xref: /openbmc/linux/fs/nilfs2/segment.c (revision 95e9fd10)
1 /*
2  * segment.c - NILFS segment constructor.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  *
22  */
23 
24 #include <linux/pagemap.h>
25 #include <linux/buffer_head.h>
26 #include <linux/writeback.h>
27 #include <linux/bio.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/freezer.h>
32 #include <linux/kthread.h>
33 #include <linux/crc32.h>
34 #include <linux/pagevec.h>
35 #include <linux/slab.h>
36 #include "nilfs.h"
37 #include "btnode.h"
38 #include "page.h"
39 #include "segment.h"
40 #include "sufile.h"
41 #include "cpfile.h"
42 #include "ifile.h"
43 #include "segbuf.h"
44 
45 
46 /*
47  * Segment constructor
48  */
49 #define SC_N_INODEVEC	16   /* Size of locally allocated inode vector */
50 
51 #define SC_MAX_SEGDELTA 64   /* Upper limit of the number of segments
52 				appended in collection retry loop */
53 
54 /* Construction mode */
55 enum {
56 	SC_LSEG_SR = 1,	/* Make a logical segment having a super root */
57 	SC_LSEG_DSYNC,	/* Flush data blocks of a given file and make
58 			   a logical segment without a super root */
59 	SC_FLUSH_FILE,	/* Flush data files, leads to segment writes without
60 			   creating a checkpoint */
61 	SC_FLUSH_DAT,	/* Flush DAT file. This also creates segments without
62 			   a checkpoint */
63 };
64 
65 /* Stage numbers of dirty block collection */
66 enum {
67 	NILFS_ST_INIT = 0,
68 	NILFS_ST_GC,		/* Collecting dirty blocks for GC */
69 	NILFS_ST_FILE,
70 	NILFS_ST_IFILE,
71 	NILFS_ST_CPFILE,
72 	NILFS_ST_SUFILE,
73 	NILFS_ST_DAT,
74 	NILFS_ST_SR,		/* Super root */
75 	NILFS_ST_DSYNC,		/* Data sync blocks */
76 	NILFS_ST_DONE,
77 };
78 
79 /* State flags of collection */
80 #define NILFS_CF_NODE		0x0001	/* Collecting node blocks */
81 #define NILFS_CF_IFILE_STARTED	0x0002	/* IFILE stage has started */
82 #define NILFS_CF_SUFREED	0x0004	/* segment usages has been freed */
83 #define NILFS_CF_HISTORY_MASK	(NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
84 
85 /* Operations depending on the construction mode and file type */
86 struct nilfs_sc_operations {
87 	int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
88 			    struct inode *);
89 	int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
90 			    struct inode *);
91 	int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
92 			    struct inode *);
93 	void (*write_data_binfo)(struct nilfs_sc_info *,
94 				 struct nilfs_segsum_pointer *,
95 				 union nilfs_binfo *);
96 	void (*write_node_binfo)(struct nilfs_sc_info *,
97 				 struct nilfs_segsum_pointer *,
98 				 union nilfs_binfo *);
99 };
100 
101 /*
102  * Other definitions
103  */
104 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
105 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
106 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
107 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
108 
109 #define nilfs_cnt32_gt(a, b)   \
110 	(typecheck(__u32, a) && typecheck(__u32, b) && \
111 	 ((__s32)(b) - (__s32)(a) < 0))
112 #define nilfs_cnt32_ge(a, b)   \
113 	(typecheck(__u32, a) && typecheck(__u32, b) && \
114 	 ((__s32)(a) - (__s32)(b) >= 0))
115 #define nilfs_cnt32_lt(a, b)  nilfs_cnt32_gt(b, a)
116 #define nilfs_cnt32_le(a, b)  nilfs_cnt32_ge(b, a)
117 
118 static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
119 {
120 	struct nilfs_transaction_info *cur_ti = current->journal_info;
121 	void *save = NULL;
122 
123 	if (cur_ti) {
124 		if (cur_ti->ti_magic == NILFS_TI_MAGIC)
125 			return ++cur_ti->ti_count;
126 		else {
127 			/*
128 			 * If journal_info field is occupied by other FS,
129 			 * it is saved and will be restored on
130 			 * nilfs_transaction_commit().
131 			 */
132 			printk(KERN_WARNING
133 			       "NILFS warning: journal info from a different "
134 			       "FS\n");
135 			save = current->journal_info;
136 		}
137 	}
138 	if (!ti) {
139 		ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
140 		if (!ti)
141 			return -ENOMEM;
142 		ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
143 	} else {
144 		ti->ti_flags = 0;
145 	}
146 	ti->ti_count = 0;
147 	ti->ti_save = save;
148 	ti->ti_magic = NILFS_TI_MAGIC;
149 	current->journal_info = ti;
150 	return 0;
151 }
152 
153 /**
154  * nilfs_transaction_begin - start indivisible file operations.
155  * @sb: super block
156  * @ti: nilfs_transaction_info
157  * @vacancy_check: flags for vacancy rate checks
158  *
159  * nilfs_transaction_begin() acquires a reader/writer semaphore, called
160  * the segment semaphore, to make a segment construction and write tasks
161  * exclusive.  The function is used with nilfs_transaction_commit() in pairs.
162  * The region enclosed by these two functions can be nested.  To avoid a
163  * deadlock, the semaphore is only acquired or released in the outermost call.
164  *
165  * This function allocates a nilfs_transaction_info struct to keep context
166  * information on it.  It is initialized and hooked onto the current task in
167  * the outermost call.  If a pre-allocated struct is given to @ti, it is used
168  * instead; otherwise a new struct is assigned from a slab.
169  *
170  * When @vacancy_check flag is set, this function will check the amount of
171  * free space, and will wait for the GC to reclaim disk space if low capacity.
172  *
173  * Return Value: On success, 0 is returned. On error, one of the following
174  * negative error code is returned.
175  *
176  * %-ENOMEM - Insufficient memory available.
177  *
178  * %-ENOSPC - No space left on device
179  */
180 int nilfs_transaction_begin(struct super_block *sb,
181 			    struct nilfs_transaction_info *ti,
182 			    int vacancy_check)
183 {
184 	struct the_nilfs *nilfs;
185 	int ret = nilfs_prepare_segment_lock(ti);
186 
187 	if (unlikely(ret < 0))
188 		return ret;
189 	if (ret > 0)
190 		return 0;
191 
192 	sb_start_intwrite(sb);
193 
194 	nilfs = sb->s_fs_info;
195 	down_read(&nilfs->ns_segctor_sem);
196 	if (vacancy_check && nilfs_near_disk_full(nilfs)) {
197 		up_read(&nilfs->ns_segctor_sem);
198 		ret = -ENOSPC;
199 		goto failed;
200 	}
201 	return 0;
202 
203  failed:
204 	ti = current->journal_info;
205 	current->journal_info = ti->ti_save;
206 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
207 		kmem_cache_free(nilfs_transaction_cachep, ti);
208 	sb_end_intwrite(sb);
209 	return ret;
210 }
211 
212 /**
213  * nilfs_transaction_commit - commit indivisible file operations.
214  * @sb: super block
215  *
216  * nilfs_transaction_commit() releases the read semaphore which is
217  * acquired by nilfs_transaction_begin(). This is only performed
218  * in outermost call of this function.  If a commit flag is set,
219  * nilfs_transaction_commit() sets a timer to start the segment
220  * constructor.  If a sync flag is set, it starts construction
221  * directly.
222  */
223 int nilfs_transaction_commit(struct super_block *sb)
224 {
225 	struct nilfs_transaction_info *ti = current->journal_info;
226 	struct the_nilfs *nilfs = sb->s_fs_info;
227 	int err = 0;
228 
229 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
230 	ti->ti_flags |= NILFS_TI_COMMIT;
231 	if (ti->ti_count > 0) {
232 		ti->ti_count--;
233 		return 0;
234 	}
235 	if (nilfs->ns_writer) {
236 		struct nilfs_sc_info *sci = nilfs->ns_writer;
237 
238 		if (ti->ti_flags & NILFS_TI_COMMIT)
239 			nilfs_segctor_start_timer(sci);
240 		if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
241 			nilfs_segctor_do_flush(sci, 0);
242 	}
243 	up_read(&nilfs->ns_segctor_sem);
244 	current->journal_info = ti->ti_save;
245 
246 	if (ti->ti_flags & NILFS_TI_SYNC)
247 		err = nilfs_construct_segment(sb);
248 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
249 		kmem_cache_free(nilfs_transaction_cachep, ti);
250 	sb_end_intwrite(sb);
251 	return err;
252 }
253 
254 void nilfs_transaction_abort(struct super_block *sb)
255 {
256 	struct nilfs_transaction_info *ti = current->journal_info;
257 	struct the_nilfs *nilfs = sb->s_fs_info;
258 
259 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
260 	if (ti->ti_count > 0) {
261 		ti->ti_count--;
262 		return;
263 	}
264 	up_read(&nilfs->ns_segctor_sem);
265 
266 	current->journal_info = ti->ti_save;
267 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
268 		kmem_cache_free(nilfs_transaction_cachep, ti);
269 	sb_end_intwrite(sb);
270 }
271 
272 void nilfs_relax_pressure_in_lock(struct super_block *sb)
273 {
274 	struct the_nilfs *nilfs = sb->s_fs_info;
275 	struct nilfs_sc_info *sci = nilfs->ns_writer;
276 
277 	if (!sci || !sci->sc_flush_request)
278 		return;
279 
280 	set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
281 	up_read(&nilfs->ns_segctor_sem);
282 
283 	down_write(&nilfs->ns_segctor_sem);
284 	if (sci->sc_flush_request &&
285 	    test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
286 		struct nilfs_transaction_info *ti = current->journal_info;
287 
288 		ti->ti_flags |= NILFS_TI_WRITER;
289 		nilfs_segctor_do_immediate_flush(sci);
290 		ti->ti_flags &= ~NILFS_TI_WRITER;
291 	}
292 	downgrade_write(&nilfs->ns_segctor_sem);
293 }
294 
295 static void nilfs_transaction_lock(struct super_block *sb,
296 				   struct nilfs_transaction_info *ti,
297 				   int gcflag)
298 {
299 	struct nilfs_transaction_info *cur_ti = current->journal_info;
300 	struct the_nilfs *nilfs = sb->s_fs_info;
301 	struct nilfs_sc_info *sci = nilfs->ns_writer;
302 
303 	WARN_ON(cur_ti);
304 	ti->ti_flags = NILFS_TI_WRITER;
305 	ti->ti_count = 0;
306 	ti->ti_save = cur_ti;
307 	ti->ti_magic = NILFS_TI_MAGIC;
308 	INIT_LIST_HEAD(&ti->ti_garbage);
309 	current->journal_info = ti;
310 
311 	for (;;) {
312 		down_write(&nilfs->ns_segctor_sem);
313 		if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
314 			break;
315 
316 		nilfs_segctor_do_immediate_flush(sci);
317 
318 		up_write(&nilfs->ns_segctor_sem);
319 		yield();
320 	}
321 	if (gcflag)
322 		ti->ti_flags |= NILFS_TI_GC;
323 }
324 
325 static void nilfs_transaction_unlock(struct super_block *sb)
326 {
327 	struct nilfs_transaction_info *ti = current->journal_info;
328 	struct the_nilfs *nilfs = sb->s_fs_info;
329 
330 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
331 	BUG_ON(ti->ti_count > 0);
332 
333 	up_write(&nilfs->ns_segctor_sem);
334 	current->journal_info = ti->ti_save;
335 	if (!list_empty(&ti->ti_garbage))
336 		nilfs_dispose_list(nilfs, &ti->ti_garbage, 0);
337 }
338 
339 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
340 					    struct nilfs_segsum_pointer *ssp,
341 					    unsigned bytes)
342 {
343 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
344 	unsigned blocksize = sci->sc_super->s_blocksize;
345 	void *p;
346 
347 	if (unlikely(ssp->offset + bytes > blocksize)) {
348 		ssp->offset = 0;
349 		BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
350 					       &segbuf->sb_segsum_buffers));
351 		ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
352 	}
353 	p = ssp->bh->b_data + ssp->offset;
354 	ssp->offset += bytes;
355 	return p;
356 }
357 
358 /**
359  * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
360  * @sci: nilfs_sc_info
361  */
362 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
363 {
364 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
365 	struct buffer_head *sumbh;
366 	unsigned sumbytes;
367 	unsigned flags = 0;
368 	int err;
369 
370 	if (nilfs_doing_gc())
371 		flags = NILFS_SS_GC;
372 	err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
373 	if (unlikely(err))
374 		return err;
375 
376 	sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
377 	sumbytes = segbuf->sb_sum.sumbytes;
378 	sci->sc_finfo_ptr.bh = sumbh;  sci->sc_finfo_ptr.offset = sumbytes;
379 	sci->sc_binfo_ptr.bh = sumbh;  sci->sc_binfo_ptr.offset = sumbytes;
380 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
381 	return 0;
382 }
383 
384 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
385 {
386 	sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
387 	if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
388 		return -E2BIG; /* The current segment is filled up
389 				  (internal code) */
390 	sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
391 	return nilfs_segctor_reset_segment_buffer(sci);
392 }
393 
394 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
395 {
396 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
397 	int err;
398 
399 	if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
400 		err = nilfs_segctor_feed_segment(sci);
401 		if (err)
402 			return err;
403 		segbuf = sci->sc_curseg;
404 	}
405 	err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
406 	if (likely(!err))
407 		segbuf->sb_sum.flags |= NILFS_SS_SR;
408 	return err;
409 }
410 
411 /*
412  * Functions for making segment summary and payloads
413  */
414 static int nilfs_segctor_segsum_block_required(
415 	struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
416 	unsigned binfo_size)
417 {
418 	unsigned blocksize = sci->sc_super->s_blocksize;
419 	/* Size of finfo and binfo is enough small against blocksize */
420 
421 	return ssp->offset + binfo_size +
422 		(!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
423 		blocksize;
424 }
425 
426 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
427 				      struct inode *inode)
428 {
429 	sci->sc_curseg->sb_sum.nfinfo++;
430 	sci->sc_binfo_ptr = sci->sc_finfo_ptr;
431 	nilfs_segctor_map_segsum_entry(
432 		sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
433 
434 	if (NILFS_I(inode)->i_root &&
435 	    !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
436 		set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
437 	/* skip finfo */
438 }
439 
440 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
441 				    struct inode *inode)
442 {
443 	struct nilfs_finfo *finfo;
444 	struct nilfs_inode_info *ii;
445 	struct nilfs_segment_buffer *segbuf;
446 	__u64 cno;
447 
448 	if (sci->sc_blk_cnt == 0)
449 		return;
450 
451 	ii = NILFS_I(inode);
452 
453 	if (test_bit(NILFS_I_GCINODE, &ii->i_state))
454 		cno = ii->i_cno;
455 	else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
456 		cno = 0;
457 	else
458 		cno = sci->sc_cno;
459 
460 	finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
461 						 sizeof(*finfo));
462 	finfo->fi_ino = cpu_to_le64(inode->i_ino);
463 	finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
464 	finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
465 	finfo->fi_cno = cpu_to_le64(cno);
466 
467 	segbuf = sci->sc_curseg;
468 	segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
469 		sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
470 	sci->sc_finfo_ptr = sci->sc_binfo_ptr;
471 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
472 }
473 
474 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
475 					struct buffer_head *bh,
476 					struct inode *inode,
477 					unsigned binfo_size)
478 {
479 	struct nilfs_segment_buffer *segbuf;
480 	int required, err = 0;
481 
482  retry:
483 	segbuf = sci->sc_curseg;
484 	required = nilfs_segctor_segsum_block_required(
485 		sci, &sci->sc_binfo_ptr, binfo_size);
486 	if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
487 		nilfs_segctor_end_finfo(sci, inode);
488 		err = nilfs_segctor_feed_segment(sci);
489 		if (err)
490 			return err;
491 		goto retry;
492 	}
493 	if (unlikely(required)) {
494 		err = nilfs_segbuf_extend_segsum(segbuf);
495 		if (unlikely(err))
496 			goto failed;
497 	}
498 	if (sci->sc_blk_cnt == 0)
499 		nilfs_segctor_begin_finfo(sci, inode);
500 
501 	nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
502 	/* Substitution to vblocknr is delayed until update_blocknr() */
503 	nilfs_segbuf_add_file_buffer(segbuf, bh);
504 	sci->sc_blk_cnt++;
505  failed:
506 	return err;
507 }
508 
509 /*
510  * Callback functions that enumerate, mark, and collect dirty blocks
511  */
512 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
513 				   struct buffer_head *bh, struct inode *inode)
514 {
515 	int err;
516 
517 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
518 	if (err < 0)
519 		return err;
520 
521 	err = nilfs_segctor_add_file_block(sci, bh, inode,
522 					   sizeof(struct nilfs_binfo_v));
523 	if (!err)
524 		sci->sc_datablk_cnt++;
525 	return err;
526 }
527 
528 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
529 				   struct buffer_head *bh,
530 				   struct inode *inode)
531 {
532 	return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
533 }
534 
535 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
536 				   struct buffer_head *bh,
537 				   struct inode *inode)
538 {
539 	WARN_ON(!buffer_dirty(bh));
540 	return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
541 }
542 
543 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
544 					struct nilfs_segsum_pointer *ssp,
545 					union nilfs_binfo *binfo)
546 {
547 	struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
548 		sci, ssp, sizeof(*binfo_v));
549 	*binfo_v = binfo->bi_v;
550 }
551 
552 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
553 					struct nilfs_segsum_pointer *ssp,
554 					union nilfs_binfo *binfo)
555 {
556 	__le64 *vblocknr = nilfs_segctor_map_segsum_entry(
557 		sci, ssp, sizeof(*vblocknr));
558 	*vblocknr = binfo->bi_v.bi_vblocknr;
559 }
560 
561 static struct nilfs_sc_operations nilfs_sc_file_ops = {
562 	.collect_data = nilfs_collect_file_data,
563 	.collect_node = nilfs_collect_file_node,
564 	.collect_bmap = nilfs_collect_file_bmap,
565 	.write_data_binfo = nilfs_write_file_data_binfo,
566 	.write_node_binfo = nilfs_write_file_node_binfo,
567 };
568 
569 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
570 				  struct buffer_head *bh, struct inode *inode)
571 {
572 	int err;
573 
574 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
575 	if (err < 0)
576 		return err;
577 
578 	err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
579 	if (!err)
580 		sci->sc_datablk_cnt++;
581 	return err;
582 }
583 
584 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
585 				  struct buffer_head *bh, struct inode *inode)
586 {
587 	WARN_ON(!buffer_dirty(bh));
588 	return nilfs_segctor_add_file_block(sci, bh, inode,
589 					    sizeof(struct nilfs_binfo_dat));
590 }
591 
592 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
593 				       struct nilfs_segsum_pointer *ssp,
594 				       union nilfs_binfo *binfo)
595 {
596 	__le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
597 							  sizeof(*blkoff));
598 	*blkoff = binfo->bi_dat.bi_blkoff;
599 }
600 
601 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
602 				       struct nilfs_segsum_pointer *ssp,
603 				       union nilfs_binfo *binfo)
604 {
605 	struct nilfs_binfo_dat *binfo_dat =
606 		nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
607 	*binfo_dat = binfo->bi_dat;
608 }
609 
610 static struct nilfs_sc_operations nilfs_sc_dat_ops = {
611 	.collect_data = nilfs_collect_dat_data,
612 	.collect_node = nilfs_collect_file_node,
613 	.collect_bmap = nilfs_collect_dat_bmap,
614 	.write_data_binfo = nilfs_write_dat_data_binfo,
615 	.write_node_binfo = nilfs_write_dat_node_binfo,
616 };
617 
618 static struct nilfs_sc_operations nilfs_sc_dsync_ops = {
619 	.collect_data = nilfs_collect_file_data,
620 	.collect_node = NULL,
621 	.collect_bmap = NULL,
622 	.write_data_binfo = nilfs_write_file_data_binfo,
623 	.write_node_binfo = NULL,
624 };
625 
626 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
627 					      struct list_head *listp,
628 					      size_t nlimit,
629 					      loff_t start, loff_t end)
630 {
631 	struct address_space *mapping = inode->i_mapping;
632 	struct pagevec pvec;
633 	pgoff_t index = 0, last = ULONG_MAX;
634 	size_t ndirties = 0;
635 	int i;
636 
637 	if (unlikely(start != 0 || end != LLONG_MAX)) {
638 		/*
639 		 * A valid range is given for sync-ing data pages. The
640 		 * range is rounded to per-page; extra dirty buffers
641 		 * may be included if blocksize < pagesize.
642 		 */
643 		index = start >> PAGE_SHIFT;
644 		last = end >> PAGE_SHIFT;
645 	}
646 	pagevec_init(&pvec, 0);
647  repeat:
648 	if (unlikely(index > last) ||
649 	    !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
650 				min_t(pgoff_t, last - index,
651 				      PAGEVEC_SIZE - 1) + 1))
652 		return ndirties;
653 
654 	for (i = 0; i < pagevec_count(&pvec); i++) {
655 		struct buffer_head *bh, *head;
656 		struct page *page = pvec.pages[i];
657 
658 		if (unlikely(page->index > last))
659 			break;
660 
661 		lock_page(page);
662 		if (!page_has_buffers(page))
663 			create_empty_buffers(page, 1 << inode->i_blkbits, 0);
664 		unlock_page(page);
665 
666 		bh = head = page_buffers(page);
667 		do {
668 			if (!buffer_dirty(bh))
669 				continue;
670 			get_bh(bh);
671 			list_add_tail(&bh->b_assoc_buffers, listp);
672 			ndirties++;
673 			if (unlikely(ndirties >= nlimit)) {
674 				pagevec_release(&pvec);
675 				cond_resched();
676 				return ndirties;
677 			}
678 		} while (bh = bh->b_this_page, bh != head);
679 	}
680 	pagevec_release(&pvec);
681 	cond_resched();
682 	goto repeat;
683 }
684 
685 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
686 					    struct list_head *listp)
687 {
688 	struct nilfs_inode_info *ii = NILFS_I(inode);
689 	struct address_space *mapping = &ii->i_btnode_cache;
690 	struct pagevec pvec;
691 	struct buffer_head *bh, *head;
692 	unsigned int i;
693 	pgoff_t index = 0;
694 
695 	pagevec_init(&pvec, 0);
696 
697 	while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
698 				  PAGEVEC_SIZE)) {
699 		for (i = 0; i < pagevec_count(&pvec); i++) {
700 			bh = head = page_buffers(pvec.pages[i]);
701 			do {
702 				if (buffer_dirty(bh)) {
703 					get_bh(bh);
704 					list_add_tail(&bh->b_assoc_buffers,
705 						      listp);
706 				}
707 				bh = bh->b_this_page;
708 			} while (bh != head);
709 		}
710 		pagevec_release(&pvec);
711 		cond_resched();
712 	}
713 }
714 
715 static void nilfs_dispose_list(struct the_nilfs *nilfs,
716 			       struct list_head *head, int force)
717 {
718 	struct nilfs_inode_info *ii, *n;
719 	struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
720 	unsigned nv = 0;
721 
722 	while (!list_empty(head)) {
723 		spin_lock(&nilfs->ns_inode_lock);
724 		list_for_each_entry_safe(ii, n, head, i_dirty) {
725 			list_del_init(&ii->i_dirty);
726 			if (force) {
727 				if (unlikely(ii->i_bh)) {
728 					brelse(ii->i_bh);
729 					ii->i_bh = NULL;
730 				}
731 			} else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
732 				set_bit(NILFS_I_QUEUED, &ii->i_state);
733 				list_add_tail(&ii->i_dirty,
734 					      &nilfs->ns_dirty_files);
735 				continue;
736 			}
737 			ivec[nv++] = ii;
738 			if (nv == SC_N_INODEVEC)
739 				break;
740 		}
741 		spin_unlock(&nilfs->ns_inode_lock);
742 
743 		for (pii = ivec; nv > 0; pii++, nv--)
744 			iput(&(*pii)->vfs_inode);
745 	}
746 }
747 
748 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
749 				     struct nilfs_root *root)
750 {
751 	int ret = 0;
752 
753 	if (nilfs_mdt_fetch_dirty(root->ifile))
754 		ret++;
755 	if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
756 		ret++;
757 	if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
758 		ret++;
759 	if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
760 		ret++;
761 	return ret;
762 }
763 
764 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
765 {
766 	return list_empty(&sci->sc_dirty_files) &&
767 		!test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
768 		sci->sc_nfreesegs == 0 &&
769 		(!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
770 }
771 
772 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
773 {
774 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
775 	int ret = 0;
776 
777 	if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
778 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
779 
780 	spin_lock(&nilfs->ns_inode_lock);
781 	if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
782 		ret++;
783 
784 	spin_unlock(&nilfs->ns_inode_lock);
785 	return ret;
786 }
787 
788 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
789 {
790 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
791 
792 	nilfs_mdt_clear_dirty(sci->sc_root->ifile);
793 	nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
794 	nilfs_mdt_clear_dirty(nilfs->ns_sufile);
795 	nilfs_mdt_clear_dirty(nilfs->ns_dat);
796 }
797 
798 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
799 {
800 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
801 	struct buffer_head *bh_cp;
802 	struct nilfs_checkpoint *raw_cp;
803 	int err;
804 
805 	/* XXX: this interface will be changed */
806 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
807 					  &raw_cp, &bh_cp);
808 	if (likely(!err)) {
809 		/* The following code is duplicated with cpfile.  But, it is
810 		   needed to collect the checkpoint even if it was not newly
811 		   created */
812 		mark_buffer_dirty(bh_cp);
813 		nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
814 		nilfs_cpfile_put_checkpoint(
815 			nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
816 	} else
817 		WARN_ON(err == -EINVAL || err == -ENOENT);
818 
819 	return err;
820 }
821 
822 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
823 {
824 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
825 	struct buffer_head *bh_cp;
826 	struct nilfs_checkpoint *raw_cp;
827 	int err;
828 
829 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
830 					  &raw_cp, &bh_cp);
831 	if (unlikely(err)) {
832 		WARN_ON(err == -EINVAL || err == -ENOENT);
833 		goto failed_ibh;
834 	}
835 	raw_cp->cp_snapshot_list.ssl_next = 0;
836 	raw_cp->cp_snapshot_list.ssl_prev = 0;
837 	raw_cp->cp_inodes_count =
838 		cpu_to_le64(atomic_read(&sci->sc_root->inodes_count));
839 	raw_cp->cp_blocks_count =
840 		cpu_to_le64(atomic_read(&sci->sc_root->blocks_count));
841 	raw_cp->cp_nblk_inc =
842 		cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
843 	raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
844 	raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
845 
846 	if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
847 		nilfs_checkpoint_clear_minor(raw_cp);
848 	else
849 		nilfs_checkpoint_set_minor(raw_cp);
850 
851 	nilfs_write_inode_common(sci->sc_root->ifile,
852 				 &raw_cp->cp_ifile_inode, 1);
853 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
854 	return 0;
855 
856  failed_ibh:
857 	return err;
858 }
859 
860 static void nilfs_fill_in_file_bmap(struct inode *ifile,
861 				    struct nilfs_inode_info *ii)
862 
863 {
864 	struct buffer_head *ibh;
865 	struct nilfs_inode *raw_inode;
866 
867 	if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
868 		ibh = ii->i_bh;
869 		BUG_ON(!ibh);
870 		raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
871 						  ibh);
872 		nilfs_bmap_write(ii->i_bmap, raw_inode);
873 		nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
874 	}
875 }
876 
877 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
878 {
879 	struct nilfs_inode_info *ii;
880 
881 	list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
882 		nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
883 		set_bit(NILFS_I_COLLECTED, &ii->i_state);
884 	}
885 }
886 
887 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
888 					     struct the_nilfs *nilfs)
889 {
890 	struct buffer_head *bh_sr;
891 	struct nilfs_super_root *raw_sr;
892 	unsigned isz, srsz;
893 
894 	bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
895 	raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
896 	isz = nilfs->ns_inode_size;
897 	srsz = NILFS_SR_BYTES(isz);
898 
899 	raw_sr->sr_bytes = cpu_to_le16(srsz);
900 	raw_sr->sr_nongc_ctime
901 		= cpu_to_le64(nilfs_doing_gc() ?
902 			      nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
903 	raw_sr->sr_flags = 0;
904 
905 	nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
906 				 NILFS_SR_DAT_OFFSET(isz), 1);
907 	nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
908 				 NILFS_SR_CPFILE_OFFSET(isz), 1);
909 	nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
910 				 NILFS_SR_SUFILE_OFFSET(isz), 1);
911 	memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
912 }
913 
914 static void nilfs_redirty_inodes(struct list_head *head)
915 {
916 	struct nilfs_inode_info *ii;
917 
918 	list_for_each_entry(ii, head, i_dirty) {
919 		if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
920 			clear_bit(NILFS_I_COLLECTED, &ii->i_state);
921 	}
922 }
923 
924 static void nilfs_drop_collected_inodes(struct list_head *head)
925 {
926 	struct nilfs_inode_info *ii;
927 
928 	list_for_each_entry(ii, head, i_dirty) {
929 		if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
930 			continue;
931 
932 		clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
933 		set_bit(NILFS_I_UPDATED, &ii->i_state);
934 	}
935 }
936 
937 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
938 				       struct inode *inode,
939 				       struct list_head *listp,
940 				       int (*collect)(struct nilfs_sc_info *,
941 						      struct buffer_head *,
942 						      struct inode *))
943 {
944 	struct buffer_head *bh, *n;
945 	int err = 0;
946 
947 	if (collect) {
948 		list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
949 			list_del_init(&bh->b_assoc_buffers);
950 			err = collect(sci, bh, inode);
951 			brelse(bh);
952 			if (unlikely(err))
953 				goto dispose_buffers;
954 		}
955 		return 0;
956 	}
957 
958  dispose_buffers:
959 	while (!list_empty(listp)) {
960 		bh = list_first_entry(listp, struct buffer_head,
961 				      b_assoc_buffers);
962 		list_del_init(&bh->b_assoc_buffers);
963 		brelse(bh);
964 	}
965 	return err;
966 }
967 
968 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
969 {
970 	/* Remaining number of blocks within segment buffer */
971 	return sci->sc_segbuf_nblocks -
972 		(sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
973 }
974 
975 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
976 				   struct inode *inode,
977 				   struct nilfs_sc_operations *sc_ops)
978 {
979 	LIST_HEAD(data_buffers);
980 	LIST_HEAD(node_buffers);
981 	int err;
982 
983 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
984 		size_t n, rest = nilfs_segctor_buffer_rest(sci);
985 
986 		n = nilfs_lookup_dirty_data_buffers(
987 			inode, &data_buffers, rest + 1, 0, LLONG_MAX);
988 		if (n > rest) {
989 			err = nilfs_segctor_apply_buffers(
990 				sci, inode, &data_buffers,
991 				sc_ops->collect_data);
992 			BUG_ON(!err); /* always receive -E2BIG or true error */
993 			goto break_or_fail;
994 		}
995 	}
996 	nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
997 
998 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
999 		err = nilfs_segctor_apply_buffers(
1000 			sci, inode, &data_buffers, sc_ops->collect_data);
1001 		if (unlikely(err)) {
1002 			/* dispose node list */
1003 			nilfs_segctor_apply_buffers(
1004 				sci, inode, &node_buffers, NULL);
1005 			goto break_or_fail;
1006 		}
1007 		sci->sc_stage.flags |= NILFS_CF_NODE;
1008 	}
1009 	/* Collect node */
1010 	err = nilfs_segctor_apply_buffers(
1011 		sci, inode, &node_buffers, sc_ops->collect_node);
1012 	if (unlikely(err))
1013 		goto break_or_fail;
1014 
1015 	nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1016 	err = nilfs_segctor_apply_buffers(
1017 		sci, inode, &node_buffers, sc_ops->collect_bmap);
1018 	if (unlikely(err))
1019 		goto break_or_fail;
1020 
1021 	nilfs_segctor_end_finfo(sci, inode);
1022 	sci->sc_stage.flags &= ~NILFS_CF_NODE;
1023 
1024  break_or_fail:
1025 	return err;
1026 }
1027 
1028 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1029 					 struct inode *inode)
1030 {
1031 	LIST_HEAD(data_buffers);
1032 	size_t n, rest = nilfs_segctor_buffer_rest(sci);
1033 	int err;
1034 
1035 	n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1036 					    sci->sc_dsync_start,
1037 					    sci->sc_dsync_end);
1038 
1039 	err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1040 					  nilfs_collect_file_data);
1041 	if (!err) {
1042 		nilfs_segctor_end_finfo(sci, inode);
1043 		BUG_ON(n > rest);
1044 		/* always receive -E2BIG or true error if n > rest */
1045 	}
1046 	return err;
1047 }
1048 
1049 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1050 {
1051 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1052 	struct list_head *head;
1053 	struct nilfs_inode_info *ii;
1054 	size_t ndone;
1055 	int err = 0;
1056 
1057 	switch (sci->sc_stage.scnt) {
1058 	case NILFS_ST_INIT:
1059 		/* Pre-processes */
1060 		sci->sc_stage.flags = 0;
1061 
1062 		if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1063 			sci->sc_nblk_inc = 0;
1064 			sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1065 			if (mode == SC_LSEG_DSYNC) {
1066 				sci->sc_stage.scnt = NILFS_ST_DSYNC;
1067 				goto dsync_mode;
1068 			}
1069 		}
1070 
1071 		sci->sc_stage.dirty_file_ptr = NULL;
1072 		sci->sc_stage.gc_inode_ptr = NULL;
1073 		if (mode == SC_FLUSH_DAT) {
1074 			sci->sc_stage.scnt = NILFS_ST_DAT;
1075 			goto dat_stage;
1076 		}
1077 		sci->sc_stage.scnt++;  /* Fall through */
1078 	case NILFS_ST_GC:
1079 		if (nilfs_doing_gc()) {
1080 			head = &sci->sc_gc_inodes;
1081 			ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1082 						head, i_dirty);
1083 			list_for_each_entry_continue(ii, head, i_dirty) {
1084 				err = nilfs_segctor_scan_file(
1085 					sci, &ii->vfs_inode,
1086 					&nilfs_sc_file_ops);
1087 				if (unlikely(err)) {
1088 					sci->sc_stage.gc_inode_ptr = list_entry(
1089 						ii->i_dirty.prev,
1090 						struct nilfs_inode_info,
1091 						i_dirty);
1092 					goto break_or_fail;
1093 				}
1094 				set_bit(NILFS_I_COLLECTED, &ii->i_state);
1095 			}
1096 			sci->sc_stage.gc_inode_ptr = NULL;
1097 		}
1098 		sci->sc_stage.scnt++;  /* Fall through */
1099 	case NILFS_ST_FILE:
1100 		head = &sci->sc_dirty_files;
1101 		ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1102 					i_dirty);
1103 		list_for_each_entry_continue(ii, head, i_dirty) {
1104 			clear_bit(NILFS_I_DIRTY, &ii->i_state);
1105 
1106 			err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1107 						      &nilfs_sc_file_ops);
1108 			if (unlikely(err)) {
1109 				sci->sc_stage.dirty_file_ptr =
1110 					list_entry(ii->i_dirty.prev,
1111 						   struct nilfs_inode_info,
1112 						   i_dirty);
1113 				goto break_or_fail;
1114 			}
1115 			/* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1116 			/* XXX: required ? */
1117 		}
1118 		sci->sc_stage.dirty_file_ptr = NULL;
1119 		if (mode == SC_FLUSH_FILE) {
1120 			sci->sc_stage.scnt = NILFS_ST_DONE;
1121 			return 0;
1122 		}
1123 		sci->sc_stage.scnt++;
1124 		sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1125 		/* Fall through */
1126 	case NILFS_ST_IFILE:
1127 		err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
1128 					      &nilfs_sc_file_ops);
1129 		if (unlikely(err))
1130 			break;
1131 		sci->sc_stage.scnt++;
1132 		/* Creating a checkpoint */
1133 		err = nilfs_segctor_create_checkpoint(sci);
1134 		if (unlikely(err))
1135 			break;
1136 		/* Fall through */
1137 	case NILFS_ST_CPFILE:
1138 		err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1139 					      &nilfs_sc_file_ops);
1140 		if (unlikely(err))
1141 			break;
1142 		sci->sc_stage.scnt++;  /* Fall through */
1143 	case NILFS_ST_SUFILE:
1144 		err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
1145 					 sci->sc_nfreesegs, &ndone);
1146 		if (unlikely(err)) {
1147 			nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1148 						  sci->sc_freesegs, ndone,
1149 						  NULL);
1150 			break;
1151 		}
1152 		sci->sc_stage.flags |= NILFS_CF_SUFREED;
1153 
1154 		err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1155 					      &nilfs_sc_file_ops);
1156 		if (unlikely(err))
1157 			break;
1158 		sci->sc_stage.scnt++;  /* Fall through */
1159 	case NILFS_ST_DAT:
1160  dat_stage:
1161 		err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
1162 					      &nilfs_sc_dat_ops);
1163 		if (unlikely(err))
1164 			break;
1165 		if (mode == SC_FLUSH_DAT) {
1166 			sci->sc_stage.scnt = NILFS_ST_DONE;
1167 			return 0;
1168 		}
1169 		sci->sc_stage.scnt++;  /* Fall through */
1170 	case NILFS_ST_SR:
1171 		if (mode == SC_LSEG_SR) {
1172 			/* Appending a super root */
1173 			err = nilfs_segctor_add_super_root(sci);
1174 			if (unlikely(err))
1175 				break;
1176 		}
1177 		/* End of a logical segment */
1178 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1179 		sci->sc_stage.scnt = NILFS_ST_DONE;
1180 		return 0;
1181 	case NILFS_ST_DSYNC:
1182  dsync_mode:
1183 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1184 		ii = sci->sc_dsync_inode;
1185 		if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1186 			break;
1187 
1188 		err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1189 		if (unlikely(err))
1190 			break;
1191 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1192 		sci->sc_stage.scnt = NILFS_ST_DONE;
1193 		return 0;
1194 	case NILFS_ST_DONE:
1195 		return 0;
1196 	default:
1197 		BUG();
1198 	}
1199 
1200  break_or_fail:
1201 	return err;
1202 }
1203 
1204 /**
1205  * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1206  * @sci: nilfs_sc_info
1207  * @nilfs: nilfs object
1208  */
1209 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1210 					    struct the_nilfs *nilfs)
1211 {
1212 	struct nilfs_segment_buffer *segbuf, *prev;
1213 	__u64 nextnum;
1214 	int err, alloc = 0;
1215 
1216 	segbuf = nilfs_segbuf_new(sci->sc_super);
1217 	if (unlikely(!segbuf))
1218 		return -ENOMEM;
1219 
1220 	if (list_empty(&sci->sc_write_logs)) {
1221 		nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
1222 				 nilfs->ns_pseg_offset, nilfs);
1223 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1224 			nilfs_shift_to_next_segment(nilfs);
1225 			nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1226 		}
1227 
1228 		segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1229 		nextnum = nilfs->ns_nextnum;
1230 
1231 		if (nilfs->ns_segnum == nilfs->ns_nextnum)
1232 			/* Start from the head of a new full segment */
1233 			alloc++;
1234 	} else {
1235 		/* Continue logs */
1236 		prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1237 		nilfs_segbuf_map_cont(segbuf, prev);
1238 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
1239 		nextnum = prev->sb_nextnum;
1240 
1241 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1242 			nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1243 			segbuf->sb_sum.seg_seq++;
1244 			alloc++;
1245 		}
1246 	}
1247 
1248 	err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
1249 	if (err)
1250 		goto failed;
1251 
1252 	if (alloc) {
1253 		err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1254 		if (err)
1255 			goto failed;
1256 	}
1257 	nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1258 
1259 	BUG_ON(!list_empty(&sci->sc_segbufs));
1260 	list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
1261 	sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1262 	return 0;
1263 
1264  failed:
1265 	nilfs_segbuf_free(segbuf);
1266 	return err;
1267 }
1268 
1269 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1270 					 struct the_nilfs *nilfs, int nadd)
1271 {
1272 	struct nilfs_segment_buffer *segbuf, *prev;
1273 	struct inode *sufile = nilfs->ns_sufile;
1274 	__u64 nextnextnum;
1275 	LIST_HEAD(list);
1276 	int err, ret, i;
1277 
1278 	prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1279 	/*
1280 	 * Since the segment specified with nextnum might be allocated during
1281 	 * the previous construction, the buffer including its segusage may
1282 	 * not be dirty.  The following call ensures that the buffer is dirty
1283 	 * and will pin the buffer on memory until the sufile is written.
1284 	 */
1285 	err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
1286 	if (unlikely(err))
1287 		return err;
1288 
1289 	for (i = 0; i < nadd; i++) {
1290 		/* extend segment info */
1291 		err = -ENOMEM;
1292 		segbuf = nilfs_segbuf_new(sci->sc_super);
1293 		if (unlikely(!segbuf))
1294 			goto failed;
1295 
1296 		/* map this buffer to region of segment on-disk */
1297 		nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1298 		sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1299 
1300 		/* allocate the next next full segment */
1301 		err = nilfs_sufile_alloc(sufile, &nextnextnum);
1302 		if (unlikely(err))
1303 			goto failed_segbuf;
1304 
1305 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1306 		nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1307 
1308 		list_add_tail(&segbuf->sb_list, &list);
1309 		prev = segbuf;
1310 	}
1311 	list_splice_tail(&list, &sci->sc_segbufs);
1312 	return 0;
1313 
1314  failed_segbuf:
1315 	nilfs_segbuf_free(segbuf);
1316  failed:
1317 	list_for_each_entry(segbuf, &list, sb_list) {
1318 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1319 		WARN_ON(ret); /* never fails */
1320 	}
1321 	nilfs_destroy_logs(&list);
1322 	return err;
1323 }
1324 
1325 static void nilfs_free_incomplete_logs(struct list_head *logs,
1326 				       struct the_nilfs *nilfs)
1327 {
1328 	struct nilfs_segment_buffer *segbuf, *prev;
1329 	struct inode *sufile = nilfs->ns_sufile;
1330 	int ret;
1331 
1332 	segbuf = NILFS_FIRST_SEGBUF(logs);
1333 	if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1334 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1335 		WARN_ON(ret); /* never fails */
1336 	}
1337 	if (atomic_read(&segbuf->sb_err)) {
1338 		/* Case 1: The first segment failed */
1339 		if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1340 			/* Case 1a:  Partial segment appended into an existing
1341 			   segment */
1342 			nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1343 						segbuf->sb_fseg_end);
1344 		else /* Case 1b:  New full segment */
1345 			set_nilfs_discontinued(nilfs);
1346 	}
1347 
1348 	prev = segbuf;
1349 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1350 		if (prev->sb_nextnum != segbuf->sb_nextnum) {
1351 			ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1352 			WARN_ON(ret); /* never fails */
1353 		}
1354 		if (atomic_read(&segbuf->sb_err) &&
1355 		    segbuf->sb_segnum != nilfs->ns_nextnum)
1356 			/* Case 2: extended segment (!= next) failed */
1357 			nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
1358 		prev = segbuf;
1359 	}
1360 }
1361 
1362 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1363 					  struct inode *sufile)
1364 {
1365 	struct nilfs_segment_buffer *segbuf;
1366 	unsigned long live_blocks;
1367 	int ret;
1368 
1369 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1370 		live_blocks = segbuf->sb_sum.nblocks +
1371 			(segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1372 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1373 						     live_blocks,
1374 						     sci->sc_seg_ctime);
1375 		WARN_ON(ret); /* always succeed because the segusage is dirty */
1376 	}
1377 }
1378 
1379 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
1380 {
1381 	struct nilfs_segment_buffer *segbuf;
1382 	int ret;
1383 
1384 	segbuf = NILFS_FIRST_SEGBUF(logs);
1385 	ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1386 					     segbuf->sb_pseg_start -
1387 					     segbuf->sb_fseg_start, 0);
1388 	WARN_ON(ret); /* always succeed because the segusage is dirty */
1389 
1390 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1391 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1392 						     0, 0);
1393 		WARN_ON(ret); /* always succeed */
1394 	}
1395 }
1396 
1397 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1398 					    struct nilfs_segment_buffer *last,
1399 					    struct inode *sufile)
1400 {
1401 	struct nilfs_segment_buffer *segbuf = last;
1402 	int ret;
1403 
1404 	list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1405 		sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1406 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1407 		WARN_ON(ret);
1408 	}
1409 	nilfs_truncate_logs(&sci->sc_segbufs, last);
1410 }
1411 
1412 
1413 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1414 				 struct the_nilfs *nilfs, int mode)
1415 {
1416 	struct nilfs_cstage prev_stage = sci->sc_stage;
1417 	int err, nadd = 1;
1418 
1419 	/* Collection retry loop */
1420 	for (;;) {
1421 		sci->sc_nblk_this_inc = 0;
1422 		sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1423 
1424 		err = nilfs_segctor_reset_segment_buffer(sci);
1425 		if (unlikely(err))
1426 			goto failed;
1427 
1428 		err = nilfs_segctor_collect_blocks(sci, mode);
1429 		sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1430 		if (!err)
1431 			break;
1432 
1433 		if (unlikely(err != -E2BIG))
1434 			goto failed;
1435 
1436 		/* The current segment is filled up */
1437 		if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
1438 			break;
1439 
1440 		nilfs_clear_logs(&sci->sc_segbufs);
1441 
1442 		err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1443 		if (unlikely(err))
1444 			return err;
1445 
1446 		if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1447 			err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1448 							sci->sc_freesegs,
1449 							sci->sc_nfreesegs,
1450 							NULL);
1451 			WARN_ON(err); /* do not happen */
1452 		}
1453 		nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1454 		sci->sc_stage = prev_stage;
1455 	}
1456 	nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1457 	return 0;
1458 
1459  failed:
1460 	return err;
1461 }
1462 
1463 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1464 				      struct buffer_head *new_bh)
1465 {
1466 	BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1467 
1468 	list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1469 	/* The caller must release old_bh */
1470 }
1471 
1472 static int
1473 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1474 				     struct nilfs_segment_buffer *segbuf,
1475 				     int mode)
1476 {
1477 	struct inode *inode = NULL;
1478 	sector_t blocknr;
1479 	unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1480 	unsigned long nblocks = 0, ndatablk = 0;
1481 	struct nilfs_sc_operations *sc_op = NULL;
1482 	struct nilfs_segsum_pointer ssp;
1483 	struct nilfs_finfo *finfo = NULL;
1484 	union nilfs_binfo binfo;
1485 	struct buffer_head *bh, *bh_org;
1486 	ino_t ino = 0;
1487 	int err = 0;
1488 
1489 	if (!nfinfo)
1490 		goto out;
1491 
1492 	blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1493 	ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1494 	ssp.offset = sizeof(struct nilfs_segment_summary);
1495 
1496 	list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1497 		if (bh == segbuf->sb_super_root)
1498 			break;
1499 		if (!finfo) {
1500 			finfo =	nilfs_segctor_map_segsum_entry(
1501 				sci, &ssp, sizeof(*finfo));
1502 			ino = le64_to_cpu(finfo->fi_ino);
1503 			nblocks = le32_to_cpu(finfo->fi_nblocks);
1504 			ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1505 
1506 			inode = bh->b_page->mapping->host;
1507 
1508 			if (mode == SC_LSEG_DSYNC)
1509 				sc_op = &nilfs_sc_dsync_ops;
1510 			else if (ino == NILFS_DAT_INO)
1511 				sc_op = &nilfs_sc_dat_ops;
1512 			else /* file blocks */
1513 				sc_op = &nilfs_sc_file_ops;
1514 		}
1515 		bh_org = bh;
1516 		get_bh(bh_org);
1517 		err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1518 					&binfo);
1519 		if (bh != bh_org)
1520 			nilfs_list_replace_buffer(bh_org, bh);
1521 		brelse(bh_org);
1522 		if (unlikely(err))
1523 			goto failed_bmap;
1524 
1525 		if (ndatablk > 0)
1526 			sc_op->write_data_binfo(sci, &ssp, &binfo);
1527 		else
1528 			sc_op->write_node_binfo(sci, &ssp, &binfo);
1529 
1530 		blocknr++;
1531 		if (--nblocks == 0) {
1532 			finfo = NULL;
1533 			if (--nfinfo == 0)
1534 				break;
1535 		} else if (ndatablk > 0)
1536 			ndatablk--;
1537 	}
1538  out:
1539 	return 0;
1540 
1541  failed_bmap:
1542 	return err;
1543 }
1544 
1545 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1546 {
1547 	struct nilfs_segment_buffer *segbuf;
1548 	int err;
1549 
1550 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1551 		err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1552 		if (unlikely(err))
1553 			return err;
1554 		nilfs_segbuf_fill_in_segsum(segbuf);
1555 	}
1556 	return 0;
1557 }
1558 
1559 static void nilfs_begin_page_io(struct page *page)
1560 {
1561 	if (!page || PageWriteback(page))
1562 		/* For split b-tree node pages, this function may be called
1563 		   twice.  We ignore the 2nd or later calls by this check. */
1564 		return;
1565 
1566 	lock_page(page);
1567 	clear_page_dirty_for_io(page);
1568 	set_page_writeback(page);
1569 	unlock_page(page);
1570 }
1571 
1572 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci)
1573 {
1574 	struct nilfs_segment_buffer *segbuf;
1575 	struct page *bd_page = NULL, *fs_page = NULL;
1576 
1577 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1578 		struct buffer_head *bh;
1579 
1580 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1581 				    b_assoc_buffers) {
1582 			if (bh->b_page != bd_page) {
1583 				if (bd_page) {
1584 					lock_page(bd_page);
1585 					clear_page_dirty_for_io(bd_page);
1586 					set_page_writeback(bd_page);
1587 					unlock_page(bd_page);
1588 				}
1589 				bd_page = bh->b_page;
1590 			}
1591 		}
1592 
1593 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1594 				    b_assoc_buffers) {
1595 			if (bh == segbuf->sb_super_root) {
1596 				if (bh->b_page != bd_page) {
1597 					lock_page(bd_page);
1598 					clear_page_dirty_for_io(bd_page);
1599 					set_page_writeback(bd_page);
1600 					unlock_page(bd_page);
1601 					bd_page = bh->b_page;
1602 				}
1603 				break;
1604 			}
1605 			if (bh->b_page != fs_page) {
1606 				nilfs_begin_page_io(fs_page);
1607 				fs_page = bh->b_page;
1608 			}
1609 		}
1610 	}
1611 	if (bd_page) {
1612 		lock_page(bd_page);
1613 		clear_page_dirty_for_io(bd_page);
1614 		set_page_writeback(bd_page);
1615 		unlock_page(bd_page);
1616 	}
1617 	nilfs_begin_page_io(fs_page);
1618 }
1619 
1620 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1621 			       struct the_nilfs *nilfs)
1622 {
1623 	int ret;
1624 
1625 	ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
1626 	list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
1627 	return ret;
1628 }
1629 
1630 static void nilfs_end_page_io(struct page *page, int err)
1631 {
1632 	if (!page)
1633 		return;
1634 
1635 	if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
1636 		/*
1637 		 * For b-tree node pages, this function may be called twice
1638 		 * or more because they might be split in a segment.
1639 		 */
1640 		if (PageDirty(page)) {
1641 			/*
1642 			 * For pages holding split b-tree node buffers, dirty
1643 			 * flag on the buffers may be cleared discretely.
1644 			 * In that case, the page is once redirtied for
1645 			 * remaining buffers, and it must be cancelled if
1646 			 * all the buffers get cleaned later.
1647 			 */
1648 			lock_page(page);
1649 			if (nilfs_page_buffers_clean(page))
1650 				__nilfs_clear_page_dirty(page);
1651 			unlock_page(page);
1652 		}
1653 		return;
1654 	}
1655 
1656 	if (!err) {
1657 		if (!nilfs_page_buffers_clean(page))
1658 			__set_page_dirty_nobuffers(page);
1659 		ClearPageError(page);
1660 	} else {
1661 		__set_page_dirty_nobuffers(page);
1662 		SetPageError(page);
1663 	}
1664 
1665 	end_page_writeback(page);
1666 }
1667 
1668 static void nilfs_abort_logs(struct list_head *logs, int err)
1669 {
1670 	struct nilfs_segment_buffer *segbuf;
1671 	struct page *bd_page = NULL, *fs_page = NULL;
1672 	struct buffer_head *bh;
1673 
1674 	if (list_empty(logs))
1675 		return;
1676 
1677 	list_for_each_entry(segbuf, logs, sb_list) {
1678 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1679 				    b_assoc_buffers) {
1680 			if (bh->b_page != bd_page) {
1681 				if (bd_page)
1682 					end_page_writeback(bd_page);
1683 				bd_page = bh->b_page;
1684 			}
1685 		}
1686 
1687 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1688 				    b_assoc_buffers) {
1689 			if (bh == segbuf->sb_super_root) {
1690 				if (bh->b_page != bd_page) {
1691 					end_page_writeback(bd_page);
1692 					bd_page = bh->b_page;
1693 				}
1694 				break;
1695 			}
1696 			if (bh->b_page != fs_page) {
1697 				nilfs_end_page_io(fs_page, err);
1698 				fs_page = bh->b_page;
1699 			}
1700 		}
1701 	}
1702 	if (bd_page)
1703 		end_page_writeback(bd_page);
1704 
1705 	nilfs_end_page_io(fs_page, err);
1706 }
1707 
1708 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
1709 					     struct the_nilfs *nilfs, int err)
1710 {
1711 	LIST_HEAD(logs);
1712 	int ret;
1713 
1714 	list_splice_tail_init(&sci->sc_write_logs, &logs);
1715 	ret = nilfs_wait_on_logs(&logs);
1716 	nilfs_abort_logs(&logs, ret ? : err);
1717 
1718 	list_splice_tail_init(&sci->sc_segbufs, &logs);
1719 	nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
1720 	nilfs_free_incomplete_logs(&logs, nilfs);
1721 
1722 	if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1723 		ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1724 						sci->sc_freesegs,
1725 						sci->sc_nfreesegs,
1726 						NULL);
1727 		WARN_ON(ret); /* do not happen */
1728 	}
1729 
1730 	nilfs_destroy_logs(&logs);
1731 }
1732 
1733 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1734 				   struct nilfs_segment_buffer *segbuf)
1735 {
1736 	nilfs->ns_segnum = segbuf->sb_segnum;
1737 	nilfs->ns_nextnum = segbuf->sb_nextnum;
1738 	nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1739 		+ segbuf->sb_sum.nblocks;
1740 	nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1741 	nilfs->ns_ctime = segbuf->sb_sum.ctime;
1742 }
1743 
1744 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1745 {
1746 	struct nilfs_segment_buffer *segbuf;
1747 	struct page *bd_page = NULL, *fs_page = NULL;
1748 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1749 	int update_sr = false;
1750 
1751 	list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
1752 		struct buffer_head *bh;
1753 
1754 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1755 				    b_assoc_buffers) {
1756 			set_buffer_uptodate(bh);
1757 			clear_buffer_dirty(bh);
1758 			if (bh->b_page != bd_page) {
1759 				if (bd_page)
1760 					end_page_writeback(bd_page);
1761 				bd_page = bh->b_page;
1762 			}
1763 		}
1764 		/*
1765 		 * We assume that the buffers which belong to the same page
1766 		 * continue over the buffer list.
1767 		 * Under this assumption, the last BHs of pages is
1768 		 * identifiable by the discontinuity of bh->b_page
1769 		 * (page != fs_page).
1770 		 *
1771 		 * For B-tree node blocks, however, this assumption is not
1772 		 * guaranteed.  The cleanup code of B-tree node pages needs
1773 		 * special care.
1774 		 */
1775 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1776 				    b_assoc_buffers) {
1777 			set_buffer_uptodate(bh);
1778 			clear_buffer_dirty(bh);
1779 			clear_buffer_delay(bh);
1780 			clear_buffer_nilfs_volatile(bh);
1781 			clear_buffer_nilfs_redirected(bh);
1782 			if (bh == segbuf->sb_super_root) {
1783 				if (bh->b_page != bd_page) {
1784 					end_page_writeback(bd_page);
1785 					bd_page = bh->b_page;
1786 				}
1787 				update_sr = true;
1788 				break;
1789 			}
1790 			if (bh->b_page != fs_page) {
1791 				nilfs_end_page_io(fs_page, 0);
1792 				fs_page = bh->b_page;
1793 			}
1794 		}
1795 
1796 		if (!nilfs_segbuf_simplex(segbuf)) {
1797 			if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
1798 				set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1799 				sci->sc_lseg_stime = jiffies;
1800 			}
1801 			if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
1802 				clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1803 		}
1804 	}
1805 	/*
1806 	 * Since pages may continue over multiple segment buffers,
1807 	 * end of the last page must be checked outside of the loop.
1808 	 */
1809 	if (bd_page)
1810 		end_page_writeback(bd_page);
1811 
1812 	nilfs_end_page_io(fs_page, 0);
1813 
1814 	nilfs_drop_collected_inodes(&sci->sc_dirty_files);
1815 
1816 	if (nilfs_doing_gc())
1817 		nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
1818 	else
1819 		nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
1820 
1821 	sci->sc_nblk_inc += sci->sc_nblk_this_inc;
1822 
1823 	segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1824 	nilfs_set_next_segment(nilfs, segbuf);
1825 
1826 	if (update_sr) {
1827 		nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
1828 				       segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
1829 
1830 		clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
1831 		clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
1832 		set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1833 		nilfs_segctor_clear_metadata_dirty(sci);
1834 	} else
1835 		clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1836 }
1837 
1838 static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
1839 {
1840 	int ret;
1841 
1842 	ret = nilfs_wait_on_logs(&sci->sc_write_logs);
1843 	if (!ret) {
1844 		nilfs_segctor_complete_write(sci);
1845 		nilfs_destroy_logs(&sci->sc_write_logs);
1846 	}
1847 	return ret;
1848 }
1849 
1850 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
1851 					     struct the_nilfs *nilfs)
1852 {
1853 	struct nilfs_inode_info *ii, *n;
1854 	struct inode *ifile = sci->sc_root->ifile;
1855 
1856 	spin_lock(&nilfs->ns_inode_lock);
1857  retry:
1858 	list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
1859 		if (!ii->i_bh) {
1860 			struct buffer_head *ibh;
1861 			int err;
1862 
1863 			spin_unlock(&nilfs->ns_inode_lock);
1864 			err = nilfs_ifile_get_inode_block(
1865 				ifile, ii->vfs_inode.i_ino, &ibh);
1866 			if (unlikely(err)) {
1867 				nilfs_warning(sci->sc_super, __func__,
1868 					      "failed to get inode block.\n");
1869 				return err;
1870 			}
1871 			mark_buffer_dirty(ibh);
1872 			nilfs_mdt_mark_dirty(ifile);
1873 			spin_lock(&nilfs->ns_inode_lock);
1874 			if (likely(!ii->i_bh))
1875 				ii->i_bh = ibh;
1876 			else
1877 				brelse(ibh);
1878 			goto retry;
1879 		}
1880 
1881 		clear_bit(NILFS_I_QUEUED, &ii->i_state);
1882 		set_bit(NILFS_I_BUSY, &ii->i_state);
1883 		list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
1884 	}
1885 	spin_unlock(&nilfs->ns_inode_lock);
1886 
1887 	return 0;
1888 }
1889 
1890 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
1891 					     struct the_nilfs *nilfs)
1892 {
1893 	struct nilfs_transaction_info *ti = current->journal_info;
1894 	struct nilfs_inode_info *ii, *n;
1895 
1896 	spin_lock(&nilfs->ns_inode_lock);
1897 	list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
1898 		if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
1899 		    test_bit(NILFS_I_DIRTY, &ii->i_state))
1900 			continue;
1901 
1902 		clear_bit(NILFS_I_BUSY, &ii->i_state);
1903 		brelse(ii->i_bh);
1904 		ii->i_bh = NULL;
1905 		list_move_tail(&ii->i_dirty, &ti->ti_garbage);
1906 	}
1907 	spin_unlock(&nilfs->ns_inode_lock);
1908 }
1909 
1910 /*
1911  * Main procedure of segment constructor
1912  */
1913 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
1914 {
1915 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1916 	int err;
1917 
1918 	sci->sc_stage.scnt = NILFS_ST_INIT;
1919 	sci->sc_cno = nilfs->ns_cno;
1920 
1921 	err = nilfs_segctor_collect_dirty_files(sci, nilfs);
1922 	if (unlikely(err))
1923 		goto out;
1924 
1925 	if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
1926 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
1927 
1928 	if (nilfs_segctor_clean(sci))
1929 		goto out;
1930 
1931 	do {
1932 		sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
1933 
1934 		err = nilfs_segctor_begin_construction(sci, nilfs);
1935 		if (unlikely(err))
1936 			goto out;
1937 
1938 		/* Update time stamp */
1939 		sci->sc_seg_ctime = get_seconds();
1940 
1941 		err = nilfs_segctor_collect(sci, nilfs, mode);
1942 		if (unlikely(err))
1943 			goto failed;
1944 
1945 		/* Avoid empty segment */
1946 		if (sci->sc_stage.scnt == NILFS_ST_DONE &&
1947 		    nilfs_segbuf_empty(sci->sc_curseg)) {
1948 			nilfs_segctor_abort_construction(sci, nilfs, 1);
1949 			goto out;
1950 		}
1951 
1952 		err = nilfs_segctor_assign(sci, mode);
1953 		if (unlikely(err))
1954 			goto failed;
1955 
1956 		if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
1957 			nilfs_segctor_fill_in_file_bmap(sci);
1958 
1959 		if (mode == SC_LSEG_SR &&
1960 		    sci->sc_stage.scnt >= NILFS_ST_CPFILE) {
1961 			err = nilfs_segctor_fill_in_checkpoint(sci);
1962 			if (unlikely(err))
1963 				goto failed_to_write;
1964 
1965 			nilfs_segctor_fill_in_super_root(sci, nilfs);
1966 		}
1967 		nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
1968 
1969 		/* Write partial segments */
1970 		nilfs_segctor_prepare_write(sci);
1971 
1972 		nilfs_add_checksums_on_logs(&sci->sc_segbufs,
1973 					    nilfs->ns_crc_seed);
1974 
1975 		err = nilfs_segctor_write(sci, nilfs);
1976 		if (unlikely(err))
1977 			goto failed_to_write;
1978 
1979 		if (sci->sc_stage.scnt == NILFS_ST_DONE ||
1980 		    nilfs->ns_blocksize_bits != PAGE_CACHE_SHIFT) {
1981 			/*
1982 			 * At this point, we avoid double buffering
1983 			 * for blocksize < pagesize because page dirty
1984 			 * flag is turned off during write and dirty
1985 			 * buffers are not properly collected for
1986 			 * pages crossing over segments.
1987 			 */
1988 			err = nilfs_segctor_wait(sci);
1989 			if (err)
1990 				goto failed_to_write;
1991 		}
1992 	} while (sci->sc_stage.scnt != NILFS_ST_DONE);
1993 
1994  out:
1995 	nilfs_segctor_drop_written_files(sci, nilfs);
1996 	return err;
1997 
1998  failed_to_write:
1999 	if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2000 		nilfs_redirty_inodes(&sci->sc_dirty_files);
2001 
2002  failed:
2003 	if (nilfs_doing_gc())
2004 		nilfs_redirty_inodes(&sci->sc_gc_inodes);
2005 	nilfs_segctor_abort_construction(sci, nilfs, err);
2006 	goto out;
2007 }
2008 
2009 /**
2010  * nilfs_segctor_start_timer - set timer of background write
2011  * @sci: nilfs_sc_info
2012  *
2013  * If the timer has already been set, it ignores the new request.
2014  * This function MUST be called within a section locking the segment
2015  * semaphore.
2016  */
2017 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2018 {
2019 	spin_lock(&sci->sc_state_lock);
2020 	if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2021 		sci->sc_timer.expires = jiffies + sci->sc_interval;
2022 		add_timer(&sci->sc_timer);
2023 		sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2024 	}
2025 	spin_unlock(&sci->sc_state_lock);
2026 }
2027 
2028 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2029 {
2030 	spin_lock(&sci->sc_state_lock);
2031 	if (!(sci->sc_flush_request & (1 << bn))) {
2032 		unsigned long prev_req = sci->sc_flush_request;
2033 
2034 		sci->sc_flush_request |= (1 << bn);
2035 		if (!prev_req)
2036 			wake_up(&sci->sc_wait_daemon);
2037 	}
2038 	spin_unlock(&sci->sc_state_lock);
2039 }
2040 
2041 /**
2042  * nilfs_flush_segment - trigger a segment construction for resource control
2043  * @sb: super block
2044  * @ino: inode number of the file to be flushed out.
2045  */
2046 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2047 {
2048 	struct the_nilfs *nilfs = sb->s_fs_info;
2049 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2050 
2051 	if (!sci || nilfs_doing_construction())
2052 		return;
2053 	nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2054 					/* assign bit 0 to data files */
2055 }
2056 
2057 struct nilfs_segctor_wait_request {
2058 	wait_queue_t	wq;
2059 	__u32		seq;
2060 	int		err;
2061 	atomic_t	done;
2062 };
2063 
2064 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2065 {
2066 	struct nilfs_segctor_wait_request wait_req;
2067 	int err = 0;
2068 
2069 	spin_lock(&sci->sc_state_lock);
2070 	init_wait(&wait_req.wq);
2071 	wait_req.err = 0;
2072 	atomic_set(&wait_req.done, 0);
2073 	wait_req.seq = ++sci->sc_seq_request;
2074 	spin_unlock(&sci->sc_state_lock);
2075 
2076 	init_waitqueue_entry(&wait_req.wq, current);
2077 	add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2078 	set_current_state(TASK_INTERRUPTIBLE);
2079 	wake_up(&sci->sc_wait_daemon);
2080 
2081 	for (;;) {
2082 		if (atomic_read(&wait_req.done)) {
2083 			err = wait_req.err;
2084 			break;
2085 		}
2086 		if (!signal_pending(current)) {
2087 			schedule();
2088 			continue;
2089 		}
2090 		err = -ERESTARTSYS;
2091 		break;
2092 	}
2093 	finish_wait(&sci->sc_wait_request, &wait_req.wq);
2094 	return err;
2095 }
2096 
2097 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
2098 {
2099 	struct nilfs_segctor_wait_request *wrq, *n;
2100 	unsigned long flags;
2101 
2102 	spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2103 	list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
2104 				 wq.task_list) {
2105 		if (!atomic_read(&wrq->done) &&
2106 		    nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
2107 			wrq->err = err;
2108 			atomic_set(&wrq->done, 1);
2109 		}
2110 		if (atomic_read(&wrq->done)) {
2111 			wrq->wq.func(&wrq->wq,
2112 				     TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2113 				     0, NULL);
2114 		}
2115 	}
2116 	spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2117 }
2118 
2119 /**
2120  * nilfs_construct_segment - construct a logical segment
2121  * @sb: super block
2122  *
2123  * Return Value: On success, 0 is retured. On errors, one of the following
2124  * negative error code is returned.
2125  *
2126  * %-EROFS - Read only filesystem.
2127  *
2128  * %-EIO - I/O error
2129  *
2130  * %-ENOSPC - No space left on device (only in a panic state).
2131  *
2132  * %-ERESTARTSYS - Interrupted.
2133  *
2134  * %-ENOMEM - Insufficient memory available.
2135  */
2136 int nilfs_construct_segment(struct super_block *sb)
2137 {
2138 	struct the_nilfs *nilfs = sb->s_fs_info;
2139 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2140 	struct nilfs_transaction_info *ti;
2141 	int err;
2142 
2143 	if (!sci)
2144 		return -EROFS;
2145 
2146 	/* A call inside transactions causes a deadlock. */
2147 	BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2148 
2149 	err = nilfs_segctor_sync(sci);
2150 	return err;
2151 }
2152 
2153 /**
2154  * nilfs_construct_dsync_segment - construct a data-only logical segment
2155  * @sb: super block
2156  * @inode: inode whose data blocks should be written out
2157  * @start: start byte offset
2158  * @end: end byte offset (inclusive)
2159  *
2160  * Return Value: On success, 0 is retured. On errors, one of the following
2161  * negative error code is returned.
2162  *
2163  * %-EROFS - Read only filesystem.
2164  *
2165  * %-EIO - I/O error
2166  *
2167  * %-ENOSPC - No space left on device (only in a panic state).
2168  *
2169  * %-ERESTARTSYS - Interrupted.
2170  *
2171  * %-ENOMEM - Insufficient memory available.
2172  */
2173 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2174 				  loff_t start, loff_t end)
2175 {
2176 	struct the_nilfs *nilfs = sb->s_fs_info;
2177 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2178 	struct nilfs_inode_info *ii;
2179 	struct nilfs_transaction_info ti;
2180 	int err = 0;
2181 
2182 	if (!sci)
2183 		return -EROFS;
2184 
2185 	nilfs_transaction_lock(sb, &ti, 0);
2186 
2187 	ii = NILFS_I(inode);
2188 	if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
2189 	    nilfs_test_opt(nilfs, STRICT_ORDER) ||
2190 	    test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2191 	    nilfs_discontinued(nilfs)) {
2192 		nilfs_transaction_unlock(sb);
2193 		err = nilfs_segctor_sync(sci);
2194 		return err;
2195 	}
2196 
2197 	spin_lock(&nilfs->ns_inode_lock);
2198 	if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2199 	    !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2200 		spin_unlock(&nilfs->ns_inode_lock);
2201 		nilfs_transaction_unlock(sb);
2202 		return 0;
2203 	}
2204 	spin_unlock(&nilfs->ns_inode_lock);
2205 	sci->sc_dsync_inode = ii;
2206 	sci->sc_dsync_start = start;
2207 	sci->sc_dsync_end = end;
2208 
2209 	err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2210 
2211 	nilfs_transaction_unlock(sb);
2212 	return err;
2213 }
2214 
2215 #define FLUSH_FILE_BIT	(0x1) /* data file only */
2216 #define FLUSH_DAT_BIT	(1 << NILFS_DAT_INO) /* DAT only */
2217 
2218 /**
2219  * nilfs_segctor_accept - record accepted sequence count of log-write requests
2220  * @sci: segment constructor object
2221  */
2222 static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
2223 {
2224 	spin_lock(&sci->sc_state_lock);
2225 	sci->sc_seq_accepted = sci->sc_seq_request;
2226 	spin_unlock(&sci->sc_state_lock);
2227 	del_timer_sync(&sci->sc_timer);
2228 }
2229 
2230 /**
2231  * nilfs_segctor_notify - notify the result of request to caller threads
2232  * @sci: segment constructor object
2233  * @mode: mode of log forming
2234  * @err: error code to be notified
2235  */
2236 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
2237 {
2238 	/* Clear requests (even when the construction failed) */
2239 	spin_lock(&sci->sc_state_lock);
2240 
2241 	if (mode == SC_LSEG_SR) {
2242 		sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2243 		sci->sc_seq_done = sci->sc_seq_accepted;
2244 		nilfs_segctor_wakeup(sci, err);
2245 		sci->sc_flush_request = 0;
2246 	} else {
2247 		if (mode == SC_FLUSH_FILE)
2248 			sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2249 		else if (mode == SC_FLUSH_DAT)
2250 			sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2251 
2252 		/* re-enable timer if checkpoint creation was not done */
2253 		if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2254 		    time_before(jiffies, sci->sc_timer.expires))
2255 			add_timer(&sci->sc_timer);
2256 	}
2257 	spin_unlock(&sci->sc_state_lock);
2258 }
2259 
2260 /**
2261  * nilfs_segctor_construct - form logs and write them to disk
2262  * @sci: segment constructor object
2263  * @mode: mode of log forming
2264  */
2265 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
2266 {
2267 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2268 	struct nilfs_super_block **sbp;
2269 	int err = 0;
2270 
2271 	nilfs_segctor_accept(sci);
2272 
2273 	if (nilfs_discontinued(nilfs))
2274 		mode = SC_LSEG_SR;
2275 	if (!nilfs_segctor_confirm(sci))
2276 		err = nilfs_segctor_do_construct(sci, mode);
2277 
2278 	if (likely(!err)) {
2279 		if (mode != SC_FLUSH_DAT)
2280 			atomic_set(&nilfs->ns_ndirtyblks, 0);
2281 		if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2282 		    nilfs_discontinued(nilfs)) {
2283 			down_write(&nilfs->ns_sem);
2284 			err = -EIO;
2285 			sbp = nilfs_prepare_super(sci->sc_super,
2286 						  nilfs_sb_will_flip(nilfs));
2287 			if (likely(sbp)) {
2288 				nilfs_set_log_cursor(sbp[0], nilfs);
2289 				err = nilfs_commit_super(sci->sc_super,
2290 							 NILFS_SB_COMMIT);
2291 			}
2292 			up_write(&nilfs->ns_sem);
2293 		}
2294 	}
2295 
2296 	nilfs_segctor_notify(sci, mode, err);
2297 	return err;
2298 }
2299 
2300 static void nilfs_construction_timeout(unsigned long data)
2301 {
2302 	struct task_struct *p = (struct task_struct *)data;
2303 	wake_up_process(p);
2304 }
2305 
2306 static void
2307 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2308 {
2309 	struct nilfs_inode_info *ii, *n;
2310 
2311 	list_for_each_entry_safe(ii, n, head, i_dirty) {
2312 		if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2313 			continue;
2314 		list_del_init(&ii->i_dirty);
2315 		truncate_inode_pages(&ii->vfs_inode.i_data, 0);
2316 		nilfs_btnode_cache_clear(&ii->i_btnode_cache);
2317 		iput(&ii->vfs_inode);
2318 	}
2319 }
2320 
2321 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2322 			 void **kbufs)
2323 {
2324 	struct the_nilfs *nilfs = sb->s_fs_info;
2325 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2326 	struct nilfs_transaction_info ti;
2327 	int err;
2328 
2329 	if (unlikely(!sci))
2330 		return -EROFS;
2331 
2332 	nilfs_transaction_lock(sb, &ti, 1);
2333 
2334 	err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
2335 	if (unlikely(err))
2336 		goto out_unlock;
2337 
2338 	err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2339 	if (unlikely(err)) {
2340 		nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
2341 		goto out_unlock;
2342 	}
2343 
2344 	sci->sc_freesegs = kbufs[4];
2345 	sci->sc_nfreesegs = argv[4].v_nmembs;
2346 	list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
2347 
2348 	for (;;) {
2349 		err = nilfs_segctor_construct(sci, SC_LSEG_SR);
2350 		nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2351 
2352 		if (likely(!err))
2353 			break;
2354 
2355 		nilfs_warning(sb, __func__,
2356 			      "segment construction failed. (err=%d)", err);
2357 		set_current_state(TASK_INTERRUPTIBLE);
2358 		schedule_timeout(sci->sc_interval);
2359 	}
2360 	if (nilfs_test_opt(nilfs, DISCARD)) {
2361 		int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
2362 						 sci->sc_nfreesegs);
2363 		if (ret) {
2364 			printk(KERN_WARNING
2365 			       "NILFS warning: error %d on discard request, "
2366 			       "turning discards off for the device\n", ret);
2367 			nilfs_clear_opt(nilfs, DISCARD);
2368 		}
2369 	}
2370 
2371  out_unlock:
2372 	sci->sc_freesegs = NULL;
2373 	sci->sc_nfreesegs = 0;
2374 	nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
2375 	nilfs_transaction_unlock(sb);
2376 	return err;
2377 }
2378 
2379 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2380 {
2381 	struct nilfs_transaction_info ti;
2382 
2383 	nilfs_transaction_lock(sci->sc_super, &ti, 0);
2384 	nilfs_segctor_construct(sci, mode);
2385 
2386 	/*
2387 	 * Unclosed segment should be retried.  We do this using sc_timer.
2388 	 * Timeout of sc_timer will invoke complete construction which leads
2389 	 * to close the current logical segment.
2390 	 */
2391 	if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2392 		nilfs_segctor_start_timer(sci);
2393 
2394 	nilfs_transaction_unlock(sci->sc_super);
2395 }
2396 
2397 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2398 {
2399 	int mode = 0;
2400 	int err;
2401 
2402 	spin_lock(&sci->sc_state_lock);
2403 	mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2404 		SC_FLUSH_DAT : SC_FLUSH_FILE;
2405 	spin_unlock(&sci->sc_state_lock);
2406 
2407 	if (mode) {
2408 		err = nilfs_segctor_do_construct(sci, mode);
2409 
2410 		spin_lock(&sci->sc_state_lock);
2411 		sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2412 			~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2413 		spin_unlock(&sci->sc_state_lock);
2414 	}
2415 	clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2416 }
2417 
2418 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2419 {
2420 	if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2421 	    time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2422 		if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2423 			return SC_FLUSH_FILE;
2424 		else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2425 			return SC_FLUSH_DAT;
2426 	}
2427 	return SC_LSEG_SR;
2428 }
2429 
2430 /**
2431  * nilfs_segctor_thread - main loop of the segment constructor thread.
2432  * @arg: pointer to a struct nilfs_sc_info.
2433  *
2434  * nilfs_segctor_thread() initializes a timer and serves as a daemon
2435  * to execute segment constructions.
2436  */
2437 static int nilfs_segctor_thread(void *arg)
2438 {
2439 	struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2440 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2441 	int timeout = 0;
2442 
2443 	sci->sc_timer.data = (unsigned long)current;
2444 	sci->sc_timer.function = nilfs_construction_timeout;
2445 
2446 	/* start sync. */
2447 	sci->sc_task = current;
2448 	wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
2449 	printk(KERN_INFO
2450 	       "segctord starting. Construction interval = %lu seconds, "
2451 	       "CP frequency < %lu seconds\n",
2452 	       sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2453 
2454 	spin_lock(&sci->sc_state_lock);
2455  loop:
2456 	for (;;) {
2457 		int mode;
2458 
2459 		if (sci->sc_state & NILFS_SEGCTOR_QUIT)
2460 			goto end_thread;
2461 
2462 		if (timeout || sci->sc_seq_request != sci->sc_seq_done)
2463 			mode = SC_LSEG_SR;
2464 		else if (!sci->sc_flush_request)
2465 			break;
2466 		else
2467 			mode = nilfs_segctor_flush_mode(sci);
2468 
2469 		spin_unlock(&sci->sc_state_lock);
2470 		nilfs_segctor_thread_construct(sci, mode);
2471 		spin_lock(&sci->sc_state_lock);
2472 		timeout = 0;
2473 	}
2474 
2475 
2476 	if (freezing(current)) {
2477 		spin_unlock(&sci->sc_state_lock);
2478 		try_to_freeze();
2479 		spin_lock(&sci->sc_state_lock);
2480 	} else {
2481 		DEFINE_WAIT(wait);
2482 		int should_sleep = 1;
2483 
2484 		prepare_to_wait(&sci->sc_wait_daemon, &wait,
2485 				TASK_INTERRUPTIBLE);
2486 
2487 		if (sci->sc_seq_request != sci->sc_seq_done)
2488 			should_sleep = 0;
2489 		else if (sci->sc_flush_request)
2490 			should_sleep = 0;
2491 		else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
2492 			should_sleep = time_before(jiffies,
2493 					sci->sc_timer.expires);
2494 
2495 		if (should_sleep) {
2496 			spin_unlock(&sci->sc_state_lock);
2497 			schedule();
2498 			spin_lock(&sci->sc_state_lock);
2499 		}
2500 		finish_wait(&sci->sc_wait_daemon, &wait);
2501 		timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2502 			   time_after_eq(jiffies, sci->sc_timer.expires));
2503 
2504 		if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
2505 			set_nilfs_discontinued(nilfs);
2506 	}
2507 	goto loop;
2508 
2509  end_thread:
2510 	spin_unlock(&sci->sc_state_lock);
2511 
2512 	/* end sync. */
2513 	sci->sc_task = NULL;
2514 	wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
2515 	return 0;
2516 }
2517 
2518 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
2519 {
2520 	struct task_struct *t;
2521 
2522 	t = kthread_run(nilfs_segctor_thread, sci, "segctord");
2523 	if (IS_ERR(t)) {
2524 		int err = PTR_ERR(t);
2525 
2526 		printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
2527 		       err);
2528 		return err;
2529 	}
2530 	wait_event(sci->sc_wait_task, sci->sc_task != NULL);
2531 	return 0;
2532 }
2533 
2534 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
2535 	__acquires(&sci->sc_state_lock)
2536 	__releases(&sci->sc_state_lock)
2537 {
2538 	sci->sc_state |= NILFS_SEGCTOR_QUIT;
2539 
2540 	while (sci->sc_task) {
2541 		wake_up(&sci->sc_wait_daemon);
2542 		spin_unlock(&sci->sc_state_lock);
2543 		wait_event(sci->sc_wait_task, sci->sc_task == NULL);
2544 		spin_lock(&sci->sc_state_lock);
2545 	}
2546 }
2547 
2548 /*
2549  * Setup & clean-up functions
2550  */
2551 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
2552 					       struct nilfs_root *root)
2553 {
2554 	struct the_nilfs *nilfs = sb->s_fs_info;
2555 	struct nilfs_sc_info *sci;
2556 
2557 	sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2558 	if (!sci)
2559 		return NULL;
2560 
2561 	sci->sc_super = sb;
2562 
2563 	nilfs_get_root(root);
2564 	sci->sc_root = root;
2565 
2566 	init_waitqueue_head(&sci->sc_wait_request);
2567 	init_waitqueue_head(&sci->sc_wait_daemon);
2568 	init_waitqueue_head(&sci->sc_wait_task);
2569 	spin_lock_init(&sci->sc_state_lock);
2570 	INIT_LIST_HEAD(&sci->sc_dirty_files);
2571 	INIT_LIST_HEAD(&sci->sc_segbufs);
2572 	INIT_LIST_HEAD(&sci->sc_write_logs);
2573 	INIT_LIST_HEAD(&sci->sc_gc_inodes);
2574 	init_timer(&sci->sc_timer);
2575 
2576 	sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2577 	sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2578 	sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2579 
2580 	if (nilfs->ns_interval)
2581 		sci->sc_interval = HZ * nilfs->ns_interval;
2582 	if (nilfs->ns_watermark)
2583 		sci->sc_watermark = nilfs->ns_watermark;
2584 	return sci;
2585 }
2586 
2587 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2588 {
2589 	int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2590 
2591 	/* The segctord thread was stopped and its timer was removed.
2592 	   But some tasks remain. */
2593 	do {
2594 		struct nilfs_transaction_info ti;
2595 
2596 		nilfs_transaction_lock(sci->sc_super, &ti, 0);
2597 		ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
2598 		nilfs_transaction_unlock(sci->sc_super);
2599 
2600 	} while (ret && retrycount-- > 0);
2601 }
2602 
2603 /**
2604  * nilfs_segctor_destroy - destroy the segment constructor.
2605  * @sci: nilfs_sc_info
2606  *
2607  * nilfs_segctor_destroy() kills the segctord thread and frees
2608  * the nilfs_sc_info struct.
2609  * Caller must hold the segment semaphore.
2610  */
2611 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2612 {
2613 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2614 	int flag;
2615 
2616 	up_write(&nilfs->ns_segctor_sem);
2617 
2618 	spin_lock(&sci->sc_state_lock);
2619 	nilfs_segctor_kill_thread(sci);
2620 	flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2621 		|| sci->sc_seq_request != sci->sc_seq_done);
2622 	spin_unlock(&sci->sc_state_lock);
2623 
2624 	if (flag || !nilfs_segctor_confirm(sci))
2625 		nilfs_segctor_write_out(sci);
2626 
2627 	if (!list_empty(&sci->sc_dirty_files)) {
2628 		nilfs_warning(sci->sc_super, __func__,
2629 			      "dirty file(s) after the final construction\n");
2630 		nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
2631 	}
2632 
2633 	WARN_ON(!list_empty(&sci->sc_segbufs));
2634 	WARN_ON(!list_empty(&sci->sc_write_logs));
2635 
2636 	nilfs_put_root(sci->sc_root);
2637 
2638 	down_write(&nilfs->ns_segctor_sem);
2639 
2640 	del_timer_sync(&sci->sc_timer);
2641 	kfree(sci);
2642 }
2643 
2644 /**
2645  * nilfs_attach_log_writer - attach log writer
2646  * @sb: super block instance
2647  * @root: root object of the current filesystem tree
2648  *
2649  * This allocates a log writer object, initializes it, and starts the
2650  * log writer.
2651  *
2652  * Return Value: On success, 0 is returned. On error, one of the following
2653  * negative error code is returned.
2654  *
2655  * %-ENOMEM - Insufficient memory available.
2656  */
2657 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
2658 {
2659 	struct the_nilfs *nilfs = sb->s_fs_info;
2660 	int err;
2661 
2662 	if (nilfs->ns_writer) {
2663 		/*
2664 		 * This happens if the filesystem was remounted
2665 		 * read/write after nilfs_error degenerated it into a
2666 		 * read-only mount.
2667 		 */
2668 		nilfs_detach_log_writer(sb);
2669 	}
2670 
2671 	nilfs->ns_writer = nilfs_segctor_new(sb, root);
2672 	if (!nilfs->ns_writer)
2673 		return -ENOMEM;
2674 
2675 	err = nilfs_segctor_start_thread(nilfs->ns_writer);
2676 	if (err) {
2677 		kfree(nilfs->ns_writer);
2678 		nilfs->ns_writer = NULL;
2679 	}
2680 	return err;
2681 }
2682 
2683 /**
2684  * nilfs_detach_log_writer - destroy log writer
2685  * @sb: super block instance
2686  *
2687  * This kills log writer daemon, frees the log writer object, and
2688  * destroys list of dirty files.
2689  */
2690 void nilfs_detach_log_writer(struct super_block *sb)
2691 {
2692 	struct the_nilfs *nilfs = sb->s_fs_info;
2693 	LIST_HEAD(garbage_list);
2694 
2695 	down_write(&nilfs->ns_segctor_sem);
2696 	if (nilfs->ns_writer) {
2697 		nilfs_segctor_destroy(nilfs->ns_writer);
2698 		nilfs->ns_writer = NULL;
2699 	}
2700 
2701 	/* Force to free the list of dirty files */
2702 	spin_lock(&nilfs->ns_inode_lock);
2703 	if (!list_empty(&nilfs->ns_dirty_files)) {
2704 		list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
2705 		nilfs_warning(sb, __func__,
2706 			      "Hit dirty file after stopped log writer\n");
2707 	}
2708 	spin_unlock(&nilfs->ns_inode_lock);
2709 	up_write(&nilfs->ns_segctor_sem);
2710 
2711 	nilfs_dispose_list(nilfs, &garbage_list, 1);
2712 }
2713