 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT); 832 833 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1); 834 sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds()); 835 836 skip_mount_setup: 837 sbp[0]->s_state = 838 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS); 839 /* synchronize sbp[1] with sbp[0] */ 840 if (sbp[1]) 841 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); 842 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); 843 } 844 845 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb, 846 u64 pos, int blocksize, 847 struct buffer_head **pbh) 848 { 849 unsigned long long sb_index = pos; 850 unsigned long offset; 851 852 offset = do_div(sb_index, blocksize); 853 *pbh = sb_bread(sb, sb_index); 854 if (!*pbh) 855 return NULL; 856 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset); 857 } 858 859 int nilfs_store_magic_and_option(struct super_block *sb, 860 struct nilfs_super_block *sbp, 861 char *data) 862 { 863 struct the_nilfs *nilfs = sb->s_fs_info; 864 865 sb->s_magic = le16_to_cpu(sbp->s_magic); 866 867 /* FS independent flags */ 868 #ifdef NILFS_ATIME_DISABLE 869 sb->s_flags |= SB_NOATIME; 870 #endif 871 872 nilfs_set_default_options(sb, sbp); 873 874 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid); 875 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid); 876 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval); 877 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max); 878 879 return !parse_options(data, sb, 0) ? -EINVAL : 0; 880 } 881 882 int nilfs_check_feature_compatibility(struct super_block *sb, 883 struct nilfs_super_block *sbp) 884 { 885 __u64 features; 886 887 features = le64_to_cpu(sbp->s_feature_incompat) & 888 ~NILFS_FEATURE_INCOMPAT_SUPP; 889 if (features) { 890 nilfs_err(sb, 891 "couldn't mount because of unsupported optional features (%llx)", 892 (unsigned long long)features); 893 return -EINVAL; 894 } 895 features = le64_to_cpu(sbp->s_feature_compat_ro) & 896 ~NILFS_FEATURE_COMPAT_RO_SUPP; 897 if (!sb_rdonly(sb) && features) { 898 nilfs_err(sb, 899 "couldn't mount RDWR because of unsupported optional features (%llx)", 900 (unsigned long long)features); 901 return -EINVAL; 902 } 903 return 0; 904 } 905 906 static int nilfs_get_root_dentry(struct super_block *sb, 907 struct nilfs_root *root, 908 struct dentry **root_dentry) 909 { 910 struct inode *inode; 911 struct dentry *dentry; 912 int ret = 0; 913 914 inode = nilfs_iget(sb, root, NILFS_ROOT_INO); 915 if (IS_ERR(inode)) { 916 ret = PTR_ERR(inode); 917 nilfs_err(sb, "error %d getting root inode", ret); 918 goto out; 919 } 920 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) { 921 iput(inode); 922 nilfs_err(sb, "corrupt root inode"); 923 ret = -EINVAL; 924 goto out; 925 } 926 927 if (root->cno == NILFS_CPTREE_CURRENT_CNO) { 928 dentry = d_find_alias(inode); 929 if (!dentry) { 930 dentry = d_make_root(inode); 931 if (!dentry) { 932 ret = -ENOMEM; 933 goto failed_dentry; 934 } 935 } else { 936 iput(inode); 937 } 938 } else { 939 dentry = d_obtain_root(inode); 940 if (IS_ERR(dentry)) { 941 ret = PTR_ERR(dentry); 942 goto failed_dentry; 943 } 944 } 945 *root_dentry = dentry; 946 out: 947 return ret; 948 949 failed_dentry: 950 nilfs_err(sb, "error %d getting root dentry", ret); 951 goto out; 952 } 953 954 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno, 955 struct dentry **root_dentry) 956 { 957 struct the_nilfs *nilfs = s->s_fs_info; 958 struct nilfs_root *root; 959 int ret; 960 961 mutex_lock(&nilfs->ns_snapshot_mount_mutex); 962 963 down_read(&nilfs->ns_segctor_sem); 964 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno); 965 up_read(&nilfs->ns_segctor_sem); 966 if (ret < 0) { 967 ret = (ret == -ENOENT) ? -EINVAL : ret; 968 goto out; 969 } else if (!ret) { 970 nilfs_err(s, 971 "The specified checkpoint is not a snapshot (checkpoint number=%llu)", 972 (unsigned long long)cno); 973 ret = -EINVAL; 974 goto out; 975 } 976 977 ret = nilfs_attach_checkpoint(s, cno, false, &root); 978 if (ret) { 979 nilfs_err(s, 980 "error %d while loading snapshot (checkpoint number=%llu)", 981 ret, (unsigned long long)cno); 982 goto out; 983 } 984 ret = nilfs_get_root_dentry(s, root, root_dentry); 985 nilfs_put_root(root); 986 out: 987 mutex_unlock(&nilfs->ns_snapshot_mount_mutex); 988 return ret; 989 } 990 991 /** 992 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint 993 * @root_dentry: root dentry of the tree to be shrunk 994 * 995 * This function returns true if the tree was in-use. 996 */ 997 static bool nilfs_tree_is_busy(struct dentry *root_dentry) 998 { 999 shrink_dcache_parent(root_dentry); 1000 return d_count(root_dentry) > 1; 1001 } 1002 1003 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno) 1004 { 1005 struct the_nilfs *nilfs = sb->s_fs_info; 1006 struct nilfs_root *root; 1007 struct inode *inode; 1008 struct dentry *dentry; 1009 int ret; 1010 1011 if (cno > nilfs->ns_cno) 1012 return false; 1013 1014 if (cno >= nilfs_last_cno(nilfs)) 1015 return true; /* protect recent checkpoints */ 1016 1017 ret = false; 1018 root = nilfs_lookup_root(nilfs, cno); 1019 if (root) { 1020 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO); 1021 if (inode) { 1022 dentry = d_find_alias(inode); 1023 if (dentry) { 1024 ret = nilfs_tree_is_busy(dentry); 1025 dput(dentry); 1026 } 1027 iput(inode); 1028 } 1029 nilfs_put_root(root); 1030 } 1031 return ret; 1032 } 1033 1034 /** 1035 * nilfs_fill_super() - initialize a super block instance 1036 * @sb: super_block 1037 * @data: mount options 1038 * @silent: silent mode flag 1039 * 1040 * This function is called exclusively by nilfs->ns_mount_mutex. 1041 * So, the recovery process is protected from other simultaneous mounts. 1042 */ 1043 static int 1044 nilfs_fill_super(struct super_block *sb, void *data, int silent) 1045 { 1046 struct the_nilfs *nilfs; 1047 struct nilfs_root *fsroot; 1048 __u64 cno; 1049 int err; 1050 1051 nilfs = alloc_nilfs(sb); 1052 if (!nilfs) 1053 return -ENOMEM; 1054 1055 sb->s_fs_info = nilfs; 1056 1057 err = init_nilfs(nilfs, sb, (char *)data); 1058 if (err) 1059 goto failed_nilfs; 1060 1061 sb->s_op = &nilfs_sops; 1062 sb->s_export_op = &nilfs_export_ops; 1063 sb->s_root = NULL; 1064 sb->s_time_gran = 1; 1065 sb->s_max_links = NILFS_LINK_MAX; 1066 1067 sb->s_bdi = bdi_get(sb->s_bdev->bd_disk->bdi); 1068 1069 err = load_nilfs(nilfs, sb); 1070 if (err) 1071 goto failed_nilfs; 1072 1073 cno = nilfs_last_cno(nilfs); 1074 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot); 1075 if (err) { 1076 nilfs_err(sb, 1077 "error %d while loading last checkpoint (checkpoint number=%llu)", 1078 err, (unsigned long long)cno); 1079 goto failed_unload; 1080 } 1081 1082 if (!sb_rdonly(sb)) { 1083 err = nilfs_attach_log_writer(sb, fsroot); 1084 if (err) 1085 goto failed_checkpoint; 1086 } 1087 1088 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root); 1089 if (err) 1090 goto failed_segctor; 1091 1092 nilfs_put_root(fsroot); 1093 1094 if (!sb_rdonly(sb)) { 1095 down_write(&nilfs->ns_sem); 1096 nilfs_setup_super(sb, true); 1097 up_write(&nilfs->ns_sem); 1098 } 1099 1100 return 0; 1101 1102 failed_segctor: 1103 nilfs_detach_log_writer(sb); 1104 1105 failed_checkpoint: 1106 nilfs_put_root(fsroot); 1107 1108 failed_unload: 1109 nilfs_sysfs_delete_device_group(nilfs); 1110 iput(nilfs->ns_sufile); 1111 iput(nilfs->ns_cpfile); 1112 iput(nilfs->ns_dat); 1113 1114 failed_nilfs: 1115 destroy_nilfs(nilfs); 1116 return err; 1117 } 1118 1119 static int nilfs_remount(struct super_block *sb, int *flags, char *data) 1120 { 1121 struct the_nilfs *nilfs = sb->s_fs_info; 1122 unsigned long old_sb_flags; 1123 unsigned long old_mount_opt; 1124 int err; 1125 1126 sync_filesystem(sb); 1127 old_sb_flags = sb->s_flags; 1128 old_mount_opt = nilfs->ns_mount_opt; 1129 1130 if (!parse_options(data, sb, 1)) { 1131 err = -EINVAL; 1132 goto restore_opts; 1133 } 1134 sb->s_flags = (sb->s_flags & ~SB_POSIXACL); 1135 1136 err = -EINVAL; 1137 1138 if (!nilfs_valid_fs(nilfs)) { 1139 nilfs_warn(sb, 1140 "couldn't remount because the filesystem is in an incomplete recovery state"); 1141 goto restore_opts; 1142 } 1143 1144 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1145 goto out; 1146 if (*flags & SB_RDONLY) { 1147 sb->s_flags |= SB_RDONLY; 1148 1149 /* 1150 * Remounting a valid RW partition RDONLY, so set 1151 * the RDONLY flag and then mark the partition as valid again. 1152 */ 1153 down_write(&nilfs->ns_sem); 1154 nilfs_cleanup_super(sb); 1155 up_write(&nilfs->ns_sem); 1156 } else { 1157 __u64 features; 1158 struct nilfs_root *root; 1159 1160 /* 1161 * Mounting a RDONLY partition read-write, so reread and 1162 * store the current valid flag. (It may have been changed 1163 * by fsck since we originally mounted the partition.) 1164 */ 1165 down_read(&nilfs->ns_sem); 1166 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) & 1167 ~NILFS_FEATURE_COMPAT_RO_SUPP; 1168 up_read(&nilfs->ns_sem); 1169 if (features) { 1170 nilfs_warn(sb, 1171 "couldn't remount RDWR because of unsupported optional features (%llx)", 1172 (unsigned long long)features); 1173 err = -EROFS; 1174 goto restore_opts; 1175 } 1176 1177 sb->s_flags &= ~SB_RDONLY; 1178 1179 root = NILFS_I(d_inode(sb->s_root))->i_root; 1180 err = nilfs_attach_log_writer(sb, root); 1181 if (err) 1182 goto restore_opts; 1183 1184 down_write(&nilfs->ns_sem); 1185 nilfs_setup_super(sb, true); 1186 up_write(&nilfs->ns_sem); 1187 } 1188 out: 1189 return 0; 1190 1191 restore_opts: 1192 sb->s_flags = old_sb_flags; 1193 nilfs->ns_mount_opt = old_mount_opt; 1194 return err; 1195 } 1196 1197 struct nilfs_super_data { 1198 struct block_device *bdev; 1199 __u64 cno; 1200 int flags; 1201 }; 1202 1203 static int nilfs_parse_snapshot_option(const char *option, 1204 const substring_t *arg, 1205 struct nilfs_super_data *sd) 1206 { 1207 unsigned long long val; 1208 const char *msg = NULL; 1209 int err; 1210 1211 if (!(sd->flags & SB_RDONLY)) { 1212 msg = "read-only option is not specified"; 1213 goto parse_error; 1214 } 1215 1216 err = kstrtoull(arg->from, 0, &val); 1217 if (err) { 1218 if (err == -ERANGE) 1219 msg = "too large checkpoint number"; 1220 else 1221 msg = "malformed argument"; 1222 goto parse_error; 1223 } else if (val == 0) { 1224 msg = "invalid checkpoint number 0"; 1225 goto parse_error; 1226 } 1227 sd->cno = val; 1228 return 0; 1229 1230 parse_error: 1231 nilfs_err(NULL, "invalid option \"%s\": %s", option, msg); 1232 return 1; 1233 } 1234 1235 /** 1236 * nilfs_identify - pre-read mount options needed to identify mount instance 1237 * @data: mount options 1238 * @sd: nilfs_super_data 1239 */ 1240 static int nilfs_identify(char *data, struct nilfs_super_data *sd) 1241 { 1242 char *p, *options = data; 1243 substring_t args[MAX_OPT_ARGS]; 1244 int token; 1245 int ret = 0; 1246 1247 do { 1248 p = strsep(&options, ","); 1249 if (p != NULL && *p) { 1250 token = match_token(p, tokens, args); 1251 if (token == Opt_snapshot) 1252 ret = nilfs_parse_snapshot_option(p, &args[0], 1253 sd); 1254 } 1255 if (!options) 1256 break; 1257 BUG_ON(options == data); 1258 *(options - 1) = ','; 1259 } while (!ret); 1260 return ret; 1261 } 1262 1263 static int nilfs_set_bdev_super(struct super_block *s, void *data) 1264 { 1265 s->s_bdev = data; 1266 s->s_dev = s->s_bdev->bd_dev; 1267 return 0; 1268 } 1269 1270 static int nilfs_test_bdev_super(struct super_block *s, void *data) 1271 { 1272 return (void *)s->s_bdev == data; 1273 } 1274 1275 static struct dentry * 1276 nilfs_mount(struct file_system_type *fs_type, int flags, 1277 const char *dev_name, void *data) 1278 { 1279 struct nilfs_super_data sd; 1280 struct super_block *s; 1281 fmode_t mode = FMODE_READ | FMODE_EXCL; 1282 struct dentry *root_dentry; 1283 int err, s_new = false; 1284 1285 if (!(flags & SB_RDONLY)) 1286 mode |= FMODE_WRITE; 1287 1288 sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type); 1289 if (IS_ERR(sd.bdev)) 1290 return ERR_CAST(sd.bdev); 1291 1292 sd.cno = 0; 1293 sd.flags = flags; 1294 if (nilfs_identify((char *)data, &sd)) { 1295 err = -EINVAL; 1296 goto failed; 1297 } 1298 1299 /* 1300 * once the super is inserted into the list by sget, s_umount 1301 * will protect the lockfs code from trying to start a snapshot 1302 * while we are mounting 1303 */ 1304 mutex_lock(&sd.bdev->bd_fsfreeze_mutex); 1305 if (sd.bdev->bd_fsfreeze_count > 0) { 1306 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex); 1307 err = -EBUSY; 1308 goto failed; 1309 } 1310 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags, 1311 sd.bdev); 1312 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex); 1313 if (IS_ERR(s)) { 1314 err = PTR_ERR(s); 1315 goto failed; 1316 } 1317 1318 if (!s->s_root) { 1319 s_new = true; 1320 1321 /* New superblock instance created */ 1322 s->s_mode = mode; 1323 snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev); 1324 sb_set_blocksize(s, block_size(sd.bdev)); 1325 1326 err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0); 1327 if (err) 1328 goto failed_super; 1329 1330 s->s_flags |= SB_ACTIVE; 1331 } else if (!sd.cno) { 1332 if (nilfs_tree_is_busy(s->s_root)) { 1333 if ((flags ^ s->s_flags) & SB_RDONLY) { 1334 nilfs_err(s, 1335 "the device already has a %s mount.", 1336 sb_rdonly(s) ? "read-only" : "read/write"); 1337 err = -EBUSY; 1338 goto failed_super; 1339 } 1340 } else { 1341 /* 1342 * Try remount to setup mount states if the current 1343 * tree is not mounted and only snapshots use this sb. 1344 */ 1345 err = nilfs_remount(s, &flags, data); 1346 if (err) 1347 goto failed_super; 1348 } 1349 } 1350 1351 if (sd.cno) { 1352 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry); 1353 if (err) 1354 goto failed_super; 1355 } else { 1356 root_dentry = dget(s->s_root); 1357 } 1358 1359 if (!s_new) 1360 blkdev_put(sd.bdev, mode); 1361 1362 return root_dentry; 1363 1364 failed_super: 1365 deactivate_locked_super(s); 1366 1367 failed: 1368 if (!s_new) 1369 blkdev_put(sd.bdev, mode); 1370 return ERR_PTR(err); 1371 } 1372 1373 struct file_system_type nilfs_fs_type = { 1374 .owner = THIS_MODULE, 1375 .name = "nilfs2", 1376 .mount = nilfs_mount, 1377 .kill_sb = kill_block_super, 1378 .fs_flags = FS_REQUIRES_DEV, 1379 }; 1380 MODULE_ALIAS_FS("nilfs2"); 1381 1382 static void nilfs_inode_init_once(void *obj) 1383 { 1384 struct nilfs_inode_info *ii = obj; 1385 1386 INIT_LIST_HEAD(&ii->i_dirty); 1387 #ifdef CONFIG_NILFS_XATTR 1388 init_rwsem(&ii->xattr_sem); 1389 #endif 1390 inode_init_once(&ii->vfs_inode); 1391 } 1392 1393 static void nilfs_segbuf_init_once(void *obj) 1394 { 1395 memset(obj, 0, sizeof(struct nilfs_segment_buffer)); 1396 } 1397 1398 static void nilfs_destroy_cachep(void) 1399 { 1400 /* 1401 * Make sure all delayed rcu free inodes are flushed before we 1402 * destroy cache. 1403 */ 1404 rcu_barrier(); 1405 1406 kmem_cache_destroy(nilfs_inode_cachep); 1407 kmem_cache_destroy(nilfs_transaction_cachep); 1408 kmem_cache_destroy(nilfs_segbuf_cachep); 1409 kmem_cache_destroy(nilfs_btree_path_cache); 1410 } 1411 1412 static int __init nilfs_init_cachep(void) 1413 { 1414 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache", 1415 sizeof(struct nilfs_inode_info), 0, 1416 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, 1417 nilfs_inode_init_once); 1418 if (!nilfs_inode_cachep) 1419 goto fail; 1420 1421 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache", 1422 sizeof(struct nilfs_transaction_info), 0, 1423 SLAB_RECLAIM_ACCOUNT, NULL); 1424 if (!nilfs_transaction_cachep) 1425 goto fail; 1426 1427 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache", 1428 sizeof(struct nilfs_segment_buffer), 0, 1429 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once); 1430 if (!nilfs_segbuf_cachep) 1431 goto fail; 1432 1433 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache", 1434 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX, 1435 0, 0, NULL); 1436 if (!nilfs_btree_path_cache) 1437 goto fail; 1438 1439 return 0; 1440 1441 fail: 1442 nilfs_destroy_cachep(); 1443 return -ENOMEM; 1444 } 1445 1446 static int __init init_nilfs_fs(void) 1447 { 1448 int err; 1449 1450 err = nilfs_init_cachep(); 1451 if (err) 1452 goto fail; 1453 1454 err = nilfs_sysfs_init(); 1455 if (err) 1456 goto free_cachep; 1457 1458 err = register_filesystem(&nilfs_fs_type); 1459 if (err) 1460 goto deinit_sysfs_entry; 1461 1462 printk(KERN_INFO "NILFS version 2 loaded\n"); 1463 return 0; 1464 1465 deinit_sysfs_entry: 1466 nilfs_sysfs_exit(); 1467 free_cachep: 1468 nilfs_destroy_cachep(); 1469 fail: 1470 return err; 1471 } 1472 1473 static void __exit exit_nilfs_fs(void) 1474 { 1475 nilfs_destroy_cachep(); 1476 nilfs_sysfs_exit(); 1477 unregister_filesystem(&nilfs_fs_type); 1478 } 1479 1480 module_init(init_nilfs_fs) 1481 module_exit(exit_nilfs_fs) 1482