1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * NILFS segment usage file. 4 * 5 * Copyright (C) 2006-2008 Nippon Telegraph and Telephone Corporation. 6 * 7 * Written by Koji Sato. 8 * Revised by Ryusuke Konishi. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/fs.h> 13 #include <linux/string.h> 14 #include <linux/buffer_head.h> 15 #include <linux/errno.h> 16 #include "mdt.h" 17 #include "sufile.h" 18 19 #include <trace/events/nilfs2.h> 20 21 /** 22 * struct nilfs_sufile_info - on-memory private data of sufile 23 * @mi: on-memory private data of metadata file 24 * @ncleansegs: number of clean segments 25 * @allocmin: lower limit of allocatable segment range 26 * @allocmax: upper limit of allocatable segment range 27 */ 28 struct nilfs_sufile_info { 29 struct nilfs_mdt_info mi; 30 unsigned long ncleansegs;/* number of clean segments */ 31 __u64 allocmin; /* lower limit of allocatable segment range */ 32 __u64 allocmax; /* upper limit of allocatable segment range */ 33 }; 34 35 static inline struct nilfs_sufile_info *NILFS_SUI(struct inode *sufile) 36 { 37 return (struct nilfs_sufile_info *)NILFS_MDT(sufile); 38 } 39 40 static inline unsigned long 41 nilfs_sufile_segment_usages_per_block(const struct inode *sufile) 42 { 43 return NILFS_MDT(sufile)->mi_entries_per_block; 44 } 45 46 static unsigned long 47 nilfs_sufile_get_blkoff(const struct inode *sufile, __u64 segnum) 48 { 49 __u64 t = segnum + NILFS_MDT(sufile)->mi_first_entry_offset; 50 51 do_div(t, nilfs_sufile_segment_usages_per_block(sufile)); 52 return (unsigned long)t; 53 } 54 55 static unsigned long 56 nilfs_sufile_get_offset(const struct inode *sufile, __u64 segnum) 57 { 58 __u64 t = segnum + NILFS_MDT(sufile)->mi_first_entry_offset; 59 60 return do_div(t, nilfs_sufile_segment_usages_per_block(sufile)); 61 } 62 63 static unsigned long 64 nilfs_sufile_segment_usages_in_block(const struct inode *sufile, __u64 curr, 65 __u64 max) 66 { 67 return min_t(unsigned long, 68 nilfs_sufile_segment_usages_per_block(sufile) - 69 nilfs_sufile_get_offset(sufile, curr), 70 max - curr + 1); 71 } 72 73 static struct nilfs_segment_usage * 74 nilfs_sufile_block_get_segment_usage(const struct inode *sufile, __u64 segnum, 75 struct buffer_head *bh, void *kaddr) 76 { 77 return kaddr + bh_offset(bh) + 78 nilfs_sufile_get_offset(sufile, segnum) * 79 NILFS_MDT(sufile)->mi_entry_size; 80 } 81 82 static inline int nilfs_sufile_get_header_block(struct inode *sufile, 83 struct buffer_head **bhp) 84 { 85 return nilfs_mdt_get_block(sufile, 0, 0, NULL, bhp); 86 } 87 88 static inline int 89 nilfs_sufile_get_segment_usage_block(struct inode *sufile, __u64 segnum, 90 int create, struct buffer_head **bhp) 91 { 92 return nilfs_mdt_get_block(sufile, 93 nilfs_sufile_get_blkoff(sufile, segnum), 94 create, NULL, bhp); 95 } 96 97 static int nilfs_sufile_delete_segment_usage_block(struct inode *sufile, 98 __u64 segnum) 99 { 100 return nilfs_mdt_delete_block(sufile, 101 nilfs_sufile_get_blkoff(sufile, segnum)); 102 } 103 104 static void nilfs_sufile_mod_counter(struct buffer_head *header_bh, 105 u64 ncleanadd, u64 ndirtyadd) 106 { 107 struct nilfs_sufile_header *header; 108 void *kaddr; 109 110 kaddr = kmap_atomic(header_bh->b_page); 111 header = kaddr + bh_offset(header_bh); 112 le64_add_cpu(&header->sh_ncleansegs, ncleanadd); 113 le64_add_cpu(&header->sh_ndirtysegs, ndirtyadd); 114 kunmap_atomic(kaddr); 115 116 mark_buffer_dirty(header_bh); 117 } 118 119 /** 120 * nilfs_sufile_get_ncleansegs - return the number of clean segments 121 * @sufile: inode of segment usage file 122 */ 123 unsigned long nilfs_sufile_get_ncleansegs(struct inode *sufile) 124 { 125 return NILFS_SUI(sufile)->ncleansegs; 126 } 127 128 /** 129 * nilfs_sufile_updatev - modify multiple segment usages at a time 130 * @sufile: inode of segment usage file 131 * @segnumv: array of segment numbers 132 * @nsegs: size of @segnumv array 133 * @create: creation flag 134 * @ndone: place to store number of modified segments on @segnumv 135 * @dofunc: primitive operation for the update 136 * 137 * Description: nilfs_sufile_updatev() repeatedly calls @dofunc 138 * against the given array of segments. The @dofunc is called with 139 * buffers of a header block and the sufile block in which the target 140 * segment usage entry is contained. If @ndone is given, the number 141 * of successfully modified segments from the head is stored in the 142 * place @ndone points to. 143 * 144 * Return Value: On success, zero is returned. On error, one of the 145 * following negative error codes is returned. 146 * 147 * %-EIO - I/O error. 148 * 149 * %-ENOMEM - Insufficient amount of memory available. 150 * 151 * %-ENOENT - Given segment usage is in hole block (may be returned if 152 * @create is zero) 153 * 154 * %-EINVAL - Invalid segment usage number 155 */ 156 int nilfs_sufile_updatev(struct inode *sufile, __u64 *segnumv, size_t nsegs, 157 int create, size_t *ndone, 158 void (*dofunc)(struct inode *, __u64, 159 struct buffer_head *, 160 struct buffer_head *)) 161 { 162 struct buffer_head *header_bh, *bh; 163 unsigned long blkoff, prev_blkoff; 164 __u64 *seg; 165 size_t nerr = 0, n = 0; 166 int ret = 0; 167 168 if (unlikely(nsegs == 0)) 169 goto out; 170 171 down_write(&NILFS_MDT(sufile)->mi_sem); 172 for (seg = segnumv; seg < segnumv + nsegs; seg++) { 173 if (unlikely(*seg >= nilfs_sufile_get_nsegments(sufile))) { 174 nilfs_warn(sufile->i_sb, 175 "%s: invalid segment number: %llu", 176 __func__, (unsigned long long)*seg); 177 nerr++; 178 } 179 } 180 if (nerr > 0) { 181 ret = -EINVAL; 182 goto out_sem; 183 } 184 185 ret = nilfs_sufile_get_header_block(sufile, &header_bh); 186 if (ret < 0) 187 goto out_sem; 188 189 seg = segnumv; 190 blkoff = nilfs_sufile_get_blkoff(sufile, *seg); 191 ret = nilfs_mdt_get_block(sufile, blkoff, create, NULL, &bh); 192 if (ret < 0) 193 goto out_header; 194 195 for (;;) { 196 dofunc(sufile, *seg, header_bh, bh); 197 198 if (++seg >= segnumv + nsegs) 199 break; 200 prev_blkoff = blkoff; 201 blkoff = nilfs_sufile_get_blkoff(sufile, *seg); 202 if (blkoff == prev_blkoff) 203 continue; 204 205 /* get different block */ 206 brelse(bh); 207 ret = nilfs_mdt_get_block(sufile, blkoff, create, NULL, &bh); 208 if (unlikely(ret < 0)) 209 goto out_header; 210 } 211 brelse(bh); 212 213 out_header: 214 n = seg - segnumv; 215 brelse(header_bh); 216 out_sem: 217 up_write(&NILFS_MDT(sufile)->mi_sem); 218 out: 219 if (ndone) 220 *ndone = n; 221 return ret; 222 } 223 224 int nilfs_sufile_update(struct inode *sufile, __u64 segnum, int create, 225 void (*dofunc)(struct inode *, __u64, 226 struct buffer_head *, 227 struct buffer_head *)) 228 { 229 struct buffer_head *header_bh, *bh; 230 int ret; 231 232 if (unlikely(segnum >= nilfs_sufile_get_nsegments(sufile))) { 233 nilfs_warn(sufile->i_sb, "%s: invalid segment number: %llu", 234 __func__, (unsigned long long)segnum); 235 return -EINVAL; 236 } 237 down_write(&NILFS_MDT(sufile)->mi_sem); 238 239 ret = nilfs_sufile_get_header_block(sufile, &header_bh); 240 if (ret < 0) 241 goto out_sem; 242 243 ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, create, &bh); 244 if (!ret) { 245 dofunc(sufile, segnum, header_bh, bh); 246 brelse(bh); 247 } 248 brelse(header_bh); 249 250 out_sem: 251 up_write(&NILFS_MDT(sufile)->mi_sem); 252 return ret; 253 } 254 255 /** 256 * nilfs_sufile_set_alloc_range - limit range of segment to be allocated 257 * @sufile: inode of segment usage file 258 * @start: minimum segment number of allocatable region (inclusive) 259 * @end: maximum segment number of allocatable region (inclusive) 260 * 261 * Return Value: On success, 0 is returned. On error, one of the 262 * following negative error codes is returned. 263 * 264 * %-ERANGE - invalid segment region 265 */ 266 int nilfs_sufile_set_alloc_range(struct inode *sufile, __u64 start, __u64 end) 267 { 268 struct nilfs_sufile_info *sui = NILFS_SUI(sufile); 269 __u64 nsegs; 270 int ret = -ERANGE; 271 272 down_write(&NILFS_MDT(sufile)->mi_sem); 273 nsegs = nilfs_sufile_get_nsegments(sufile); 274 275 if (start <= end && end < nsegs) { 276 sui->allocmin = start; 277 sui->allocmax = end; 278 ret = 0; 279 } 280 up_write(&NILFS_MDT(sufile)->mi_sem); 281 return ret; 282 } 283 284 /** 285 * nilfs_sufile_alloc - allocate a segment 286 * @sufile: inode of segment usage file 287 * @segnump: pointer to segment number 288 * 289 * Description: nilfs_sufile_alloc() allocates a clean segment. 290 * 291 * Return Value: On success, 0 is returned and the segment number of the 292 * allocated segment is stored in the place pointed by @segnump. On error, one 293 * of the following negative error codes is returned. 294 * 295 * %-EIO - I/O error. 296 * 297 * %-ENOMEM - Insufficient amount of memory available. 298 * 299 * %-ENOSPC - No clean segment left. 300 */ 301 int nilfs_sufile_alloc(struct inode *sufile, __u64 *segnump) 302 { 303 struct buffer_head *header_bh, *su_bh; 304 struct nilfs_sufile_header *header; 305 struct nilfs_segment_usage *su; 306 struct nilfs_sufile_info *sui = NILFS_SUI(sufile); 307 size_t susz = NILFS_MDT(sufile)->mi_entry_size; 308 __u64 segnum, maxsegnum, last_alloc; 309 void *kaddr; 310 unsigned long nsegments, nsus, cnt; 311 int ret, j; 312 313 down_write(&NILFS_MDT(sufile)->mi_sem); 314 315 ret = nilfs_sufile_get_header_block(sufile, &header_bh); 316 if (ret < 0) 317 goto out_sem; 318 kaddr = kmap_atomic(header_bh->b_page); 319 header = kaddr + bh_offset(header_bh); 320 last_alloc = le64_to_cpu(header->sh_last_alloc); 321 kunmap_atomic(kaddr); 322 323 nsegments = nilfs_sufile_get_nsegments(sufile); 324 maxsegnum = sui->allocmax; 325 segnum = last_alloc + 1; 326 if (segnum < sui->allocmin || segnum > sui->allocmax) 327 segnum = sui->allocmin; 328 329 for (cnt = 0; cnt < nsegments; cnt += nsus) { 330 if (segnum > maxsegnum) { 331 if (cnt < sui->allocmax - sui->allocmin + 1) { 332 /* 333 * wrap around in the limited region. 334 * if allocation started from 335 * sui->allocmin, this never happens. 336 */ 337 segnum = sui->allocmin; 338 maxsegnum = last_alloc; 339 } else if (segnum > sui->allocmin && 340 sui->allocmax + 1 < nsegments) { 341 segnum = sui->allocmax + 1; 342 maxsegnum = nsegments - 1; 343 } else if (sui->allocmin > 0) { 344 segnum = 0; 345 maxsegnum = sui->allocmin - 1; 346 } else { 347 break; /* never happens */ 348 } 349 } 350 trace_nilfs2_segment_usage_check(sufile, segnum, cnt); 351 ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 1, 352 &su_bh); 353 if (ret < 0) 354 goto out_header; 355 kaddr = kmap_atomic(su_bh->b_page); 356 su = nilfs_sufile_block_get_segment_usage( 357 sufile, segnum, su_bh, kaddr); 358 359 nsus = nilfs_sufile_segment_usages_in_block( 360 sufile, segnum, maxsegnum); 361 for (j = 0; j < nsus; j++, su = (void *)su + susz, segnum++) { 362 if (!nilfs_segment_usage_clean(su)) 363 continue; 364 /* found a clean segment */ 365 nilfs_segment_usage_set_dirty(su); 366 kunmap_atomic(kaddr); 367 368 kaddr = kmap_atomic(header_bh->b_page); 369 header = kaddr + bh_offset(header_bh); 370 le64_add_cpu(&header->sh_ncleansegs, -1); 371 le64_add_cpu(&header->sh_ndirtysegs, 1); 372 header->sh_last_alloc = cpu_to_le64(segnum); 373 kunmap_atomic(kaddr); 374 375 sui->ncleansegs--; 376 mark_buffer_dirty(header_bh); 377 mark_buffer_dirty(su_bh); 378 nilfs_mdt_mark_dirty(sufile); 379 brelse(su_bh); 380 *segnump = segnum; 381 382 trace_nilfs2_segment_usage_allocated(sufile, segnum); 383 384 goto out_header; 385 } 386 387 kunmap_atomic(kaddr); 388 brelse(su_bh); 389 } 390 391 /* no segments left */ 392 ret = -ENOSPC; 393 394 out_header: 395 brelse(header_bh); 396 397 out_sem: 398 up_write(&NILFS_MDT(sufile)->mi_sem); 399 return ret; 400 } 401 402 void nilfs_sufile_do_cancel_free(struct inode *sufile, __u64 segnum, 403 struct buffer_head *header_bh, 404 struct buffer_head *su_bh) 405 { 406 struct nilfs_segment_usage *su; 407 void *kaddr; 408 409 kaddr = kmap_atomic(su_bh->b_page); 410 su = nilfs_sufile_block_get_segment_usage(sufile, segnum, su_bh, kaddr); 411 if (unlikely(!nilfs_segment_usage_clean(su))) { 412 nilfs_warn(sufile->i_sb, "%s: segment %llu must be clean", 413 __func__, (unsigned long long)segnum); 414 kunmap_atomic(kaddr); 415 return; 416 } 417 nilfs_segment_usage_set_dirty(su); 418 kunmap_atomic(kaddr); 419 420 nilfs_sufile_mod_counter(header_bh, -1, 1); 421 NILFS_SUI(sufile)->ncleansegs--; 422 423 mark_buffer_dirty(su_bh); 424 nilfs_mdt_mark_dirty(sufile); 425 } 426 427 void nilfs_sufile_do_scrap(struct inode *sufile, __u64 segnum, 428 struct buffer_head *header_bh, 429 struct buffer_head *su_bh) 430 { 431 struct nilfs_segment_usage *su; 432 void *kaddr; 433 int clean, dirty; 434 435 kaddr = kmap_atomic(su_bh->b_page); 436 su = nilfs_sufile_block_get_segment_usage(sufile, segnum, su_bh, kaddr); 437 if (su->su_flags == cpu_to_le32(BIT(NILFS_SEGMENT_USAGE_DIRTY)) && 438 su->su_nblocks == cpu_to_le32(0)) { 439 kunmap_atomic(kaddr); 440 return; 441 } 442 clean = nilfs_segment_usage_clean(su); 443 dirty = nilfs_segment_usage_dirty(su); 444 445 /* make the segment garbage */ 446 su->su_lastmod = cpu_to_le64(0); 447 su->su_nblocks = cpu_to_le32(0); 448 su->su_flags = cpu_to_le32(BIT(NILFS_SEGMENT_USAGE_DIRTY)); 449 kunmap_atomic(kaddr); 450 451 nilfs_sufile_mod_counter(header_bh, clean ? (u64)-1 : 0, dirty ? 0 : 1); 452 NILFS_SUI(sufile)->ncleansegs -= clean; 453 454 mark_buffer_dirty(su_bh); 455 nilfs_mdt_mark_dirty(sufile); 456 } 457 458 void nilfs_sufile_do_free(struct inode *sufile, __u64 segnum, 459 struct buffer_head *header_bh, 460 struct buffer_head *su_bh) 461 { 462 struct nilfs_segment_usage *su; 463 void *kaddr; 464 int sudirty; 465 466 kaddr = kmap_atomic(su_bh->b_page); 467 su = nilfs_sufile_block_get_segment_usage(sufile, segnum, su_bh, kaddr); 468 if (nilfs_segment_usage_clean(su)) { 469 nilfs_warn(sufile->i_sb, "%s: segment %llu is already clean", 470 __func__, (unsigned long long)segnum); 471 kunmap_atomic(kaddr); 472 return; 473 } 474 WARN_ON(nilfs_segment_usage_error(su)); 475 WARN_ON(!nilfs_segment_usage_dirty(su)); 476 477 sudirty = nilfs_segment_usage_dirty(su); 478 nilfs_segment_usage_set_clean(su); 479 kunmap_atomic(kaddr); 480 mark_buffer_dirty(su_bh); 481 482 nilfs_sufile_mod_counter(header_bh, 1, sudirty ? (u64)-1 : 0); 483 NILFS_SUI(sufile)->ncleansegs++; 484 485 nilfs_mdt_mark_dirty(sufile); 486 487 trace_nilfs2_segment_usage_freed(sufile, segnum); 488 } 489 490 /** 491 * nilfs_sufile_mark_dirty - mark the buffer having a segment usage dirty 492 * @sufile: inode of segment usage file 493 * @segnum: segment number 494 */ 495 int nilfs_sufile_mark_dirty(struct inode *sufile, __u64 segnum) 496 { 497 struct buffer_head *bh; 498 void *kaddr; 499 struct nilfs_segment_usage *su; 500 int ret; 501 502 down_write(&NILFS_MDT(sufile)->mi_sem); 503 ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 0, &bh); 504 if (!ret) { 505 mark_buffer_dirty(bh); 506 nilfs_mdt_mark_dirty(sufile); 507 kaddr = kmap_atomic(bh->b_page); 508 su = nilfs_sufile_block_get_segment_usage(sufile, segnum, bh, kaddr); 509 nilfs_segment_usage_set_dirty(su); 510 kunmap_atomic(kaddr); 511 brelse(bh); 512 } 513 up_write(&NILFS_MDT(sufile)->mi_sem); 514 return ret; 515 } 516 517 /** 518 * nilfs_sufile_set_segment_usage - set usage of a segment 519 * @sufile: inode of segment usage file 520 * @segnum: segment number 521 * @nblocks: number of live blocks in the segment 522 * @modtime: modification time (option) 523 */ 524 int nilfs_sufile_set_segment_usage(struct inode *sufile, __u64 segnum, 525 unsigned long nblocks, time64_t modtime) 526 { 527 struct buffer_head *bh; 528 struct nilfs_segment_usage *su; 529 void *kaddr; 530 int ret; 531 532 down_write(&NILFS_MDT(sufile)->mi_sem); 533 ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 0, &bh); 534 if (ret < 0) 535 goto out_sem; 536 537 kaddr = kmap_atomic(bh->b_page); 538 su = nilfs_sufile_block_get_segment_usage(sufile, segnum, bh, kaddr); 539 WARN_ON(nilfs_segment_usage_error(su)); 540 if (modtime) 541 su->su_lastmod = cpu_to_le64(modtime); 542 su->su_nblocks = cpu_to_le32(nblocks); 543 kunmap_atomic(kaddr); 544 545 mark_buffer_dirty(bh); 546 nilfs_mdt_mark_dirty(sufile); 547 brelse(bh); 548 549 out_sem: 550 up_write(&NILFS_MDT(sufile)->mi_sem); 551 return ret; 552 } 553 554 /** 555 * nilfs_sufile_get_stat - get segment usage statistics 556 * @sufile: inode of segment usage file 557 * @sustat: pointer to a structure of segment usage statistics 558 * 559 * Description: nilfs_sufile_get_stat() returns information about segment 560 * usage. 561 * 562 * Return Value: On success, 0 is returned, and segment usage information is 563 * stored in the place pointed by @sustat. On error, one of the following 564 * negative error codes is returned. 565 * 566 * %-EIO - I/O error. 567 * 568 * %-ENOMEM - Insufficient amount of memory available. 569 */ 570 int nilfs_sufile_get_stat(struct inode *sufile, struct nilfs_sustat *sustat) 571 { 572 struct buffer_head *header_bh; 573 struct nilfs_sufile_header *header; 574 struct the_nilfs *nilfs = sufile->i_sb->s_fs_info; 575 void *kaddr; 576 int ret; 577 578 down_read(&NILFS_MDT(sufile)->mi_sem); 579 580 ret = nilfs_sufile_get_header_block(sufile, &header_bh); 581 if (ret < 0) 582 goto out_sem; 583 584 kaddr = kmap_atomic(header_bh->b_page); 585 header = kaddr + bh_offset(header_bh); 586 sustat->ss_nsegs = nilfs_sufile_get_nsegments(sufile); 587 sustat->ss_ncleansegs = le64_to_cpu(header->sh_ncleansegs); 588 sustat->ss_ndirtysegs = le64_to_cpu(header->sh_ndirtysegs); 589 sustat->ss_ctime = nilfs->ns_ctime; 590 sustat->ss_nongc_ctime = nilfs->ns_nongc_ctime; 591 spin_lock(&nilfs->ns_last_segment_lock); 592 sustat->ss_prot_seq = nilfs->ns_prot_seq; 593 spin_unlock(&nilfs->ns_last_segment_lock); 594 kunmap_atomic(kaddr); 595 brelse(header_bh); 596 597 out_sem: 598 up_read(&NILFS_MDT(sufile)->mi_sem); 599 return ret; 600 } 601 602 void nilfs_sufile_do_set_error(struct inode *sufile, __u64 segnum, 603 struct buffer_head *header_bh, 604 struct buffer_head *su_bh) 605 { 606 struct nilfs_segment_usage *su; 607 void *kaddr; 608 int suclean; 609 610 kaddr = kmap_atomic(su_bh->b_page); 611 su = nilfs_sufile_block_get_segment_usage(sufile, segnum, su_bh, kaddr); 612 if (nilfs_segment_usage_error(su)) { 613 kunmap_atomic(kaddr); 614 return; 615 } 616 suclean = nilfs_segment_usage_clean(su); 617 nilfs_segment_usage_set_error(su); 618 kunmap_atomic(kaddr); 619 620 if (suclean) { 621 nilfs_sufile_mod_counter(header_bh, -1, 0); 622 NILFS_SUI(sufile)->ncleansegs--; 623 } 624 mark_buffer_dirty(su_bh); 625 nilfs_mdt_mark_dirty(sufile); 626 } 627 628 /** 629 * nilfs_sufile_truncate_range - truncate range of segment array 630 * @sufile: inode of segment usage file 631 * @start: start segment number (inclusive) 632 * @end: end segment number (inclusive) 633 * 634 * Return Value: On success, 0 is returned. On error, one of the 635 * following negative error codes is returned. 636 * 637 * %-EIO - I/O error. 638 * 639 * %-ENOMEM - Insufficient amount of memory available. 640 * 641 * %-EINVAL - Invalid number of segments specified 642 * 643 * %-EBUSY - Dirty or active segments are present in the range 644 */ 645 static int nilfs_sufile_truncate_range(struct inode *sufile, 646 __u64 start, __u64 end) 647 { 648 struct the_nilfs *nilfs = sufile->i_sb->s_fs_info; 649 struct buffer_head *header_bh; 650 struct buffer_head *su_bh; 651 struct nilfs_segment_usage *su, *su2; 652 size_t susz = NILFS_MDT(sufile)->mi_entry_size; 653 unsigned long segusages_per_block; 654 unsigned long nsegs, ncleaned; 655 __u64 segnum; 656 void *kaddr; 657 ssize_t n, nc; 658 int ret; 659 int j; 660 661 nsegs = nilfs_sufile_get_nsegments(sufile); 662 663 ret = -EINVAL; 664 if (start > end || start >= nsegs) 665 goto out; 666 667 ret = nilfs_sufile_get_header_block(sufile, &header_bh); 668 if (ret < 0) 669 goto out; 670 671 segusages_per_block = nilfs_sufile_segment_usages_per_block(sufile); 672 ncleaned = 0; 673 674 for (segnum = start; segnum <= end; segnum += n) { 675 n = min_t(unsigned long, 676 segusages_per_block - 677 nilfs_sufile_get_offset(sufile, segnum), 678 end - segnum + 1); 679 ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 0, 680 &su_bh); 681 if (ret < 0) { 682 if (ret != -ENOENT) 683 goto out_header; 684 /* hole */ 685 continue; 686 } 687 kaddr = kmap_atomic(su_bh->b_page); 688 su = nilfs_sufile_block_get_segment_usage( 689 sufile, segnum, su_bh, kaddr); 690 su2 = su; 691 for (j = 0; j < n; j++, su = (void *)su + susz) { 692 if ((le32_to_cpu(su->su_flags) & 693 ~BIT(NILFS_SEGMENT_USAGE_ERROR)) || 694 nilfs_segment_is_active(nilfs, segnum + j)) { 695 ret = -EBUSY; 696 kunmap_atomic(kaddr); 697 brelse(su_bh); 698 goto out_header; 699 } 700 } 701 nc = 0; 702 for (su = su2, j = 0; j < n; j++, su = (void *)su + susz) { 703 if (nilfs_segment_usage_error(su)) { 704 nilfs_segment_usage_set_clean(su); 705 nc++; 706 } 707 } 708 kunmap_atomic(kaddr); 709 if (nc > 0) { 710 mark_buffer_dirty(su_bh); 711 ncleaned += nc; 712 } 713 brelse(su_bh); 714 715 if (n == segusages_per_block) { 716 /* make hole */ 717 nilfs_sufile_delete_segment_usage_block(sufile, segnum); 718 } 719 } 720 ret = 0; 721 722 out_header: 723 if (ncleaned > 0) { 724 NILFS_SUI(sufile)->ncleansegs += ncleaned; 725 nilfs_sufile_mod_counter(header_bh, ncleaned, 0); 726 nilfs_mdt_mark_dirty(sufile); 727 } 728 brelse(header_bh); 729 out: 730 return ret; 731 } 732 733 /** 734 * nilfs_sufile_resize - resize segment array 735 * @sufile: inode of segment usage file 736 * @newnsegs: new number of segments 737 * 738 * Return Value: On success, 0 is returned. On error, one of the 739 * following negative error codes is returned. 740 * 741 * %-EIO - I/O error. 742 * 743 * %-ENOMEM - Insufficient amount of memory available. 744 * 745 * %-ENOSPC - Enough free space is not left for shrinking 746 * 747 * %-EBUSY - Dirty or active segments exist in the region to be truncated 748 */ 749 int nilfs_sufile_resize(struct inode *sufile, __u64 newnsegs) 750 { 751 struct the_nilfs *nilfs = sufile->i_sb->s_fs_info; 752 struct buffer_head *header_bh; 753 struct nilfs_sufile_header *header; 754 struct nilfs_sufile_info *sui = NILFS_SUI(sufile); 755 void *kaddr; 756 unsigned long nsegs, nrsvsegs; 757 int ret = 0; 758 759 down_write(&NILFS_MDT(sufile)->mi_sem); 760 761 nsegs = nilfs_sufile_get_nsegments(sufile); 762 if (nsegs == newnsegs) 763 goto out; 764 765 ret = -ENOSPC; 766 nrsvsegs = nilfs_nrsvsegs(nilfs, newnsegs); 767 if (newnsegs < nsegs && nsegs - newnsegs + nrsvsegs > sui->ncleansegs) 768 goto out; 769 770 ret = nilfs_sufile_get_header_block(sufile, &header_bh); 771 if (ret < 0) 772 goto out; 773 774 if (newnsegs > nsegs) { 775 sui->ncleansegs += newnsegs - nsegs; 776 } else /* newnsegs < nsegs */ { 777 ret = nilfs_sufile_truncate_range(sufile, newnsegs, nsegs - 1); 778 if (ret < 0) 779 goto out_header; 780 781 sui->ncleansegs -= nsegs - newnsegs; 782 } 783 784 kaddr = kmap_atomic(header_bh->b_page); 785 header = kaddr + bh_offset(header_bh); 786 header->sh_ncleansegs = cpu_to_le64(sui->ncleansegs); 787 kunmap_atomic(kaddr); 788 789 mark_buffer_dirty(header_bh); 790 nilfs_mdt_mark_dirty(sufile); 791 nilfs_set_nsegments(nilfs, newnsegs); 792 793 out_header: 794 brelse(header_bh); 795 out: 796 up_write(&NILFS_MDT(sufile)->mi_sem); 797 return ret; 798 } 799 800 /** 801 * nilfs_sufile_get_suinfo - 802 * @sufile: inode of segment usage file 803 * @segnum: segment number to start looking 804 * @buf: array of suinfo 805 * @sisz: byte size of suinfo 806 * @nsi: size of suinfo array 807 * 808 * Description: 809 * 810 * Return Value: On success, 0 is returned and .... On error, one of the 811 * following negative error codes is returned. 812 * 813 * %-EIO - I/O error. 814 * 815 * %-ENOMEM - Insufficient amount of memory available. 816 */ 817 ssize_t nilfs_sufile_get_suinfo(struct inode *sufile, __u64 segnum, void *buf, 818 unsigned int sisz, size_t nsi) 819 { 820 struct buffer_head *su_bh; 821 struct nilfs_segment_usage *su; 822 struct nilfs_suinfo *si = buf; 823 size_t susz = NILFS_MDT(sufile)->mi_entry_size; 824 struct the_nilfs *nilfs = sufile->i_sb->s_fs_info; 825 void *kaddr; 826 unsigned long nsegs, segusages_per_block; 827 ssize_t n; 828 int ret, i, j; 829 830 down_read(&NILFS_MDT(sufile)->mi_sem); 831 832 segusages_per_block = nilfs_sufile_segment_usages_per_block(sufile); 833 nsegs = min_t(unsigned long, 834 nilfs_sufile_get_nsegments(sufile) - segnum, 835 nsi); 836 for (i = 0; i < nsegs; i += n, segnum += n) { 837 n = min_t(unsigned long, 838 segusages_per_block - 839 nilfs_sufile_get_offset(sufile, segnum), 840 nsegs - i); 841 ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 0, 842 &su_bh); 843 if (ret < 0) { 844 if (ret != -ENOENT) 845 goto out; 846 /* hole */ 847 memset(si, 0, sisz * n); 848 si = (void *)si + sisz * n; 849 continue; 850 } 851 852 kaddr = kmap_atomic(su_bh->b_page); 853 su = nilfs_sufile_block_get_segment_usage( 854 sufile, segnum, su_bh, kaddr); 855 for (j = 0; j < n; 856 j++, su = (void *)su + susz, si = (void *)si + sisz) { 857 si->sui_lastmod = le64_to_cpu(su->su_lastmod); 858 si->sui_nblocks = le32_to_cpu(su->su_nblocks); 859 si->sui_flags = le32_to_cpu(su->su_flags) & 860 ~BIT(NILFS_SEGMENT_USAGE_ACTIVE); 861 if (nilfs_segment_is_active(nilfs, segnum + j)) 862 si->sui_flags |= 863 BIT(NILFS_SEGMENT_USAGE_ACTIVE); 864 } 865 kunmap_atomic(kaddr); 866 brelse(su_bh); 867 } 868 ret = nsegs; 869 870 out: 871 up_read(&NILFS_MDT(sufile)->mi_sem); 872 return ret; 873 } 874 875 /** 876 * nilfs_sufile_set_suinfo - sets segment usage info 877 * @sufile: inode of segment usage file 878 * @buf: array of suinfo_update 879 * @supsz: byte size of suinfo_update 880 * @nsup: size of suinfo_update array 881 * 882 * Description: Takes an array of nilfs_suinfo_update structs and updates 883 * segment usage accordingly. Only the fields indicated by the sup_flags 884 * are updated. 885 * 886 * Return Value: On success, 0 is returned. On error, one of the 887 * following negative error codes is returned. 888 * 889 * %-EIO - I/O error. 890 * 891 * %-ENOMEM - Insufficient amount of memory available. 892 * 893 * %-EINVAL - Invalid values in input (segment number, flags or nblocks) 894 */ 895 ssize_t nilfs_sufile_set_suinfo(struct inode *sufile, void *buf, 896 unsigned int supsz, size_t nsup) 897 { 898 struct the_nilfs *nilfs = sufile->i_sb->s_fs_info; 899 struct buffer_head *header_bh, *bh; 900 struct nilfs_suinfo_update *sup, *supend = buf + supsz * nsup; 901 struct nilfs_segment_usage *su; 902 void *kaddr; 903 unsigned long blkoff, prev_blkoff; 904 int cleansi, cleansu, dirtysi, dirtysu; 905 long ncleaned = 0, ndirtied = 0; 906 int ret = 0; 907 908 if (unlikely(nsup == 0)) 909 return ret; 910 911 for (sup = buf; sup < supend; sup = (void *)sup + supsz) { 912 if (sup->sup_segnum >= nilfs->ns_nsegments 913 || (sup->sup_flags & 914 (~0UL << __NR_NILFS_SUINFO_UPDATE_FIELDS)) 915 || (nilfs_suinfo_update_nblocks(sup) && 916 sup->sup_sui.sui_nblocks > 917 nilfs->ns_blocks_per_segment)) 918 return -EINVAL; 919 } 920 921 down_write(&NILFS_MDT(sufile)->mi_sem); 922 923 ret = nilfs_sufile_get_header_block(sufile, &header_bh); 924 if (ret < 0) 925 goto out_sem; 926 927 sup = buf; 928 blkoff = nilfs_sufile_get_blkoff(sufile, sup->sup_segnum); 929 ret = nilfs_mdt_get_block(sufile, blkoff, 1, NULL, &bh); 930 if (ret < 0) 931 goto out_header; 932 933 for (;;) { 934 kaddr = kmap_atomic(bh->b_page); 935 su = nilfs_sufile_block_get_segment_usage( 936 sufile, sup->sup_segnum, bh, kaddr); 937 938 if (nilfs_suinfo_update_lastmod(sup)) 939 su->su_lastmod = cpu_to_le64(sup->sup_sui.sui_lastmod); 940 941 if (nilfs_suinfo_update_nblocks(sup)) 942 su->su_nblocks = cpu_to_le32(sup->sup_sui.sui_nblocks); 943 944 if (nilfs_suinfo_update_flags(sup)) { 945 /* 946 * Active flag is a virtual flag projected by running 947 * nilfs kernel code - drop it not to write it to 948 * disk. 949 */ 950 sup->sup_sui.sui_flags &= 951 ~BIT(NILFS_SEGMENT_USAGE_ACTIVE); 952 953 cleansi = nilfs_suinfo_clean(&sup->sup_sui); 954 cleansu = nilfs_segment_usage_clean(su); 955 dirtysi = nilfs_suinfo_dirty(&sup->sup_sui); 956 dirtysu = nilfs_segment_usage_dirty(su); 957 958 if (cleansi && !cleansu) 959 ++ncleaned; 960 else if (!cleansi && cleansu) 961 --ncleaned; 962 963 if (dirtysi && !dirtysu) 964 ++ndirtied; 965 else if (!dirtysi && dirtysu) 966 --ndirtied; 967 968 su->su_flags = cpu_to_le32(sup->sup_sui.sui_flags); 969 } 970 971 kunmap_atomic(kaddr); 972 973 sup = (void *)sup + supsz; 974 if (sup >= supend) 975 break; 976 977 prev_blkoff = blkoff; 978 blkoff = nilfs_sufile_get_blkoff(sufile, sup->sup_segnum); 979 if (blkoff == prev_blkoff) 980 continue; 981 982 /* get different block */ 983 mark_buffer_dirty(bh); 984 put_bh(bh); 985 ret = nilfs_mdt_get_block(sufile, blkoff, 1, NULL, &bh); 986 if (unlikely(ret < 0)) 987 goto out_mark; 988 } 989 mark_buffer_dirty(bh); 990 put_bh(bh); 991 992 out_mark: 993 if (ncleaned || ndirtied) { 994 nilfs_sufile_mod_counter(header_bh, (u64)ncleaned, 995 (u64)ndirtied); 996 NILFS_SUI(sufile)->ncleansegs += ncleaned; 997 } 998 nilfs_mdt_mark_dirty(sufile); 999 out_header: 1000 put_bh(header_bh); 1001 out_sem: 1002 up_write(&NILFS_MDT(sufile)->mi_sem); 1003 return ret; 1004 } 1005 1006 /** 1007 * nilfs_sufile_trim_fs() - trim ioctl handle function 1008 * @sufile: inode of segment usage file 1009 * @range: fstrim_range structure 1010 * 1011 * start: First Byte to trim 1012 * len: number of Bytes to trim from start 1013 * minlen: minimum extent length in Bytes 1014 * 1015 * Decription: nilfs_sufile_trim_fs goes through all segments containing bytes 1016 * from start to start+len. start is rounded up to the next block boundary 1017 * and start+len is rounded down. For each clean segment blkdev_issue_discard 1018 * function is invoked. 1019 * 1020 * Return Value: On success, 0 is returned or negative error code, otherwise. 1021 */ 1022 int nilfs_sufile_trim_fs(struct inode *sufile, struct fstrim_range *range) 1023 { 1024 struct the_nilfs *nilfs = sufile->i_sb->s_fs_info; 1025 struct buffer_head *su_bh; 1026 struct nilfs_segment_usage *su; 1027 void *kaddr; 1028 size_t n, i, susz = NILFS_MDT(sufile)->mi_entry_size; 1029 sector_t seg_start, seg_end, start_block, end_block; 1030 sector_t start = 0, nblocks = 0; 1031 u64 segnum, segnum_end, minlen, len, max_blocks, ndiscarded = 0; 1032 int ret = 0; 1033 unsigned int sects_per_block; 1034 1035 sects_per_block = (1 << nilfs->ns_blocksize_bits) / 1036 bdev_logical_block_size(nilfs->ns_bdev); 1037 len = range->len >> nilfs->ns_blocksize_bits; 1038 minlen = range->minlen >> nilfs->ns_blocksize_bits; 1039 max_blocks = ((u64)nilfs->ns_nsegments * nilfs->ns_blocks_per_segment); 1040 1041 if (!len || range->start >= max_blocks << nilfs->ns_blocksize_bits) 1042 return -EINVAL; 1043 1044 start_block = (range->start + nilfs->ns_blocksize - 1) >> 1045 nilfs->ns_blocksize_bits; 1046 1047 /* 1048 * range->len can be very large (actually, it is set to 1049 * ULLONG_MAX by default) - truncate upper end of the range 1050 * carefully so as not to overflow. 1051 */ 1052 if (max_blocks - start_block < len) 1053 end_block = max_blocks - 1; 1054 else 1055 end_block = start_block + len - 1; 1056 1057 segnum = nilfs_get_segnum_of_block(nilfs, start_block); 1058 segnum_end = nilfs_get_segnum_of_block(nilfs, end_block); 1059 1060 down_read(&NILFS_MDT(sufile)->mi_sem); 1061 1062 while (segnum <= segnum_end) { 1063 n = nilfs_sufile_segment_usages_in_block(sufile, segnum, 1064 segnum_end); 1065 1066 ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 0, 1067 &su_bh); 1068 if (ret < 0) { 1069 if (ret != -ENOENT) 1070 goto out_sem; 1071 /* hole */ 1072 segnum += n; 1073 continue; 1074 } 1075 1076 kaddr = kmap_atomic(su_bh->b_page); 1077 su = nilfs_sufile_block_get_segment_usage(sufile, segnum, 1078 su_bh, kaddr); 1079 for (i = 0; i < n; ++i, ++segnum, su = (void *)su + susz) { 1080 if (!nilfs_segment_usage_clean(su)) 1081 continue; 1082 1083 nilfs_get_segment_range(nilfs, segnum, &seg_start, 1084 &seg_end); 1085 1086 if (!nblocks) { 1087 /* start new extent */ 1088 start = seg_start; 1089 nblocks = seg_end - seg_start + 1; 1090 continue; 1091 } 1092 1093 if (start + nblocks == seg_start) { 1094 /* add to previous extent */ 1095 nblocks += seg_end - seg_start + 1; 1096 continue; 1097 } 1098 1099 /* discard previous extent */ 1100 if (start < start_block) { 1101 nblocks -= start_block - start; 1102 start = start_block; 1103 } 1104 1105 if (nblocks >= minlen) { 1106 kunmap_atomic(kaddr); 1107 1108 ret = blkdev_issue_discard(nilfs->ns_bdev, 1109 start * sects_per_block, 1110 nblocks * sects_per_block, 1111 GFP_NOFS); 1112 if (ret < 0) { 1113 put_bh(su_bh); 1114 goto out_sem; 1115 } 1116 1117 ndiscarded += nblocks; 1118 kaddr = kmap_atomic(su_bh->b_page); 1119 su = nilfs_sufile_block_get_segment_usage( 1120 sufile, segnum, su_bh, kaddr); 1121 } 1122 1123 /* start new extent */ 1124 start = seg_start; 1125 nblocks = seg_end - seg_start + 1; 1126 } 1127 kunmap_atomic(kaddr); 1128 put_bh(su_bh); 1129 } 1130 1131 1132 if (nblocks) { 1133 /* discard last extent */ 1134 if (start < start_block) { 1135 nblocks -= start_block - start; 1136 start = start_block; 1137 } 1138 if (start + nblocks > end_block + 1) 1139 nblocks = end_block - start + 1; 1140 1141 if (nblocks >= minlen) { 1142 ret = blkdev_issue_discard(nilfs->ns_bdev, 1143 start * sects_per_block, 1144 nblocks * sects_per_block, 1145 GFP_NOFS); 1146 if (!ret) 1147 ndiscarded += nblocks; 1148 } 1149 } 1150 1151 out_sem: 1152 up_read(&NILFS_MDT(sufile)->mi_sem); 1153 1154 range->len = ndiscarded << nilfs->ns_blocksize_bits; 1155 return ret; 1156 } 1157 1158 /** 1159 * nilfs_sufile_read - read or get sufile inode 1160 * @sb: super block instance 1161 * @susize: size of a segment usage entry 1162 * @raw_inode: on-disk sufile inode 1163 * @inodep: buffer to store the inode 1164 */ 1165 int nilfs_sufile_read(struct super_block *sb, size_t susize, 1166 struct nilfs_inode *raw_inode, struct inode **inodep) 1167 { 1168 struct inode *sufile; 1169 struct nilfs_sufile_info *sui; 1170 struct buffer_head *header_bh; 1171 struct nilfs_sufile_header *header; 1172 void *kaddr; 1173 int err; 1174 1175 if (susize > sb->s_blocksize) { 1176 nilfs_err(sb, "too large segment usage size: %zu bytes", 1177 susize); 1178 return -EINVAL; 1179 } else if (susize < NILFS_MIN_SEGMENT_USAGE_SIZE) { 1180 nilfs_err(sb, "too small segment usage size: %zu bytes", 1181 susize); 1182 return -EINVAL; 1183 } 1184 1185 sufile = nilfs_iget_locked(sb, NULL, NILFS_SUFILE_INO); 1186 if (unlikely(!sufile)) 1187 return -ENOMEM; 1188 if (!(sufile->i_state & I_NEW)) 1189 goto out; 1190 1191 err = nilfs_mdt_init(sufile, NILFS_MDT_GFP, sizeof(*sui)); 1192 if (err) 1193 goto failed; 1194 1195 nilfs_mdt_set_entry_size(sufile, susize, 1196 sizeof(struct nilfs_sufile_header)); 1197 1198 err = nilfs_read_inode_common(sufile, raw_inode); 1199 if (err) 1200 goto failed; 1201 1202 err = nilfs_sufile_get_header_block(sufile, &header_bh); 1203 if (err) 1204 goto failed; 1205 1206 sui = NILFS_SUI(sufile); 1207 kaddr = kmap_atomic(header_bh->b_page); 1208 header = kaddr + bh_offset(header_bh); 1209 sui->ncleansegs = le64_to_cpu(header->sh_ncleansegs); 1210 kunmap_atomic(kaddr); 1211 brelse(header_bh); 1212 1213 sui->allocmax = nilfs_sufile_get_nsegments(sufile) - 1; 1214 sui->allocmin = 0; 1215 1216 unlock_new_inode(sufile); 1217 out: 1218 *inodep = sufile; 1219 return 0; 1220 failed: 1221 iget_failed(sufile); 1222 return err; 1223 } 1224