xref: /openbmc/linux/fs/nilfs2/sufile.c (revision a8fe58ce)
1 /*
2  * sufile.c - NILFS segment usage file.
3  *
4  * Copyright (C) 2006-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Koji Sato <koji@osrg.net>.
21  * Revised by Ryusuke Konishi <ryusuke@osrg.net>.
22  */
23 
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/string.h>
27 #include <linux/buffer_head.h>
28 #include <linux/errno.h>
29 #include <linux/nilfs2_fs.h>
30 #include "mdt.h"
31 #include "sufile.h"
32 
33 #include <trace/events/nilfs2.h>
34 
35 /**
36  * struct nilfs_sufile_info - on-memory private data of sufile
37  * @mi: on-memory private data of metadata file
38  * @ncleansegs: number of clean segments
39  * @allocmin: lower limit of allocatable segment range
40  * @allocmax: upper limit of allocatable segment range
41  */
42 struct nilfs_sufile_info {
43 	struct nilfs_mdt_info mi;
44 	unsigned long ncleansegs;/* number of clean segments */
45 	__u64 allocmin;		/* lower limit of allocatable segment range */
46 	__u64 allocmax;		/* upper limit of allocatable segment range */
47 };
48 
49 static inline struct nilfs_sufile_info *NILFS_SUI(struct inode *sufile)
50 {
51 	return (struct nilfs_sufile_info *)NILFS_MDT(sufile);
52 }
53 
54 static inline unsigned long
55 nilfs_sufile_segment_usages_per_block(const struct inode *sufile)
56 {
57 	return NILFS_MDT(sufile)->mi_entries_per_block;
58 }
59 
60 static unsigned long
61 nilfs_sufile_get_blkoff(const struct inode *sufile, __u64 segnum)
62 {
63 	__u64 t = segnum + NILFS_MDT(sufile)->mi_first_entry_offset;
64 	do_div(t, nilfs_sufile_segment_usages_per_block(sufile));
65 	return (unsigned long)t;
66 }
67 
68 static unsigned long
69 nilfs_sufile_get_offset(const struct inode *sufile, __u64 segnum)
70 {
71 	__u64 t = segnum + NILFS_MDT(sufile)->mi_first_entry_offset;
72 	return do_div(t, nilfs_sufile_segment_usages_per_block(sufile));
73 }
74 
75 static unsigned long
76 nilfs_sufile_segment_usages_in_block(const struct inode *sufile, __u64 curr,
77 				     __u64 max)
78 {
79 	return min_t(unsigned long,
80 		     nilfs_sufile_segment_usages_per_block(sufile) -
81 		     nilfs_sufile_get_offset(sufile, curr),
82 		     max - curr + 1);
83 }
84 
85 static struct nilfs_segment_usage *
86 nilfs_sufile_block_get_segment_usage(const struct inode *sufile, __u64 segnum,
87 				     struct buffer_head *bh, void *kaddr)
88 {
89 	return kaddr + bh_offset(bh) +
90 		nilfs_sufile_get_offset(sufile, segnum) *
91 		NILFS_MDT(sufile)->mi_entry_size;
92 }
93 
94 static inline int nilfs_sufile_get_header_block(struct inode *sufile,
95 						struct buffer_head **bhp)
96 {
97 	return nilfs_mdt_get_block(sufile, 0, 0, NULL, bhp);
98 }
99 
100 static inline int
101 nilfs_sufile_get_segment_usage_block(struct inode *sufile, __u64 segnum,
102 				     int create, struct buffer_head **bhp)
103 {
104 	return nilfs_mdt_get_block(sufile,
105 				   nilfs_sufile_get_blkoff(sufile, segnum),
106 				   create, NULL, bhp);
107 }
108 
109 static int nilfs_sufile_delete_segment_usage_block(struct inode *sufile,
110 						   __u64 segnum)
111 {
112 	return nilfs_mdt_delete_block(sufile,
113 				      nilfs_sufile_get_blkoff(sufile, segnum));
114 }
115 
116 static void nilfs_sufile_mod_counter(struct buffer_head *header_bh,
117 				     u64 ncleanadd, u64 ndirtyadd)
118 {
119 	struct nilfs_sufile_header *header;
120 	void *kaddr;
121 
122 	kaddr = kmap_atomic(header_bh->b_page);
123 	header = kaddr + bh_offset(header_bh);
124 	le64_add_cpu(&header->sh_ncleansegs, ncleanadd);
125 	le64_add_cpu(&header->sh_ndirtysegs, ndirtyadd);
126 	kunmap_atomic(kaddr);
127 
128 	mark_buffer_dirty(header_bh);
129 }
130 
131 /**
132  * nilfs_sufile_get_ncleansegs - return the number of clean segments
133  * @sufile: inode of segment usage file
134  */
135 unsigned long nilfs_sufile_get_ncleansegs(struct inode *sufile)
136 {
137 	return NILFS_SUI(sufile)->ncleansegs;
138 }
139 
140 /**
141  * nilfs_sufile_updatev - modify multiple segment usages at a time
142  * @sufile: inode of segment usage file
143  * @segnumv: array of segment numbers
144  * @nsegs: size of @segnumv array
145  * @create: creation flag
146  * @ndone: place to store number of modified segments on @segnumv
147  * @dofunc: primitive operation for the update
148  *
149  * Description: nilfs_sufile_updatev() repeatedly calls @dofunc
150  * against the given array of segments.  The @dofunc is called with
151  * buffers of a header block and the sufile block in which the target
152  * segment usage entry is contained.  If @ndone is given, the number
153  * of successfully modified segments from the head is stored in the
154  * place @ndone points to.
155  *
156  * Return Value: On success, zero is returned.  On error, one of the
157  * following negative error codes is returned.
158  *
159  * %-EIO - I/O error.
160  *
161  * %-ENOMEM - Insufficient amount of memory available.
162  *
163  * %-ENOENT - Given segment usage is in hole block (may be returned if
164  *            @create is zero)
165  *
166  * %-EINVAL - Invalid segment usage number
167  */
168 int nilfs_sufile_updatev(struct inode *sufile, __u64 *segnumv, size_t nsegs,
169 			 int create, size_t *ndone,
170 			 void (*dofunc)(struct inode *, __u64,
171 					struct buffer_head *,
172 					struct buffer_head *))
173 {
174 	struct buffer_head *header_bh, *bh;
175 	unsigned long blkoff, prev_blkoff;
176 	__u64 *seg;
177 	size_t nerr = 0, n = 0;
178 	int ret = 0;
179 
180 	if (unlikely(nsegs == 0))
181 		goto out;
182 
183 	down_write(&NILFS_MDT(sufile)->mi_sem);
184 	for (seg = segnumv; seg < segnumv + nsegs; seg++) {
185 		if (unlikely(*seg >= nilfs_sufile_get_nsegments(sufile))) {
186 			printk(KERN_WARNING
187 			       "%s: invalid segment number: %llu\n", __func__,
188 			       (unsigned long long)*seg);
189 			nerr++;
190 		}
191 	}
192 	if (nerr > 0) {
193 		ret = -EINVAL;
194 		goto out_sem;
195 	}
196 
197 	ret = nilfs_sufile_get_header_block(sufile, &header_bh);
198 	if (ret < 0)
199 		goto out_sem;
200 
201 	seg = segnumv;
202 	blkoff = nilfs_sufile_get_blkoff(sufile, *seg);
203 	ret = nilfs_mdt_get_block(sufile, blkoff, create, NULL, &bh);
204 	if (ret < 0)
205 		goto out_header;
206 
207 	for (;;) {
208 		dofunc(sufile, *seg, header_bh, bh);
209 
210 		if (++seg >= segnumv + nsegs)
211 			break;
212 		prev_blkoff = blkoff;
213 		blkoff = nilfs_sufile_get_blkoff(sufile, *seg);
214 		if (blkoff == prev_blkoff)
215 			continue;
216 
217 		/* get different block */
218 		brelse(bh);
219 		ret = nilfs_mdt_get_block(sufile, blkoff, create, NULL, &bh);
220 		if (unlikely(ret < 0))
221 			goto out_header;
222 	}
223 	brelse(bh);
224 
225  out_header:
226 	n = seg - segnumv;
227 	brelse(header_bh);
228  out_sem:
229 	up_write(&NILFS_MDT(sufile)->mi_sem);
230  out:
231 	if (ndone)
232 		*ndone = n;
233 	return ret;
234 }
235 
236 int nilfs_sufile_update(struct inode *sufile, __u64 segnum, int create,
237 			void (*dofunc)(struct inode *, __u64,
238 				       struct buffer_head *,
239 				       struct buffer_head *))
240 {
241 	struct buffer_head *header_bh, *bh;
242 	int ret;
243 
244 	if (unlikely(segnum >= nilfs_sufile_get_nsegments(sufile))) {
245 		printk(KERN_WARNING "%s: invalid segment number: %llu\n",
246 		       __func__, (unsigned long long)segnum);
247 		return -EINVAL;
248 	}
249 	down_write(&NILFS_MDT(sufile)->mi_sem);
250 
251 	ret = nilfs_sufile_get_header_block(sufile, &header_bh);
252 	if (ret < 0)
253 		goto out_sem;
254 
255 	ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, create, &bh);
256 	if (!ret) {
257 		dofunc(sufile, segnum, header_bh, bh);
258 		brelse(bh);
259 	}
260 	brelse(header_bh);
261 
262  out_sem:
263 	up_write(&NILFS_MDT(sufile)->mi_sem);
264 	return ret;
265 }
266 
267 /**
268  * nilfs_sufile_set_alloc_range - limit range of segment to be allocated
269  * @sufile: inode of segment usage file
270  * @start: minimum segment number of allocatable region (inclusive)
271  * @end: maximum segment number of allocatable region (inclusive)
272  *
273  * Return Value: On success, 0 is returned.  On error, one of the
274  * following negative error codes is returned.
275  *
276  * %-ERANGE - invalid segment region
277  */
278 int nilfs_sufile_set_alloc_range(struct inode *sufile, __u64 start, __u64 end)
279 {
280 	struct nilfs_sufile_info *sui = NILFS_SUI(sufile);
281 	__u64 nsegs;
282 	int ret = -ERANGE;
283 
284 	down_write(&NILFS_MDT(sufile)->mi_sem);
285 	nsegs = nilfs_sufile_get_nsegments(sufile);
286 
287 	if (start <= end && end < nsegs) {
288 		sui->allocmin = start;
289 		sui->allocmax = end;
290 		ret = 0;
291 	}
292 	up_write(&NILFS_MDT(sufile)->mi_sem);
293 	return ret;
294 }
295 
296 /**
297  * nilfs_sufile_alloc - allocate a segment
298  * @sufile: inode of segment usage file
299  * @segnump: pointer to segment number
300  *
301  * Description: nilfs_sufile_alloc() allocates a clean segment.
302  *
303  * Return Value: On success, 0 is returned and the segment number of the
304  * allocated segment is stored in the place pointed by @segnump. On error, one
305  * of the following negative error codes is returned.
306  *
307  * %-EIO - I/O error.
308  *
309  * %-ENOMEM - Insufficient amount of memory available.
310  *
311  * %-ENOSPC - No clean segment left.
312  */
313 int nilfs_sufile_alloc(struct inode *sufile, __u64 *segnump)
314 {
315 	struct buffer_head *header_bh, *su_bh;
316 	struct nilfs_sufile_header *header;
317 	struct nilfs_segment_usage *su;
318 	struct nilfs_sufile_info *sui = NILFS_SUI(sufile);
319 	size_t susz = NILFS_MDT(sufile)->mi_entry_size;
320 	__u64 segnum, maxsegnum, last_alloc;
321 	void *kaddr;
322 	unsigned long nsegments, nsus, cnt;
323 	int ret, j;
324 
325 	down_write(&NILFS_MDT(sufile)->mi_sem);
326 
327 	ret = nilfs_sufile_get_header_block(sufile, &header_bh);
328 	if (ret < 0)
329 		goto out_sem;
330 	kaddr = kmap_atomic(header_bh->b_page);
331 	header = kaddr + bh_offset(header_bh);
332 	last_alloc = le64_to_cpu(header->sh_last_alloc);
333 	kunmap_atomic(kaddr);
334 
335 	nsegments = nilfs_sufile_get_nsegments(sufile);
336 	maxsegnum = sui->allocmax;
337 	segnum = last_alloc + 1;
338 	if (segnum < sui->allocmin || segnum > sui->allocmax)
339 		segnum = sui->allocmin;
340 
341 	for (cnt = 0; cnt < nsegments; cnt += nsus) {
342 		if (segnum > maxsegnum) {
343 			if (cnt < sui->allocmax - sui->allocmin + 1) {
344 				/*
345 				 * wrap around in the limited region.
346 				 * if allocation started from
347 				 * sui->allocmin, this never happens.
348 				 */
349 				segnum = sui->allocmin;
350 				maxsegnum = last_alloc;
351 			} else if (segnum > sui->allocmin &&
352 				   sui->allocmax + 1 < nsegments) {
353 				segnum = sui->allocmax + 1;
354 				maxsegnum = nsegments - 1;
355 			} else if (sui->allocmin > 0)  {
356 				segnum = 0;
357 				maxsegnum = sui->allocmin - 1;
358 			} else {
359 				break; /* never happens */
360 			}
361 		}
362 		trace_nilfs2_segment_usage_check(sufile, segnum, cnt);
363 		ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 1,
364 							   &su_bh);
365 		if (ret < 0)
366 			goto out_header;
367 		kaddr = kmap_atomic(su_bh->b_page);
368 		su = nilfs_sufile_block_get_segment_usage(
369 			sufile, segnum, su_bh, kaddr);
370 
371 		nsus = nilfs_sufile_segment_usages_in_block(
372 			sufile, segnum, maxsegnum);
373 		for (j = 0; j < nsus; j++, su = (void *)su + susz, segnum++) {
374 			if (!nilfs_segment_usage_clean(su))
375 				continue;
376 			/* found a clean segment */
377 			nilfs_segment_usage_set_dirty(su);
378 			kunmap_atomic(kaddr);
379 
380 			kaddr = kmap_atomic(header_bh->b_page);
381 			header = kaddr + bh_offset(header_bh);
382 			le64_add_cpu(&header->sh_ncleansegs, -1);
383 			le64_add_cpu(&header->sh_ndirtysegs, 1);
384 			header->sh_last_alloc = cpu_to_le64(segnum);
385 			kunmap_atomic(kaddr);
386 
387 			sui->ncleansegs--;
388 			mark_buffer_dirty(header_bh);
389 			mark_buffer_dirty(su_bh);
390 			nilfs_mdt_mark_dirty(sufile);
391 			brelse(su_bh);
392 			*segnump = segnum;
393 
394 			trace_nilfs2_segment_usage_allocated(sufile, segnum);
395 
396 			goto out_header;
397 		}
398 
399 		kunmap_atomic(kaddr);
400 		brelse(su_bh);
401 	}
402 
403 	/* no segments left */
404 	ret = -ENOSPC;
405 
406  out_header:
407 	brelse(header_bh);
408 
409  out_sem:
410 	up_write(&NILFS_MDT(sufile)->mi_sem);
411 	return ret;
412 }
413 
414 void nilfs_sufile_do_cancel_free(struct inode *sufile, __u64 segnum,
415 				 struct buffer_head *header_bh,
416 				 struct buffer_head *su_bh)
417 {
418 	struct nilfs_segment_usage *su;
419 	void *kaddr;
420 
421 	kaddr = kmap_atomic(su_bh->b_page);
422 	su = nilfs_sufile_block_get_segment_usage(sufile, segnum, su_bh, kaddr);
423 	if (unlikely(!nilfs_segment_usage_clean(su))) {
424 		printk(KERN_WARNING "%s: segment %llu must be clean\n",
425 		       __func__, (unsigned long long)segnum);
426 		kunmap_atomic(kaddr);
427 		return;
428 	}
429 	nilfs_segment_usage_set_dirty(su);
430 	kunmap_atomic(kaddr);
431 
432 	nilfs_sufile_mod_counter(header_bh, -1, 1);
433 	NILFS_SUI(sufile)->ncleansegs--;
434 
435 	mark_buffer_dirty(su_bh);
436 	nilfs_mdt_mark_dirty(sufile);
437 }
438 
439 void nilfs_sufile_do_scrap(struct inode *sufile, __u64 segnum,
440 			   struct buffer_head *header_bh,
441 			   struct buffer_head *su_bh)
442 {
443 	struct nilfs_segment_usage *su;
444 	void *kaddr;
445 	int clean, dirty;
446 
447 	kaddr = kmap_atomic(su_bh->b_page);
448 	su = nilfs_sufile_block_get_segment_usage(sufile, segnum, su_bh, kaddr);
449 	if (su->su_flags == cpu_to_le32(1UL << NILFS_SEGMENT_USAGE_DIRTY) &&
450 	    su->su_nblocks == cpu_to_le32(0)) {
451 		kunmap_atomic(kaddr);
452 		return;
453 	}
454 	clean = nilfs_segment_usage_clean(su);
455 	dirty = nilfs_segment_usage_dirty(su);
456 
457 	/* make the segment garbage */
458 	su->su_lastmod = cpu_to_le64(0);
459 	su->su_nblocks = cpu_to_le32(0);
460 	su->su_flags = cpu_to_le32(1UL << NILFS_SEGMENT_USAGE_DIRTY);
461 	kunmap_atomic(kaddr);
462 
463 	nilfs_sufile_mod_counter(header_bh, clean ? (u64)-1 : 0, dirty ? 0 : 1);
464 	NILFS_SUI(sufile)->ncleansegs -= clean;
465 
466 	mark_buffer_dirty(su_bh);
467 	nilfs_mdt_mark_dirty(sufile);
468 }
469 
470 void nilfs_sufile_do_free(struct inode *sufile, __u64 segnum,
471 			  struct buffer_head *header_bh,
472 			  struct buffer_head *su_bh)
473 {
474 	struct nilfs_segment_usage *su;
475 	void *kaddr;
476 	int sudirty;
477 
478 	kaddr = kmap_atomic(su_bh->b_page);
479 	su = nilfs_sufile_block_get_segment_usage(sufile, segnum, su_bh, kaddr);
480 	if (nilfs_segment_usage_clean(su)) {
481 		printk(KERN_WARNING "%s: segment %llu is already clean\n",
482 		       __func__, (unsigned long long)segnum);
483 		kunmap_atomic(kaddr);
484 		return;
485 	}
486 	WARN_ON(nilfs_segment_usage_error(su));
487 	WARN_ON(!nilfs_segment_usage_dirty(su));
488 
489 	sudirty = nilfs_segment_usage_dirty(su);
490 	nilfs_segment_usage_set_clean(su);
491 	kunmap_atomic(kaddr);
492 	mark_buffer_dirty(su_bh);
493 
494 	nilfs_sufile_mod_counter(header_bh, 1, sudirty ? (u64)-1 : 0);
495 	NILFS_SUI(sufile)->ncleansegs++;
496 
497 	nilfs_mdt_mark_dirty(sufile);
498 
499 	trace_nilfs2_segment_usage_freed(sufile, segnum);
500 }
501 
502 /**
503  * nilfs_sufile_mark_dirty - mark the buffer having a segment usage dirty
504  * @sufile: inode of segment usage file
505  * @segnum: segment number
506  */
507 int nilfs_sufile_mark_dirty(struct inode *sufile, __u64 segnum)
508 {
509 	struct buffer_head *bh;
510 	int ret;
511 
512 	ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 0, &bh);
513 	if (!ret) {
514 		mark_buffer_dirty(bh);
515 		nilfs_mdt_mark_dirty(sufile);
516 		brelse(bh);
517 	}
518 	return ret;
519 }
520 
521 /**
522  * nilfs_sufile_set_segment_usage - set usage of a segment
523  * @sufile: inode of segment usage file
524  * @segnum: segment number
525  * @nblocks: number of live blocks in the segment
526  * @modtime: modification time (option)
527  */
528 int nilfs_sufile_set_segment_usage(struct inode *sufile, __u64 segnum,
529 				   unsigned long nblocks, time_t modtime)
530 {
531 	struct buffer_head *bh;
532 	struct nilfs_segment_usage *su;
533 	void *kaddr;
534 	int ret;
535 
536 	down_write(&NILFS_MDT(sufile)->mi_sem);
537 	ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 0, &bh);
538 	if (ret < 0)
539 		goto out_sem;
540 
541 	kaddr = kmap_atomic(bh->b_page);
542 	su = nilfs_sufile_block_get_segment_usage(sufile, segnum, bh, kaddr);
543 	WARN_ON(nilfs_segment_usage_error(su));
544 	if (modtime)
545 		su->su_lastmod = cpu_to_le64(modtime);
546 	su->su_nblocks = cpu_to_le32(nblocks);
547 	kunmap_atomic(kaddr);
548 
549 	mark_buffer_dirty(bh);
550 	nilfs_mdt_mark_dirty(sufile);
551 	brelse(bh);
552 
553  out_sem:
554 	up_write(&NILFS_MDT(sufile)->mi_sem);
555 	return ret;
556 }
557 
558 /**
559  * nilfs_sufile_get_stat - get segment usage statistics
560  * @sufile: inode of segment usage file
561  * @stat: pointer to a structure of segment usage statistics
562  *
563  * Description: nilfs_sufile_get_stat() returns information about segment
564  * usage.
565  *
566  * Return Value: On success, 0 is returned, and segment usage information is
567  * stored in the place pointed by @stat. On error, one of the following
568  * negative error codes is returned.
569  *
570  * %-EIO - I/O error.
571  *
572  * %-ENOMEM - Insufficient amount of memory available.
573  */
574 int nilfs_sufile_get_stat(struct inode *sufile, struct nilfs_sustat *sustat)
575 {
576 	struct buffer_head *header_bh;
577 	struct nilfs_sufile_header *header;
578 	struct the_nilfs *nilfs = sufile->i_sb->s_fs_info;
579 	void *kaddr;
580 	int ret;
581 
582 	down_read(&NILFS_MDT(sufile)->mi_sem);
583 
584 	ret = nilfs_sufile_get_header_block(sufile, &header_bh);
585 	if (ret < 0)
586 		goto out_sem;
587 
588 	kaddr = kmap_atomic(header_bh->b_page);
589 	header = kaddr + bh_offset(header_bh);
590 	sustat->ss_nsegs = nilfs_sufile_get_nsegments(sufile);
591 	sustat->ss_ncleansegs = le64_to_cpu(header->sh_ncleansegs);
592 	sustat->ss_ndirtysegs = le64_to_cpu(header->sh_ndirtysegs);
593 	sustat->ss_ctime = nilfs->ns_ctime;
594 	sustat->ss_nongc_ctime = nilfs->ns_nongc_ctime;
595 	spin_lock(&nilfs->ns_last_segment_lock);
596 	sustat->ss_prot_seq = nilfs->ns_prot_seq;
597 	spin_unlock(&nilfs->ns_last_segment_lock);
598 	kunmap_atomic(kaddr);
599 	brelse(header_bh);
600 
601  out_sem:
602 	up_read(&NILFS_MDT(sufile)->mi_sem);
603 	return ret;
604 }
605 
606 void nilfs_sufile_do_set_error(struct inode *sufile, __u64 segnum,
607 			       struct buffer_head *header_bh,
608 			       struct buffer_head *su_bh)
609 {
610 	struct nilfs_segment_usage *su;
611 	void *kaddr;
612 	int suclean;
613 
614 	kaddr = kmap_atomic(su_bh->b_page);
615 	su = nilfs_sufile_block_get_segment_usage(sufile, segnum, su_bh, kaddr);
616 	if (nilfs_segment_usage_error(su)) {
617 		kunmap_atomic(kaddr);
618 		return;
619 	}
620 	suclean = nilfs_segment_usage_clean(su);
621 	nilfs_segment_usage_set_error(su);
622 	kunmap_atomic(kaddr);
623 
624 	if (suclean) {
625 		nilfs_sufile_mod_counter(header_bh, -1, 0);
626 		NILFS_SUI(sufile)->ncleansegs--;
627 	}
628 	mark_buffer_dirty(su_bh);
629 	nilfs_mdt_mark_dirty(sufile);
630 }
631 
632 /**
633   * nilfs_sufile_truncate_range - truncate range of segment array
634   * @sufile: inode of segment usage file
635   * @start: start segment number (inclusive)
636   * @end: end segment number (inclusive)
637   *
638   * Return Value: On success, 0 is returned.  On error, one of the
639   * following negative error codes is returned.
640   *
641   * %-EIO - I/O error.
642   *
643   * %-ENOMEM - Insufficient amount of memory available.
644   *
645   * %-EINVAL - Invalid number of segments specified
646   *
647   * %-EBUSY - Dirty or active segments are present in the range
648   */
649 static int nilfs_sufile_truncate_range(struct inode *sufile,
650 				       __u64 start, __u64 end)
651 {
652 	struct the_nilfs *nilfs = sufile->i_sb->s_fs_info;
653 	struct buffer_head *header_bh;
654 	struct buffer_head *su_bh;
655 	struct nilfs_segment_usage *su, *su2;
656 	size_t susz = NILFS_MDT(sufile)->mi_entry_size;
657 	unsigned long segusages_per_block;
658 	unsigned long nsegs, ncleaned;
659 	__u64 segnum;
660 	void *kaddr;
661 	ssize_t n, nc;
662 	int ret;
663 	int j;
664 
665 	nsegs = nilfs_sufile_get_nsegments(sufile);
666 
667 	ret = -EINVAL;
668 	if (start > end || start >= nsegs)
669 		goto out;
670 
671 	ret = nilfs_sufile_get_header_block(sufile, &header_bh);
672 	if (ret < 0)
673 		goto out;
674 
675 	segusages_per_block = nilfs_sufile_segment_usages_per_block(sufile);
676 	ncleaned = 0;
677 
678 	for (segnum = start; segnum <= end; segnum += n) {
679 		n = min_t(unsigned long,
680 			  segusages_per_block -
681 				  nilfs_sufile_get_offset(sufile, segnum),
682 			  end - segnum + 1);
683 		ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 0,
684 							   &su_bh);
685 		if (ret < 0) {
686 			if (ret != -ENOENT)
687 				goto out_header;
688 			/* hole */
689 			continue;
690 		}
691 		kaddr = kmap_atomic(su_bh->b_page);
692 		su = nilfs_sufile_block_get_segment_usage(
693 			sufile, segnum, su_bh, kaddr);
694 		su2 = su;
695 		for (j = 0; j < n; j++, su = (void *)su + susz) {
696 			if ((le32_to_cpu(su->su_flags) &
697 			     ~(1UL << NILFS_SEGMENT_USAGE_ERROR)) ||
698 			    nilfs_segment_is_active(nilfs, segnum + j)) {
699 				ret = -EBUSY;
700 				kunmap_atomic(kaddr);
701 				brelse(su_bh);
702 				goto out_header;
703 			}
704 		}
705 		nc = 0;
706 		for (su = su2, j = 0; j < n; j++, su = (void *)su + susz) {
707 			if (nilfs_segment_usage_error(su)) {
708 				nilfs_segment_usage_set_clean(su);
709 				nc++;
710 			}
711 		}
712 		kunmap_atomic(kaddr);
713 		if (nc > 0) {
714 			mark_buffer_dirty(su_bh);
715 			ncleaned += nc;
716 		}
717 		brelse(su_bh);
718 
719 		if (n == segusages_per_block) {
720 			/* make hole */
721 			nilfs_sufile_delete_segment_usage_block(sufile, segnum);
722 		}
723 	}
724 	ret = 0;
725 
726 out_header:
727 	if (ncleaned > 0) {
728 		NILFS_SUI(sufile)->ncleansegs += ncleaned;
729 		nilfs_sufile_mod_counter(header_bh, ncleaned, 0);
730 		nilfs_mdt_mark_dirty(sufile);
731 	}
732 	brelse(header_bh);
733 out:
734 	return ret;
735 }
736 
737 /**
738  * nilfs_sufile_resize - resize segment array
739  * @sufile: inode of segment usage file
740  * @newnsegs: new number of segments
741  *
742  * Return Value: On success, 0 is returned.  On error, one of the
743  * following negative error codes is returned.
744  *
745  * %-EIO - I/O error.
746  *
747  * %-ENOMEM - Insufficient amount of memory available.
748  *
749  * %-ENOSPC - Enough free space is not left for shrinking
750  *
751  * %-EBUSY - Dirty or active segments exist in the region to be truncated
752  */
753 int nilfs_sufile_resize(struct inode *sufile, __u64 newnsegs)
754 {
755 	struct the_nilfs *nilfs = sufile->i_sb->s_fs_info;
756 	struct buffer_head *header_bh;
757 	struct nilfs_sufile_header *header;
758 	struct nilfs_sufile_info *sui = NILFS_SUI(sufile);
759 	void *kaddr;
760 	unsigned long nsegs, nrsvsegs;
761 	int ret = 0;
762 
763 	down_write(&NILFS_MDT(sufile)->mi_sem);
764 
765 	nsegs = nilfs_sufile_get_nsegments(sufile);
766 	if (nsegs == newnsegs)
767 		goto out;
768 
769 	ret = -ENOSPC;
770 	nrsvsegs = nilfs_nrsvsegs(nilfs, newnsegs);
771 	if (newnsegs < nsegs && nsegs - newnsegs + nrsvsegs > sui->ncleansegs)
772 		goto out;
773 
774 	ret = nilfs_sufile_get_header_block(sufile, &header_bh);
775 	if (ret < 0)
776 		goto out;
777 
778 	if (newnsegs > nsegs) {
779 		sui->ncleansegs += newnsegs - nsegs;
780 	} else /* newnsegs < nsegs */ {
781 		ret = nilfs_sufile_truncate_range(sufile, newnsegs, nsegs - 1);
782 		if (ret < 0)
783 			goto out_header;
784 
785 		sui->ncleansegs -= nsegs - newnsegs;
786 	}
787 
788 	kaddr = kmap_atomic(header_bh->b_page);
789 	header = kaddr + bh_offset(header_bh);
790 	header->sh_ncleansegs = cpu_to_le64(sui->ncleansegs);
791 	kunmap_atomic(kaddr);
792 
793 	mark_buffer_dirty(header_bh);
794 	nilfs_mdt_mark_dirty(sufile);
795 	nilfs_set_nsegments(nilfs, newnsegs);
796 
797 out_header:
798 	brelse(header_bh);
799 out:
800 	up_write(&NILFS_MDT(sufile)->mi_sem);
801 	return ret;
802 }
803 
804 /**
805  * nilfs_sufile_get_suinfo -
806  * @sufile: inode of segment usage file
807  * @segnum: segment number to start looking
808  * @buf: array of suinfo
809  * @sisz: byte size of suinfo
810  * @nsi: size of suinfo array
811  *
812  * Description:
813  *
814  * Return Value: On success, 0 is returned and .... On error, one of the
815  * following negative error codes is returned.
816  *
817  * %-EIO - I/O error.
818  *
819  * %-ENOMEM - Insufficient amount of memory available.
820  */
821 ssize_t nilfs_sufile_get_suinfo(struct inode *sufile, __u64 segnum, void *buf,
822 				unsigned sisz, size_t nsi)
823 {
824 	struct buffer_head *su_bh;
825 	struct nilfs_segment_usage *su;
826 	struct nilfs_suinfo *si = buf;
827 	size_t susz = NILFS_MDT(sufile)->mi_entry_size;
828 	struct the_nilfs *nilfs = sufile->i_sb->s_fs_info;
829 	void *kaddr;
830 	unsigned long nsegs, segusages_per_block;
831 	ssize_t n;
832 	int ret, i, j;
833 
834 	down_read(&NILFS_MDT(sufile)->mi_sem);
835 
836 	segusages_per_block = nilfs_sufile_segment_usages_per_block(sufile);
837 	nsegs = min_t(unsigned long,
838 		      nilfs_sufile_get_nsegments(sufile) - segnum,
839 		      nsi);
840 	for (i = 0; i < nsegs; i += n, segnum += n) {
841 		n = min_t(unsigned long,
842 			  segusages_per_block -
843 				  nilfs_sufile_get_offset(sufile, segnum),
844 			  nsegs - i);
845 		ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 0,
846 							   &su_bh);
847 		if (ret < 0) {
848 			if (ret != -ENOENT)
849 				goto out;
850 			/* hole */
851 			memset(si, 0, sisz * n);
852 			si = (void *)si + sisz * n;
853 			continue;
854 		}
855 
856 		kaddr = kmap_atomic(su_bh->b_page);
857 		su = nilfs_sufile_block_get_segment_usage(
858 			sufile, segnum, su_bh, kaddr);
859 		for (j = 0; j < n;
860 		     j++, su = (void *)su + susz, si = (void *)si + sisz) {
861 			si->sui_lastmod = le64_to_cpu(su->su_lastmod);
862 			si->sui_nblocks = le32_to_cpu(su->su_nblocks);
863 			si->sui_flags = le32_to_cpu(su->su_flags) &
864 				~(1UL << NILFS_SEGMENT_USAGE_ACTIVE);
865 			if (nilfs_segment_is_active(nilfs, segnum + j))
866 				si->sui_flags |=
867 					(1UL << NILFS_SEGMENT_USAGE_ACTIVE);
868 		}
869 		kunmap_atomic(kaddr);
870 		brelse(su_bh);
871 	}
872 	ret = nsegs;
873 
874  out:
875 	up_read(&NILFS_MDT(sufile)->mi_sem);
876 	return ret;
877 }
878 
879 /**
880  * nilfs_sufile_set_suinfo - sets segment usage info
881  * @sufile: inode of segment usage file
882  * @buf: array of suinfo_update
883  * @supsz: byte size of suinfo_update
884  * @nsup: size of suinfo_update array
885  *
886  * Description: Takes an array of nilfs_suinfo_update structs and updates
887  * segment usage accordingly. Only the fields indicated by the sup_flags
888  * are updated.
889  *
890  * Return Value: On success, 0 is returned. On error, one of the
891  * following negative error codes is returned.
892  *
893  * %-EIO - I/O error.
894  *
895  * %-ENOMEM - Insufficient amount of memory available.
896  *
897  * %-EINVAL - Invalid values in input (segment number, flags or nblocks)
898  */
899 ssize_t nilfs_sufile_set_suinfo(struct inode *sufile, void *buf,
900 				unsigned supsz, size_t nsup)
901 {
902 	struct the_nilfs *nilfs = sufile->i_sb->s_fs_info;
903 	struct buffer_head *header_bh, *bh;
904 	struct nilfs_suinfo_update *sup, *supend = buf + supsz * nsup;
905 	struct nilfs_segment_usage *su;
906 	void *kaddr;
907 	unsigned long blkoff, prev_blkoff;
908 	int cleansi, cleansu, dirtysi, dirtysu;
909 	long ncleaned = 0, ndirtied = 0;
910 	int ret = 0;
911 
912 	if (unlikely(nsup == 0))
913 		return ret;
914 
915 	for (sup = buf; sup < supend; sup = (void *)sup + supsz) {
916 		if (sup->sup_segnum >= nilfs->ns_nsegments
917 			|| (sup->sup_flags &
918 				(~0UL << __NR_NILFS_SUINFO_UPDATE_FIELDS))
919 			|| (nilfs_suinfo_update_nblocks(sup) &&
920 				sup->sup_sui.sui_nblocks >
921 				nilfs->ns_blocks_per_segment))
922 			return -EINVAL;
923 	}
924 
925 	down_write(&NILFS_MDT(sufile)->mi_sem);
926 
927 	ret = nilfs_sufile_get_header_block(sufile, &header_bh);
928 	if (ret < 0)
929 		goto out_sem;
930 
931 	sup = buf;
932 	blkoff = nilfs_sufile_get_blkoff(sufile, sup->sup_segnum);
933 	ret = nilfs_mdt_get_block(sufile, blkoff, 1, NULL, &bh);
934 	if (ret < 0)
935 		goto out_header;
936 
937 	for (;;) {
938 		kaddr = kmap_atomic(bh->b_page);
939 		su = nilfs_sufile_block_get_segment_usage(
940 			sufile, sup->sup_segnum, bh, kaddr);
941 
942 		if (nilfs_suinfo_update_lastmod(sup))
943 			su->su_lastmod = cpu_to_le64(sup->sup_sui.sui_lastmod);
944 
945 		if (nilfs_suinfo_update_nblocks(sup))
946 			su->su_nblocks = cpu_to_le32(sup->sup_sui.sui_nblocks);
947 
948 		if (nilfs_suinfo_update_flags(sup)) {
949 			/*
950 			 * Active flag is a virtual flag projected by running
951 			 * nilfs kernel code - drop it not to write it to
952 			 * disk.
953 			 */
954 			sup->sup_sui.sui_flags &=
955 					~(1UL << NILFS_SEGMENT_USAGE_ACTIVE);
956 
957 			cleansi = nilfs_suinfo_clean(&sup->sup_sui);
958 			cleansu = nilfs_segment_usage_clean(su);
959 			dirtysi = nilfs_suinfo_dirty(&sup->sup_sui);
960 			dirtysu = nilfs_segment_usage_dirty(su);
961 
962 			if (cleansi && !cleansu)
963 				++ncleaned;
964 			else if (!cleansi && cleansu)
965 				--ncleaned;
966 
967 			if (dirtysi && !dirtysu)
968 				++ndirtied;
969 			else if (!dirtysi && dirtysu)
970 				--ndirtied;
971 
972 			su->su_flags = cpu_to_le32(sup->sup_sui.sui_flags);
973 		}
974 
975 		kunmap_atomic(kaddr);
976 
977 		sup = (void *)sup + supsz;
978 		if (sup >= supend)
979 			break;
980 
981 		prev_blkoff = blkoff;
982 		blkoff = nilfs_sufile_get_blkoff(sufile, sup->sup_segnum);
983 		if (blkoff == prev_blkoff)
984 			continue;
985 
986 		/* get different block */
987 		mark_buffer_dirty(bh);
988 		put_bh(bh);
989 		ret = nilfs_mdt_get_block(sufile, blkoff, 1, NULL, &bh);
990 		if (unlikely(ret < 0))
991 			goto out_mark;
992 	}
993 	mark_buffer_dirty(bh);
994 	put_bh(bh);
995 
996  out_mark:
997 	if (ncleaned || ndirtied) {
998 		nilfs_sufile_mod_counter(header_bh, (u64)ncleaned,
999 				(u64)ndirtied);
1000 		NILFS_SUI(sufile)->ncleansegs += ncleaned;
1001 	}
1002 	nilfs_mdt_mark_dirty(sufile);
1003  out_header:
1004 	put_bh(header_bh);
1005  out_sem:
1006 	up_write(&NILFS_MDT(sufile)->mi_sem);
1007 	return ret;
1008 }
1009 
1010 /**
1011  * nilfs_sufile_trim_fs() - trim ioctl handle function
1012  * @sufile: inode of segment usage file
1013  * @range: fstrim_range structure
1014  *
1015  * start:	First Byte to trim
1016  * len:		number of Bytes to trim from start
1017  * minlen:	minimum extent length in Bytes
1018  *
1019  * Decription: nilfs_sufile_trim_fs goes through all segments containing bytes
1020  * from start to start+len. start is rounded up to the next block boundary
1021  * and start+len is rounded down. For each clean segment blkdev_issue_discard
1022  * function is invoked.
1023  *
1024  * Return Value: On success, 0 is returned or negative error code, otherwise.
1025  */
1026 int nilfs_sufile_trim_fs(struct inode *sufile, struct fstrim_range *range)
1027 {
1028 	struct the_nilfs *nilfs = sufile->i_sb->s_fs_info;
1029 	struct buffer_head *su_bh;
1030 	struct nilfs_segment_usage *su;
1031 	void *kaddr;
1032 	size_t n, i, susz = NILFS_MDT(sufile)->mi_entry_size;
1033 	sector_t seg_start, seg_end, start_block, end_block;
1034 	sector_t start = 0, nblocks = 0;
1035 	u64 segnum, segnum_end, minlen, len, max_blocks, ndiscarded = 0;
1036 	int ret = 0;
1037 	unsigned int sects_per_block;
1038 
1039 	sects_per_block = (1 << nilfs->ns_blocksize_bits) /
1040 			bdev_logical_block_size(nilfs->ns_bdev);
1041 	len = range->len >> nilfs->ns_blocksize_bits;
1042 	minlen = range->minlen >> nilfs->ns_blocksize_bits;
1043 	max_blocks = ((u64)nilfs->ns_nsegments * nilfs->ns_blocks_per_segment);
1044 
1045 	if (!len || range->start >= max_blocks << nilfs->ns_blocksize_bits)
1046 		return -EINVAL;
1047 
1048 	start_block = (range->start + nilfs->ns_blocksize - 1) >>
1049 			nilfs->ns_blocksize_bits;
1050 
1051 	/*
1052 	 * range->len can be very large (actually, it is set to
1053 	 * ULLONG_MAX by default) - truncate upper end of the range
1054 	 * carefully so as not to overflow.
1055 	 */
1056 	if (max_blocks - start_block < len)
1057 		end_block = max_blocks - 1;
1058 	else
1059 		end_block = start_block + len - 1;
1060 
1061 	segnum = nilfs_get_segnum_of_block(nilfs, start_block);
1062 	segnum_end = nilfs_get_segnum_of_block(nilfs, end_block);
1063 
1064 	down_read(&NILFS_MDT(sufile)->mi_sem);
1065 
1066 	while (segnum <= segnum_end) {
1067 		n = nilfs_sufile_segment_usages_in_block(sufile, segnum,
1068 				segnum_end);
1069 
1070 		ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 0,
1071 							   &su_bh);
1072 		if (ret < 0) {
1073 			if (ret != -ENOENT)
1074 				goto out_sem;
1075 			/* hole */
1076 			segnum += n;
1077 			continue;
1078 		}
1079 
1080 		kaddr = kmap_atomic(su_bh->b_page);
1081 		su = nilfs_sufile_block_get_segment_usage(sufile, segnum,
1082 				su_bh, kaddr);
1083 		for (i = 0; i < n; ++i, ++segnum, su = (void *)su + susz) {
1084 			if (!nilfs_segment_usage_clean(su))
1085 				continue;
1086 
1087 			nilfs_get_segment_range(nilfs, segnum, &seg_start,
1088 						&seg_end);
1089 
1090 			if (!nblocks) {
1091 				/* start new extent */
1092 				start = seg_start;
1093 				nblocks = seg_end - seg_start + 1;
1094 				continue;
1095 			}
1096 
1097 			if (start + nblocks == seg_start) {
1098 				/* add to previous extent */
1099 				nblocks += seg_end - seg_start + 1;
1100 				continue;
1101 			}
1102 
1103 			/* discard previous extent */
1104 			if (start < start_block) {
1105 				nblocks -= start_block - start;
1106 				start = start_block;
1107 			}
1108 
1109 			if (nblocks >= minlen) {
1110 				kunmap_atomic(kaddr);
1111 
1112 				ret = blkdev_issue_discard(nilfs->ns_bdev,
1113 						start * sects_per_block,
1114 						nblocks * sects_per_block,
1115 						GFP_NOFS, 0);
1116 				if (ret < 0) {
1117 					put_bh(su_bh);
1118 					goto out_sem;
1119 				}
1120 
1121 				ndiscarded += nblocks;
1122 				kaddr = kmap_atomic(su_bh->b_page);
1123 				su = nilfs_sufile_block_get_segment_usage(
1124 					sufile, segnum, su_bh, kaddr);
1125 			}
1126 
1127 			/* start new extent */
1128 			start = seg_start;
1129 			nblocks = seg_end - seg_start + 1;
1130 		}
1131 		kunmap_atomic(kaddr);
1132 		put_bh(su_bh);
1133 	}
1134 
1135 
1136 	if (nblocks) {
1137 		/* discard last extent */
1138 		if (start < start_block) {
1139 			nblocks -= start_block - start;
1140 			start = start_block;
1141 		}
1142 		if (start + nblocks > end_block + 1)
1143 			nblocks = end_block - start + 1;
1144 
1145 		if (nblocks >= minlen) {
1146 			ret = blkdev_issue_discard(nilfs->ns_bdev,
1147 					start * sects_per_block,
1148 					nblocks * sects_per_block,
1149 					GFP_NOFS, 0);
1150 			if (!ret)
1151 				ndiscarded += nblocks;
1152 		}
1153 	}
1154 
1155 out_sem:
1156 	up_read(&NILFS_MDT(sufile)->mi_sem);
1157 
1158 	range->len = ndiscarded << nilfs->ns_blocksize_bits;
1159 	return ret;
1160 }
1161 
1162 /**
1163  * nilfs_sufile_read - read or get sufile inode
1164  * @sb: super block instance
1165  * @susize: size of a segment usage entry
1166  * @raw_inode: on-disk sufile inode
1167  * @inodep: buffer to store the inode
1168  */
1169 int nilfs_sufile_read(struct super_block *sb, size_t susize,
1170 		      struct nilfs_inode *raw_inode, struct inode **inodep)
1171 {
1172 	struct inode *sufile;
1173 	struct nilfs_sufile_info *sui;
1174 	struct buffer_head *header_bh;
1175 	struct nilfs_sufile_header *header;
1176 	void *kaddr;
1177 	int err;
1178 
1179 	if (susize > sb->s_blocksize) {
1180 		printk(KERN_ERR
1181 		       "NILFS: too large segment usage size: %zu bytes.\n",
1182 		       susize);
1183 		return -EINVAL;
1184 	} else if (susize < NILFS_MIN_SEGMENT_USAGE_SIZE) {
1185 		printk(KERN_ERR
1186 		       "NILFS: too small segment usage size: %zu bytes.\n",
1187 		       susize);
1188 		return -EINVAL;
1189 	}
1190 
1191 	sufile = nilfs_iget_locked(sb, NULL, NILFS_SUFILE_INO);
1192 	if (unlikely(!sufile))
1193 		return -ENOMEM;
1194 	if (!(sufile->i_state & I_NEW))
1195 		goto out;
1196 
1197 	err = nilfs_mdt_init(sufile, NILFS_MDT_GFP, sizeof(*sui));
1198 	if (err)
1199 		goto failed;
1200 
1201 	nilfs_mdt_set_entry_size(sufile, susize,
1202 				 sizeof(struct nilfs_sufile_header));
1203 
1204 	err = nilfs_read_inode_common(sufile, raw_inode);
1205 	if (err)
1206 		goto failed;
1207 
1208 	err = nilfs_sufile_get_header_block(sufile, &header_bh);
1209 	if (err)
1210 		goto failed;
1211 
1212 	sui = NILFS_SUI(sufile);
1213 	kaddr = kmap_atomic(header_bh->b_page);
1214 	header = kaddr + bh_offset(header_bh);
1215 	sui->ncleansegs = le64_to_cpu(header->sh_ncleansegs);
1216 	kunmap_atomic(kaddr);
1217 	brelse(header_bh);
1218 
1219 	sui->allocmax = nilfs_sufile_get_nsegments(sufile) - 1;
1220 	sui->allocmin = 0;
1221 
1222 	unlock_new_inode(sufile);
1223  out:
1224 	*inodep = sufile;
1225 	return 0;
1226  failed:
1227 	iget_failed(sufile);
1228 	return err;
1229 }
1230