xref: /openbmc/linux/fs/nilfs2/segment.c (revision fd589a8f)
1 /*
2  * segment.c - NILFS segment constructor.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  *
22  */
23 
24 #include <linux/pagemap.h>
25 #include <linux/buffer_head.h>
26 #include <linux/writeback.h>
27 #include <linux/bio.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/freezer.h>
32 #include <linux/kthread.h>
33 #include <linux/crc32.h>
34 #include <linux/pagevec.h>
35 #include "nilfs.h"
36 #include "btnode.h"
37 #include "page.h"
38 #include "segment.h"
39 #include "sufile.h"
40 #include "cpfile.h"
41 #include "ifile.h"
42 #include "segbuf.h"
43 
44 
45 /*
46  * Segment constructor
47  */
48 #define SC_N_INODEVEC	16   /* Size of locally allocated inode vector */
49 
50 #define SC_MAX_SEGDELTA 64   /* Upper limit of the number of segments
51 				appended in collection retry loop */
52 
53 /* Construction mode */
54 enum {
55 	SC_LSEG_SR = 1,	/* Make a logical segment having a super root */
56 	SC_LSEG_DSYNC,	/* Flush data blocks of a given file and make
57 			   a logical segment without a super root */
58 	SC_FLUSH_FILE,	/* Flush data files, leads to segment writes without
59 			   creating a checkpoint */
60 	SC_FLUSH_DAT,	/* Flush DAT file. This also creates segments without
61 			   a checkpoint */
62 };
63 
64 /* Stage numbers of dirty block collection */
65 enum {
66 	NILFS_ST_INIT = 0,
67 	NILFS_ST_GC,		/* Collecting dirty blocks for GC */
68 	NILFS_ST_FILE,
69 	NILFS_ST_IFILE,
70 	NILFS_ST_CPFILE,
71 	NILFS_ST_SUFILE,
72 	NILFS_ST_DAT,
73 	NILFS_ST_SR,		/* Super root */
74 	NILFS_ST_DSYNC,		/* Data sync blocks */
75 	NILFS_ST_DONE,
76 };
77 
78 /* State flags of collection */
79 #define NILFS_CF_NODE		0x0001	/* Collecting node blocks */
80 #define NILFS_CF_IFILE_STARTED	0x0002	/* IFILE stage has started */
81 #define NILFS_CF_SUFREED	0x0004	/* segment usages has been freed */
82 #define NILFS_CF_HISTORY_MASK	(NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
83 
84 /* Operations depending on the construction mode and file type */
85 struct nilfs_sc_operations {
86 	int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
87 			    struct inode *);
88 	int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
89 			    struct inode *);
90 	int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
91 			    struct inode *);
92 	void (*write_data_binfo)(struct nilfs_sc_info *,
93 				 struct nilfs_segsum_pointer *,
94 				 union nilfs_binfo *);
95 	void (*write_node_binfo)(struct nilfs_sc_info *,
96 				 struct nilfs_segsum_pointer *,
97 				 union nilfs_binfo *);
98 };
99 
100 /*
101  * Other definitions
102  */
103 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
104 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
105 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
106 static void nilfs_dispose_list(struct nilfs_sb_info *, struct list_head *,
107 			       int);
108 
109 #define nilfs_cnt32_gt(a, b)   \
110 	(typecheck(__u32, a) && typecheck(__u32, b) && \
111 	 ((__s32)(b) - (__s32)(a) < 0))
112 #define nilfs_cnt32_ge(a, b)   \
113 	(typecheck(__u32, a) && typecheck(__u32, b) && \
114 	 ((__s32)(a) - (__s32)(b) >= 0))
115 #define nilfs_cnt32_lt(a, b)  nilfs_cnt32_gt(b, a)
116 #define nilfs_cnt32_le(a, b)  nilfs_cnt32_ge(b, a)
117 
118 /*
119  * Transaction
120  */
121 static struct kmem_cache *nilfs_transaction_cachep;
122 
123 /**
124  * nilfs_init_transaction_cache - create a cache for nilfs_transaction_info
125  *
126  * nilfs_init_transaction_cache() creates a slab cache for the struct
127  * nilfs_transaction_info.
128  *
129  * Return Value: On success, it returns 0. On error, one of the following
130  * negative error code is returned.
131  *
132  * %-ENOMEM - Insufficient memory available.
133  */
134 int nilfs_init_transaction_cache(void)
135 {
136 	nilfs_transaction_cachep =
137 		kmem_cache_create("nilfs2_transaction_cache",
138 				  sizeof(struct nilfs_transaction_info),
139 				  0, SLAB_RECLAIM_ACCOUNT, NULL);
140 	return (nilfs_transaction_cachep == NULL) ? -ENOMEM : 0;
141 }
142 
143 /**
144  * nilfs_detroy_transaction_cache - destroy the cache for transaction info
145  *
146  * nilfs_destroy_transaction_cache() frees the slab cache for the struct
147  * nilfs_transaction_info.
148  */
149 void nilfs_destroy_transaction_cache(void)
150 {
151 	kmem_cache_destroy(nilfs_transaction_cachep);
152 }
153 
154 static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
155 {
156 	struct nilfs_transaction_info *cur_ti = current->journal_info;
157 	void *save = NULL;
158 
159 	if (cur_ti) {
160 		if (cur_ti->ti_magic == NILFS_TI_MAGIC)
161 			return ++cur_ti->ti_count;
162 		else {
163 			/*
164 			 * If journal_info field is occupied by other FS,
165 			 * it is saved and will be restored on
166 			 * nilfs_transaction_commit().
167 			 */
168 			printk(KERN_WARNING
169 			       "NILFS warning: journal info from a different "
170 			       "FS\n");
171 			save = current->journal_info;
172 		}
173 	}
174 	if (!ti) {
175 		ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
176 		if (!ti)
177 			return -ENOMEM;
178 		ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
179 	} else {
180 		ti->ti_flags = 0;
181 	}
182 	ti->ti_count = 0;
183 	ti->ti_save = save;
184 	ti->ti_magic = NILFS_TI_MAGIC;
185 	current->journal_info = ti;
186 	return 0;
187 }
188 
189 /**
190  * nilfs_transaction_begin - start indivisible file operations.
191  * @sb: super block
192  * @ti: nilfs_transaction_info
193  * @vacancy_check: flags for vacancy rate checks
194  *
195  * nilfs_transaction_begin() acquires a reader/writer semaphore, called
196  * the segment semaphore, to make a segment construction and write tasks
197  * exclusive.  The function is used with nilfs_transaction_commit() in pairs.
198  * The region enclosed by these two functions can be nested.  To avoid a
199  * deadlock, the semaphore is only acquired or released in the outermost call.
200  *
201  * This function allocates a nilfs_transaction_info struct to keep context
202  * information on it.  It is initialized and hooked onto the current task in
203  * the outermost call.  If a pre-allocated struct is given to @ti, it is used
204  * instead; othewise a new struct is assigned from a slab.
205  *
206  * When @vacancy_check flag is set, this function will check the amount of
207  * free space, and will wait for the GC to reclaim disk space if low capacity.
208  *
209  * Return Value: On success, 0 is returned. On error, one of the following
210  * negative error code is returned.
211  *
212  * %-ENOMEM - Insufficient memory available.
213  *
214  * %-ENOSPC - No space left on device
215  */
216 int nilfs_transaction_begin(struct super_block *sb,
217 			    struct nilfs_transaction_info *ti,
218 			    int vacancy_check)
219 {
220 	struct nilfs_sb_info *sbi;
221 	struct the_nilfs *nilfs;
222 	int ret = nilfs_prepare_segment_lock(ti);
223 
224 	if (unlikely(ret < 0))
225 		return ret;
226 	if (ret > 0)
227 		return 0;
228 
229 	sbi = NILFS_SB(sb);
230 	nilfs = sbi->s_nilfs;
231 	down_read(&nilfs->ns_segctor_sem);
232 	if (vacancy_check && nilfs_near_disk_full(nilfs)) {
233 		up_read(&nilfs->ns_segctor_sem);
234 		ret = -ENOSPC;
235 		goto failed;
236 	}
237 	return 0;
238 
239  failed:
240 	ti = current->journal_info;
241 	current->journal_info = ti->ti_save;
242 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
243 		kmem_cache_free(nilfs_transaction_cachep, ti);
244 	return ret;
245 }
246 
247 /**
248  * nilfs_transaction_commit - commit indivisible file operations.
249  * @sb: super block
250  *
251  * nilfs_transaction_commit() releases the read semaphore which is
252  * acquired by nilfs_transaction_begin(). This is only performed
253  * in outermost call of this function.  If a commit flag is set,
254  * nilfs_transaction_commit() sets a timer to start the segment
255  * constructor.  If a sync flag is set, it starts construction
256  * directly.
257  */
258 int nilfs_transaction_commit(struct super_block *sb)
259 {
260 	struct nilfs_transaction_info *ti = current->journal_info;
261 	struct nilfs_sb_info *sbi;
262 	struct nilfs_sc_info *sci;
263 	int err = 0;
264 
265 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
266 	ti->ti_flags |= NILFS_TI_COMMIT;
267 	if (ti->ti_count > 0) {
268 		ti->ti_count--;
269 		return 0;
270 	}
271 	sbi = NILFS_SB(sb);
272 	sci = NILFS_SC(sbi);
273 	if (sci != NULL) {
274 		if (ti->ti_flags & NILFS_TI_COMMIT)
275 			nilfs_segctor_start_timer(sci);
276 		if (atomic_read(&sbi->s_nilfs->ns_ndirtyblks) >
277 		    sci->sc_watermark)
278 			nilfs_segctor_do_flush(sci, 0);
279 	}
280 	up_read(&sbi->s_nilfs->ns_segctor_sem);
281 	current->journal_info = ti->ti_save;
282 
283 	if (ti->ti_flags & NILFS_TI_SYNC)
284 		err = nilfs_construct_segment(sb);
285 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
286 		kmem_cache_free(nilfs_transaction_cachep, ti);
287 	return err;
288 }
289 
290 void nilfs_transaction_abort(struct super_block *sb)
291 {
292 	struct nilfs_transaction_info *ti = current->journal_info;
293 
294 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
295 	if (ti->ti_count > 0) {
296 		ti->ti_count--;
297 		return;
298 	}
299 	up_read(&NILFS_SB(sb)->s_nilfs->ns_segctor_sem);
300 
301 	current->journal_info = ti->ti_save;
302 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
303 		kmem_cache_free(nilfs_transaction_cachep, ti);
304 }
305 
306 void nilfs_relax_pressure_in_lock(struct super_block *sb)
307 {
308 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
309 	struct nilfs_sc_info *sci = NILFS_SC(sbi);
310 	struct the_nilfs *nilfs = sbi->s_nilfs;
311 
312 	if (!sci || !sci->sc_flush_request)
313 		return;
314 
315 	set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
316 	up_read(&nilfs->ns_segctor_sem);
317 
318 	down_write(&nilfs->ns_segctor_sem);
319 	if (sci->sc_flush_request &&
320 	    test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
321 		struct nilfs_transaction_info *ti = current->journal_info;
322 
323 		ti->ti_flags |= NILFS_TI_WRITER;
324 		nilfs_segctor_do_immediate_flush(sci);
325 		ti->ti_flags &= ~NILFS_TI_WRITER;
326 	}
327 	downgrade_write(&nilfs->ns_segctor_sem);
328 }
329 
330 static void nilfs_transaction_lock(struct nilfs_sb_info *sbi,
331 				   struct nilfs_transaction_info *ti,
332 				   int gcflag)
333 {
334 	struct nilfs_transaction_info *cur_ti = current->journal_info;
335 
336 	WARN_ON(cur_ti);
337 	ti->ti_flags = NILFS_TI_WRITER;
338 	ti->ti_count = 0;
339 	ti->ti_save = cur_ti;
340 	ti->ti_magic = NILFS_TI_MAGIC;
341 	INIT_LIST_HEAD(&ti->ti_garbage);
342 	current->journal_info = ti;
343 
344 	for (;;) {
345 		down_write(&sbi->s_nilfs->ns_segctor_sem);
346 		if (!test_bit(NILFS_SC_PRIOR_FLUSH, &NILFS_SC(sbi)->sc_flags))
347 			break;
348 
349 		nilfs_segctor_do_immediate_flush(NILFS_SC(sbi));
350 
351 		up_write(&sbi->s_nilfs->ns_segctor_sem);
352 		yield();
353 	}
354 	if (gcflag)
355 		ti->ti_flags |= NILFS_TI_GC;
356 }
357 
358 static void nilfs_transaction_unlock(struct nilfs_sb_info *sbi)
359 {
360 	struct nilfs_transaction_info *ti = current->journal_info;
361 
362 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
363 	BUG_ON(ti->ti_count > 0);
364 
365 	up_write(&sbi->s_nilfs->ns_segctor_sem);
366 	current->journal_info = ti->ti_save;
367 	if (!list_empty(&ti->ti_garbage))
368 		nilfs_dispose_list(sbi, &ti->ti_garbage, 0);
369 }
370 
371 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
372 					    struct nilfs_segsum_pointer *ssp,
373 					    unsigned bytes)
374 {
375 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
376 	unsigned blocksize = sci->sc_super->s_blocksize;
377 	void *p;
378 
379 	if (unlikely(ssp->offset + bytes > blocksize)) {
380 		ssp->offset = 0;
381 		BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
382 					       &segbuf->sb_segsum_buffers));
383 		ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
384 	}
385 	p = ssp->bh->b_data + ssp->offset;
386 	ssp->offset += bytes;
387 	return p;
388 }
389 
390 /**
391  * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
392  * @sci: nilfs_sc_info
393  */
394 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
395 {
396 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
397 	struct buffer_head *sumbh;
398 	unsigned sumbytes;
399 	unsigned flags = 0;
400 	int err;
401 
402 	if (nilfs_doing_gc())
403 		flags = NILFS_SS_GC;
404 	err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime);
405 	if (unlikely(err))
406 		return err;
407 
408 	sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
409 	sumbytes = segbuf->sb_sum.sumbytes;
410 	sci->sc_finfo_ptr.bh = sumbh;  sci->sc_finfo_ptr.offset = sumbytes;
411 	sci->sc_binfo_ptr.bh = sumbh;  sci->sc_binfo_ptr.offset = sumbytes;
412 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
413 	return 0;
414 }
415 
416 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
417 {
418 	sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
419 	if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
420 		return -E2BIG; /* The current segment is filled up
421 				  (internal code) */
422 	sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
423 	return nilfs_segctor_reset_segment_buffer(sci);
424 }
425 
426 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
427 {
428 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
429 	int err;
430 
431 	if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
432 		err = nilfs_segctor_feed_segment(sci);
433 		if (err)
434 			return err;
435 		segbuf = sci->sc_curseg;
436 	}
437 	err = nilfs_segbuf_extend_payload(segbuf, &sci->sc_super_root);
438 	if (likely(!err))
439 		segbuf->sb_sum.flags |= NILFS_SS_SR;
440 	return err;
441 }
442 
443 /*
444  * Functions for making segment summary and payloads
445  */
446 static int nilfs_segctor_segsum_block_required(
447 	struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
448 	unsigned binfo_size)
449 {
450 	unsigned blocksize = sci->sc_super->s_blocksize;
451 	/* Size of finfo and binfo is enough small against blocksize */
452 
453 	return ssp->offset + binfo_size +
454 		(!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
455 		blocksize;
456 }
457 
458 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
459 				      struct inode *inode)
460 {
461 	sci->sc_curseg->sb_sum.nfinfo++;
462 	sci->sc_binfo_ptr = sci->sc_finfo_ptr;
463 	nilfs_segctor_map_segsum_entry(
464 		sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
465 
466 	if (inode->i_sb && !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
467 		set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
468 	/* skip finfo */
469 }
470 
471 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
472 				    struct inode *inode)
473 {
474 	struct nilfs_finfo *finfo;
475 	struct nilfs_inode_info *ii;
476 	struct nilfs_segment_buffer *segbuf;
477 
478 	if (sci->sc_blk_cnt == 0)
479 		return;
480 
481 	ii = NILFS_I(inode);
482 	finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
483 						 sizeof(*finfo));
484 	finfo->fi_ino = cpu_to_le64(inode->i_ino);
485 	finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
486 	finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
487 	finfo->fi_cno = cpu_to_le64(ii->i_cno);
488 
489 	segbuf = sci->sc_curseg;
490 	segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
491 		sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
492 	sci->sc_finfo_ptr = sci->sc_binfo_ptr;
493 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
494 }
495 
496 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
497 					struct buffer_head *bh,
498 					struct inode *inode,
499 					unsigned binfo_size)
500 {
501 	struct nilfs_segment_buffer *segbuf;
502 	int required, err = 0;
503 
504  retry:
505 	segbuf = sci->sc_curseg;
506 	required = nilfs_segctor_segsum_block_required(
507 		sci, &sci->sc_binfo_ptr, binfo_size);
508 	if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
509 		nilfs_segctor_end_finfo(sci, inode);
510 		err = nilfs_segctor_feed_segment(sci);
511 		if (err)
512 			return err;
513 		goto retry;
514 	}
515 	if (unlikely(required)) {
516 		err = nilfs_segbuf_extend_segsum(segbuf);
517 		if (unlikely(err))
518 			goto failed;
519 	}
520 	if (sci->sc_blk_cnt == 0)
521 		nilfs_segctor_begin_finfo(sci, inode);
522 
523 	nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
524 	/* Substitution to vblocknr is delayed until update_blocknr() */
525 	nilfs_segbuf_add_file_buffer(segbuf, bh);
526 	sci->sc_blk_cnt++;
527  failed:
528 	return err;
529 }
530 
531 static int nilfs_handle_bmap_error(int err, const char *fname,
532 				   struct inode *inode, struct super_block *sb)
533 {
534 	if (err == -EINVAL) {
535 		nilfs_error(sb, fname, "broken bmap (inode=%lu)\n",
536 			    inode->i_ino);
537 		err = -EIO;
538 	}
539 	return err;
540 }
541 
542 /*
543  * Callback functions that enumerate, mark, and collect dirty blocks
544  */
545 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
546 				   struct buffer_head *bh, struct inode *inode)
547 {
548 	int err;
549 
550 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
551 	if (unlikely(err < 0))
552 		return nilfs_handle_bmap_error(err, __func__, inode,
553 					       sci->sc_super);
554 
555 	err = nilfs_segctor_add_file_block(sci, bh, inode,
556 					   sizeof(struct nilfs_binfo_v));
557 	if (!err)
558 		sci->sc_datablk_cnt++;
559 	return err;
560 }
561 
562 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
563 				   struct buffer_head *bh,
564 				   struct inode *inode)
565 {
566 	int err;
567 
568 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
569 	if (unlikely(err < 0))
570 		return nilfs_handle_bmap_error(err, __func__, inode,
571 					       sci->sc_super);
572 	return 0;
573 }
574 
575 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
576 				   struct buffer_head *bh,
577 				   struct inode *inode)
578 {
579 	WARN_ON(!buffer_dirty(bh));
580 	return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
581 }
582 
583 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
584 					struct nilfs_segsum_pointer *ssp,
585 					union nilfs_binfo *binfo)
586 {
587 	struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
588 		sci, ssp, sizeof(*binfo_v));
589 	*binfo_v = binfo->bi_v;
590 }
591 
592 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
593 					struct nilfs_segsum_pointer *ssp,
594 					union nilfs_binfo *binfo)
595 {
596 	__le64 *vblocknr = nilfs_segctor_map_segsum_entry(
597 		sci, ssp, sizeof(*vblocknr));
598 	*vblocknr = binfo->bi_v.bi_vblocknr;
599 }
600 
601 struct nilfs_sc_operations nilfs_sc_file_ops = {
602 	.collect_data = nilfs_collect_file_data,
603 	.collect_node = nilfs_collect_file_node,
604 	.collect_bmap = nilfs_collect_file_bmap,
605 	.write_data_binfo = nilfs_write_file_data_binfo,
606 	.write_node_binfo = nilfs_write_file_node_binfo,
607 };
608 
609 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
610 				  struct buffer_head *bh, struct inode *inode)
611 {
612 	int err;
613 
614 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
615 	if (unlikely(err < 0))
616 		return nilfs_handle_bmap_error(err, __func__, inode,
617 					       sci->sc_super);
618 
619 	err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
620 	if (!err)
621 		sci->sc_datablk_cnt++;
622 	return err;
623 }
624 
625 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
626 				  struct buffer_head *bh, struct inode *inode)
627 {
628 	WARN_ON(!buffer_dirty(bh));
629 	return nilfs_segctor_add_file_block(sci, bh, inode,
630 					    sizeof(struct nilfs_binfo_dat));
631 }
632 
633 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
634 				       struct nilfs_segsum_pointer *ssp,
635 				       union nilfs_binfo *binfo)
636 {
637 	__le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
638 							  sizeof(*blkoff));
639 	*blkoff = binfo->bi_dat.bi_blkoff;
640 }
641 
642 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
643 				       struct nilfs_segsum_pointer *ssp,
644 				       union nilfs_binfo *binfo)
645 {
646 	struct nilfs_binfo_dat *binfo_dat =
647 		nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
648 	*binfo_dat = binfo->bi_dat;
649 }
650 
651 struct nilfs_sc_operations nilfs_sc_dat_ops = {
652 	.collect_data = nilfs_collect_dat_data,
653 	.collect_node = nilfs_collect_file_node,
654 	.collect_bmap = nilfs_collect_dat_bmap,
655 	.write_data_binfo = nilfs_write_dat_data_binfo,
656 	.write_node_binfo = nilfs_write_dat_node_binfo,
657 };
658 
659 struct nilfs_sc_operations nilfs_sc_dsync_ops = {
660 	.collect_data = nilfs_collect_file_data,
661 	.collect_node = NULL,
662 	.collect_bmap = NULL,
663 	.write_data_binfo = nilfs_write_file_data_binfo,
664 	.write_node_binfo = NULL,
665 };
666 
667 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
668 					      struct list_head *listp,
669 					      size_t nlimit,
670 					      loff_t start, loff_t end)
671 {
672 	struct address_space *mapping = inode->i_mapping;
673 	struct pagevec pvec;
674 	pgoff_t index = 0, last = ULONG_MAX;
675 	size_t ndirties = 0;
676 	int i;
677 
678 	if (unlikely(start != 0 || end != LLONG_MAX)) {
679 		/*
680 		 * A valid range is given for sync-ing data pages. The
681 		 * range is rounded to per-page; extra dirty buffers
682 		 * may be included if blocksize < pagesize.
683 		 */
684 		index = start >> PAGE_SHIFT;
685 		last = end >> PAGE_SHIFT;
686 	}
687 	pagevec_init(&pvec, 0);
688  repeat:
689 	if (unlikely(index > last) ||
690 	    !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
691 				min_t(pgoff_t, last - index,
692 				      PAGEVEC_SIZE - 1) + 1))
693 		return ndirties;
694 
695 	for (i = 0; i < pagevec_count(&pvec); i++) {
696 		struct buffer_head *bh, *head;
697 		struct page *page = pvec.pages[i];
698 
699 		if (unlikely(page->index > last))
700 			break;
701 
702 		if (mapping->host) {
703 			lock_page(page);
704 			if (!page_has_buffers(page))
705 				create_empty_buffers(page,
706 						     1 << inode->i_blkbits, 0);
707 			unlock_page(page);
708 		}
709 
710 		bh = head = page_buffers(page);
711 		do {
712 			if (!buffer_dirty(bh))
713 				continue;
714 			get_bh(bh);
715 			list_add_tail(&bh->b_assoc_buffers, listp);
716 			ndirties++;
717 			if (unlikely(ndirties >= nlimit)) {
718 				pagevec_release(&pvec);
719 				cond_resched();
720 				return ndirties;
721 			}
722 		} while (bh = bh->b_this_page, bh != head);
723 	}
724 	pagevec_release(&pvec);
725 	cond_resched();
726 	goto repeat;
727 }
728 
729 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
730 					    struct list_head *listp)
731 {
732 	struct nilfs_inode_info *ii = NILFS_I(inode);
733 	struct address_space *mapping = &ii->i_btnode_cache;
734 	struct pagevec pvec;
735 	struct buffer_head *bh, *head;
736 	unsigned int i;
737 	pgoff_t index = 0;
738 
739 	pagevec_init(&pvec, 0);
740 
741 	while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
742 				  PAGEVEC_SIZE)) {
743 		for (i = 0; i < pagevec_count(&pvec); i++) {
744 			bh = head = page_buffers(pvec.pages[i]);
745 			do {
746 				if (buffer_dirty(bh)) {
747 					get_bh(bh);
748 					list_add_tail(&bh->b_assoc_buffers,
749 						      listp);
750 				}
751 				bh = bh->b_this_page;
752 			} while (bh != head);
753 		}
754 		pagevec_release(&pvec);
755 		cond_resched();
756 	}
757 }
758 
759 static void nilfs_dispose_list(struct nilfs_sb_info *sbi,
760 			       struct list_head *head, int force)
761 {
762 	struct nilfs_inode_info *ii, *n;
763 	struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
764 	unsigned nv = 0;
765 
766 	while (!list_empty(head)) {
767 		spin_lock(&sbi->s_inode_lock);
768 		list_for_each_entry_safe(ii, n, head, i_dirty) {
769 			list_del_init(&ii->i_dirty);
770 			if (force) {
771 				if (unlikely(ii->i_bh)) {
772 					brelse(ii->i_bh);
773 					ii->i_bh = NULL;
774 				}
775 			} else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
776 				set_bit(NILFS_I_QUEUED, &ii->i_state);
777 				list_add_tail(&ii->i_dirty,
778 					      &sbi->s_dirty_files);
779 				continue;
780 			}
781 			ivec[nv++] = ii;
782 			if (nv == SC_N_INODEVEC)
783 				break;
784 		}
785 		spin_unlock(&sbi->s_inode_lock);
786 
787 		for (pii = ivec; nv > 0; pii++, nv--)
788 			iput(&(*pii)->vfs_inode);
789 	}
790 }
791 
792 static int nilfs_test_metadata_dirty(struct nilfs_sb_info *sbi)
793 {
794 	struct the_nilfs *nilfs = sbi->s_nilfs;
795 	int ret = 0;
796 
797 	if (nilfs_mdt_fetch_dirty(sbi->s_ifile))
798 		ret++;
799 	if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
800 		ret++;
801 	if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
802 		ret++;
803 	if (ret || nilfs_doing_gc())
804 		if (nilfs_mdt_fetch_dirty(nilfs_dat_inode(nilfs)))
805 			ret++;
806 	return ret;
807 }
808 
809 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
810 {
811 	return list_empty(&sci->sc_dirty_files) &&
812 		!test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
813 		sci->sc_nfreesegs == 0 &&
814 		(!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
815 }
816 
817 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
818 {
819 	struct nilfs_sb_info *sbi = sci->sc_sbi;
820 	int ret = 0;
821 
822 	if (nilfs_test_metadata_dirty(sbi))
823 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
824 
825 	spin_lock(&sbi->s_inode_lock);
826 	if (list_empty(&sbi->s_dirty_files) && nilfs_segctor_clean(sci))
827 		ret++;
828 
829 	spin_unlock(&sbi->s_inode_lock);
830 	return ret;
831 }
832 
833 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
834 {
835 	struct nilfs_sb_info *sbi = sci->sc_sbi;
836 	struct the_nilfs *nilfs = sbi->s_nilfs;
837 
838 	nilfs_mdt_clear_dirty(sbi->s_ifile);
839 	nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
840 	nilfs_mdt_clear_dirty(nilfs->ns_sufile);
841 	nilfs_mdt_clear_dirty(nilfs_dat_inode(nilfs));
842 }
843 
844 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
845 {
846 	struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
847 	struct buffer_head *bh_cp;
848 	struct nilfs_checkpoint *raw_cp;
849 	int err;
850 
851 	/* XXX: this interface will be changed */
852 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
853 					  &raw_cp, &bh_cp);
854 	if (likely(!err)) {
855 		/* The following code is duplicated with cpfile.  But, it is
856 		   needed to collect the checkpoint even if it was not newly
857 		   created */
858 		nilfs_mdt_mark_buffer_dirty(bh_cp);
859 		nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
860 		nilfs_cpfile_put_checkpoint(
861 			nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
862 	} else
863 		WARN_ON(err == -EINVAL || err == -ENOENT);
864 
865 	return err;
866 }
867 
868 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
869 {
870 	struct nilfs_sb_info *sbi = sci->sc_sbi;
871 	struct the_nilfs *nilfs = sbi->s_nilfs;
872 	struct buffer_head *bh_cp;
873 	struct nilfs_checkpoint *raw_cp;
874 	int err;
875 
876 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
877 					  &raw_cp, &bh_cp);
878 	if (unlikely(err)) {
879 		WARN_ON(err == -EINVAL || err == -ENOENT);
880 		goto failed_ibh;
881 	}
882 	raw_cp->cp_snapshot_list.ssl_next = 0;
883 	raw_cp->cp_snapshot_list.ssl_prev = 0;
884 	raw_cp->cp_inodes_count =
885 		cpu_to_le64(atomic_read(&sbi->s_inodes_count));
886 	raw_cp->cp_blocks_count =
887 		cpu_to_le64(atomic_read(&sbi->s_blocks_count));
888 	raw_cp->cp_nblk_inc =
889 		cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
890 	raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
891 	raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
892 
893 	if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
894 		nilfs_checkpoint_clear_minor(raw_cp);
895 	else
896 		nilfs_checkpoint_set_minor(raw_cp);
897 
898 	nilfs_write_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode, 1);
899 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
900 	return 0;
901 
902  failed_ibh:
903 	return err;
904 }
905 
906 static void nilfs_fill_in_file_bmap(struct inode *ifile,
907 				    struct nilfs_inode_info *ii)
908 
909 {
910 	struct buffer_head *ibh;
911 	struct nilfs_inode *raw_inode;
912 
913 	if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
914 		ibh = ii->i_bh;
915 		BUG_ON(!ibh);
916 		raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
917 						  ibh);
918 		nilfs_bmap_write(ii->i_bmap, raw_inode);
919 		nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
920 	}
921 }
922 
923 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci,
924 					    struct inode *ifile)
925 {
926 	struct nilfs_inode_info *ii;
927 
928 	list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
929 		nilfs_fill_in_file_bmap(ifile, ii);
930 		set_bit(NILFS_I_COLLECTED, &ii->i_state);
931 	}
932 }
933 
934 /*
935  * CRC calculation routines
936  */
937 static void nilfs_fill_in_super_root_crc(struct buffer_head *bh_sr, u32 seed)
938 {
939 	struct nilfs_super_root *raw_sr =
940 		(struct nilfs_super_root *)bh_sr->b_data;
941 	u32 crc;
942 
943 	crc = crc32_le(seed,
944 		       (unsigned char *)raw_sr + sizeof(raw_sr->sr_sum),
945 		       NILFS_SR_BYTES - sizeof(raw_sr->sr_sum));
946 	raw_sr->sr_sum = cpu_to_le32(crc);
947 }
948 
949 static void nilfs_segctor_fill_in_checksums(struct nilfs_sc_info *sci,
950 					    u32 seed)
951 {
952 	struct nilfs_segment_buffer *segbuf;
953 
954 	if (sci->sc_super_root)
955 		nilfs_fill_in_super_root_crc(sci->sc_super_root, seed);
956 
957 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
958 		nilfs_segbuf_fill_in_segsum_crc(segbuf, seed);
959 		nilfs_segbuf_fill_in_data_crc(segbuf, seed);
960 	}
961 }
962 
963 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
964 					     struct the_nilfs *nilfs)
965 {
966 	struct buffer_head *bh_sr = sci->sc_super_root;
967 	struct nilfs_super_root *raw_sr =
968 		(struct nilfs_super_root *)bh_sr->b_data;
969 	unsigned isz = nilfs->ns_inode_size;
970 
971 	raw_sr->sr_bytes = cpu_to_le16(NILFS_SR_BYTES);
972 	raw_sr->sr_nongc_ctime
973 		= cpu_to_le64(nilfs_doing_gc() ?
974 			      nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
975 	raw_sr->sr_flags = 0;
976 
977 	nilfs_mdt_write_inode_direct(
978 		nilfs_dat_inode(nilfs), bh_sr, NILFS_SR_DAT_OFFSET(isz));
979 	nilfs_mdt_write_inode_direct(
980 		nilfs->ns_cpfile, bh_sr, NILFS_SR_CPFILE_OFFSET(isz));
981 	nilfs_mdt_write_inode_direct(
982 		nilfs->ns_sufile, bh_sr, NILFS_SR_SUFILE_OFFSET(isz));
983 }
984 
985 static void nilfs_redirty_inodes(struct list_head *head)
986 {
987 	struct nilfs_inode_info *ii;
988 
989 	list_for_each_entry(ii, head, i_dirty) {
990 		if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
991 			clear_bit(NILFS_I_COLLECTED, &ii->i_state);
992 	}
993 }
994 
995 static void nilfs_drop_collected_inodes(struct list_head *head)
996 {
997 	struct nilfs_inode_info *ii;
998 
999 	list_for_each_entry(ii, head, i_dirty) {
1000 		if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
1001 			continue;
1002 
1003 		clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
1004 		set_bit(NILFS_I_UPDATED, &ii->i_state);
1005 	}
1006 }
1007 
1008 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
1009 				       struct inode *inode,
1010 				       struct list_head *listp,
1011 				       int (*collect)(struct nilfs_sc_info *,
1012 						      struct buffer_head *,
1013 						      struct inode *))
1014 {
1015 	struct buffer_head *bh, *n;
1016 	int err = 0;
1017 
1018 	if (collect) {
1019 		list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
1020 			list_del_init(&bh->b_assoc_buffers);
1021 			err = collect(sci, bh, inode);
1022 			brelse(bh);
1023 			if (unlikely(err))
1024 				goto dispose_buffers;
1025 		}
1026 		return 0;
1027 	}
1028 
1029  dispose_buffers:
1030 	while (!list_empty(listp)) {
1031 		bh = list_entry(listp->next, struct buffer_head,
1032 				b_assoc_buffers);
1033 		list_del_init(&bh->b_assoc_buffers);
1034 		brelse(bh);
1035 	}
1036 	return err;
1037 }
1038 
1039 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
1040 {
1041 	/* Remaining number of blocks within segment buffer */
1042 	return sci->sc_segbuf_nblocks -
1043 		(sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
1044 }
1045 
1046 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
1047 				   struct inode *inode,
1048 				   struct nilfs_sc_operations *sc_ops)
1049 {
1050 	LIST_HEAD(data_buffers);
1051 	LIST_HEAD(node_buffers);
1052 	int err;
1053 
1054 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1055 		size_t n, rest = nilfs_segctor_buffer_rest(sci);
1056 
1057 		n = nilfs_lookup_dirty_data_buffers(
1058 			inode, &data_buffers, rest + 1, 0, LLONG_MAX);
1059 		if (n > rest) {
1060 			err = nilfs_segctor_apply_buffers(
1061 				sci, inode, &data_buffers,
1062 				sc_ops->collect_data);
1063 			BUG_ON(!err); /* always receive -E2BIG or true error */
1064 			goto break_or_fail;
1065 		}
1066 	}
1067 	nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
1068 
1069 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1070 		err = nilfs_segctor_apply_buffers(
1071 			sci, inode, &data_buffers, sc_ops->collect_data);
1072 		if (unlikely(err)) {
1073 			/* dispose node list */
1074 			nilfs_segctor_apply_buffers(
1075 				sci, inode, &node_buffers, NULL);
1076 			goto break_or_fail;
1077 		}
1078 		sci->sc_stage.flags |= NILFS_CF_NODE;
1079 	}
1080 	/* Collect node */
1081 	err = nilfs_segctor_apply_buffers(
1082 		sci, inode, &node_buffers, sc_ops->collect_node);
1083 	if (unlikely(err))
1084 		goto break_or_fail;
1085 
1086 	nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1087 	err = nilfs_segctor_apply_buffers(
1088 		sci, inode, &node_buffers, sc_ops->collect_bmap);
1089 	if (unlikely(err))
1090 		goto break_or_fail;
1091 
1092 	nilfs_segctor_end_finfo(sci, inode);
1093 	sci->sc_stage.flags &= ~NILFS_CF_NODE;
1094 
1095  break_or_fail:
1096 	return err;
1097 }
1098 
1099 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1100 					 struct inode *inode)
1101 {
1102 	LIST_HEAD(data_buffers);
1103 	size_t n, rest = nilfs_segctor_buffer_rest(sci);
1104 	int err;
1105 
1106 	n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1107 					    sci->sc_dsync_start,
1108 					    sci->sc_dsync_end);
1109 
1110 	err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1111 					  nilfs_collect_file_data);
1112 	if (!err) {
1113 		nilfs_segctor_end_finfo(sci, inode);
1114 		BUG_ON(n > rest);
1115 		/* always receive -E2BIG or true error if n > rest */
1116 	}
1117 	return err;
1118 }
1119 
1120 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1121 {
1122 	struct nilfs_sb_info *sbi = sci->sc_sbi;
1123 	struct the_nilfs *nilfs = sbi->s_nilfs;
1124 	struct list_head *head;
1125 	struct nilfs_inode_info *ii;
1126 	size_t ndone;
1127 	int err = 0;
1128 
1129 	switch (sci->sc_stage.scnt) {
1130 	case NILFS_ST_INIT:
1131 		/* Pre-processes */
1132 		sci->sc_stage.flags = 0;
1133 
1134 		if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1135 			sci->sc_nblk_inc = 0;
1136 			sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1137 			if (mode == SC_LSEG_DSYNC) {
1138 				sci->sc_stage.scnt = NILFS_ST_DSYNC;
1139 				goto dsync_mode;
1140 			}
1141 		}
1142 
1143 		sci->sc_stage.dirty_file_ptr = NULL;
1144 		sci->sc_stage.gc_inode_ptr = NULL;
1145 		if (mode == SC_FLUSH_DAT) {
1146 			sci->sc_stage.scnt = NILFS_ST_DAT;
1147 			goto dat_stage;
1148 		}
1149 		sci->sc_stage.scnt++;  /* Fall through */
1150 	case NILFS_ST_GC:
1151 		if (nilfs_doing_gc()) {
1152 			head = &sci->sc_gc_inodes;
1153 			ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1154 						head, i_dirty);
1155 			list_for_each_entry_continue(ii, head, i_dirty) {
1156 				err = nilfs_segctor_scan_file(
1157 					sci, &ii->vfs_inode,
1158 					&nilfs_sc_file_ops);
1159 				if (unlikely(err)) {
1160 					sci->sc_stage.gc_inode_ptr = list_entry(
1161 						ii->i_dirty.prev,
1162 						struct nilfs_inode_info,
1163 						i_dirty);
1164 					goto break_or_fail;
1165 				}
1166 				set_bit(NILFS_I_COLLECTED, &ii->i_state);
1167 			}
1168 			sci->sc_stage.gc_inode_ptr = NULL;
1169 		}
1170 		sci->sc_stage.scnt++;  /* Fall through */
1171 	case NILFS_ST_FILE:
1172 		head = &sci->sc_dirty_files;
1173 		ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1174 					i_dirty);
1175 		list_for_each_entry_continue(ii, head, i_dirty) {
1176 			clear_bit(NILFS_I_DIRTY, &ii->i_state);
1177 
1178 			err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1179 						      &nilfs_sc_file_ops);
1180 			if (unlikely(err)) {
1181 				sci->sc_stage.dirty_file_ptr =
1182 					list_entry(ii->i_dirty.prev,
1183 						   struct nilfs_inode_info,
1184 						   i_dirty);
1185 				goto break_or_fail;
1186 			}
1187 			/* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1188 			/* XXX: required ? */
1189 		}
1190 		sci->sc_stage.dirty_file_ptr = NULL;
1191 		if (mode == SC_FLUSH_FILE) {
1192 			sci->sc_stage.scnt = NILFS_ST_DONE;
1193 			return 0;
1194 		}
1195 		sci->sc_stage.scnt++;
1196 		sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1197 		/* Fall through */
1198 	case NILFS_ST_IFILE:
1199 		err = nilfs_segctor_scan_file(sci, sbi->s_ifile,
1200 					      &nilfs_sc_file_ops);
1201 		if (unlikely(err))
1202 			break;
1203 		sci->sc_stage.scnt++;
1204 		/* Creating a checkpoint */
1205 		err = nilfs_segctor_create_checkpoint(sci);
1206 		if (unlikely(err))
1207 			break;
1208 		/* Fall through */
1209 	case NILFS_ST_CPFILE:
1210 		err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1211 					      &nilfs_sc_file_ops);
1212 		if (unlikely(err))
1213 			break;
1214 		sci->sc_stage.scnt++;  /* Fall through */
1215 	case NILFS_ST_SUFILE:
1216 		err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
1217 					 sci->sc_nfreesegs, &ndone);
1218 		if (unlikely(err)) {
1219 			nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1220 						  sci->sc_freesegs, ndone,
1221 						  NULL);
1222 			break;
1223 		}
1224 		sci->sc_stage.flags |= NILFS_CF_SUFREED;
1225 
1226 		err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1227 					      &nilfs_sc_file_ops);
1228 		if (unlikely(err))
1229 			break;
1230 		sci->sc_stage.scnt++;  /* Fall through */
1231 	case NILFS_ST_DAT:
1232  dat_stage:
1233 		err = nilfs_segctor_scan_file(sci, nilfs_dat_inode(nilfs),
1234 					      &nilfs_sc_dat_ops);
1235 		if (unlikely(err))
1236 			break;
1237 		if (mode == SC_FLUSH_DAT) {
1238 			sci->sc_stage.scnt = NILFS_ST_DONE;
1239 			return 0;
1240 		}
1241 		sci->sc_stage.scnt++;  /* Fall through */
1242 	case NILFS_ST_SR:
1243 		if (mode == SC_LSEG_SR) {
1244 			/* Appending a super root */
1245 			err = nilfs_segctor_add_super_root(sci);
1246 			if (unlikely(err))
1247 				break;
1248 		}
1249 		/* End of a logical segment */
1250 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1251 		sci->sc_stage.scnt = NILFS_ST_DONE;
1252 		return 0;
1253 	case NILFS_ST_DSYNC:
1254  dsync_mode:
1255 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1256 		ii = sci->sc_dsync_inode;
1257 		if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1258 			break;
1259 
1260 		err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1261 		if (unlikely(err))
1262 			break;
1263 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1264 		sci->sc_stage.scnt = NILFS_ST_DONE;
1265 		return 0;
1266 	case NILFS_ST_DONE:
1267 		return 0;
1268 	default:
1269 		BUG();
1270 	}
1271 
1272  break_or_fail:
1273 	return err;
1274 }
1275 
1276 static int nilfs_touch_segusage(struct inode *sufile, __u64 segnum)
1277 {
1278 	struct buffer_head *bh_su;
1279 	struct nilfs_segment_usage *raw_su;
1280 	int err;
1281 
1282 	err = nilfs_sufile_get_segment_usage(sufile, segnum, &raw_su, &bh_su);
1283 	if (unlikely(err))
1284 		return err;
1285 	nilfs_mdt_mark_buffer_dirty(bh_su);
1286 	nilfs_mdt_mark_dirty(sufile);
1287 	nilfs_sufile_put_segment_usage(sufile, segnum, bh_su);
1288 	return 0;
1289 }
1290 
1291 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1292 					    struct the_nilfs *nilfs)
1293 {
1294 	struct nilfs_segment_buffer *segbuf, *n;
1295 	__u64 nextnum;
1296 	int err;
1297 
1298 	if (list_empty(&sci->sc_segbufs)) {
1299 		segbuf = nilfs_segbuf_new(sci->sc_super);
1300 		if (unlikely(!segbuf))
1301 			return -ENOMEM;
1302 		list_add(&segbuf->sb_list, &sci->sc_segbufs);
1303 	} else
1304 		segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1305 
1306 	nilfs_segbuf_map(segbuf, nilfs->ns_segnum, nilfs->ns_pseg_offset,
1307 			 nilfs);
1308 
1309 	if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1310 		nilfs_shift_to_next_segment(nilfs);
1311 		nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1312 	}
1313 	sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1314 
1315 	err = nilfs_touch_segusage(nilfs->ns_sufile, segbuf->sb_segnum);
1316 	if (unlikely(err))
1317 		return err;
1318 
1319 	if (nilfs->ns_segnum == nilfs->ns_nextnum) {
1320 		/* Start from the head of a new full segment */
1321 		err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1322 		if (unlikely(err))
1323 			return err;
1324 	} else
1325 		nextnum = nilfs->ns_nextnum;
1326 
1327 	segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1328 	nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1329 
1330 	/* truncating segment buffers */
1331 	list_for_each_entry_safe_continue(segbuf, n, &sci->sc_segbufs,
1332 					  sb_list) {
1333 		list_del_init(&segbuf->sb_list);
1334 		nilfs_segbuf_free(segbuf);
1335 	}
1336 	return 0;
1337 }
1338 
1339 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1340 					 struct the_nilfs *nilfs, int nadd)
1341 {
1342 	struct nilfs_segment_buffer *segbuf, *prev, *n;
1343 	struct inode *sufile = nilfs->ns_sufile;
1344 	__u64 nextnextnum;
1345 	LIST_HEAD(list);
1346 	int err, ret, i;
1347 
1348 	prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1349 	/*
1350 	 * Since the segment specified with nextnum might be allocated during
1351 	 * the previous construction, the buffer including its segusage may
1352 	 * not be dirty.  The following call ensures that the buffer is dirty
1353 	 * and will pin the buffer on memory until the sufile is written.
1354 	 */
1355 	err = nilfs_touch_segusage(sufile, prev->sb_nextnum);
1356 	if (unlikely(err))
1357 		return err;
1358 
1359 	for (i = 0; i < nadd; i++) {
1360 		/* extend segment info */
1361 		err = -ENOMEM;
1362 		segbuf = nilfs_segbuf_new(sci->sc_super);
1363 		if (unlikely(!segbuf))
1364 			goto failed;
1365 
1366 		/* map this buffer to region of segment on-disk */
1367 		nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1368 		sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1369 
1370 		/* allocate the next next full segment */
1371 		err = nilfs_sufile_alloc(sufile, &nextnextnum);
1372 		if (unlikely(err))
1373 			goto failed_segbuf;
1374 
1375 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1376 		nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1377 
1378 		list_add_tail(&segbuf->sb_list, &list);
1379 		prev = segbuf;
1380 	}
1381 	list_splice(&list, sci->sc_segbufs.prev);
1382 	return 0;
1383 
1384  failed_segbuf:
1385 	nilfs_segbuf_free(segbuf);
1386  failed:
1387 	list_for_each_entry_safe(segbuf, n, &list, sb_list) {
1388 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1389 		WARN_ON(ret); /* never fails */
1390 		list_del_init(&segbuf->sb_list);
1391 		nilfs_segbuf_free(segbuf);
1392 	}
1393 	return err;
1394 }
1395 
1396 static void nilfs_segctor_free_incomplete_segments(struct nilfs_sc_info *sci,
1397 						   struct the_nilfs *nilfs)
1398 {
1399 	struct nilfs_segment_buffer *segbuf;
1400 	int ret, done = 0;
1401 
1402 	segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1403 	if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1404 		ret = nilfs_sufile_free(nilfs->ns_sufile, segbuf->sb_nextnum);
1405 		WARN_ON(ret); /* never fails */
1406 	}
1407 	if (segbuf->sb_io_error) {
1408 		/* Case 1: The first segment failed */
1409 		if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1410 			/* Case 1a:  Partial segment appended into an existing
1411 			   segment */
1412 			nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1413 						segbuf->sb_fseg_end);
1414 		else /* Case 1b:  New full segment */
1415 			set_nilfs_discontinued(nilfs);
1416 		done++;
1417 	}
1418 
1419 	list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1420 		ret = nilfs_sufile_free(nilfs->ns_sufile, segbuf->sb_nextnum);
1421 		WARN_ON(ret); /* never fails */
1422 		if (!done && segbuf->sb_io_error) {
1423 			if (segbuf->sb_segnum != nilfs->ns_nextnum)
1424 				/* Case 2: extended segment (!= next) failed */
1425 				nilfs_sufile_set_error(nilfs->ns_sufile,
1426 						       segbuf->sb_segnum);
1427 			done++;
1428 		}
1429 	}
1430 }
1431 
1432 static void nilfs_segctor_clear_segment_buffers(struct nilfs_sc_info *sci)
1433 {
1434 	struct nilfs_segment_buffer *segbuf;
1435 
1436 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list)
1437 		nilfs_segbuf_clear(segbuf);
1438 	sci->sc_super_root = NULL;
1439 }
1440 
1441 static void nilfs_segctor_destroy_segment_buffers(struct nilfs_sc_info *sci)
1442 {
1443 	struct nilfs_segment_buffer *segbuf;
1444 
1445 	while (!list_empty(&sci->sc_segbufs)) {
1446 		segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1447 		list_del_init(&segbuf->sb_list);
1448 		nilfs_segbuf_free(segbuf);
1449 	}
1450 	/* sci->sc_curseg = NULL; */
1451 }
1452 
1453 static void nilfs_segctor_end_construction(struct nilfs_sc_info *sci,
1454 					   struct the_nilfs *nilfs, int err)
1455 {
1456 	if (unlikely(err)) {
1457 		nilfs_segctor_free_incomplete_segments(sci, nilfs);
1458 		if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1459 			int ret;
1460 
1461 			ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1462 							sci->sc_freesegs,
1463 							sci->sc_nfreesegs,
1464 							NULL);
1465 			WARN_ON(ret); /* do not happen */
1466 		}
1467 	}
1468 	nilfs_segctor_clear_segment_buffers(sci);
1469 }
1470 
1471 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1472 					  struct inode *sufile)
1473 {
1474 	struct nilfs_segment_buffer *segbuf;
1475 	struct buffer_head *bh_su;
1476 	struct nilfs_segment_usage *raw_su;
1477 	unsigned long live_blocks;
1478 	int ret;
1479 
1480 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1481 		ret = nilfs_sufile_get_segment_usage(sufile, segbuf->sb_segnum,
1482 						     &raw_su, &bh_su);
1483 		WARN_ON(ret); /* always succeed because bh_su is dirty */
1484 		live_blocks = segbuf->sb_sum.nblocks +
1485 			(segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1486 		raw_su->su_lastmod = cpu_to_le64(sci->sc_seg_ctime);
1487 		raw_su->su_nblocks = cpu_to_le32(live_blocks);
1488 		nilfs_sufile_put_segment_usage(sufile, segbuf->sb_segnum,
1489 					       bh_su);
1490 	}
1491 }
1492 
1493 static void nilfs_segctor_cancel_segusage(struct nilfs_sc_info *sci,
1494 					  struct inode *sufile)
1495 {
1496 	struct nilfs_segment_buffer *segbuf;
1497 	struct buffer_head *bh_su;
1498 	struct nilfs_segment_usage *raw_su;
1499 	int ret;
1500 
1501 	segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1502 	ret = nilfs_sufile_get_segment_usage(sufile, segbuf->sb_segnum,
1503 					     &raw_su, &bh_su);
1504 	WARN_ON(ret); /* always succeed because bh_su is dirty */
1505 	raw_su->su_nblocks = cpu_to_le32(segbuf->sb_pseg_start -
1506 					 segbuf->sb_fseg_start);
1507 	nilfs_sufile_put_segment_usage(sufile, segbuf->sb_segnum, bh_su);
1508 
1509 	list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1510 		ret = nilfs_sufile_get_segment_usage(sufile, segbuf->sb_segnum,
1511 						     &raw_su, &bh_su);
1512 		WARN_ON(ret); /* always succeed */
1513 		raw_su->su_nblocks = 0;
1514 		nilfs_sufile_put_segment_usage(sufile, segbuf->sb_segnum,
1515 					       bh_su);
1516 	}
1517 }
1518 
1519 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1520 					    struct nilfs_segment_buffer *last,
1521 					    struct inode *sufile)
1522 {
1523 	struct nilfs_segment_buffer *segbuf = last, *n;
1524 	int ret;
1525 
1526 	list_for_each_entry_safe_continue(segbuf, n, &sci->sc_segbufs,
1527 					  sb_list) {
1528 		list_del_init(&segbuf->sb_list);
1529 		sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1530 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1531 		WARN_ON(ret);
1532 		nilfs_segbuf_free(segbuf);
1533 	}
1534 }
1535 
1536 
1537 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1538 				 struct the_nilfs *nilfs, int mode)
1539 {
1540 	struct nilfs_cstage prev_stage = sci->sc_stage;
1541 	int err, nadd = 1;
1542 
1543 	/* Collection retry loop */
1544 	for (;;) {
1545 		sci->sc_super_root = NULL;
1546 		sci->sc_nblk_this_inc = 0;
1547 		sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1548 
1549 		err = nilfs_segctor_reset_segment_buffer(sci);
1550 		if (unlikely(err))
1551 			goto failed;
1552 
1553 		err = nilfs_segctor_collect_blocks(sci, mode);
1554 		sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1555 		if (!err)
1556 			break;
1557 
1558 		if (unlikely(err != -E2BIG))
1559 			goto failed;
1560 
1561 		/* The current segment is filled up */
1562 		if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
1563 			break;
1564 
1565 		if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1566 			err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1567 							sci->sc_freesegs,
1568 							sci->sc_nfreesegs,
1569 							NULL);
1570 			WARN_ON(err); /* do not happen */
1571 		}
1572 		nilfs_segctor_clear_segment_buffers(sci);
1573 
1574 		err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1575 		if (unlikely(err))
1576 			return err;
1577 
1578 		nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1579 		sci->sc_stage = prev_stage;
1580 	}
1581 	nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1582 	return 0;
1583 
1584  failed:
1585 	return err;
1586 }
1587 
1588 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1589 				      struct buffer_head *new_bh)
1590 {
1591 	BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1592 
1593 	list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1594 	/* The caller must release old_bh */
1595 }
1596 
1597 static int
1598 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1599 				     struct nilfs_segment_buffer *segbuf,
1600 				     int mode)
1601 {
1602 	struct inode *inode = NULL;
1603 	sector_t blocknr;
1604 	unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1605 	unsigned long nblocks = 0, ndatablk = 0;
1606 	struct nilfs_sc_operations *sc_op = NULL;
1607 	struct nilfs_segsum_pointer ssp;
1608 	struct nilfs_finfo *finfo = NULL;
1609 	union nilfs_binfo binfo;
1610 	struct buffer_head *bh, *bh_org;
1611 	ino_t ino = 0;
1612 	int err = 0;
1613 
1614 	if (!nfinfo)
1615 		goto out;
1616 
1617 	blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1618 	ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1619 	ssp.offset = sizeof(struct nilfs_segment_summary);
1620 
1621 	list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1622 		if (bh == sci->sc_super_root)
1623 			break;
1624 		if (!finfo) {
1625 			finfo =	nilfs_segctor_map_segsum_entry(
1626 				sci, &ssp, sizeof(*finfo));
1627 			ino = le64_to_cpu(finfo->fi_ino);
1628 			nblocks = le32_to_cpu(finfo->fi_nblocks);
1629 			ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1630 
1631 			if (buffer_nilfs_node(bh))
1632 				inode = NILFS_BTNC_I(bh->b_page->mapping);
1633 			else
1634 				inode = NILFS_AS_I(bh->b_page->mapping);
1635 
1636 			if (mode == SC_LSEG_DSYNC)
1637 				sc_op = &nilfs_sc_dsync_ops;
1638 			else if (ino == NILFS_DAT_INO)
1639 				sc_op = &nilfs_sc_dat_ops;
1640 			else /* file blocks */
1641 				sc_op = &nilfs_sc_file_ops;
1642 		}
1643 		bh_org = bh;
1644 		get_bh(bh_org);
1645 		err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1646 					&binfo);
1647 		if (bh != bh_org)
1648 			nilfs_list_replace_buffer(bh_org, bh);
1649 		brelse(bh_org);
1650 		if (unlikely(err))
1651 			goto failed_bmap;
1652 
1653 		if (ndatablk > 0)
1654 			sc_op->write_data_binfo(sci, &ssp, &binfo);
1655 		else
1656 			sc_op->write_node_binfo(sci, &ssp, &binfo);
1657 
1658 		blocknr++;
1659 		if (--nblocks == 0) {
1660 			finfo = NULL;
1661 			if (--nfinfo == 0)
1662 				break;
1663 		} else if (ndatablk > 0)
1664 			ndatablk--;
1665 	}
1666  out:
1667 	return 0;
1668 
1669  failed_bmap:
1670 	err = nilfs_handle_bmap_error(err, __func__, inode, sci->sc_super);
1671 	return err;
1672 }
1673 
1674 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1675 {
1676 	struct nilfs_segment_buffer *segbuf;
1677 	int err;
1678 
1679 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1680 		err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1681 		if (unlikely(err))
1682 			return err;
1683 		nilfs_segbuf_fill_in_segsum(segbuf);
1684 	}
1685 	return 0;
1686 }
1687 
1688 static int
1689 nilfs_copy_replace_page_buffers(struct page *page, struct list_head *out)
1690 {
1691 	struct page *clone_page;
1692 	struct buffer_head *bh, *head, *bh2;
1693 	void *kaddr;
1694 
1695 	bh = head = page_buffers(page);
1696 
1697 	clone_page = nilfs_alloc_private_page(bh->b_bdev, bh->b_size, 0);
1698 	if (unlikely(!clone_page))
1699 		return -ENOMEM;
1700 
1701 	bh2 = page_buffers(clone_page);
1702 	kaddr = kmap_atomic(page, KM_USER0);
1703 	do {
1704 		if (list_empty(&bh->b_assoc_buffers))
1705 			continue;
1706 		get_bh(bh2);
1707 		page_cache_get(clone_page); /* for each bh */
1708 		memcpy(bh2->b_data, kaddr + bh_offset(bh), bh2->b_size);
1709 		bh2->b_blocknr = bh->b_blocknr;
1710 		list_replace(&bh->b_assoc_buffers, &bh2->b_assoc_buffers);
1711 		list_add_tail(&bh->b_assoc_buffers, out);
1712 	} while (bh = bh->b_this_page, bh2 = bh2->b_this_page, bh != head);
1713 	kunmap_atomic(kaddr, KM_USER0);
1714 
1715 	if (!TestSetPageWriteback(clone_page))
1716 		inc_zone_page_state(clone_page, NR_WRITEBACK);
1717 	unlock_page(clone_page);
1718 
1719 	return 0;
1720 }
1721 
1722 static int nilfs_test_page_to_be_frozen(struct page *page)
1723 {
1724 	struct address_space *mapping = page->mapping;
1725 
1726 	if (!mapping || !mapping->host || S_ISDIR(mapping->host->i_mode))
1727 		return 0;
1728 
1729 	if (page_mapped(page)) {
1730 		ClearPageChecked(page);
1731 		return 1;
1732 	}
1733 	return PageChecked(page);
1734 }
1735 
1736 static int nilfs_begin_page_io(struct page *page, struct list_head *out)
1737 {
1738 	if (!page || PageWriteback(page))
1739 		/* For split b-tree node pages, this function may be called
1740 		   twice.  We ignore the 2nd or later calls by this check. */
1741 		return 0;
1742 
1743 	lock_page(page);
1744 	clear_page_dirty_for_io(page);
1745 	set_page_writeback(page);
1746 	unlock_page(page);
1747 
1748 	if (nilfs_test_page_to_be_frozen(page)) {
1749 		int err = nilfs_copy_replace_page_buffers(page, out);
1750 		if (unlikely(err))
1751 			return err;
1752 	}
1753 	return 0;
1754 }
1755 
1756 static int nilfs_segctor_prepare_write(struct nilfs_sc_info *sci,
1757 				       struct page **failed_page)
1758 {
1759 	struct nilfs_segment_buffer *segbuf;
1760 	struct page *bd_page = NULL, *fs_page = NULL;
1761 	struct list_head *list = &sci->sc_copied_buffers;
1762 	int err;
1763 
1764 	*failed_page = NULL;
1765 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1766 		struct buffer_head *bh;
1767 
1768 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1769 				    b_assoc_buffers) {
1770 			if (bh->b_page != bd_page) {
1771 				if (bd_page) {
1772 					lock_page(bd_page);
1773 					clear_page_dirty_for_io(bd_page);
1774 					set_page_writeback(bd_page);
1775 					unlock_page(bd_page);
1776 				}
1777 				bd_page = bh->b_page;
1778 			}
1779 		}
1780 
1781 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1782 				    b_assoc_buffers) {
1783 			if (bh == sci->sc_super_root) {
1784 				if (bh->b_page != bd_page) {
1785 					lock_page(bd_page);
1786 					clear_page_dirty_for_io(bd_page);
1787 					set_page_writeback(bd_page);
1788 					unlock_page(bd_page);
1789 					bd_page = bh->b_page;
1790 				}
1791 				break;
1792 			}
1793 			if (bh->b_page != fs_page) {
1794 				err = nilfs_begin_page_io(fs_page, list);
1795 				if (unlikely(err)) {
1796 					*failed_page = fs_page;
1797 					goto out;
1798 				}
1799 				fs_page = bh->b_page;
1800 			}
1801 		}
1802 	}
1803 	if (bd_page) {
1804 		lock_page(bd_page);
1805 		clear_page_dirty_for_io(bd_page);
1806 		set_page_writeback(bd_page);
1807 		unlock_page(bd_page);
1808 	}
1809 	err = nilfs_begin_page_io(fs_page, list);
1810 	if (unlikely(err))
1811 		*failed_page = fs_page;
1812  out:
1813 	return err;
1814 }
1815 
1816 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1817 			       struct backing_dev_info *bdi)
1818 {
1819 	struct nilfs_segment_buffer *segbuf;
1820 	struct nilfs_write_info wi;
1821 	int err, res;
1822 
1823 	wi.sb = sci->sc_super;
1824 	wi.bh_sr = sci->sc_super_root;
1825 	wi.bdi = bdi;
1826 
1827 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1828 		nilfs_segbuf_prepare_write(segbuf, &wi);
1829 		err = nilfs_segbuf_write(segbuf, &wi);
1830 
1831 		res = nilfs_segbuf_wait(segbuf, &wi);
1832 		err = err ? : res;
1833 		if (err)
1834 			return err;
1835 	}
1836 	return 0;
1837 }
1838 
1839 static void __nilfs_end_page_io(struct page *page, int err)
1840 {
1841 	if (!err) {
1842 		if (!nilfs_page_buffers_clean(page))
1843 			__set_page_dirty_nobuffers(page);
1844 		ClearPageError(page);
1845 	} else {
1846 		__set_page_dirty_nobuffers(page);
1847 		SetPageError(page);
1848 	}
1849 
1850 	if (buffer_nilfs_allocated(page_buffers(page))) {
1851 		if (TestClearPageWriteback(page))
1852 			dec_zone_page_state(page, NR_WRITEBACK);
1853 	} else
1854 		end_page_writeback(page);
1855 }
1856 
1857 static void nilfs_end_page_io(struct page *page, int err)
1858 {
1859 	if (!page)
1860 		return;
1861 
1862 	if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
1863 		/*
1864 		 * For b-tree node pages, this function may be called twice
1865 		 * or more because they might be split in a segment.
1866 		 */
1867 		if (PageDirty(page)) {
1868 			/*
1869 			 * For pages holding split b-tree node buffers, dirty
1870 			 * flag on the buffers may be cleared discretely.
1871 			 * In that case, the page is once redirtied for
1872 			 * remaining buffers, and it must be cancelled if
1873 			 * all the buffers get cleaned later.
1874 			 */
1875 			lock_page(page);
1876 			if (nilfs_page_buffers_clean(page))
1877 				__nilfs_clear_page_dirty(page);
1878 			unlock_page(page);
1879 		}
1880 		return;
1881 	}
1882 
1883 	__nilfs_end_page_io(page, err);
1884 }
1885 
1886 static void nilfs_clear_copied_buffers(struct list_head *list, int err)
1887 {
1888 	struct buffer_head *bh, *head;
1889 	struct page *page;
1890 
1891 	while (!list_empty(list)) {
1892 		bh = list_entry(list->next, struct buffer_head,
1893 				b_assoc_buffers);
1894 		page = bh->b_page;
1895 		page_cache_get(page);
1896 		head = bh = page_buffers(page);
1897 		do {
1898 			if (!list_empty(&bh->b_assoc_buffers)) {
1899 				list_del_init(&bh->b_assoc_buffers);
1900 				if (!err) {
1901 					set_buffer_uptodate(bh);
1902 					clear_buffer_dirty(bh);
1903 					clear_buffer_nilfs_volatile(bh);
1904 				}
1905 				brelse(bh); /* for b_assoc_buffers */
1906 			}
1907 		} while ((bh = bh->b_this_page) != head);
1908 
1909 		__nilfs_end_page_io(page, err);
1910 		page_cache_release(page);
1911 	}
1912 }
1913 
1914 static void nilfs_segctor_abort_write(struct nilfs_sc_info *sci,
1915 				      struct page *failed_page, int err)
1916 {
1917 	struct nilfs_segment_buffer *segbuf;
1918 	struct page *bd_page = NULL, *fs_page = NULL;
1919 
1920 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1921 		struct buffer_head *bh;
1922 
1923 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1924 				    b_assoc_buffers) {
1925 			if (bh->b_page != bd_page) {
1926 				if (bd_page)
1927 					end_page_writeback(bd_page);
1928 				bd_page = bh->b_page;
1929 			}
1930 		}
1931 
1932 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1933 				    b_assoc_buffers) {
1934 			if (bh == sci->sc_super_root) {
1935 				if (bh->b_page != bd_page) {
1936 					end_page_writeback(bd_page);
1937 					bd_page = bh->b_page;
1938 				}
1939 				break;
1940 			}
1941 			if (bh->b_page != fs_page) {
1942 				nilfs_end_page_io(fs_page, err);
1943 				if (fs_page && fs_page == failed_page)
1944 					goto done;
1945 				fs_page = bh->b_page;
1946 			}
1947 		}
1948 	}
1949 	if (bd_page)
1950 		end_page_writeback(bd_page);
1951 
1952 	nilfs_end_page_io(fs_page, err);
1953  done:
1954 	nilfs_clear_copied_buffers(&sci->sc_copied_buffers, err);
1955 }
1956 
1957 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1958 				   struct nilfs_segment_buffer *segbuf)
1959 {
1960 	nilfs->ns_segnum = segbuf->sb_segnum;
1961 	nilfs->ns_nextnum = segbuf->sb_nextnum;
1962 	nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1963 		+ segbuf->sb_sum.nblocks;
1964 	nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1965 	nilfs->ns_ctime = segbuf->sb_sum.ctime;
1966 }
1967 
1968 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1969 {
1970 	struct nilfs_segment_buffer *segbuf;
1971 	struct page *bd_page = NULL, *fs_page = NULL;
1972 	struct nilfs_sb_info *sbi = sci->sc_sbi;
1973 	struct the_nilfs *nilfs = sbi->s_nilfs;
1974 	int update_sr = (sci->sc_super_root != NULL);
1975 
1976 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1977 		struct buffer_head *bh;
1978 
1979 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1980 				    b_assoc_buffers) {
1981 			set_buffer_uptodate(bh);
1982 			clear_buffer_dirty(bh);
1983 			if (bh->b_page != bd_page) {
1984 				if (bd_page)
1985 					end_page_writeback(bd_page);
1986 				bd_page = bh->b_page;
1987 			}
1988 		}
1989 		/*
1990 		 * We assume that the buffers which belong to the same page
1991 		 * continue over the buffer list.
1992 		 * Under this assumption, the last BHs of pages is
1993 		 * identifiable by the discontinuity of bh->b_page
1994 		 * (page != fs_page).
1995 		 *
1996 		 * For B-tree node blocks, however, this assumption is not
1997 		 * guaranteed.  The cleanup code of B-tree node pages needs
1998 		 * special care.
1999 		 */
2000 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
2001 				    b_assoc_buffers) {
2002 			set_buffer_uptodate(bh);
2003 			clear_buffer_dirty(bh);
2004 			clear_buffer_nilfs_volatile(bh);
2005 			if (bh == sci->sc_super_root) {
2006 				if (bh->b_page != bd_page) {
2007 					end_page_writeback(bd_page);
2008 					bd_page = bh->b_page;
2009 				}
2010 				break;
2011 			}
2012 			if (bh->b_page != fs_page) {
2013 				nilfs_end_page_io(fs_page, 0);
2014 				fs_page = bh->b_page;
2015 			}
2016 		}
2017 
2018 		if (!NILFS_SEG_SIMPLEX(&segbuf->sb_sum)) {
2019 			if (NILFS_SEG_LOGBGN(&segbuf->sb_sum)) {
2020 				set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
2021 				sci->sc_lseg_stime = jiffies;
2022 			}
2023 			if (NILFS_SEG_LOGEND(&segbuf->sb_sum))
2024 				clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
2025 		}
2026 	}
2027 	/*
2028 	 * Since pages may continue over multiple segment buffers,
2029 	 * end of the last page must be checked outside of the loop.
2030 	 */
2031 	if (bd_page)
2032 		end_page_writeback(bd_page);
2033 
2034 	nilfs_end_page_io(fs_page, 0);
2035 
2036 	nilfs_clear_copied_buffers(&sci->sc_copied_buffers, 0);
2037 
2038 	nilfs_drop_collected_inodes(&sci->sc_dirty_files);
2039 
2040 	if (nilfs_doing_gc()) {
2041 		nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
2042 		if (update_sr)
2043 			nilfs_commit_gcdat_inode(nilfs);
2044 	} else
2045 		nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
2046 
2047 	sci->sc_nblk_inc += sci->sc_nblk_this_inc;
2048 
2049 	segbuf = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
2050 	nilfs_set_next_segment(nilfs, segbuf);
2051 
2052 	if (update_sr) {
2053 		nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
2054 				       segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
2055 		sbi->s_super->s_dirt = 1;
2056 
2057 		clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
2058 		clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2059 		set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
2060 	} else
2061 		clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
2062 }
2063 
2064 static int nilfs_segctor_check_in_files(struct nilfs_sc_info *sci,
2065 					struct nilfs_sb_info *sbi)
2066 {
2067 	struct nilfs_inode_info *ii, *n;
2068 	__u64 cno = sbi->s_nilfs->ns_cno;
2069 
2070 	spin_lock(&sbi->s_inode_lock);
2071  retry:
2072 	list_for_each_entry_safe(ii, n, &sbi->s_dirty_files, i_dirty) {
2073 		if (!ii->i_bh) {
2074 			struct buffer_head *ibh;
2075 			int err;
2076 
2077 			spin_unlock(&sbi->s_inode_lock);
2078 			err = nilfs_ifile_get_inode_block(
2079 				sbi->s_ifile, ii->vfs_inode.i_ino, &ibh);
2080 			if (unlikely(err)) {
2081 				nilfs_warning(sbi->s_super, __func__,
2082 					      "failed to get inode block.\n");
2083 				return err;
2084 			}
2085 			nilfs_mdt_mark_buffer_dirty(ibh);
2086 			nilfs_mdt_mark_dirty(sbi->s_ifile);
2087 			spin_lock(&sbi->s_inode_lock);
2088 			if (likely(!ii->i_bh))
2089 				ii->i_bh = ibh;
2090 			else
2091 				brelse(ibh);
2092 			goto retry;
2093 		}
2094 		ii->i_cno = cno;
2095 
2096 		clear_bit(NILFS_I_QUEUED, &ii->i_state);
2097 		set_bit(NILFS_I_BUSY, &ii->i_state);
2098 		list_del(&ii->i_dirty);
2099 		list_add_tail(&ii->i_dirty, &sci->sc_dirty_files);
2100 	}
2101 	spin_unlock(&sbi->s_inode_lock);
2102 
2103 	NILFS_I(sbi->s_ifile)->i_cno = cno;
2104 
2105 	return 0;
2106 }
2107 
2108 static void nilfs_segctor_check_out_files(struct nilfs_sc_info *sci,
2109 					  struct nilfs_sb_info *sbi)
2110 {
2111 	struct nilfs_transaction_info *ti = current->journal_info;
2112 	struct nilfs_inode_info *ii, *n;
2113 	__u64 cno = sbi->s_nilfs->ns_cno;
2114 
2115 	spin_lock(&sbi->s_inode_lock);
2116 	list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
2117 		if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
2118 		    test_bit(NILFS_I_DIRTY, &ii->i_state)) {
2119 			/* The current checkpoint number (=nilfs->ns_cno) is
2120 			   changed between check-in and check-out only if the
2121 			   super root is written out.  So, we can update i_cno
2122 			   for the inodes that remain in the dirty list. */
2123 			ii->i_cno = cno;
2124 			continue;
2125 		}
2126 		clear_bit(NILFS_I_BUSY, &ii->i_state);
2127 		brelse(ii->i_bh);
2128 		ii->i_bh = NULL;
2129 		list_del(&ii->i_dirty);
2130 		list_add_tail(&ii->i_dirty, &ti->ti_garbage);
2131 	}
2132 	spin_unlock(&sbi->s_inode_lock);
2133 }
2134 
2135 /*
2136  * Main procedure of segment constructor
2137  */
2138 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
2139 {
2140 	struct nilfs_sb_info *sbi = sci->sc_sbi;
2141 	struct the_nilfs *nilfs = sbi->s_nilfs;
2142 	struct page *failed_page;
2143 	int err, has_sr = 0;
2144 
2145 	sci->sc_stage.scnt = NILFS_ST_INIT;
2146 
2147 	err = nilfs_segctor_check_in_files(sci, sbi);
2148 	if (unlikely(err))
2149 		goto out;
2150 
2151 	if (nilfs_test_metadata_dirty(sbi))
2152 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2153 
2154 	if (nilfs_segctor_clean(sci))
2155 		goto out;
2156 
2157 	do {
2158 		sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
2159 
2160 		err = nilfs_segctor_begin_construction(sci, nilfs);
2161 		if (unlikely(err))
2162 			goto out;
2163 
2164 		/* Update time stamp */
2165 		sci->sc_seg_ctime = get_seconds();
2166 
2167 		err = nilfs_segctor_collect(sci, nilfs, mode);
2168 		if (unlikely(err))
2169 			goto failed;
2170 
2171 		has_sr = (sci->sc_super_root != NULL);
2172 
2173 		/* Avoid empty segment */
2174 		if (sci->sc_stage.scnt == NILFS_ST_DONE &&
2175 		    NILFS_SEG_EMPTY(&sci->sc_curseg->sb_sum)) {
2176 			nilfs_segctor_end_construction(sci, nilfs, 1);
2177 			goto out;
2178 		}
2179 
2180 		err = nilfs_segctor_assign(sci, mode);
2181 		if (unlikely(err))
2182 			goto failed;
2183 
2184 		if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2185 			nilfs_segctor_fill_in_file_bmap(sci, sbi->s_ifile);
2186 
2187 		if (has_sr) {
2188 			err = nilfs_segctor_fill_in_checkpoint(sci);
2189 			if (unlikely(err))
2190 				goto failed_to_make_up;
2191 
2192 			nilfs_segctor_fill_in_super_root(sci, nilfs);
2193 		}
2194 		nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
2195 
2196 		/* Write partial segments */
2197 		err = nilfs_segctor_prepare_write(sci, &failed_page);
2198 		if (unlikely(err))
2199 			goto failed_to_write;
2200 
2201 		nilfs_segctor_fill_in_checksums(sci, nilfs->ns_crc_seed);
2202 
2203 		err = nilfs_segctor_write(sci, nilfs->ns_bdi);
2204 		if (unlikely(err))
2205 			goto failed_to_write;
2206 
2207 		nilfs_segctor_complete_write(sci);
2208 
2209 		/* Commit segments */
2210 		if (has_sr)
2211 			nilfs_segctor_clear_metadata_dirty(sci);
2212 
2213 		nilfs_segctor_end_construction(sci, nilfs, 0);
2214 
2215 	} while (sci->sc_stage.scnt != NILFS_ST_DONE);
2216 
2217  out:
2218 	nilfs_segctor_destroy_segment_buffers(sci);
2219 	nilfs_segctor_check_out_files(sci, sbi);
2220 	return err;
2221 
2222  failed_to_write:
2223 	nilfs_segctor_abort_write(sci, failed_page, err);
2224 	nilfs_segctor_cancel_segusage(sci, nilfs->ns_sufile);
2225 
2226  failed_to_make_up:
2227 	if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2228 		nilfs_redirty_inodes(&sci->sc_dirty_files);
2229 
2230  failed:
2231 	if (nilfs_doing_gc())
2232 		nilfs_redirty_inodes(&sci->sc_gc_inodes);
2233 	nilfs_segctor_end_construction(sci, nilfs, err);
2234 	goto out;
2235 }
2236 
2237 /**
2238  * nilfs_secgtor_start_timer - set timer of background write
2239  * @sci: nilfs_sc_info
2240  *
2241  * If the timer has already been set, it ignores the new request.
2242  * This function MUST be called within a section locking the segment
2243  * semaphore.
2244  */
2245 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2246 {
2247 	spin_lock(&sci->sc_state_lock);
2248 	if (sci->sc_timer && !(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2249 		sci->sc_timer->expires = jiffies + sci->sc_interval;
2250 		add_timer(sci->sc_timer);
2251 		sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2252 	}
2253 	spin_unlock(&sci->sc_state_lock);
2254 }
2255 
2256 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2257 {
2258 	spin_lock(&sci->sc_state_lock);
2259 	if (!(sci->sc_flush_request & (1 << bn))) {
2260 		unsigned long prev_req = sci->sc_flush_request;
2261 
2262 		sci->sc_flush_request |= (1 << bn);
2263 		if (!prev_req)
2264 			wake_up(&sci->sc_wait_daemon);
2265 	}
2266 	spin_unlock(&sci->sc_state_lock);
2267 }
2268 
2269 /**
2270  * nilfs_flush_segment - trigger a segment construction for resource control
2271  * @sb: super block
2272  * @ino: inode number of the file to be flushed out.
2273  */
2274 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2275 {
2276 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
2277 	struct nilfs_sc_info *sci = NILFS_SC(sbi);
2278 
2279 	if (!sci || nilfs_doing_construction())
2280 		return;
2281 	nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2282 					/* assign bit 0 to data files */
2283 }
2284 
2285 struct nilfs_segctor_wait_request {
2286 	wait_queue_t	wq;
2287 	__u32		seq;
2288 	int		err;
2289 	atomic_t	done;
2290 };
2291 
2292 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2293 {
2294 	struct nilfs_segctor_wait_request wait_req;
2295 	int err = 0;
2296 
2297 	spin_lock(&sci->sc_state_lock);
2298 	init_wait(&wait_req.wq);
2299 	wait_req.err = 0;
2300 	atomic_set(&wait_req.done, 0);
2301 	wait_req.seq = ++sci->sc_seq_request;
2302 	spin_unlock(&sci->sc_state_lock);
2303 
2304 	init_waitqueue_entry(&wait_req.wq, current);
2305 	add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2306 	set_current_state(TASK_INTERRUPTIBLE);
2307 	wake_up(&sci->sc_wait_daemon);
2308 
2309 	for (;;) {
2310 		if (atomic_read(&wait_req.done)) {
2311 			err = wait_req.err;
2312 			break;
2313 		}
2314 		if (!signal_pending(current)) {
2315 			schedule();
2316 			continue;
2317 		}
2318 		err = -ERESTARTSYS;
2319 		break;
2320 	}
2321 	finish_wait(&sci->sc_wait_request, &wait_req.wq);
2322 	return err;
2323 }
2324 
2325 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
2326 {
2327 	struct nilfs_segctor_wait_request *wrq, *n;
2328 	unsigned long flags;
2329 
2330 	spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2331 	list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
2332 				 wq.task_list) {
2333 		if (!atomic_read(&wrq->done) &&
2334 		    nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
2335 			wrq->err = err;
2336 			atomic_set(&wrq->done, 1);
2337 		}
2338 		if (atomic_read(&wrq->done)) {
2339 			wrq->wq.func(&wrq->wq,
2340 				     TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2341 				     0, NULL);
2342 		}
2343 	}
2344 	spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2345 }
2346 
2347 /**
2348  * nilfs_construct_segment - construct a logical segment
2349  * @sb: super block
2350  *
2351  * Return Value: On success, 0 is retured. On errors, one of the following
2352  * negative error code is returned.
2353  *
2354  * %-EROFS - Read only filesystem.
2355  *
2356  * %-EIO - I/O error
2357  *
2358  * %-ENOSPC - No space left on device (only in a panic state).
2359  *
2360  * %-ERESTARTSYS - Interrupted.
2361  *
2362  * %-ENOMEM - Insufficient memory available.
2363  */
2364 int nilfs_construct_segment(struct super_block *sb)
2365 {
2366 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
2367 	struct nilfs_sc_info *sci = NILFS_SC(sbi);
2368 	struct nilfs_transaction_info *ti;
2369 	int err;
2370 
2371 	if (!sci)
2372 		return -EROFS;
2373 
2374 	/* A call inside transactions causes a deadlock. */
2375 	BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2376 
2377 	err = nilfs_segctor_sync(sci);
2378 	return err;
2379 }
2380 
2381 /**
2382  * nilfs_construct_dsync_segment - construct a data-only logical segment
2383  * @sb: super block
2384  * @inode: inode whose data blocks should be written out
2385  * @start: start byte offset
2386  * @end: end byte offset (inclusive)
2387  *
2388  * Return Value: On success, 0 is retured. On errors, one of the following
2389  * negative error code is returned.
2390  *
2391  * %-EROFS - Read only filesystem.
2392  *
2393  * %-EIO - I/O error
2394  *
2395  * %-ENOSPC - No space left on device (only in a panic state).
2396  *
2397  * %-ERESTARTSYS - Interrupted.
2398  *
2399  * %-ENOMEM - Insufficient memory available.
2400  */
2401 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2402 				  loff_t start, loff_t end)
2403 {
2404 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
2405 	struct nilfs_sc_info *sci = NILFS_SC(sbi);
2406 	struct nilfs_inode_info *ii;
2407 	struct nilfs_transaction_info ti;
2408 	int err = 0;
2409 
2410 	if (!sci)
2411 		return -EROFS;
2412 
2413 	nilfs_transaction_lock(sbi, &ti, 0);
2414 
2415 	ii = NILFS_I(inode);
2416 	if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
2417 	    nilfs_test_opt(sbi, STRICT_ORDER) ||
2418 	    test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2419 	    nilfs_discontinued(sbi->s_nilfs)) {
2420 		nilfs_transaction_unlock(sbi);
2421 		err = nilfs_segctor_sync(sci);
2422 		return err;
2423 	}
2424 
2425 	spin_lock(&sbi->s_inode_lock);
2426 	if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2427 	    !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2428 		spin_unlock(&sbi->s_inode_lock);
2429 		nilfs_transaction_unlock(sbi);
2430 		return 0;
2431 	}
2432 	spin_unlock(&sbi->s_inode_lock);
2433 	sci->sc_dsync_inode = ii;
2434 	sci->sc_dsync_start = start;
2435 	sci->sc_dsync_end = end;
2436 
2437 	err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2438 
2439 	nilfs_transaction_unlock(sbi);
2440 	return err;
2441 }
2442 
2443 struct nilfs_segctor_req {
2444 	int mode;
2445 	__u32 seq_accepted;
2446 	int sc_err;  /* construction failure */
2447 	int sb_err;  /* super block writeback failure */
2448 };
2449 
2450 #define FLUSH_FILE_BIT	(0x1) /* data file only */
2451 #define FLUSH_DAT_BIT	(1 << NILFS_DAT_INO) /* DAT only */
2452 
2453 static void nilfs_segctor_accept(struct nilfs_sc_info *sci,
2454 				 struct nilfs_segctor_req *req)
2455 {
2456 	req->sc_err = req->sb_err = 0;
2457 	spin_lock(&sci->sc_state_lock);
2458 	req->seq_accepted = sci->sc_seq_request;
2459 	spin_unlock(&sci->sc_state_lock);
2460 
2461 	if (sci->sc_timer)
2462 		del_timer_sync(sci->sc_timer);
2463 }
2464 
2465 static void nilfs_segctor_notify(struct nilfs_sc_info *sci,
2466 				 struct nilfs_segctor_req *req)
2467 {
2468 	/* Clear requests (even when the construction failed) */
2469 	spin_lock(&sci->sc_state_lock);
2470 
2471 	sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2472 
2473 	if (req->mode == SC_LSEG_SR) {
2474 		sci->sc_seq_done = req->seq_accepted;
2475 		nilfs_segctor_wakeup(sci, req->sc_err ? : req->sb_err);
2476 		sci->sc_flush_request = 0;
2477 	} else if (req->mode == SC_FLUSH_FILE)
2478 		sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2479 	else if (req->mode == SC_FLUSH_DAT)
2480 		sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2481 
2482 	spin_unlock(&sci->sc_state_lock);
2483 }
2484 
2485 static int nilfs_segctor_construct(struct nilfs_sc_info *sci,
2486 				   struct nilfs_segctor_req *req)
2487 {
2488 	struct nilfs_sb_info *sbi = sci->sc_sbi;
2489 	struct the_nilfs *nilfs = sbi->s_nilfs;
2490 	int err = 0;
2491 
2492 	if (nilfs_discontinued(nilfs))
2493 		req->mode = SC_LSEG_SR;
2494 	if (!nilfs_segctor_confirm(sci)) {
2495 		err = nilfs_segctor_do_construct(sci, req->mode);
2496 		req->sc_err = err;
2497 	}
2498 	if (likely(!err)) {
2499 		if (req->mode != SC_FLUSH_DAT)
2500 			atomic_set(&nilfs->ns_ndirtyblks, 0);
2501 		if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2502 		    nilfs_discontinued(nilfs)) {
2503 			down_write(&nilfs->ns_sem);
2504 			req->sb_err = nilfs_commit_super(sbi,
2505 					nilfs_altsb_need_update(nilfs));
2506 			up_write(&nilfs->ns_sem);
2507 		}
2508 	}
2509 	return err;
2510 }
2511 
2512 static void nilfs_construction_timeout(unsigned long data)
2513 {
2514 	struct task_struct *p = (struct task_struct *)data;
2515 	wake_up_process(p);
2516 }
2517 
2518 static void
2519 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2520 {
2521 	struct nilfs_inode_info *ii, *n;
2522 
2523 	list_for_each_entry_safe(ii, n, head, i_dirty) {
2524 		if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2525 			continue;
2526 		hlist_del_init(&ii->vfs_inode.i_hash);
2527 		list_del_init(&ii->i_dirty);
2528 		nilfs_clear_gcinode(&ii->vfs_inode);
2529 	}
2530 }
2531 
2532 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2533 			 void **kbufs)
2534 {
2535 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
2536 	struct nilfs_sc_info *sci = NILFS_SC(sbi);
2537 	struct the_nilfs *nilfs = sbi->s_nilfs;
2538 	struct nilfs_transaction_info ti;
2539 	struct nilfs_segctor_req req = { .mode = SC_LSEG_SR };
2540 	int err;
2541 
2542 	if (unlikely(!sci))
2543 		return -EROFS;
2544 
2545 	nilfs_transaction_lock(sbi, &ti, 1);
2546 
2547 	err = nilfs_init_gcdat_inode(nilfs);
2548 	if (unlikely(err))
2549 		goto out_unlock;
2550 
2551 	err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2552 	if (unlikely(err))
2553 		goto out_unlock;
2554 
2555 	sci->sc_freesegs = kbufs[4];
2556 	sci->sc_nfreesegs = argv[4].v_nmembs;
2557 	list_splice_init(&nilfs->ns_gc_inodes, sci->sc_gc_inodes.prev);
2558 
2559 	for (;;) {
2560 		nilfs_segctor_accept(sci, &req);
2561 		err = nilfs_segctor_construct(sci, &req);
2562 		nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2563 		nilfs_segctor_notify(sci, &req);
2564 
2565 		if (likely(!err))
2566 			break;
2567 
2568 		nilfs_warning(sb, __func__,
2569 			      "segment construction failed. (err=%d)", err);
2570 		set_current_state(TASK_INTERRUPTIBLE);
2571 		schedule_timeout(sci->sc_interval);
2572 	}
2573 
2574  out_unlock:
2575 	sci->sc_freesegs = NULL;
2576 	sci->sc_nfreesegs = 0;
2577 	nilfs_clear_gcdat_inode(nilfs);
2578 	nilfs_transaction_unlock(sbi);
2579 	return err;
2580 }
2581 
2582 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2583 {
2584 	struct nilfs_sb_info *sbi = sci->sc_sbi;
2585 	struct nilfs_transaction_info ti;
2586 	struct nilfs_segctor_req req = { .mode = mode };
2587 
2588 	nilfs_transaction_lock(sbi, &ti, 0);
2589 
2590 	nilfs_segctor_accept(sci, &req);
2591 	nilfs_segctor_construct(sci, &req);
2592 	nilfs_segctor_notify(sci, &req);
2593 
2594 	/*
2595 	 * Unclosed segment should be retried.  We do this using sc_timer.
2596 	 * Timeout of sc_timer will invoke complete construction which leads
2597 	 * to close the current logical segment.
2598 	 */
2599 	if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2600 		nilfs_segctor_start_timer(sci);
2601 
2602 	nilfs_transaction_unlock(sbi);
2603 }
2604 
2605 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2606 {
2607 	int mode = 0;
2608 	int err;
2609 
2610 	spin_lock(&sci->sc_state_lock);
2611 	mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2612 		SC_FLUSH_DAT : SC_FLUSH_FILE;
2613 	spin_unlock(&sci->sc_state_lock);
2614 
2615 	if (mode) {
2616 		err = nilfs_segctor_do_construct(sci, mode);
2617 
2618 		spin_lock(&sci->sc_state_lock);
2619 		sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2620 			~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2621 		spin_unlock(&sci->sc_state_lock);
2622 	}
2623 	clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2624 }
2625 
2626 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2627 {
2628 	if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2629 	    time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2630 		if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2631 			return SC_FLUSH_FILE;
2632 		else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2633 			return SC_FLUSH_DAT;
2634 	}
2635 	return SC_LSEG_SR;
2636 }
2637 
2638 /**
2639  * nilfs_segctor_thread - main loop of the segment constructor thread.
2640  * @arg: pointer to a struct nilfs_sc_info.
2641  *
2642  * nilfs_segctor_thread() initializes a timer and serves as a daemon
2643  * to execute segment constructions.
2644  */
2645 static int nilfs_segctor_thread(void *arg)
2646 {
2647 	struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2648 	struct timer_list timer;
2649 	int timeout = 0;
2650 
2651 	init_timer(&timer);
2652 	timer.data = (unsigned long)current;
2653 	timer.function = nilfs_construction_timeout;
2654 	sci->sc_timer = &timer;
2655 
2656 	/* start sync. */
2657 	sci->sc_task = current;
2658 	wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
2659 	printk(KERN_INFO
2660 	       "segctord starting. Construction interval = %lu seconds, "
2661 	       "CP frequency < %lu seconds\n",
2662 	       sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2663 
2664 	spin_lock(&sci->sc_state_lock);
2665  loop:
2666 	for (;;) {
2667 		int mode;
2668 
2669 		if (sci->sc_state & NILFS_SEGCTOR_QUIT)
2670 			goto end_thread;
2671 
2672 		if (timeout || sci->sc_seq_request != sci->sc_seq_done)
2673 			mode = SC_LSEG_SR;
2674 		else if (!sci->sc_flush_request)
2675 			break;
2676 		else
2677 			mode = nilfs_segctor_flush_mode(sci);
2678 
2679 		spin_unlock(&sci->sc_state_lock);
2680 		nilfs_segctor_thread_construct(sci, mode);
2681 		spin_lock(&sci->sc_state_lock);
2682 		timeout = 0;
2683 	}
2684 
2685 
2686 	if (freezing(current)) {
2687 		spin_unlock(&sci->sc_state_lock);
2688 		refrigerator();
2689 		spin_lock(&sci->sc_state_lock);
2690 	} else {
2691 		DEFINE_WAIT(wait);
2692 		int should_sleep = 1;
2693 		struct the_nilfs *nilfs;
2694 
2695 		prepare_to_wait(&sci->sc_wait_daemon, &wait,
2696 				TASK_INTERRUPTIBLE);
2697 
2698 		if (sci->sc_seq_request != sci->sc_seq_done)
2699 			should_sleep = 0;
2700 		else if (sci->sc_flush_request)
2701 			should_sleep = 0;
2702 		else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
2703 			should_sleep = time_before(jiffies,
2704 						   sci->sc_timer->expires);
2705 
2706 		if (should_sleep) {
2707 			spin_unlock(&sci->sc_state_lock);
2708 			schedule();
2709 			spin_lock(&sci->sc_state_lock);
2710 		}
2711 		finish_wait(&sci->sc_wait_daemon, &wait);
2712 		timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2713 			   time_after_eq(jiffies, sci->sc_timer->expires));
2714 		nilfs = sci->sc_sbi->s_nilfs;
2715 		if (sci->sc_super->s_dirt && nilfs_sb_need_update(nilfs))
2716 			set_nilfs_discontinued(nilfs);
2717 	}
2718 	goto loop;
2719 
2720  end_thread:
2721 	spin_unlock(&sci->sc_state_lock);
2722 	del_timer_sync(sci->sc_timer);
2723 	sci->sc_timer = NULL;
2724 
2725 	/* end sync. */
2726 	sci->sc_task = NULL;
2727 	wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
2728 	return 0;
2729 }
2730 
2731 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
2732 {
2733 	struct task_struct *t;
2734 
2735 	t = kthread_run(nilfs_segctor_thread, sci, "segctord");
2736 	if (IS_ERR(t)) {
2737 		int err = PTR_ERR(t);
2738 
2739 		printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
2740 		       err);
2741 		return err;
2742 	}
2743 	wait_event(sci->sc_wait_task, sci->sc_task != NULL);
2744 	return 0;
2745 }
2746 
2747 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
2748 {
2749 	sci->sc_state |= NILFS_SEGCTOR_QUIT;
2750 
2751 	while (sci->sc_task) {
2752 		wake_up(&sci->sc_wait_daemon);
2753 		spin_unlock(&sci->sc_state_lock);
2754 		wait_event(sci->sc_wait_task, sci->sc_task == NULL);
2755 		spin_lock(&sci->sc_state_lock);
2756 	}
2757 }
2758 
2759 static int nilfs_segctor_init(struct nilfs_sc_info *sci)
2760 {
2761 	sci->sc_seq_done = sci->sc_seq_request;
2762 
2763 	return nilfs_segctor_start_thread(sci);
2764 }
2765 
2766 /*
2767  * Setup & clean-up functions
2768  */
2769 static struct nilfs_sc_info *nilfs_segctor_new(struct nilfs_sb_info *sbi)
2770 {
2771 	struct nilfs_sc_info *sci;
2772 
2773 	sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2774 	if (!sci)
2775 		return NULL;
2776 
2777 	sci->sc_sbi = sbi;
2778 	sci->sc_super = sbi->s_super;
2779 
2780 	init_waitqueue_head(&sci->sc_wait_request);
2781 	init_waitqueue_head(&sci->sc_wait_daemon);
2782 	init_waitqueue_head(&sci->sc_wait_task);
2783 	spin_lock_init(&sci->sc_state_lock);
2784 	INIT_LIST_HEAD(&sci->sc_dirty_files);
2785 	INIT_LIST_HEAD(&sci->sc_segbufs);
2786 	INIT_LIST_HEAD(&sci->sc_gc_inodes);
2787 	INIT_LIST_HEAD(&sci->sc_copied_buffers);
2788 
2789 	sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2790 	sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2791 	sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2792 
2793 	if (sbi->s_interval)
2794 		sci->sc_interval = sbi->s_interval;
2795 	if (sbi->s_watermark)
2796 		sci->sc_watermark = sbi->s_watermark;
2797 	return sci;
2798 }
2799 
2800 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2801 {
2802 	int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2803 
2804 	/* The segctord thread was stopped and its timer was removed.
2805 	   But some tasks remain. */
2806 	do {
2807 		struct nilfs_sb_info *sbi = sci->sc_sbi;
2808 		struct nilfs_transaction_info ti;
2809 		struct nilfs_segctor_req req = { .mode = SC_LSEG_SR };
2810 
2811 		nilfs_transaction_lock(sbi, &ti, 0);
2812 		nilfs_segctor_accept(sci, &req);
2813 		ret = nilfs_segctor_construct(sci, &req);
2814 		nilfs_segctor_notify(sci, &req);
2815 		nilfs_transaction_unlock(sbi);
2816 
2817 	} while (ret && retrycount-- > 0);
2818 }
2819 
2820 /**
2821  * nilfs_segctor_destroy - destroy the segment constructor.
2822  * @sci: nilfs_sc_info
2823  *
2824  * nilfs_segctor_destroy() kills the segctord thread and frees
2825  * the nilfs_sc_info struct.
2826  * Caller must hold the segment semaphore.
2827  */
2828 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2829 {
2830 	struct nilfs_sb_info *sbi = sci->sc_sbi;
2831 	int flag;
2832 
2833 	up_write(&sbi->s_nilfs->ns_segctor_sem);
2834 
2835 	spin_lock(&sci->sc_state_lock);
2836 	nilfs_segctor_kill_thread(sci);
2837 	flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2838 		|| sci->sc_seq_request != sci->sc_seq_done);
2839 	spin_unlock(&sci->sc_state_lock);
2840 
2841 	if (flag || nilfs_segctor_confirm(sci))
2842 		nilfs_segctor_write_out(sci);
2843 
2844 	WARN_ON(!list_empty(&sci->sc_copied_buffers));
2845 
2846 	if (!list_empty(&sci->sc_dirty_files)) {
2847 		nilfs_warning(sbi->s_super, __func__,
2848 			      "dirty file(s) after the final construction\n");
2849 		nilfs_dispose_list(sbi, &sci->sc_dirty_files, 1);
2850 	}
2851 
2852 	WARN_ON(!list_empty(&sci->sc_segbufs));
2853 
2854 	down_write(&sbi->s_nilfs->ns_segctor_sem);
2855 
2856 	kfree(sci);
2857 }
2858 
2859 /**
2860  * nilfs_attach_segment_constructor - attach a segment constructor
2861  * @sbi: nilfs_sb_info
2862  *
2863  * nilfs_attach_segment_constructor() allocates a struct nilfs_sc_info,
2864  * initilizes it, and starts the segment constructor.
2865  *
2866  * Return Value: On success, 0 is returned. On error, one of the following
2867  * negative error code is returned.
2868  *
2869  * %-ENOMEM - Insufficient memory available.
2870  */
2871 int nilfs_attach_segment_constructor(struct nilfs_sb_info *sbi)
2872 {
2873 	struct the_nilfs *nilfs = sbi->s_nilfs;
2874 	int err;
2875 
2876 	/* Each field of nilfs_segctor is cleared through the initialization
2877 	   of super-block info */
2878 	sbi->s_sc_info = nilfs_segctor_new(sbi);
2879 	if (!sbi->s_sc_info)
2880 		return -ENOMEM;
2881 
2882 	nilfs_attach_writer(nilfs, sbi);
2883 	err = nilfs_segctor_init(NILFS_SC(sbi));
2884 	if (err) {
2885 		nilfs_detach_writer(nilfs, sbi);
2886 		kfree(sbi->s_sc_info);
2887 		sbi->s_sc_info = NULL;
2888 	}
2889 	return err;
2890 }
2891 
2892 /**
2893  * nilfs_detach_segment_constructor - destroy the segment constructor
2894  * @sbi: nilfs_sb_info
2895  *
2896  * nilfs_detach_segment_constructor() kills the segment constructor daemon,
2897  * frees the struct nilfs_sc_info, and destroy the dirty file list.
2898  */
2899 void nilfs_detach_segment_constructor(struct nilfs_sb_info *sbi)
2900 {
2901 	struct the_nilfs *nilfs = sbi->s_nilfs;
2902 	LIST_HEAD(garbage_list);
2903 
2904 	down_write(&nilfs->ns_segctor_sem);
2905 	if (NILFS_SC(sbi)) {
2906 		nilfs_segctor_destroy(NILFS_SC(sbi));
2907 		sbi->s_sc_info = NULL;
2908 	}
2909 
2910 	/* Force to free the list of dirty files */
2911 	spin_lock(&sbi->s_inode_lock);
2912 	if (!list_empty(&sbi->s_dirty_files)) {
2913 		list_splice_init(&sbi->s_dirty_files, &garbage_list);
2914 		nilfs_warning(sbi->s_super, __func__,
2915 			      "Non empty dirty list after the last "
2916 			      "segment construction\n");
2917 	}
2918 	spin_unlock(&sbi->s_inode_lock);
2919 	up_write(&nilfs->ns_segctor_sem);
2920 
2921 	nilfs_dispose_list(sbi, &garbage_list, 1);
2922 	nilfs_detach_writer(nilfs, sbi);
2923 }
2924