1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * NILFS segment constructor. 4 * 5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 6 * 7 * Written by Ryusuke Konishi. 8 * 9 */ 10 11 #include <linux/pagemap.h> 12 #include <linux/buffer_head.h> 13 #include <linux/writeback.h> 14 #include <linux/bitops.h> 15 #include <linux/bio.h> 16 #include <linux/completion.h> 17 #include <linux/blkdev.h> 18 #include <linux/backing-dev.h> 19 #include <linux/freezer.h> 20 #include <linux/kthread.h> 21 #include <linux/crc32.h> 22 #include <linux/pagevec.h> 23 #include <linux/slab.h> 24 #include <linux/sched/signal.h> 25 26 #include "nilfs.h" 27 #include "btnode.h" 28 #include "page.h" 29 #include "segment.h" 30 #include "sufile.h" 31 #include "cpfile.h" 32 #include "ifile.h" 33 #include "segbuf.h" 34 35 36 /* 37 * Segment constructor 38 */ 39 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */ 40 41 #define SC_MAX_SEGDELTA 64 /* 42 * Upper limit of the number of segments 43 * appended in collection retry loop 44 */ 45 46 /* Construction mode */ 47 enum { 48 SC_LSEG_SR = 1, /* Make a logical segment having a super root */ 49 SC_LSEG_DSYNC, /* 50 * Flush data blocks of a given file and make 51 * a logical segment without a super root. 52 */ 53 SC_FLUSH_FILE, /* 54 * Flush data files, leads to segment writes without 55 * creating a checkpoint. 56 */ 57 SC_FLUSH_DAT, /* 58 * Flush DAT file. This also creates segments 59 * without a checkpoint. 60 */ 61 }; 62 63 /* Stage numbers of dirty block collection */ 64 enum { 65 NILFS_ST_INIT = 0, 66 NILFS_ST_GC, /* Collecting dirty blocks for GC */ 67 NILFS_ST_FILE, 68 NILFS_ST_IFILE, 69 NILFS_ST_CPFILE, 70 NILFS_ST_SUFILE, 71 NILFS_ST_DAT, 72 NILFS_ST_SR, /* Super root */ 73 NILFS_ST_DSYNC, /* Data sync blocks */ 74 NILFS_ST_DONE, 75 }; 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/nilfs2.h> 79 80 /* 81 * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are 82 * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of 83 * the variable must use them because transition of stage count must involve 84 * trace events (trace_nilfs2_collection_stage_transition). 85 * 86 * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't 87 * produce tracepoint events. It is provided just for making the intention 88 * clear. 89 */ 90 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci) 91 { 92 sci->sc_stage.scnt++; 93 trace_nilfs2_collection_stage_transition(sci); 94 } 95 96 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt) 97 { 98 sci->sc_stage.scnt = next_scnt; 99 trace_nilfs2_collection_stage_transition(sci); 100 } 101 102 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci) 103 { 104 return sci->sc_stage.scnt; 105 } 106 107 /* State flags of collection */ 108 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */ 109 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */ 110 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */ 111 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED) 112 113 /* Operations depending on the construction mode and file type */ 114 struct nilfs_sc_operations { 115 int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *, 116 struct inode *); 117 int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *, 118 struct inode *); 119 int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *, 120 struct inode *); 121 void (*write_data_binfo)(struct nilfs_sc_info *, 122 struct nilfs_segsum_pointer *, 123 union nilfs_binfo *); 124 void (*write_node_binfo)(struct nilfs_sc_info *, 125 struct nilfs_segsum_pointer *, 126 union nilfs_binfo *); 127 }; 128 129 /* 130 * Other definitions 131 */ 132 static void nilfs_segctor_start_timer(struct nilfs_sc_info *); 133 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int); 134 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *); 135 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int); 136 137 #define nilfs_cnt32_ge(a, b) \ 138 (typecheck(__u32, a) && typecheck(__u32, b) && \ 139 ((__s32)(a) - (__s32)(b) >= 0)) 140 141 static int nilfs_prepare_segment_lock(struct super_block *sb, 142 struct nilfs_transaction_info *ti) 143 { 144 struct nilfs_transaction_info *cur_ti = current->journal_info; 145 void *save = NULL; 146 147 if (cur_ti) { 148 if (cur_ti->ti_magic == NILFS_TI_MAGIC) 149 return ++cur_ti->ti_count; 150 151 /* 152 * If journal_info field is occupied by other FS, 153 * it is saved and will be restored on 154 * nilfs_transaction_commit(). 155 */ 156 nilfs_warn(sb, "journal info from a different FS"); 157 save = current->journal_info; 158 } 159 if (!ti) { 160 ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS); 161 if (!ti) 162 return -ENOMEM; 163 ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC; 164 } else { 165 ti->ti_flags = 0; 166 } 167 ti->ti_count = 0; 168 ti->ti_save = save; 169 ti->ti_magic = NILFS_TI_MAGIC; 170 current->journal_info = ti; 171 return 0; 172 } 173 174 /** 175 * nilfs_transaction_begin - start indivisible file operations. 176 * @sb: super block 177 * @ti: nilfs_transaction_info 178 * @vacancy_check: flags for vacancy rate checks 179 * 180 * nilfs_transaction_begin() acquires a reader/writer semaphore, called 181 * the segment semaphore, to make a segment construction and write tasks 182 * exclusive. The function is used with nilfs_transaction_commit() in pairs. 183 * The region enclosed by these two functions can be nested. To avoid a 184 * deadlock, the semaphore is only acquired or released in the outermost call. 185 * 186 * This function allocates a nilfs_transaction_info struct to keep context 187 * information on it. It is initialized and hooked onto the current task in 188 * the outermost call. If a pre-allocated struct is given to @ti, it is used 189 * instead; otherwise a new struct is assigned from a slab. 190 * 191 * When @vacancy_check flag is set, this function will check the amount of 192 * free space, and will wait for the GC to reclaim disk space if low capacity. 193 * 194 * Return Value: On success, 0 is returned. On error, one of the following 195 * negative error code is returned. 196 * 197 * %-ENOMEM - Insufficient memory available. 198 * 199 * %-ENOSPC - No space left on device 200 */ 201 int nilfs_transaction_begin(struct super_block *sb, 202 struct nilfs_transaction_info *ti, 203 int vacancy_check) 204 { 205 struct the_nilfs *nilfs; 206 int ret = nilfs_prepare_segment_lock(sb, ti); 207 struct nilfs_transaction_info *trace_ti; 208 209 if (unlikely(ret < 0)) 210 return ret; 211 if (ret > 0) { 212 trace_ti = current->journal_info; 213 214 trace_nilfs2_transaction_transition(sb, trace_ti, 215 trace_ti->ti_count, trace_ti->ti_flags, 216 TRACE_NILFS2_TRANSACTION_BEGIN); 217 return 0; 218 } 219 220 sb_start_intwrite(sb); 221 222 nilfs = sb->s_fs_info; 223 down_read(&nilfs->ns_segctor_sem); 224 if (vacancy_check && nilfs_near_disk_full(nilfs)) { 225 up_read(&nilfs->ns_segctor_sem); 226 ret = -ENOSPC; 227 goto failed; 228 } 229 230 trace_ti = current->journal_info; 231 trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count, 232 trace_ti->ti_flags, 233 TRACE_NILFS2_TRANSACTION_BEGIN); 234 return 0; 235 236 failed: 237 ti = current->journal_info; 238 current->journal_info = ti->ti_save; 239 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 240 kmem_cache_free(nilfs_transaction_cachep, ti); 241 sb_end_intwrite(sb); 242 return ret; 243 } 244 245 /** 246 * nilfs_transaction_commit - commit indivisible file operations. 247 * @sb: super block 248 * 249 * nilfs_transaction_commit() releases the read semaphore which is 250 * acquired by nilfs_transaction_begin(). This is only performed 251 * in outermost call of this function. If a commit flag is set, 252 * nilfs_transaction_commit() sets a timer to start the segment 253 * constructor. If a sync flag is set, it starts construction 254 * directly. 255 */ 256 int nilfs_transaction_commit(struct super_block *sb) 257 { 258 struct nilfs_transaction_info *ti = current->journal_info; 259 struct the_nilfs *nilfs = sb->s_fs_info; 260 int err = 0; 261 262 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 263 ti->ti_flags |= NILFS_TI_COMMIT; 264 if (ti->ti_count > 0) { 265 ti->ti_count--; 266 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 267 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT); 268 return 0; 269 } 270 if (nilfs->ns_writer) { 271 struct nilfs_sc_info *sci = nilfs->ns_writer; 272 273 if (ti->ti_flags & NILFS_TI_COMMIT) 274 nilfs_segctor_start_timer(sci); 275 if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark) 276 nilfs_segctor_do_flush(sci, 0); 277 } 278 up_read(&nilfs->ns_segctor_sem); 279 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 280 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT); 281 282 current->journal_info = ti->ti_save; 283 284 if (ti->ti_flags & NILFS_TI_SYNC) 285 err = nilfs_construct_segment(sb); 286 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 287 kmem_cache_free(nilfs_transaction_cachep, ti); 288 sb_end_intwrite(sb); 289 return err; 290 } 291 292 void nilfs_transaction_abort(struct super_block *sb) 293 { 294 struct nilfs_transaction_info *ti = current->journal_info; 295 struct the_nilfs *nilfs = sb->s_fs_info; 296 297 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 298 if (ti->ti_count > 0) { 299 ti->ti_count--; 300 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 301 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT); 302 return; 303 } 304 up_read(&nilfs->ns_segctor_sem); 305 306 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 307 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT); 308 309 current->journal_info = ti->ti_save; 310 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 311 kmem_cache_free(nilfs_transaction_cachep, ti); 312 sb_end_intwrite(sb); 313 } 314 315 void nilfs_relax_pressure_in_lock(struct super_block *sb) 316 { 317 struct the_nilfs *nilfs = sb->s_fs_info; 318 struct nilfs_sc_info *sci = nilfs->ns_writer; 319 320 if (sb_rdonly(sb) || unlikely(!sci) || !sci->sc_flush_request) 321 return; 322 323 set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); 324 up_read(&nilfs->ns_segctor_sem); 325 326 down_write(&nilfs->ns_segctor_sem); 327 if (sci->sc_flush_request && 328 test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) { 329 struct nilfs_transaction_info *ti = current->journal_info; 330 331 ti->ti_flags |= NILFS_TI_WRITER; 332 nilfs_segctor_do_immediate_flush(sci); 333 ti->ti_flags &= ~NILFS_TI_WRITER; 334 } 335 downgrade_write(&nilfs->ns_segctor_sem); 336 } 337 338 static void nilfs_transaction_lock(struct super_block *sb, 339 struct nilfs_transaction_info *ti, 340 int gcflag) 341 { 342 struct nilfs_transaction_info *cur_ti = current->journal_info; 343 struct the_nilfs *nilfs = sb->s_fs_info; 344 struct nilfs_sc_info *sci = nilfs->ns_writer; 345 346 WARN_ON(cur_ti); 347 ti->ti_flags = NILFS_TI_WRITER; 348 ti->ti_count = 0; 349 ti->ti_save = cur_ti; 350 ti->ti_magic = NILFS_TI_MAGIC; 351 current->journal_info = ti; 352 353 for (;;) { 354 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 355 ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK); 356 357 down_write(&nilfs->ns_segctor_sem); 358 if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) 359 break; 360 361 nilfs_segctor_do_immediate_flush(sci); 362 363 up_write(&nilfs->ns_segctor_sem); 364 cond_resched(); 365 } 366 if (gcflag) 367 ti->ti_flags |= NILFS_TI_GC; 368 369 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 370 ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK); 371 } 372 373 static void nilfs_transaction_unlock(struct super_block *sb) 374 { 375 struct nilfs_transaction_info *ti = current->journal_info; 376 struct the_nilfs *nilfs = sb->s_fs_info; 377 378 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 379 BUG_ON(ti->ti_count > 0); 380 381 up_write(&nilfs->ns_segctor_sem); 382 current->journal_info = ti->ti_save; 383 384 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 385 ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK); 386 } 387 388 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci, 389 struct nilfs_segsum_pointer *ssp, 390 unsigned int bytes) 391 { 392 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 393 unsigned int blocksize = sci->sc_super->s_blocksize; 394 void *p; 395 396 if (unlikely(ssp->offset + bytes > blocksize)) { 397 ssp->offset = 0; 398 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh, 399 &segbuf->sb_segsum_buffers)); 400 ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh); 401 } 402 p = ssp->bh->b_data + ssp->offset; 403 ssp->offset += bytes; 404 return p; 405 } 406 407 /** 408 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer 409 * @sci: nilfs_sc_info 410 */ 411 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci) 412 { 413 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 414 struct buffer_head *sumbh; 415 unsigned int sumbytes; 416 unsigned int flags = 0; 417 int err; 418 419 if (nilfs_doing_gc()) 420 flags = NILFS_SS_GC; 421 err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno); 422 if (unlikely(err)) 423 return err; 424 425 sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); 426 sumbytes = segbuf->sb_sum.sumbytes; 427 sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes; 428 sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes; 429 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; 430 return 0; 431 } 432 433 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci) 434 { 435 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; 436 if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs)) 437 return -E2BIG; /* 438 * The current segment is filled up 439 * (internal code) 440 */ 441 sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg); 442 return nilfs_segctor_reset_segment_buffer(sci); 443 } 444 445 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci) 446 { 447 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 448 int err; 449 450 if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) { 451 err = nilfs_segctor_feed_segment(sci); 452 if (err) 453 return err; 454 segbuf = sci->sc_curseg; 455 } 456 err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root); 457 if (likely(!err)) 458 segbuf->sb_sum.flags |= NILFS_SS_SR; 459 return err; 460 } 461 462 /* 463 * Functions for making segment summary and payloads 464 */ 465 static int nilfs_segctor_segsum_block_required( 466 struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp, 467 unsigned int binfo_size) 468 { 469 unsigned int blocksize = sci->sc_super->s_blocksize; 470 /* Size of finfo and binfo is enough small against blocksize */ 471 472 return ssp->offset + binfo_size + 473 (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) > 474 blocksize; 475 } 476 477 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci, 478 struct inode *inode) 479 { 480 sci->sc_curseg->sb_sum.nfinfo++; 481 sci->sc_binfo_ptr = sci->sc_finfo_ptr; 482 nilfs_segctor_map_segsum_entry( 483 sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo)); 484 485 if (NILFS_I(inode)->i_root && 486 !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)) 487 set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); 488 /* skip finfo */ 489 } 490 491 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci, 492 struct inode *inode) 493 { 494 struct nilfs_finfo *finfo; 495 struct nilfs_inode_info *ii; 496 struct nilfs_segment_buffer *segbuf; 497 __u64 cno; 498 499 if (sci->sc_blk_cnt == 0) 500 return; 501 502 ii = NILFS_I(inode); 503 504 if (test_bit(NILFS_I_GCINODE, &ii->i_state)) 505 cno = ii->i_cno; 506 else if (NILFS_ROOT_METADATA_FILE(inode->i_ino)) 507 cno = 0; 508 else 509 cno = sci->sc_cno; 510 511 finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr, 512 sizeof(*finfo)); 513 finfo->fi_ino = cpu_to_le64(inode->i_ino); 514 finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt); 515 finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt); 516 finfo->fi_cno = cpu_to_le64(cno); 517 518 segbuf = sci->sc_curseg; 519 segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset + 520 sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1); 521 sci->sc_finfo_ptr = sci->sc_binfo_ptr; 522 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; 523 } 524 525 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci, 526 struct buffer_head *bh, 527 struct inode *inode, 528 unsigned int binfo_size) 529 { 530 struct nilfs_segment_buffer *segbuf; 531 int required, err = 0; 532 533 retry: 534 segbuf = sci->sc_curseg; 535 required = nilfs_segctor_segsum_block_required( 536 sci, &sci->sc_binfo_ptr, binfo_size); 537 if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) { 538 nilfs_segctor_end_finfo(sci, inode); 539 err = nilfs_segctor_feed_segment(sci); 540 if (err) 541 return err; 542 goto retry; 543 } 544 if (unlikely(required)) { 545 err = nilfs_segbuf_extend_segsum(segbuf); 546 if (unlikely(err)) 547 goto failed; 548 } 549 if (sci->sc_blk_cnt == 0) 550 nilfs_segctor_begin_finfo(sci, inode); 551 552 nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size); 553 /* Substitution to vblocknr is delayed until update_blocknr() */ 554 nilfs_segbuf_add_file_buffer(segbuf, bh); 555 sci->sc_blk_cnt++; 556 failed: 557 return err; 558 } 559 560 /* 561 * Callback functions that enumerate, mark, and collect dirty blocks 562 */ 563 static int nilfs_collect_file_data(struct nilfs_sc_info *sci, 564 struct buffer_head *bh, struct inode *inode) 565 { 566 int err; 567 568 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 569 if (err < 0) 570 return err; 571 572 err = nilfs_segctor_add_file_block(sci, bh, inode, 573 sizeof(struct nilfs_binfo_v)); 574 if (!err) 575 sci->sc_datablk_cnt++; 576 return err; 577 } 578 579 static int nilfs_collect_file_node(struct nilfs_sc_info *sci, 580 struct buffer_head *bh, 581 struct inode *inode) 582 { 583 return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 584 } 585 586 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci, 587 struct buffer_head *bh, 588 struct inode *inode) 589 { 590 WARN_ON(!buffer_dirty(bh)); 591 return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); 592 } 593 594 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci, 595 struct nilfs_segsum_pointer *ssp, 596 union nilfs_binfo *binfo) 597 { 598 struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry( 599 sci, ssp, sizeof(*binfo_v)); 600 *binfo_v = binfo->bi_v; 601 } 602 603 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci, 604 struct nilfs_segsum_pointer *ssp, 605 union nilfs_binfo *binfo) 606 { 607 __le64 *vblocknr = nilfs_segctor_map_segsum_entry( 608 sci, ssp, sizeof(*vblocknr)); 609 *vblocknr = binfo->bi_v.bi_vblocknr; 610 } 611 612 static const struct nilfs_sc_operations nilfs_sc_file_ops = { 613 .collect_data = nilfs_collect_file_data, 614 .collect_node = nilfs_collect_file_node, 615 .collect_bmap = nilfs_collect_file_bmap, 616 .write_data_binfo = nilfs_write_file_data_binfo, 617 .write_node_binfo = nilfs_write_file_node_binfo, 618 }; 619 620 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci, 621 struct buffer_head *bh, struct inode *inode) 622 { 623 int err; 624 625 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 626 if (err < 0) 627 return err; 628 629 err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); 630 if (!err) 631 sci->sc_datablk_cnt++; 632 return err; 633 } 634 635 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci, 636 struct buffer_head *bh, struct inode *inode) 637 { 638 WARN_ON(!buffer_dirty(bh)); 639 return nilfs_segctor_add_file_block(sci, bh, inode, 640 sizeof(struct nilfs_binfo_dat)); 641 } 642 643 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci, 644 struct nilfs_segsum_pointer *ssp, 645 union nilfs_binfo *binfo) 646 { 647 __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp, 648 sizeof(*blkoff)); 649 *blkoff = binfo->bi_dat.bi_blkoff; 650 } 651 652 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci, 653 struct nilfs_segsum_pointer *ssp, 654 union nilfs_binfo *binfo) 655 { 656 struct nilfs_binfo_dat *binfo_dat = 657 nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat)); 658 *binfo_dat = binfo->bi_dat; 659 } 660 661 static const struct nilfs_sc_operations nilfs_sc_dat_ops = { 662 .collect_data = nilfs_collect_dat_data, 663 .collect_node = nilfs_collect_file_node, 664 .collect_bmap = nilfs_collect_dat_bmap, 665 .write_data_binfo = nilfs_write_dat_data_binfo, 666 .write_node_binfo = nilfs_write_dat_node_binfo, 667 }; 668 669 static const struct nilfs_sc_operations nilfs_sc_dsync_ops = { 670 .collect_data = nilfs_collect_file_data, 671 .collect_node = NULL, 672 .collect_bmap = NULL, 673 .write_data_binfo = nilfs_write_file_data_binfo, 674 .write_node_binfo = NULL, 675 }; 676 677 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode, 678 struct list_head *listp, 679 size_t nlimit, 680 loff_t start, loff_t end) 681 { 682 struct address_space *mapping = inode->i_mapping; 683 struct pagevec pvec; 684 pgoff_t index = 0, last = ULONG_MAX; 685 size_t ndirties = 0; 686 int i; 687 688 if (unlikely(start != 0 || end != LLONG_MAX)) { 689 /* 690 * A valid range is given for sync-ing data pages. The 691 * range is rounded to per-page; extra dirty buffers 692 * may be included if blocksize < pagesize. 693 */ 694 index = start >> PAGE_SHIFT; 695 last = end >> PAGE_SHIFT; 696 } 697 pagevec_init(&pvec); 698 repeat: 699 if (unlikely(index > last) || 700 !pagevec_lookup_range_tag(&pvec, mapping, &index, last, 701 PAGECACHE_TAG_DIRTY)) 702 return ndirties; 703 704 for (i = 0; i < pagevec_count(&pvec); i++) { 705 struct buffer_head *bh, *head; 706 struct page *page = pvec.pages[i]; 707 708 lock_page(page); 709 if (!page_has_buffers(page)) 710 create_empty_buffers(page, i_blocksize(inode), 0); 711 unlock_page(page); 712 713 bh = head = page_buffers(page); 714 do { 715 if (!buffer_dirty(bh) || buffer_async_write(bh)) 716 continue; 717 get_bh(bh); 718 list_add_tail(&bh->b_assoc_buffers, listp); 719 ndirties++; 720 if (unlikely(ndirties >= nlimit)) { 721 pagevec_release(&pvec); 722 cond_resched(); 723 return ndirties; 724 } 725 } while (bh = bh->b_this_page, bh != head); 726 } 727 pagevec_release(&pvec); 728 cond_resched(); 729 goto repeat; 730 } 731 732 static void nilfs_lookup_dirty_node_buffers(struct inode *inode, 733 struct list_head *listp) 734 { 735 struct nilfs_inode_info *ii = NILFS_I(inode); 736 struct inode *btnc_inode = ii->i_assoc_inode; 737 struct pagevec pvec; 738 struct buffer_head *bh, *head; 739 unsigned int i; 740 pgoff_t index = 0; 741 742 if (!btnc_inode) 743 return; 744 745 pagevec_init(&pvec); 746 747 while (pagevec_lookup_tag(&pvec, btnc_inode->i_mapping, &index, 748 PAGECACHE_TAG_DIRTY)) { 749 for (i = 0; i < pagevec_count(&pvec); i++) { 750 bh = head = page_buffers(pvec.pages[i]); 751 do { 752 if (buffer_dirty(bh) && 753 !buffer_async_write(bh)) { 754 get_bh(bh); 755 list_add_tail(&bh->b_assoc_buffers, 756 listp); 757 } 758 bh = bh->b_this_page; 759 } while (bh != head); 760 } 761 pagevec_release(&pvec); 762 cond_resched(); 763 } 764 } 765 766 static void nilfs_dispose_list(struct the_nilfs *nilfs, 767 struct list_head *head, int force) 768 { 769 struct nilfs_inode_info *ii, *n; 770 struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii; 771 unsigned int nv = 0; 772 773 while (!list_empty(head)) { 774 spin_lock(&nilfs->ns_inode_lock); 775 list_for_each_entry_safe(ii, n, head, i_dirty) { 776 list_del_init(&ii->i_dirty); 777 if (force) { 778 if (unlikely(ii->i_bh)) { 779 brelse(ii->i_bh); 780 ii->i_bh = NULL; 781 } 782 } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) { 783 set_bit(NILFS_I_QUEUED, &ii->i_state); 784 list_add_tail(&ii->i_dirty, 785 &nilfs->ns_dirty_files); 786 continue; 787 } 788 ivec[nv++] = ii; 789 if (nv == SC_N_INODEVEC) 790 break; 791 } 792 spin_unlock(&nilfs->ns_inode_lock); 793 794 for (pii = ivec; nv > 0; pii++, nv--) 795 iput(&(*pii)->vfs_inode); 796 } 797 } 798 799 static void nilfs_iput_work_func(struct work_struct *work) 800 { 801 struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info, 802 sc_iput_work); 803 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 804 805 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0); 806 } 807 808 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs, 809 struct nilfs_root *root) 810 { 811 int ret = 0; 812 813 if (nilfs_mdt_fetch_dirty(root->ifile)) 814 ret++; 815 if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile)) 816 ret++; 817 if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile)) 818 ret++; 819 if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat)) 820 ret++; 821 return ret; 822 } 823 824 static int nilfs_segctor_clean(struct nilfs_sc_info *sci) 825 { 826 return list_empty(&sci->sc_dirty_files) && 827 !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) && 828 sci->sc_nfreesegs == 0 && 829 (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes)); 830 } 831 832 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci) 833 { 834 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 835 int ret = 0; 836 837 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) 838 set_bit(NILFS_SC_DIRTY, &sci->sc_flags); 839 840 spin_lock(&nilfs->ns_inode_lock); 841 if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci)) 842 ret++; 843 844 spin_unlock(&nilfs->ns_inode_lock); 845 return ret; 846 } 847 848 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci) 849 { 850 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 851 852 nilfs_mdt_clear_dirty(sci->sc_root->ifile); 853 nilfs_mdt_clear_dirty(nilfs->ns_cpfile); 854 nilfs_mdt_clear_dirty(nilfs->ns_sufile); 855 nilfs_mdt_clear_dirty(nilfs->ns_dat); 856 } 857 858 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci) 859 { 860 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 861 struct buffer_head *bh_cp; 862 struct nilfs_checkpoint *raw_cp; 863 int err; 864 865 /* XXX: this interface will be changed */ 866 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1, 867 &raw_cp, &bh_cp); 868 if (likely(!err)) { 869 /* 870 * The following code is duplicated with cpfile. But, it is 871 * needed to collect the checkpoint even if it was not newly 872 * created. 873 */ 874 mark_buffer_dirty(bh_cp); 875 nilfs_mdt_mark_dirty(nilfs->ns_cpfile); 876 nilfs_cpfile_put_checkpoint( 877 nilfs->ns_cpfile, nilfs->ns_cno, bh_cp); 878 } else if (err == -EINVAL || err == -ENOENT) { 879 nilfs_error(sci->sc_super, 880 "checkpoint creation failed due to metadata corruption."); 881 err = -EIO; 882 } 883 return err; 884 } 885 886 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci) 887 { 888 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 889 struct buffer_head *bh_cp; 890 struct nilfs_checkpoint *raw_cp; 891 int err; 892 893 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0, 894 &raw_cp, &bh_cp); 895 if (unlikely(err)) { 896 if (err == -EINVAL || err == -ENOENT) { 897 nilfs_error(sci->sc_super, 898 "checkpoint finalization failed due to metadata corruption."); 899 err = -EIO; 900 } 901 goto failed_ibh; 902 } 903 raw_cp->cp_snapshot_list.ssl_next = 0; 904 raw_cp->cp_snapshot_list.ssl_prev = 0; 905 raw_cp->cp_inodes_count = 906 cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count)); 907 raw_cp->cp_blocks_count = 908 cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count)); 909 raw_cp->cp_nblk_inc = 910 cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc); 911 raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime); 912 raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno); 913 914 if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)) 915 nilfs_checkpoint_clear_minor(raw_cp); 916 else 917 nilfs_checkpoint_set_minor(raw_cp); 918 919 nilfs_write_inode_common(sci->sc_root->ifile, 920 &raw_cp->cp_ifile_inode, 1); 921 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp); 922 return 0; 923 924 failed_ibh: 925 return err; 926 } 927 928 static void nilfs_fill_in_file_bmap(struct inode *ifile, 929 struct nilfs_inode_info *ii) 930 931 { 932 struct buffer_head *ibh; 933 struct nilfs_inode *raw_inode; 934 935 if (test_bit(NILFS_I_BMAP, &ii->i_state)) { 936 ibh = ii->i_bh; 937 BUG_ON(!ibh); 938 raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino, 939 ibh); 940 nilfs_bmap_write(ii->i_bmap, raw_inode); 941 nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh); 942 } 943 } 944 945 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci) 946 { 947 struct nilfs_inode_info *ii; 948 949 list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) { 950 nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii); 951 set_bit(NILFS_I_COLLECTED, &ii->i_state); 952 } 953 } 954 955 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci, 956 struct the_nilfs *nilfs) 957 { 958 struct buffer_head *bh_sr; 959 struct nilfs_super_root *raw_sr; 960 unsigned int isz, srsz; 961 962 bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root; 963 raw_sr = (struct nilfs_super_root *)bh_sr->b_data; 964 isz = nilfs->ns_inode_size; 965 srsz = NILFS_SR_BYTES(isz); 966 967 raw_sr->sr_bytes = cpu_to_le16(srsz); 968 raw_sr->sr_nongc_ctime 969 = cpu_to_le64(nilfs_doing_gc() ? 970 nilfs->ns_nongc_ctime : sci->sc_seg_ctime); 971 raw_sr->sr_flags = 0; 972 973 nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr + 974 NILFS_SR_DAT_OFFSET(isz), 1); 975 nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr + 976 NILFS_SR_CPFILE_OFFSET(isz), 1); 977 nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr + 978 NILFS_SR_SUFILE_OFFSET(isz), 1); 979 memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz); 980 } 981 982 static void nilfs_redirty_inodes(struct list_head *head) 983 { 984 struct nilfs_inode_info *ii; 985 986 list_for_each_entry(ii, head, i_dirty) { 987 if (test_bit(NILFS_I_COLLECTED, &ii->i_state)) 988 clear_bit(NILFS_I_COLLECTED, &ii->i_state); 989 } 990 } 991 992 static void nilfs_drop_collected_inodes(struct list_head *head) 993 { 994 struct nilfs_inode_info *ii; 995 996 list_for_each_entry(ii, head, i_dirty) { 997 if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state)) 998 continue; 999 1000 clear_bit(NILFS_I_INODE_SYNC, &ii->i_state); 1001 set_bit(NILFS_I_UPDATED, &ii->i_state); 1002 } 1003 } 1004 1005 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci, 1006 struct inode *inode, 1007 struct list_head *listp, 1008 int (*collect)(struct nilfs_sc_info *, 1009 struct buffer_head *, 1010 struct inode *)) 1011 { 1012 struct buffer_head *bh, *n; 1013 int err = 0; 1014 1015 if (collect) { 1016 list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) { 1017 list_del_init(&bh->b_assoc_buffers); 1018 err = collect(sci, bh, inode); 1019 brelse(bh); 1020 if (unlikely(err)) 1021 goto dispose_buffers; 1022 } 1023 return 0; 1024 } 1025 1026 dispose_buffers: 1027 while (!list_empty(listp)) { 1028 bh = list_first_entry(listp, struct buffer_head, 1029 b_assoc_buffers); 1030 list_del_init(&bh->b_assoc_buffers); 1031 brelse(bh); 1032 } 1033 return err; 1034 } 1035 1036 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci) 1037 { 1038 /* Remaining number of blocks within segment buffer */ 1039 return sci->sc_segbuf_nblocks - 1040 (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks); 1041 } 1042 1043 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci, 1044 struct inode *inode, 1045 const struct nilfs_sc_operations *sc_ops) 1046 { 1047 LIST_HEAD(data_buffers); 1048 LIST_HEAD(node_buffers); 1049 int err; 1050 1051 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { 1052 size_t n, rest = nilfs_segctor_buffer_rest(sci); 1053 1054 n = nilfs_lookup_dirty_data_buffers( 1055 inode, &data_buffers, rest + 1, 0, LLONG_MAX); 1056 if (n > rest) { 1057 err = nilfs_segctor_apply_buffers( 1058 sci, inode, &data_buffers, 1059 sc_ops->collect_data); 1060 BUG_ON(!err); /* always receive -E2BIG or true error */ 1061 goto break_or_fail; 1062 } 1063 } 1064 nilfs_lookup_dirty_node_buffers(inode, &node_buffers); 1065 1066 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { 1067 err = nilfs_segctor_apply_buffers( 1068 sci, inode, &data_buffers, sc_ops->collect_data); 1069 if (unlikely(err)) { 1070 /* dispose node list */ 1071 nilfs_segctor_apply_buffers( 1072 sci, inode, &node_buffers, NULL); 1073 goto break_or_fail; 1074 } 1075 sci->sc_stage.flags |= NILFS_CF_NODE; 1076 } 1077 /* Collect node */ 1078 err = nilfs_segctor_apply_buffers( 1079 sci, inode, &node_buffers, sc_ops->collect_node); 1080 if (unlikely(err)) 1081 goto break_or_fail; 1082 1083 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers); 1084 err = nilfs_segctor_apply_buffers( 1085 sci, inode, &node_buffers, sc_ops->collect_bmap); 1086 if (unlikely(err)) 1087 goto break_or_fail; 1088 1089 nilfs_segctor_end_finfo(sci, inode); 1090 sci->sc_stage.flags &= ~NILFS_CF_NODE; 1091 1092 break_or_fail: 1093 return err; 1094 } 1095 1096 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci, 1097 struct inode *inode) 1098 { 1099 LIST_HEAD(data_buffers); 1100 size_t n, rest = nilfs_segctor_buffer_rest(sci); 1101 int err; 1102 1103 n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1, 1104 sci->sc_dsync_start, 1105 sci->sc_dsync_end); 1106 1107 err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers, 1108 nilfs_collect_file_data); 1109 if (!err) { 1110 nilfs_segctor_end_finfo(sci, inode); 1111 BUG_ON(n > rest); 1112 /* always receive -E2BIG or true error if n > rest */ 1113 } 1114 return err; 1115 } 1116 1117 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode) 1118 { 1119 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 1120 struct list_head *head; 1121 struct nilfs_inode_info *ii; 1122 size_t ndone; 1123 int err = 0; 1124 1125 switch (nilfs_sc_cstage_get(sci)) { 1126 case NILFS_ST_INIT: 1127 /* Pre-processes */ 1128 sci->sc_stage.flags = 0; 1129 1130 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) { 1131 sci->sc_nblk_inc = 0; 1132 sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN; 1133 if (mode == SC_LSEG_DSYNC) { 1134 nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC); 1135 goto dsync_mode; 1136 } 1137 } 1138 1139 sci->sc_stage.dirty_file_ptr = NULL; 1140 sci->sc_stage.gc_inode_ptr = NULL; 1141 if (mode == SC_FLUSH_DAT) { 1142 nilfs_sc_cstage_set(sci, NILFS_ST_DAT); 1143 goto dat_stage; 1144 } 1145 nilfs_sc_cstage_inc(sci); 1146 fallthrough; 1147 case NILFS_ST_GC: 1148 if (nilfs_doing_gc()) { 1149 head = &sci->sc_gc_inodes; 1150 ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr, 1151 head, i_dirty); 1152 list_for_each_entry_continue(ii, head, i_dirty) { 1153 err = nilfs_segctor_scan_file( 1154 sci, &ii->vfs_inode, 1155 &nilfs_sc_file_ops); 1156 if (unlikely(err)) { 1157 sci->sc_stage.gc_inode_ptr = list_entry( 1158 ii->i_dirty.prev, 1159 struct nilfs_inode_info, 1160 i_dirty); 1161 goto break_or_fail; 1162 } 1163 set_bit(NILFS_I_COLLECTED, &ii->i_state); 1164 } 1165 sci->sc_stage.gc_inode_ptr = NULL; 1166 } 1167 nilfs_sc_cstage_inc(sci); 1168 fallthrough; 1169 case NILFS_ST_FILE: 1170 head = &sci->sc_dirty_files; 1171 ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head, 1172 i_dirty); 1173 list_for_each_entry_continue(ii, head, i_dirty) { 1174 clear_bit(NILFS_I_DIRTY, &ii->i_state); 1175 1176 err = nilfs_segctor_scan_file(sci, &ii->vfs_inode, 1177 &nilfs_sc_file_ops); 1178 if (unlikely(err)) { 1179 sci->sc_stage.dirty_file_ptr = 1180 list_entry(ii->i_dirty.prev, 1181 struct nilfs_inode_info, 1182 i_dirty); 1183 goto break_or_fail; 1184 } 1185 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */ 1186 /* XXX: required ? */ 1187 } 1188 sci->sc_stage.dirty_file_ptr = NULL; 1189 if (mode == SC_FLUSH_FILE) { 1190 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1191 return 0; 1192 } 1193 nilfs_sc_cstage_inc(sci); 1194 sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED; 1195 fallthrough; 1196 case NILFS_ST_IFILE: 1197 err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile, 1198 &nilfs_sc_file_ops); 1199 if (unlikely(err)) 1200 break; 1201 nilfs_sc_cstage_inc(sci); 1202 /* Creating a checkpoint */ 1203 err = nilfs_segctor_create_checkpoint(sci); 1204 if (unlikely(err)) 1205 break; 1206 fallthrough; 1207 case NILFS_ST_CPFILE: 1208 err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile, 1209 &nilfs_sc_file_ops); 1210 if (unlikely(err)) 1211 break; 1212 nilfs_sc_cstage_inc(sci); 1213 fallthrough; 1214 case NILFS_ST_SUFILE: 1215 err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs, 1216 sci->sc_nfreesegs, &ndone); 1217 if (unlikely(err)) { 1218 nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1219 sci->sc_freesegs, ndone, 1220 NULL); 1221 break; 1222 } 1223 sci->sc_stage.flags |= NILFS_CF_SUFREED; 1224 1225 err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile, 1226 &nilfs_sc_file_ops); 1227 if (unlikely(err)) 1228 break; 1229 nilfs_sc_cstage_inc(sci); 1230 fallthrough; 1231 case NILFS_ST_DAT: 1232 dat_stage: 1233 err = nilfs_segctor_scan_file(sci, nilfs->ns_dat, 1234 &nilfs_sc_dat_ops); 1235 if (unlikely(err)) 1236 break; 1237 if (mode == SC_FLUSH_DAT) { 1238 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1239 return 0; 1240 } 1241 nilfs_sc_cstage_inc(sci); 1242 fallthrough; 1243 case NILFS_ST_SR: 1244 if (mode == SC_LSEG_SR) { 1245 /* Appending a super root */ 1246 err = nilfs_segctor_add_super_root(sci); 1247 if (unlikely(err)) 1248 break; 1249 } 1250 /* End of a logical segment */ 1251 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; 1252 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1253 return 0; 1254 case NILFS_ST_DSYNC: 1255 dsync_mode: 1256 sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT; 1257 ii = sci->sc_dsync_inode; 1258 if (!test_bit(NILFS_I_BUSY, &ii->i_state)) 1259 break; 1260 1261 err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode); 1262 if (unlikely(err)) 1263 break; 1264 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; 1265 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1266 return 0; 1267 case NILFS_ST_DONE: 1268 return 0; 1269 default: 1270 BUG(); 1271 } 1272 1273 break_or_fail: 1274 return err; 1275 } 1276 1277 /** 1278 * nilfs_segctor_begin_construction - setup segment buffer to make a new log 1279 * @sci: nilfs_sc_info 1280 * @nilfs: nilfs object 1281 */ 1282 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci, 1283 struct the_nilfs *nilfs) 1284 { 1285 struct nilfs_segment_buffer *segbuf, *prev; 1286 __u64 nextnum; 1287 int err, alloc = 0; 1288 1289 segbuf = nilfs_segbuf_new(sci->sc_super); 1290 if (unlikely(!segbuf)) 1291 return -ENOMEM; 1292 1293 if (list_empty(&sci->sc_write_logs)) { 1294 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 1295 nilfs->ns_pseg_offset, nilfs); 1296 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { 1297 nilfs_shift_to_next_segment(nilfs); 1298 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs); 1299 } 1300 1301 segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq; 1302 nextnum = nilfs->ns_nextnum; 1303 1304 if (nilfs->ns_segnum == nilfs->ns_nextnum) 1305 /* Start from the head of a new full segment */ 1306 alloc++; 1307 } else { 1308 /* Continue logs */ 1309 prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs); 1310 nilfs_segbuf_map_cont(segbuf, prev); 1311 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq; 1312 nextnum = prev->sb_nextnum; 1313 1314 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { 1315 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); 1316 segbuf->sb_sum.seg_seq++; 1317 alloc++; 1318 } 1319 } 1320 1321 err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum); 1322 if (err) 1323 goto failed; 1324 1325 if (alloc) { 1326 err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum); 1327 if (err) 1328 goto failed; 1329 } 1330 nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs); 1331 1332 BUG_ON(!list_empty(&sci->sc_segbufs)); 1333 list_add_tail(&segbuf->sb_list, &sci->sc_segbufs); 1334 sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks; 1335 return 0; 1336 1337 failed: 1338 nilfs_segbuf_free(segbuf); 1339 return err; 1340 } 1341 1342 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci, 1343 struct the_nilfs *nilfs, int nadd) 1344 { 1345 struct nilfs_segment_buffer *segbuf, *prev; 1346 struct inode *sufile = nilfs->ns_sufile; 1347 __u64 nextnextnum; 1348 LIST_HEAD(list); 1349 int err, ret, i; 1350 1351 prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs); 1352 /* 1353 * Since the segment specified with nextnum might be allocated during 1354 * the previous construction, the buffer including its segusage may 1355 * not be dirty. The following call ensures that the buffer is dirty 1356 * and will pin the buffer on memory until the sufile is written. 1357 */ 1358 err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum); 1359 if (unlikely(err)) 1360 return err; 1361 1362 for (i = 0; i < nadd; i++) { 1363 /* extend segment info */ 1364 err = -ENOMEM; 1365 segbuf = nilfs_segbuf_new(sci->sc_super); 1366 if (unlikely(!segbuf)) 1367 goto failed; 1368 1369 /* map this buffer to region of segment on-disk */ 1370 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); 1371 sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks; 1372 1373 /* allocate the next next full segment */ 1374 err = nilfs_sufile_alloc(sufile, &nextnextnum); 1375 if (unlikely(err)) 1376 goto failed_segbuf; 1377 1378 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1; 1379 nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs); 1380 1381 list_add_tail(&segbuf->sb_list, &list); 1382 prev = segbuf; 1383 } 1384 list_splice_tail(&list, &sci->sc_segbufs); 1385 return 0; 1386 1387 failed_segbuf: 1388 nilfs_segbuf_free(segbuf); 1389 failed: 1390 list_for_each_entry(segbuf, &list, sb_list) { 1391 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1392 WARN_ON(ret); /* never fails */ 1393 } 1394 nilfs_destroy_logs(&list); 1395 return err; 1396 } 1397 1398 static void nilfs_free_incomplete_logs(struct list_head *logs, 1399 struct the_nilfs *nilfs) 1400 { 1401 struct nilfs_segment_buffer *segbuf, *prev; 1402 struct inode *sufile = nilfs->ns_sufile; 1403 int ret; 1404 1405 segbuf = NILFS_FIRST_SEGBUF(logs); 1406 if (nilfs->ns_nextnum != segbuf->sb_nextnum) { 1407 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1408 WARN_ON(ret); /* never fails */ 1409 } 1410 if (atomic_read(&segbuf->sb_err)) { 1411 /* Case 1: The first segment failed */ 1412 if (segbuf->sb_pseg_start != segbuf->sb_fseg_start) 1413 /* 1414 * Case 1a: Partial segment appended into an existing 1415 * segment 1416 */ 1417 nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start, 1418 segbuf->sb_fseg_end); 1419 else /* Case 1b: New full segment */ 1420 set_nilfs_discontinued(nilfs); 1421 } 1422 1423 prev = segbuf; 1424 list_for_each_entry_continue(segbuf, logs, sb_list) { 1425 if (prev->sb_nextnum != segbuf->sb_nextnum) { 1426 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1427 WARN_ON(ret); /* never fails */ 1428 } 1429 if (atomic_read(&segbuf->sb_err) && 1430 segbuf->sb_segnum != nilfs->ns_nextnum) 1431 /* Case 2: extended segment (!= next) failed */ 1432 nilfs_sufile_set_error(sufile, segbuf->sb_segnum); 1433 prev = segbuf; 1434 } 1435 } 1436 1437 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci, 1438 struct inode *sufile) 1439 { 1440 struct nilfs_segment_buffer *segbuf; 1441 unsigned long live_blocks; 1442 int ret; 1443 1444 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1445 live_blocks = segbuf->sb_sum.nblocks + 1446 (segbuf->sb_pseg_start - segbuf->sb_fseg_start); 1447 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1448 live_blocks, 1449 sci->sc_seg_ctime); 1450 WARN_ON(ret); /* always succeed because the segusage is dirty */ 1451 } 1452 } 1453 1454 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile) 1455 { 1456 struct nilfs_segment_buffer *segbuf; 1457 int ret; 1458 1459 segbuf = NILFS_FIRST_SEGBUF(logs); 1460 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1461 segbuf->sb_pseg_start - 1462 segbuf->sb_fseg_start, 0); 1463 WARN_ON(ret); /* always succeed because the segusage is dirty */ 1464 1465 list_for_each_entry_continue(segbuf, logs, sb_list) { 1466 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1467 0, 0); 1468 WARN_ON(ret); /* always succeed */ 1469 } 1470 } 1471 1472 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci, 1473 struct nilfs_segment_buffer *last, 1474 struct inode *sufile) 1475 { 1476 struct nilfs_segment_buffer *segbuf = last; 1477 int ret; 1478 1479 list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) { 1480 sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks; 1481 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1482 WARN_ON(ret); 1483 } 1484 nilfs_truncate_logs(&sci->sc_segbufs, last); 1485 } 1486 1487 1488 static int nilfs_segctor_collect(struct nilfs_sc_info *sci, 1489 struct the_nilfs *nilfs, int mode) 1490 { 1491 struct nilfs_cstage prev_stage = sci->sc_stage; 1492 int err, nadd = 1; 1493 1494 /* Collection retry loop */ 1495 for (;;) { 1496 sci->sc_nblk_this_inc = 0; 1497 sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs); 1498 1499 err = nilfs_segctor_reset_segment_buffer(sci); 1500 if (unlikely(err)) 1501 goto failed; 1502 1503 err = nilfs_segctor_collect_blocks(sci, mode); 1504 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; 1505 if (!err) 1506 break; 1507 1508 if (unlikely(err != -E2BIG)) 1509 goto failed; 1510 1511 /* The current segment is filled up */ 1512 if (mode != SC_LSEG_SR || 1513 nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE) 1514 break; 1515 1516 nilfs_clear_logs(&sci->sc_segbufs); 1517 1518 if (sci->sc_stage.flags & NILFS_CF_SUFREED) { 1519 err = nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1520 sci->sc_freesegs, 1521 sci->sc_nfreesegs, 1522 NULL); 1523 WARN_ON(err); /* do not happen */ 1524 sci->sc_stage.flags &= ~NILFS_CF_SUFREED; 1525 } 1526 1527 err = nilfs_segctor_extend_segments(sci, nilfs, nadd); 1528 if (unlikely(err)) 1529 return err; 1530 1531 nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA); 1532 sci->sc_stage = prev_stage; 1533 } 1534 nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile); 1535 return 0; 1536 1537 failed: 1538 return err; 1539 } 1540 1541 static void nilfs_list_replace_buffer(struct buffer_head *old_bh, 1542 struct buffer_head *new_bh) 1543 { 1544 BUG_ON(!list_empty(&new_bh->b_assoc_buffers)); 1545 1546 list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers); 1547 /* The caller must release old_bh */ 1548 } 1549 1550 static int 1551 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci, 1552 struct nilfs_segment_buffer *segbuf, 1553 int mode) 1554 { 1555 struct inode *inode = NULL; 1556 sector_t blocknr; 1557 unsigned long nfinfo = segbuf->sb_sum.nfinfo; 1558 unsigned long nblocks = 0, ndatablk = 0; 1559 const struct nilfs_sc_operations *sc_op = NULL; 1560 struct nilfs_segsum_pointer ssp; 1561 struct nilfs_finfo *finfo = NULL; 1562 union nilfs_binfo binfo; 1563 struct buffer_head *bh, *bh_org; 1564 ino_t ino = 0; 1565 int err = 0; 1566 1567 if (!nfinfo) 1568 goto out; 1569 1570 blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk; 1571 ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); 1572 ssp.offset = sizeof(struct nilfs_segment_summary); 1573 1574 list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) { 1575 if (bh == segbuf->sb_super_root) 1576 break; 1577 if (!finfo) { 1578 finfo = nilfs_segctor_map_segsum_entry( 1579 sci, &ssp, sizeof(*finfo)); 1580 ino = le64_to_cpu(finfo->fi_ino); 1581 nblocks = le32_to_cpu(finfo->fi_nblocks); 1582 ndatablk = le32_to_cpu(finfo->fi_ndatablk); 1583 1584 inode = bh->b_page->mapping->host; 1585 1586 if (mode == SC_LSEG_DSYNC) 1587 sc_op = &nilfs_sc_dsync_ops; 1588 else if (ino == NILFS_DAT_INO) 1589 sc_op = &nilfs_sc_dat_ops; 1590 else /* file blocks */ 1591 sc_op = &nilfs_sc_file_ops; 1592 } 1593 bh_org = bh; 1594 get_bh(bh_org); 1595 err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr, 1596 &binfo); 1597 if (bh != bh_org) 1598 nilfs_list_replace_buffer(bh_org, bh); 1599 brelse(bh_org); 1600 if (unlikely(err)) 1601 goto failed_bmap; 1602 1603 if (ndatablk > 0) 1604 sc_op->write_data_binfo(sci, &ssp, &binfo); 1605 else 1606 sc_op->write_node_binfo(sci, &ssp, &binfo); 1607 1608 blocknr++; 1609 if (--nblocks == 0) { 1610 finfo = NULL; 1611 if (--nfinfo == 0) 1612 break; 1613 } else if (ndatablk > 0) 1614 ndatablk--; 1615 } 1616 out: 1617 return 0; 1618 1619 failed_bmap: 1620 return err; 1621 } 1622 1623 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode) 1624 { 1625 struct nilfs_segment_buffer *segbuf; 1626 int err; 1627 1628 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1629 err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode); 1630 if (unlikely(err)) 1631 return err; 1632 nilfs_segbuf_fill_in_segsum(segbuf); 1633 } 1634 return 0; 1635 } 1636 1637 static void nilfs_begin_page_io(struct page *page) 1638 { 1639 if (!page || PageWriteback(page)) 1640 /* 1641 * For split b-tree node pages, this function may be called 1642 * twice. We ignore the 2nd or later calls by this check. 1643 */ 1644 return; 1645 1646 lock_page(page); 1647 clear_page_dirty_for_io(page); 1648 set_page_writeback(page); 1649 unlock_page(page); 1650 } 1651 1652 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci) 1653 { 1654 struct nilfs_segment_buffer *segbuf; 1655 struct page *bd_page = NULL, *fs_page = NULL; 1656 1657 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1658 struct buffer_head *bh; 1659 1660 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1661 b_assoc_buffers) { 1662 if (bh->b_page != bd_page) { 1663 if (bd_page) { 1664 lock_page(bd_page); 1665 clear_page_dirty_for_io(bd_page); 1666 set_page_writeback(bd_page); 1667 unlock_page(bd_page); 1668 } 1669 bd_page = bh->b_page; 1670 } 1671 } 1672 1673 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1674 b_assoc_buffers) { 1675 set_buffer_async_write(bh); 1676 if (bh == segbuf->sb_super_root) { 1677 if (bh->b_page != bd_page) { 1678 lock_page(bd_page); 1679 clear_page_dirty_for_io(bd_page); 1680 set_page_writeback(bd_page); 1681 unlock_page(bd_page); 1682 bd_page = bh->b_page; 1683 } 1684 break; 1685 } 1686 if (bh->b_page != fs_page) { 1687 nilfs_begin_page_io(fs_page); 1688 fs_page = bh->b_page; 1689 } 1690 } 1691 } 1692 if (bd_page) { 1693 lock_page(bd_page); 1694 clear_page_dirty_for_io(bd_page); 1695 set_page_writeback(bd_page); 1696 unlock_page(bd_page); 1697 } 1698 nilfs_begin_page_io(fs_page); 1699 } 1700 1701 static int nilfs_segctor_write(struct nilfs_sc_info *sci, 1702 struct the_nilfs *nilfs) 1703 { 1704 int ret; 1705 1706 ret = nilfs_write_logs(&sci->sc_segbufs, nilfs); 1707 list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs); 1708 return ret; 1709 } 1710 1711 static void nilfs_end_page_io(struct page *page, int err) 1712 { 1713 if (!page) 1714 return; 1715 1716 if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) { 1717 /* 1718 * For b-tree node pages, this function may be called twice 1719 * or more because they might be split in a segment. 1720 */ 1721 if (PageDirty(page)) { 1722 /* 1723 * For pages holding split b-tree node buffers, dirty 1724 * flag on the buffers may be cleared discretely. 1725 * In that case, the page is once redirtied for 1726 * remaining buffers, and it must be cancelled if 1727 * all the buffers get cleaned later. 1728 */ 1729 lock_page(page); 1730 if (nilfs_page_buffers_clean(page)) 1731 __nilfs_clear_page_dirty(page); 1732 unlock_page(page); 1733 } 1734 return; 1735 } 1736 1737 if (!err) { 1738 if (!nilfs_page_buffers_clean(page)) 1739 __set_page_dirty_nobuffers(page); 1740 ClearPageError(page); 1741 } else { 1742 __set_page_dirty_nobuffers(page); 1743 SetPageError(page); 1744 } 1745 1746 end_page_writeback(page); 1747 } 1748 1749 static void nilfs_abort_logs(struct list_head *logs, int err) 1750 { 1751 struct nilfs_segment_buffer *segbuf; 1752 struct page *bd_page = NULL, *fs_page = NULL; 1753 struct buffer_head *bh; 1754 1755 if (list_empty(logs)) 1756 return; 1757 1758 list_for_each_entry(segbuf, logs, sb_list) { 1759 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1760 b_assoc_buffers) { 1761 if (bh->b_page != bd_page) { 1762 if (bd_page) 1763 end_page_writeback(bd_page); 1764 bd_page = bh->b_page; 1765 } 1766 } 1767 1768 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1769 b_assoc_buffers) { 1770 clear_buffer_async_write(bh); 1771 if (bh == segbuf->sb_super_root) { 1772 if (bh->b_page != bd_page) { 1773 end_page_writeback(bd_page); 1774 bd_page = bh->b_page; 1775 } 1776 break; 1777 } 1778 if (bh->b_page != fs_page) { 1779 nilfs_end_page_io(fs_page, err); 1780 fs_page = bh->b_page; 1781 } 1782 } 1783 } 1784 if (bd_page) 1785 end_page_writeback(bd_page); 1786 1787 nilfs_end_page_io(fs_page, err); 1788 } 1789 1790 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci, 1791 struct the_nilfs *nilfs, int err) 1792 { 1793 LIST_HEAD(logs); 1794 int ret; 1795 1796 list_splice_tail_init(&sci->sc_write_logs, &logs); 1797 ret = nilfs_wait_on_logs(&logs); 1798 nilfs_abort_logs(&logs, ret ? : err); 1799 1800 list_splice_tail_init(&sci->sc_segbufs, &logs); 1801 nilfs_cancel_segusage(&logs, nilfs->ns_sufile); 1802 nilfs_free_incomplete_logs(&logs, nilfs); 1803 1804 if (sci->sc_stage.flags & NILFS_CF_SUFREED) { 1805 ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1806 sci->sc_freesegs, 1807 sci->sc_nfreesegs, 1808 NULL); 1809 WARN_ON(ret); /* do not happen */ 1810 } 1811 1812 nilfs_destroy_logs(&logs); 1813 } 1814 1815 static void nilfs_set_next_segment(struct the_nilfs *nilfs, 1816 struct nilfs_segment_buffer *segbuf) 1817 { 1818 nilfs->ns_segnum = segbuf->sb_segnum; 1819 nilfs->ns_nextnum = segbuf->sb_nextnum; 1820 nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start 1821 + segbuf->sb_sum.nblocks; 1822 nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq; 1823 nilfs->ns_ctime = segbuf->sb_sum.ctime; 1824 } 1825 1826 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci) 1827 { 1828 struct nilfs_segment_buffer *segbuf; 1829 struct page *bd_page = NULL, *fs_page = NULL; 1830 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 1831 int update_sr = false; 1832 1833 list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) { 1834 struct buffer_head *bh; 1835 1836 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1837 b_assoc_buffers) { 1838 set_buffer_uptodate(bh); 1839 clear_buffer_dirty(bh); 1840 if (bh->b_page != bd_page) { 1841 if (bd_page) 1842 end_page_writeback(bd_page); 1843 bd_page = bh->b_page; 1844 } 1845 } 1846 /* 1847 * We assume that the buffers which belong to the same page 1848 * continue over the buffer list. 1849 * Under this assumption, the last BHs of pages is 1850 * identifiable by the discontinuity of bh->b_page 1851 * (page != fs_page). 1852 * 1853 * For B-tree node blocks, however, this assumption is not 1854 * guaranteed. The cleanup code of B-tree node pages needs 1855 * special care. 1856 */ 1857 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1858 b_assoc_buffers) { 1859 const unsigned long set_bits = BIT(BH_Uptodate); 1860 const unsigned long clear_bits = 1861 (BIT(BH_Dirty) | BIT(BH_Async_Write) | 1862 BIT(BH_Delay) | BIT(BH_NILFS_Volatile) | 1863 BIT(BH_NILFS_Redirected)); 1864 1865 set_mask_bits(&bh->b_state, clear_bits, set_bits); 1866 if (bh == segbuf->sb_super_root) { 1867 if (bh->b_page != bd_page) { 1868 end_page_writeback(bd_page); 1869 bd_page = bh->b_page; 1870 } 1871 update_sr = true; 1872 break; 1873 } 1874 if (bh->b_page != fs_page) { 1875 nilfs_end_page_io(fs_page, 0); 1876 fs_page = bh->b_page; 1877 } 1878 } 1879 1880 if (!nilfs_segbuf_simplex(segbuf)) { 1881 if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) { 1882 set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); 1883 sci->sc_lseg_stime = jiffies; 1884 } 1885 if (segbuf->sb_sum.flags & NILFS_SS_LOGEND) 1886 clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); 1887 } 1888 } 1889 /* 1890 * Since pages may continue over multiple segment buffers, 1891 * end of the last page must be checked outside of the loop. 1892 */ 1893 if (bd_page) 1894 end_page_writeback(bd_page); 1895 1896 nilfs_end_page_io(fs_page, 0); 1897 1898 nilfs_drop_collected_inodes(&sci->sc_dirty_files); 1899 1900 if (nilfs_doing_gc()) 1901 nilfs_drop_collected_inodes(&sci->sc_gc_inodes); 1902 else 1903 nilfs->ns_nongc_ctime = sci->sc_seg_ctime; 1904 1905 sci->sc_nblk_inc += sci->sc_nblk_this_inc; 1906 1907 segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs); 1908 nilfs_set_next_segment(nilfs, segbuf); 1909 1910 if (update_sr) { 1911 nilfs->ns_flushed_device = 0; 1912 nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start, 1913 segbuf->sb_sum.seg_seq, nilfs->ns_cno++); 1914 1915 clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); 1916 clear_bit(NILFS_SC_DIRTY, &sci->sc_flags); 1917 set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); 1918 nilfs_segctor_clear_metadata_dirty(sci); 1919 } else 1920 clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); 1921 } 1922 1923 static int nilfs_segctor_wait(struct nilfs_sc_info *sci) 1924 { 1925 int ret; 1926 1927 ret = nilfs_wait_on_logs(&sci->sc_write_logs); 1928 if (!ret) { 1929 nilfs_segctor_complete_write(sci); 1930 nilfs_destroy_logs(&sci->sc_write_logs); 1931 } 1932 return ret; 1933 } 1934 1935 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci, 1936 struct the_nilfs *nilfs) 1937 { 1938 struct nilfs_inode_info *ii, *n; 1939 struct inode *ifile = sci->sc_root->ifile; 1940 1941 spin_lock(&nilfs->ns_inode_lock); 1942 retry: 1943 list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) { 1944 if (!ii->i_bh) { 1945 struct buffer_head *ibh; 1946 int err; 1947 1948 spin_unlock(&nilfs->ns_inode_lock); 1949 err = nilfs_ifile_get_inode_block( 1950 ifile, ii->vfs_inode.i_ino, &ibh); 1951 if (unlikely(err)) { 1952 nilfs_warn(sci->sc_super, 1953 "log writer: error %d getting inode block (ino=%lu)", 1954 err, ii->vfs_inode.i_ino); 1955 return err; 1956 } 1957 spin_lock(&nilfs->ns_inode_lock); 1958 if (likely(!ii->i_bh)) 1959 ii->i_bh = ibh; 1960 else 1961 brelse(ibh); 1962 goto retry; 1963 } 1964 1965 // Always redirty the buffer to avoid race condition 1966 mark_buffer_dirty(ii->i_bh); 1967 nilfs_mdt_mark_dirty(ifile); 1968 1969 clear_bit(NILFS_I_QUEUED, &ii->i_state); 1970 set_bit(NILFS_I_BUSY, &ii->i_state); 1971 list_move_tail(&ii->i_dirty, &sci->sc_dirty_files); 1972 } 1973 spin_unlock(&nilfs->ns_inode_lock); 1974 1975 return 0; 1976 } 1977 1978 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci, 1979 struct the_nilfs *nilfs) 1980 { 1981 struct nilfs_inode_info *ii, *n; 1982 int during_mount = !(sci->sc_super->s_flags & SB_ACTIVE); 1983 int defer_iput = false; 1984 1985 spin_lock(&nilfs->ns_inode_lock); 1986 list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) { 1987 if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) || 1988 test_bit(NILFS_I_DIRTY, &ii->i_state)) 1989 continue; 1990 1991 clear_bit(NILFS_I_BUSY, &ii->i_state); 1992 brelse(ii->i_bh); 1993 ii->i_bh = NULL; 1994 list_del_init(&ii->i_dirty); 1995 if (!ii->vfs_inode.i_nlink || during_mount) { 1996 /* 1997 * Defer calling iput() to avoid deadlocks if 1998 * i_nlink == 0 or mount is not yet finished. 1999 */ 2000 list_add_tail(&ii->i_dirty, &sci->sc_iput_queue); 2001 defer_iput = true; 2002 } else { 2003 spin_unlock(&nilfs->ns_inode_lock); 2004 iput(&ii->vfs_inode); 2005 spin_lock(&nilfs->ns_inode_lock); 2006 } 2007 } 2008 spin_unlock(&nilfs->ns_inode_lock); 2009 2010 if (defer_iput) 2011 schedule_work(&sci->sc_iput_work); 2012 } 2013 2014 /* 2015 * Main procedure of segment constructor 2016 */ 2017 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode) 2018 { 2019 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2020 int err; 2021 2022 nilfs_sc_cstage_set(sci, NILFS_ST_INIT); 2023 sci->sc_cno = nilfs->ns_cno; 2024 2025 err = nilfs_segctor_collect_dirty_files(sci, nilfs); 2026 if (unlikely(err)) 2027 goto out; 2028 2029 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) 2030 set_bit(NILFS_SC_DIRTY, &sci->sc_flags); 2031 2032 if (nilfs_segctor_clean(sci)) 2033 goto out; 2034 2035 do { 2036 sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK; 2037 2038 err = nilfs_segctor_begin_construction(sci, nilfs); 2039 if (unlikely(err)) 2040 goto out; 2041 2042 /* Update time stamp */ 2043 sci->sc_seg_ctime = ktime_get_real_seconds(); 2044 2045 err = nilfs_segctor_collect(sci, nilfs, mode); 2046 if (unlikely(err)) 2047 goto failed; 2048 2049 /* Avoid empty segment */ 2050 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE && 2051 nilfs_segbuf_empty(sci->sc_curseg)) { 2052 nilfs_segctor_abort_construction(sci, nilfs, 1); 2053 goto out; 2054 } 2055 2056 err = nilfs_segctor_assign(sci, mode); 2057 if (unlikely(err)) 2058 goto failed; 2059 2060 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED) 2061 nilfs_segctor_fill_in_file_bmap(sci); 2062 2063 if (mode == SC_LSEG_SR && 2064 nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) { 2065 err = nilfs_segctor_fill_in_checkpoint(sci); 2066 if (unlikely(err)) 2067 goto failed_to_write; 2068 2069 nilfs_segctor_fill_in_super_root(sci, nilfs); 2070 } 2071 nilfs_segctor_update_segusage(sci, nilfs->ns_sufile); 2072 2073 /* Write partial segments */ 2074 nilfs_segctor_prepare_write(sci); 2075 2076 nilfs_add_checksums_on_logs(&sci->sc_segbufs, 2077 nilfs->ns_crc_seed); 2078 2079 err = nilfs_segctor_write(sci, nilfs); 2080 if (unlikely(err)) 2081 goto failed_to_write; 2082 2083 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE || 2084 nilfs->ns_blocksize_bits != PAGE_SHIFT) { 2085 /* 2086 * At this point, we avoid double buffering 2087 * for blocksize < pagesize because page dirty 2088 * flag is turned off during write and dirty 2089 * buffers are not properly collected for 2090 * pages crossing over segments. 2091 */ 2092 err = nilfs_segctor_wait(sci); 2093 if (err) 2094 goto failed_to_write; 2095 } 2096 } while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE); 2097 2098 out: 2099 nilfs_segctor_drop_written_files(sci, nilfs); 2100 return err; 2101 2102 failed_to_write: 2103 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED) 2104 nilfs_redirty_inodes(&sci->sc_dirty_files); 2105 2106 failed: 2107 if (nilfs_doing_gc()) 2108 nilfs_redirty_inodes(&sci->sc_gc_inodes); 2109 nilfs_segctor_abort_construction(sci, nilfs, err); 2110 goto out; 2111 } 2112 2113 /** 2114 * nilfs_segctor_start_timer - set timer of background write 2115 * @sci: nilfs_sc_info 2116 * 2117 * If the timer has already been set, it ignores the new request. 2118 * This function MUST be called within a section locking the segment 2119 * semaphore. 2120 */ 2121 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci) 2122 { 2123 spin_lock(&sci->sc_state_lock); 2124 if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) { 2125 sci->sc_timer.expires = jiffies + sci->sc_interval; 2126 add_timer(&sci->sc_timer); 2127 sci->sc_state |= NILFS_SEGCTOR_COMMIT; 2128 } 2129 spin_unlock(&sci->sc_state_lock); 2130 } 2131 2132 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn) 2133 { 2134 spin_lock(&sci->sc_state_lock); 2135 if (!(sci->sc_flush_request & BIT(bn))) { 2136 unsigned long prev_req = sci->sc_flush_request; 2137 2138 sci->sc_flush_request |= BIT(bn); 2139 if (!prev_req) 2140 wake_up(&sci->sc_wait_daemon); 2141 } 2142 spin_unlock(&sci->sc_state_lock); 2143 } 2144 2145 /** 2146 * nilfs_flush_segment - trigger a segment construction for resource control 2147 * @sb: super block 2148 * @ino: inode number of the file to be flushed out. 2149 */ 2150 void nilfs_flush_segment(struct super_block *sb, ino_t ino) 2151 { 2152 struct the_nilfs *nilfs = sb->s_fs_info; 2153 struct nilfs_sc_info *sci = nilfs->ns_writer; 2154 2155 if (!sci || nilfs_doing_construction()) 2156 return; 2157 nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0); 2158 /* assign bit 0 to data files */ 2159 } 2160 2161 struct nilfs_segctor_wait_request { 2162 wait_queue_entry_t wq; 2163 __u32 seq; 2164 int err; 2165 atomic_t done; 2166 }; 2167 2168 static int nilfs_segctor_sync(struct nilfs_sc_info *sci) 2169 { 2170 struct nilfs_segctor_wait_request wait_req; 2171 int err = 0; 2172 2173 spin_lock(&sci->sc_state_lock); 2174 init_wait(&wait_req.wq); 2175 wait_req.err = 0; 2176 atomic_set(&wait_req.done, 0); 2177 wait_req.seq = ++sci->sc_seq_request; 2178 spin_unlock(&sci->sc_state_lock); 2179 2180 init_waitqueue_entry(&wait_req.wq, current); 2181 add_wait_queue(&sci->sc_wait_request, &wait_req.wq); 2182 set_current_state(TASK_INTERRUPTIBLE); 2183 wake_up(&sci->sc_wait_daemon); 2184 2185 for (;;) { 2186 if (atomic_read(&wait_req.done)) { 2187 err = wait_req.err; 2188 break; 2189 } 2190 if (!signal_pending(current)) { 2191 schedule(); 2192 continue; 2193 } 2194 err = -ERESTARTSYS; 2195 break; 2196 } 2197 finish_wait(&sci->sc_wait_request, &wait_req.wq); 2198 return err; 2199 } 2200 2201 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err) 2202 { 2203 struct nilfs_segctor_wait_request *wrq, *n; 2204 unsigned long flags; 2205 2206 spin_lock_irqsave(&sci->sc_wait_request.lock, flags); 2207 list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.head, wq.entry) { 2208 if (!atomic_read(&wrq->done) && 2209 nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) { 2210 wrq->err = err; 2211 atomic_set(&wrq->done, 1); 2212 } 2213 if (atomic_read(&wrq->done)) { 2214 wrq->wq.func(&wrq->wq, 2215 TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 2216 0, NULL); 2217 } 2218 } 2219 spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags); 2220 } 2221 2222 /** 2223 * nilfs_construct_segment - construct a logical segment 2224 * @sb: super block 2225 * 2226 * Return Value: On success, 0 is returned. On errors, one of the following 2227 * negative error code is returned. 2228 * 2229 * %-EROFS - Read only filesystem. 2230 * 2231 * %-EIO - I/O error 2232 * 2233 * %-ENOSPC - No space left on device (only in a panic state). 2234 * 2235 * %-ERESTARTSYS - Interrupted. 2236 * 2237 * %-ENOMEM - Insufficient memory available. 2238 */ 2239 int nilfs_construct_segment(struct super_block *sb) 2240 { 2241 struct the_nilfs *nilfs = sb->s_fs_info; 2242 struct nilfs_sc_info *sci = nilfs->ns_writer; 2243 struct nilfs_transaction_info *ti; 2244 2245 if (sb_rdonly(sb) || unlikely(!sci)) 2246 return -EROFS; 2247 2248 /* A call inside transactions causes a deadlock. */ 2249 BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC); 2250 2251 return nilfs_segctor_sync(sci); 2252 } 2253 2254 /** 2255 * nilfs_construct_dsync_segment - construct a data-only logical segment 2256 * @sb: super block 2257 * @inode: inode whose data blocks should be written out 2258 * @start: start byte offset 2259 * @end: end byte offset (inclusive) 2260 * 2261 * Return Value: On success, 0 is returned. On errors, one of the following 2262 * negative error code is returned. 2263 * 2264 * %-EROFS - Read only filesystem. 2265 * 2266 * %-EIO - I/O error 2267 * 2268 * %-ENOSPC - No space left on device (only in a panic state). 2269 * 2270 * %-ERESTARTSYS - Interrupted. 2271 * 2272 * %-ENOMEM - Insufficient memory available. 2273 */ 2274 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode, 2275 loff_t start, loff_t end) 2276 { 2277 struct the_nilfs *nilfs = sb->s_fs_info; 2278 struct nilfs_sc_info *sci = nilfs->ns_writer; 2279 struct nilfs_inode_info *ii; 2280 struct nilfs_transaction_info ti; 2281 int err = 0; 2282 2283 if (sb_rdonly(sb) || unlikely(!sci)) 2284 return -EROFS; 2285 2286 nilfs_transaction_lock(sb, &ti, 0); 2287 2288 ii = NILFS_I(inode); 2289 if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) || 2290 nilfs_test_opt(nilfs, STRICT_ORDER) || 2291 test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || 2292 nilfs_discontinued(nilfs)) { 2293 nilfs_transaction_unlock(sb); 2294 err = nilfs_segctor_sync(sci); 2295 return err; 2296 } 2297 2298 spin_lock(&nilfs->ns_inode_lock); 2299 if (!test_bit(NILFS_I_QUEUED, &ii->i_state) && 2300 !test_bit(NILFS_I_BUSY, &ii->i_state)) { 2301 spin_unlock(&nilfs->ns_inode_lock); 2302 nilfs_transaction_unlock(sb); 2303 return 0; 2304 } 2305 spin_unlock(&nilfs->ns_inode_lock); 2306 sci->sc_dsync_inode = ii; 2307 sci->sc_dsync_start = start; 2308 sci->sc_dsync_end = end; 2309 2310 err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC); 2311 if (!err) 2312 nilfs->ns_flushed_device = 0; 2313 2314 nilfs_transaction_unlock(sb); 2315 return err; 2316 } 2317 2318 #define FLUSH_FILE_BIT (0x1) /* data file only */ 2319 #define FLUSH_DAT_BIT BIT(NILFS_DAT_INO) /* DAT only */ 2320 2321 /** 2322 * nilfs_segctor_accept - record accepted sequence count of log-write requests 2323 * @sci: segment constructor object 2324 */ 2325 static void nilfs_segctor_accept(struct nilfs_sc_info *sci) 2326 { 2327 spin_lock(&sci->sc_state_lock); 2328 sci->sc_seq_accepted = sci->sc_seq_request; 2329 spin_unlock(&sci->sc_state_lock); 2330 del_timer_sync(&sci->sc_timer); 2331 } 2332 2333 /** 2334 * nilfs_segctor_notify - notify the result of request to caller threads 2335 * @sci: segment constructor object 2336 * @mode: mode of log forming 2337 * @err: error code to be notified 2338 */ 2339 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err) 2340 { 2341 /* Clear requests (even when the construction failed) */ 2342 spin_lock(&sci->sc_state_lock); 2343 2344 if (mode == SC_LSEG_SR) { 2345 sci->sc_state &= ~NILFS_SEGCTOR_COMMIT; 2346 sci->sc_seq_done = sci->sc_seq_accepted; 2347 nilfs_segctor_wakeup(sci, err); 2348 sci->sc_flush_request = 0; 2349 } else { 2350 if (mode == SC_FLUSH_FILE) 2351 sci->sc_flush_request &= ~FLUSH_FILE_BIT; 2352 else if (mode == SC_FLUSH_DAT) 2353 sci->sc_flush_request &= ~FLUSH_DAT_BIT; 2354 2355 /* re-enable timer if checkpoint creation was not done */ 2356 if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && 2357 time_before(jiffies, sci->sc_timer.expires)) 2358 add_timer(&sci->sc_timer); 2359 } 2360 spin_unlock(&sci->sc_state_lock); 2361 } 2362 2363 /** 2364 * nilfs_segctor_construct - form logs and write them to disk 2365 * @sci: segment constructor object 2366 * @mode: mode of log forming 2367 */ 2368 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode) 2369 { 2370 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2371 struct nilfs_super_block **sbp; 2372 int err = 0; 2373 2374 nilfs_segctor_accept(sci); 2375 2376 if (nilfs_discontinued(nilfs)) 2377 mode = SC_LSEG_SR; 2378 if (!nilfs_segctor_confirm(sci)) 2379 err = nilfs_segctor_do_construct(sci, mode); 2380 2381 if (likely(!err)) { 2382 if (mode != SC_FLUSH_DAT) 2383 atomic_set(&nilfs->ns_ndirtyblks, 0); 2384 if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) && 2385 nilfs_discontinued(nilfs)) { 2386 down_write(&nilfs->ns_sem); 2387 err = -EIO; 2388 sbp = nilfs_prepare_super(sci->sc_super, 2389 nilfs_sb_will_flip(nilfs)); 2390 if (likely(sbp)) { 2391 nilfs_set_log_cursor(sbp[0], nilfs); 2392 err = nilfs_commit_super(sci->sc_super, 2393 NILFS_SB_COMMIT); 2394 } 2395 up_write(&nilfs->ns_sem); 2396 } 2397 } 2398 2399 nilfs_segctor_notify(sci, mode, err); 2400 return err; 2401 } 2402 2403 static void nilfs_construction_timeout(struct timer_list *t) 2404 { 2405 struct nilfs_sc_info *sci = from_timer(sci, t, sc_timer); 2406 2407 wake_up_process(sci->sc_timer_task); 2408 } 2409 2410 static void 2411 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head) 2412 { 2413 struct nilfs_inode_info *ii, *n; 2414 2415 list_for_each_entry_safe(ii, n, head, i_dirty) { 2416 if (!test_bit(NILFS_I_UPDATED, &ii->i_state)) 2417 continue; 2418 list_del_init(&ii->i_dirty); 2419 truncate_inode_pages(&ii->vfs_inode.i_data, 0); 2420 nilfs_btnode_cache_clear(ii->i_assoc_inode->i_mapping); 2421 iput(&ii->vfs_inode); 2422 } 2423 } 2424 2425 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv, 2426 void **kbufs) 2427 { 2428 struct the_nilfs *nilfs = sb->s_fs_info; 2429 struct nilfs_sc_info *sci = nilfs->ns_writer; 2430 struct nilfs_transaction_info ti; 2431 int err; 2432 2433 if (unlikely(!sci)) 2434 return -EROFS; 2435 2436 nilfs_transaction_lock(sb, &ti, 1); 2437 2438 err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat); 2439 if (unlikely(err)) 2440 goto out_unlock; 2441 2442 err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs); 2443 if (unlikely(err)) { 2444 nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat); 2445 goto out_unlock; 2446 } 2447 2448 sci->sc_freesegs = kbufs[4]; 2449 sci->sc_nfreesegs = argv[4].v_nmembs; 2450 list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes); 2451 2452 for (;;) { 2453 err = nilfs_segctor_construct(sci, SC_LSEG_SR); 2454 nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes); 2455 2456 if (likely(!err)) 2457 break; 2458 2459 nilfs_warn(sb, "error %d cleaning segments", err); 2460 set_current_state(TASK_INTERRUPTIBLE); 2461 schedule_timeout(sci->sc_interval); 2462 } 2463 if (nilfs_test_opt(nilfs, DISCARD)) { 2464 int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs, 2465 sci->sc_nfreesegs); 2466 if (ret) { 2467 nilfs_warn(sb, 2468 "error %d on discard request, turning discards off for the device", 2469 ret); 2470 nilfs_clear_opt(nilfs, DISCARD); 2471 } 2472 } 2473 2474 out_unlock: 2475 sci->sc_freesegs = NULL; 2476 sci->sc_nfreesegs = 0; 2477 nilfs_mdt_clear_shadow_map(nilfs->ns_dat); 2478 nilfs_transaction_unlock(sb); 2479 return err; 2480 } 2481 2482 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode) 2483 { 2484 struct nilfs_transaction_info ti; 2485 2486 nilfs_transaction_lock(sci->sc_super, &ti, 0); 2487 nilfs_segctor_construct(sci, mode); 2488 2489 /* 2490 * Unclosed segment should be retried. We do this using sc_timer. 2491 * Timeout of sc_timer will invoke complete construction which leads 2492 * to close the current logical segment. 2493 */ 2494 if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) 2495 nilfs_segctor_start_timer(sci); 2496 2497 nilfs_transaction_unlock(sci->sc_super); 2498 } 2499 2500 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci) 2501 { 2502 int mode = 0; 2503 2504 spin_lock(&sci->sc_state_lock); 2505 mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ? 2506 SC_FLUSH_DAT : SC_FLUSH_FILE; 2507 spin_unlock(&sci->sc_state_lock); 2508 2509 if (mode) { 2510 nilfs_segctor_do_construct(sci, mode); 2511 2512 spin_lock(&sci->sc_state_lock); 2513 sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ? 2514 ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT; 2515 spin_unlock(&sci->sc_state_lock); 2516 } 2517 clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); 2518 } 2519 2520 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci) 2521 { 2522 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || 2523 time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) { 2524 if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT)) 2525 return SC_FLUSH_FILE; 2526 else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT)) 2527 return SC_FLUSH_DAT; 2528 } 2529 return SC_LSEG_SR; 2530 } 2531 2532 /** 2533 * nilfs_segctor_thread - main loop of the segment constructor thread. 2534 * @arg: pointer to a struct nilfs_sc_info. 2535 * 2536 * nilfs_segctor_thread() initializes a timer and serves as a daemon 2537 * to execute segment constructions. 2538 */ 2539 static int nilfs_segctor_thread(void *arg) 2540 { 2541 struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg; 2542 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2543 int timeout = 0; 2544 2545 sci->sc_timer_task = current; 2546 2547 /* start sync. */ 2548 sci->sc_task = current; 2549 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */ 2550 nilfs_info(sci->sc_super, 2551 "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds", 2552 sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ); 2553 2554 spin_lock(&sci->sc_state_lock); 2555 loop: 2556 for (;;) { 2557 int mode; 2558 2559 if (sci->sc_state & NILFS_SEGCTOR_QUIT) 2560 goto end_thread; 2561 2562 if (timeout || sci->sc_seq_request != sci->sc_seq_done) 2563 mode = SC_LSEG_SR; 2564 else if (sci->sc_flush_request) 2565 mode = nilfs_segctor_flush_mode(sci); 2566 else 2567 break; 2568 2569 spin_unlock(&sci->sc_state_lock); 2570 nilfs_segctor_thread_construct(sci, mode); 2571 spin_lock(&sci->sc_state_lock); 2572 timeout = 0; 2573 } 2574 2575 2576 if (freezing(current)) { 2577 spin_unlock(&sci->sc_state_lock); 2578 try_to_freeze(); 2579 spin_lock(&sci->sc_state_lock); 2580 } else { 2581 DEFINE_WAIT(wait); 2582 int should_sleep = 1; 2583 2584 prepare_to_wait(&sci->sc_wait_daemon, &wait, 2585 TASK_INTERRUPTIBLE); 2586 2587 if (sci->sc_seq_request != sci->sc_seq_done) 2588 should_sleep = 0; 2589 else if (sci->sc_flush_request) 2590 should_sleep = 0; 2591 else if (sci->sc_state & NILFS_SEGCTOR_COMMIT) 2592 should_sleep = time_before(jiffies, 2593 sci->sc_timer.expires); 2594 2595 if (should_sleep) { 2596 spin_unlock(&sci->sc_state_lock); 2597 schedule(); 2598 spin_lock(&sci->sc_state_lock); 2599 } 2600 finish_wait(&sci->sc_wait_daemon, &wait); 2601 timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && 2602 time_after_eq(jiffies, sci->sc_timer.expires)); 2603 2604 if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs)) 2605 set_nilfs_discontinued(nilfs); 2606 } 2607 goto loop; 2608 2609 end_thread: 2610 spin_unlock(&sci->sc_state_lock); 2611 2612 /* end sync. */ 2613 sci->sc_task = NULL; 2614 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */ 2615 return 0; 2616 } 2617 2618 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci) 2619 { 2620 struct task_struct *t; 2621 2622 t = kthread_run(nilfs_segctor_thread, sci, "segctord"); 2623 if (IS_ERR(t)) { 2624 int err = PTR_ERR(t); 2625 2626 nilfs_err(sci->sc_super, "error %d creating segctord thread", 2627 err); 2628 return err; 2629 } 2630 wait_event(sci->sc_wait_task, sci->sc_task != NULL); 2631 return 0; 2632 } 2633 2634 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci) 2635 __acquires(&sci->sc_state_lock) 2636 __releases(&sci->sc_state_lock) 2637 { 2638 sci->sc_state |= NILFS_SEGCTOR_QUIT; 2639 2640 while (sci->sc_task) { 2641 wake_up(&sci->sc_wait_daemon); 2642 spin_unlock(&sci->sc_state_lock); 2643 wait_event(sci->sc_wait_task, sci->sc_task == NULL); 2644 spin_lock(&sci->sc_state_lock); 2645 } 2646 } 2647 2648 /* 2649 * Setup & clean-up functions 2650 */ 2651 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb, 2652 struct nilfs_root *root) 2653 { 2654 struct the_nilfs *nilfs = sb->s_fs_info; 2655 struct nilfs_sc_info *sci; 2656 2657 sci = kzalloc(sizeof(*sci), GFP_KERNEL); 2658 if (!sci) 2659 return NULL; 2660 2661 sci->sc_super = sb; 2662 2663 nilfs_get_root(root); 2664 sci->sc_root = root; 2665 2666 init_waitqueue_head(&sci->sc_wait_request); 2667 init_waitqueue_head(&sci->sc_wait_daemon); 2668 init_waitqueue_head(&sci->sc_wait_task); 2669 spin_lock_init(&sci->sc_state_lock); 2670 INIT_LIST_HEAD(&sci->sc_dirty_files); 2671 INIT_LIST_HEAD(&sci->sc_segbufs); 2672 INIT_LIST_HEAD(&sci->sc_write_logs); 2673 INIT_LIST_HEAD(&sci->sc_gc_inodes); 2674 INIT_LIST_HEAD(&sci->sc_iput_queue); 2675 INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func); 2676 timer_setup(&sci->sc_timer, nilfs_construction_timeout, 0); 2677 2678 sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT; 2679 sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ; 2680 sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK; 2681 2682 if (nilfs->ns_interval) 2683 sci->sc_interval = HZ * nilfs->ns_interval; 2684 if (nilfs->ns_watermark) 2685 sci->sc_watermark = nilfs->ns_watermark; 2686 return sci; 2687 } 2688 2689 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci) 2690 { 2691 int ret, retrycount = NILFS_SC_CLEANUP_RETRY; 2692 2693 /* 2694 * The segctord thread was stopped and its timer was removed. 2695 * But some tasks remain. 2696 */ 2697 do { 2698 struct nilfs_transaction_info ti; 2699 2700 nilfs_transaction_lock(sci->sc_super, &ti, 0); 2701 ret = nilfs_segctor_construct(sci, SC_LSEG_SR); 2702 nilfs_transaction_unlock(sci->sc_super); 2703 2704 flush_work(&sci->sc_iput_work); 2705 2706 } while (ret && retrycount-- > 0); 2707 } 2708 2709 /** 2710 * nilfs_segctor_destroy - destroy the segment constructor. 2711 * @sci: nilfs_sc_info 2712 * 2713 * nilfs_segctor_destroy() kills the segctord thread and frees 2714 * the nilfs_sc_info struct. 2715 * Caller must hold the segment semaphore. 2716 */ 2717 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci) 2718 { 2719 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2720 int flag; 2721 2722 up_write(&nilfs->ns_segctor_sem); 2723 2724 spin_lock(&sci->sc_state_lock); 2725 nilfs_segctor_kill_thread(sci); 2726 flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request 2727 || sci->sc_seq_request != sci->sc_seq_done); 2728 spin_unlock(&sci->sc_state_lock); 2729 2730 if (flush_work(&sci->sc_iput_work)) 2731 flag = true; 2732 2733 if (flag || !nilfs_segctor_confirm(sci)) 2734 nilfs_segctor_write_out(sci); 2735 2736 if (!list_empty(&sci->sc_dirty_files)) { 2737 nilfs_warn(sci->sc_super, 2738 "disposed unprocessed dirty file(s) when stopping log writer"); 2739 nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1); 2740 } 2741 2742 if (!list_empty(&sci->sc_iput_queue)) { 2743 nilfs_warn(sci->sc_super, 2744 "disposed unprocessed inode(s) in iput queue when stopping log writer"); 2745 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1); 2746 } 2747 2748 WARN_ON(!list_empty(&sci->sc_segbufs)); 2749 WARN_ON(!list_empty(&sci->sc_write_logs)); 2750 2751 nilfs_put_root(sci->sc_root); 2752 2753 down_write(&nilfs->ns_segctor_sem); 2754 2755 del_timer_sync(&sci->sc_timer); 2756 kfree(sci); 2757 } 2758 2759 /** 2760 * nilfs_attach_log_writer - attach log writer 2761 * @sb: super block instance 2762 * @root: root object of the current filesystem tree 2763 * 2764 * This allocates a log writer object, initializes it, and starts the 2765 * log writer. 2766 * 2767 * Return Value: On success, 0 is returned. On error, one of the following 2768 * negative error code is returned. 2769 * 2770 * %-ENOMEM - Insufficient memory available. 2771 */ 2772 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root) 2773 { 2774 struct the_nilfs *nilfs = sb->s_fs_info; 2775 int err; 2776 2777 if (nilfs->ns_writer) { 2778 /* 2779 * This happens if the filesystem is made read-only by 2780 * __nilfs_error or nilfs_remount and then remounted 2781 * read/write. In these cases, reuse the existing 2782 * writer. 2783 */ 2784 return 0; 2785 } 2786 2787 nilfs->ns_writer = nilfs_segctor_new(sb, root); 2788 if (!nilfs->ns_writer) 2789 return -ENOMEM; 2790 2791 inode_attach_wb(nilfs->ns_bdev->bd_inode, NULL); 2792 2793 err = nilfs_segctor_start_thread(nilfs->ns_writer); 2794 if (unlikely(err)) 2795 nilfs_detach_log_writer(sb); 2796 2797 return err; 2798 } 2799 2800 /** 2801 * nilfs_detach_log_writer - destroy log writer 2802 * @sb: super block instance 2803 * 2804 * This kills log writer daemon, frees the log writer object, and 2805 * destroys list of dirty files. 2806 */ 2807 void nilfs_detach_log_writer(struct super_block *sb) 2808 { 2809 struct the_nilfs *nilfs = sb->s_fs_info; 2810 LIST_HEAD(garbage_list); 2811 2812 down_write(&nilfs->ns_segctor_sem); 2813 if (nilfs->ns_writer) { 2814 nilfs_segctor_destroy(nilfs->ns_writer); 2815 nilfs->ns_writer = NULL; 2816 } 2817 2818 /* Force to free the list of dirty files */ 2819 spin_lock(&nilfs->ns_inode_lock); 2820 if (!list_empty(&nilfs->ns_dirty_files)) { 2821 list_splice_init(&nilfs->ns_dirty_files, &garbage_list); 2822 nilfs_warn(sb, 2823 "disposed unprocessed dirty file(s) when detaching log writer"); 2824 } 2825 spin_unlock(&nilfs->ns_inode_lock); 2826 up_write(&nilfs->ns_segctor_sem); 2827 2828 nilfs_dispose_list(nilfs, &garbage_list, 1); 2829 } 2830