xref: /openbmc/linux/fs/nilfs2/segment.c (revision 94cdda6b)
1 /*
2  * segment.c - NILFS segment constructor.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  *
22  */
23 
24 #include <linux/pagemap.h>
25 #include <linux/buffer_head.h>
26 #include <linux/writeback.h>
27 #include <linux/bitops.h>
28 #include <linux/bio.h>
29 #include <linux/completion.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/freezer.h>
33 #include <linux/kthread.h>
34 #include <linux/crc32.h>
35 #include <linux/pagevec.h>
36 #include <linux/slab.h>
37 #include "nilfs.h"
38 #include "btnode.h"
39 #include "page.h"
40 #include "segment.h"
41 #include "sufile.h"
42 #include "cpfile.h"
43 #include "ifile.h"
44 #include "segbuf.h"
45 
46 
47 /*
48  * Segment constructor
49  */
50 #define SC_N_INODEVEC	16   /* Size of locally allocated inode vector */
51 
52 #define SC_MAX_SEGDELTA 64   /* Upper limit of the number of segments
53 				appended in collection retry loop */
54 
55 /* Construction mode */
56 enum {
57 	SC_LSEG_SR = 1,	/* Make a logical segment having a super root */
58 	SC_LSEG_DSYNC,	/* Flush data blocks of a given file and make
59 			   a logical segment without a super root */
60 	SC_FLUSH_FILE,	/* Flush data files, leads to segment writes without
61 			   creating a checkpoint */
62 	SC_FLUSH_DAT,	/* Flush DAT file. This also creates segments without
63 			   a checkpoint */
64 };
65 
66 /* Stage numbers of dirty block collection */
67 enum {
68 	NILFS_ST_INIT = 0,
69 	NILFS_ST_GC,		/* Collecting dirty blocks for GC */
70 	NILFS_ST_FILE,
71 	NILFS_ST_IFILE,
72 	NILFS_ST_CPFILE,
73 	NILFS_ST_SUFILE,
74 	NILFS_ST_DAT,
75 	NILFS_ST_SR,		/* Super root */
76 	NILFS_ST_DSYNC,		/* Data sync blocks */
77 	NILFS_ST_DONE,
78 };
79 
80 /* State flags of collection */
81 #define NILFS_CF_NODE		0x0001	/* Collecting node blocks */
82 #define NILFS_CF_IFILE_STARTED	0x0002	/* IFILE stage has started */
83 #define NILFS_CF_SUFREED	0x0004	/* segment usages has been freed */
84 #define NILFS_CF_HISTORY_MASK	(NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
85 
86 /* Operations depending on the construction mode and file type */
87 struct nilfs_sc_operations {
88 	int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
89 			    struct inode *);
90 	int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
91 			    struct inode *);
92 	int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
93 			    struct inode *);
94 	void (*write_data_binfo)(struct nilfs_sc_info *,
95 				 struct nilfs_segsum_pointer *,
96 				 union nilfs_binfo *);
97 	void (*write_node_binfo)(struct nilfs_sc_info *,
98 				 struct nilfs_segsum_pointer *,
99 				 union nilfs_binfo *);
100 };
101 
102 /*
103  * Other definitions
104  */
105 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
106 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
107 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
108 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
109 
110 #define nilfs_cnt32_gt(a, b)   \
111 	(typecheck(__u32, a) && typecheck(__u32, b) && \
112 	 ((__s32)(b) - (__s32)(a) < 0))
113 #define nilfs_cnt32_ge(a, b)   \
114 	(typecheck(__u32, a) && typecheck(__u32, b) && \
115 	 ((__s32)(a) - (__s32)(b) >= 0))
116 #define nilfs_cnt32_lt(a, b)  nilfs_cnt32_gt(b, a)
117 #define nilfs_cnt32_le(a, b)  nilfs_cnt32_ge(b, a)
118 
119 static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
120 {
121 	struct nilfs_transaction_info *cur_ti = current->journal_info;
122 	void *save = NULL;
123 
124 	if (cur_ti) {
125 		if (cur_ti->ti_magic == NILFS_TI_MAGIC)
126 			return ++cur_ti->ti_count;
127 		else {
128 			/*
129 			 * If journal_info field is occupied by other FS,
130 			 * it is saved and will be restored on
131 			 * nilfs_transaction_commit().
132 			 */
133 			printk(KERN_WARNING
134 			       "NILFS warning: journal info from a different "
135 			       "FS\n");
136 			save = current->journal_info;
137 		}
138 	}
139 	if (!ti) {
140 		ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
141 		if (!ti)
142 			return -ENOMEM;
143 		ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
144 	} else {
145 		ti->ti_flags = 0;
146 	}
147 	ti->ti_count = 0;
148 	ti->ti_save = save;
149 	ti->ti_magic = NILFS_TI_MAGIC;
150 	current->journal_info = ti;
151 	return 0;
152 }
153 
154 /**
155  * nilfs_transaction_begin - start indivisible file operations.
156  * @sb: super block
157  * @ti: nilfs_transaction_info
158  * @vacancy_check: flags for vacancy rate checks
159  *
160  * nilfs_transaction_begin() acquires a reader/writer semaphore, called
161  * the segment semaphore, to make a segment construction and write tasks
162  * exclusive.  The function is used with nilfs_transaction_commit() in pairs.
163  * The region enclosed by these two functions can be nested.  To avoid a
164  * deadlock, the semaphore is only acquired or released in the outermost call.
165  *
166  * This function allocates a nilfs_transaction_info struct to keep context
167  * information on it.  It is initialized and hooked onto the current task in
168  * the outermost call.  If a pre-allocated struct is given to @ti, it is used
169  * instead; otherwise a new struct is assigned from a slab.
170  *
171  * When @vacancy_check flag is set, this function will check the amount of
172  * free space, and will wait for the GC to reclaim disk space if low capacity.
173  *
174  * Return Value: On success, 0 is returned. On error, one of the following
175  * negative error code is returned.
176  *
177  * %-ENOMEM - Insufficient memory available.
178  *
179  * %-ENOSPC - No space left on device
180  */
181 int nilfs_transaction_begin(struct super_block *sb,
182 			    struct nilfs_transaction_info *ti,
183 			    int vacancy_check)
184 {
185 	struct the_nilfs *nilfs;
186 	int ret = nilfs_prepare_segment_lock(ti);
187 
188 	if (unlikely(ret < 0))
189 		return ret;
190 	if (ret > 0)
191 		return 0;
192 
193 	sb_start_intwrite(sb);
194 
195 	nilfs = sb->s_fs_info;
196 	down_read(&nilfs->ns_segctor_sem);
197 	if (vacancy_check && nilfs_near_disk_full(nilfs)) {
198 		up_read(&nilfs->ns_segctor_sem);
199 		ret = -ENOSPC;
200 		goto failed;
201 	}
202 	return 0;
203 
204  failed:
205 	ti = current->journal_info;
206 	current->journal_info = ti->ti_save;
207 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
208 		kmem_cache_free(nilfs_transaction_cachep, ti);
209 	sb_end_intwrite(sb);
210 	return ret;
211 }
212 
213 /**
214  * nilfs_transaction_commit - commit indivisible file operations.
215  * @sb: super block
216  *
217  * nilfs_transaction_commit() releases the read semaphore which is
218  * acquired by nilfs_transaction_begin(). This is only performed
219  * in outermost call of this function.  If a commit flag is set,
220  * nilfs_transaction_commit() sets a timer to start the segment
221  * constructor.  If a sync flag is set, it starts construction
222  * directly.
223  */
224 int nilfs_transaction_commit(struct super_block *sb)
225 {
226 	struct nilfs_transaction_info *ti = current->journal_info;
227 	struct the_nilfs *nilfs = sb->s_fs_info;
228 	int err = 0;
229 
230 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
231 	ti->ti_flags |= NILFS_TI_COMMIT;
232 	if (ti->ti_count > 0) {
233 		ti->ti_count--;
234 		return 0;
235 	}
236 	if (nilfs->ns_writer) {
237 		struct nilfs_sc_info *sci = nilfs->ns_writer;
238 
239 		if (ti->ti_flags & NILFS_TI_COMMIT)
240 			nilfs_segctor_start_timer(sci);
241 		if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
242 			nilfs_segctor_do_flush(sci, 0);
243 	}
244 	up_read(&nilfs->ns_segctor_sem);
245 	current->journal_info = ti->ti_save;
246 
247 	if (ti->ti_flags & NILFS_TI_SYNC)
248 		err = nilfs_construct_segment(sb);
249 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
250 		kmem_cache_free(nilfs_transaction_cachep, ti);
251 	sb_end_intwrite(sb);
252 	return err;
253 }
254 
255 void nilfs_transaction_abort(struct super_block *sb)
256 {
257 	struct nilfs_transaction_info *ti = current->journal_info;
258 	struct the_nilfs *nilfs = sb->s_fs_info;
259 
260 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
261 	if (ti->ti_count > 0) {
262 		ti->ti_count--;
263 		return;
264 	}
265 	up_read(&nilfs->ns_segctor_sem);
266 
267 	current->journal_info = ti->ti_save;
268 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
269 		kmem_cache_free(nilfs_transaction_cachep, ti);
270 	sb_end_intwrite(sb);
271 }
272 
273 void nilfs_relax_pressure_in_lock(struct super_block *sb)
274 {
275 	struct the_nilfs *nilfs = sb->s_fs_info;
276 	struct nilfs_sc_info *sci = nilfs->ns_writer;
277 
278 	if (!sci || !sci->sc_flush_request)
279 		return;
280 
281 	set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
282 	up_read(&nilfs->ns_segctor_sem);
283 
284 	down_write(&nilfs->ns_segctor_sem);
285 	if (sci->sc_flush_request &&
286 	    test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
287 		struct nilfs_transaction_info *ti = current->journal_info;
288 
289 		ti->ti_flags |= NILFS_TI_WRITER;
290 		nilfs_segctor_do_immediate_flush(sci);
291 		ti->ti_flags &= ~NILFS_TI_WRITER;
292 	}
293 	downgrade_write(&nilfs->ns_segctor_sem);
294 }
295 
296 static void nilfs_transaction_lock(struct super_block *sb,
297 				   struct nilfs_transaction_info *ti,
298 				   int gcflag)
299 {
300 	struct nilfs_transaction_info *cur_ti = current->journal_info;
301 	struct the_nilfs *nilfs = sb->s_fs_info;
302 	struct nilfs_sc_info *sci = nilfs->ns_writer;
303 
304 	WARN_ON(cur_ti);
305 	ti->ti_flags = NILFS_TI_WRITER;
306 	ti->ti_count = 0;
307 	ti->ti_save = cur_ti;
308 	ti->ti_magic = NILFS_TI_MAGIC;
309 	current->journal_info = ti;
310 
311 	for (;;) {
312 		down_write(&nilfs->ns_segctor_sem);
313 		if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
314 			break;
315 
316 		nilfs_segctor_do_immediate_flush(sci);
317 
318 		up_write(&nilfs->ns_segctor_sem);
319 		yield();
320 	}
321 	if (gcflag)
322 		ti->ti_flags |= NILFS_TI_GC;
323 }
324 
325 static void nilfs_transaction_unlock(struct super_block *sb)
326 {
327 	struct nilfs_transaction_info *ti = current->journal_info;
328 	struct the_nilfs *nilfs = sb->s_fs_info;
329 
330 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
331 	BUG_ON(ti->ti_count > 0);
332 
333 	up_write(&nilfs->ns_segctor_sem);
334 	current->journal_info = ti->ti_save;
335 }
336 
337 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
338 					    struct nilfs_segsum_pointer *ssp,
339 					    unsigned bytes)
340 {
341 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
342 	unsigned blocksize = sci->sc_super->s_blocksize;
343 	void *p;
344 
345 	if (unlikely(ssp->offset + bytes > blocksize)) {
346 		ssp->offset = 0;
347 		BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
348 					       &segbuf->sb_segsum_buffers));
349 		ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
350 	}
351 	p = ssp->bh->b_data + ssp->offset;
352 	ssp->offset += bytes;
353 	return p;
354 }
355 
356 /**
357  * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
358  * @sci: nilfs_sc_info
359  */
360 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
361 {
362 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
363 	struct buffer_head *sumbh;
364 	unsigned sumbytes;
365 	unsigned flags = 0;
366 	int err;
367 
368 	if (nilfs_doing_gc())
369 		flags = NILFS_SS_GC;
370 	err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
371 	if (unlikely(err))
372 		return err;
373 
374 	sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
375 	sumbytes = segbuf->sb_sum.sumbytes;
376 	sci->sc_finfo_ptr.bh = sumbh;  sci->sc_finfo_ptr.offset = sumbytes;
377 	sci->sc_binfo_ptr.bh = sumbh;  sci->sc_binfo_ptr.offset = sumbytes;
378 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
379 	return 0;
380 }
381 
382 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
383 {
384 	sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
385 	if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
386 		return -E2BIG; /* The current segment is filled up
387 				  (internal code) */
388 	sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
389 	return nilfs_segctor_reset_segment_buffer(sci);
390 }
391 
392 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
393 {
394 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
395 	int err;
396 
397 	if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
398 		err = nilfs_segctor_feed_segment(sci);
399 		if (err)
400 			return err;
401 		segbuf = sci->sc_curseg;
402 	}
403 	err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
404 	if (likely(!err))
405 		segbuf->sb_sum.flags |= NILFS_SS_SR;
406 	return err;
407 }
408 
409 /*
410  * Functions for making segment summary and payloads
411  */
412 static int nilfs_segctor_segsum_block_required(
413 	struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
414 	unsigned binfo_size)
415 {
416 	unsigned blocksize = sci->sc_super->s_blocksize;
417 	/* Size of finfo and binfo is enough small against blocksize */
418 
419 	return ssp->offset + binfo_size +
420 		(!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
421 		blocksize;
422 }
423 
424 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
425 				      struct inode *inode)
426 {
427 	sci->sc_curseg->sb_sum.nfinfo++;
428 	sci->sc_binfo_ptr = sci->sc_finfo_ptr;
429 	nilfs_segctor_map_segsum_entry(
430 		sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
431 
432 	if (NILFS_I(inode)->i_root &&
433 	    !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
434 		set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
435 	/* skip finfo */
436 }
437 
438 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
439 				    struct inode *inode)
440 {
441 	struct nilfs_finfo *finfo;
442 	struct nilfs_inode_info *ii;
443 	struct nilfs_segment_buffer *segbuf;
444 	__u64 cno;
445 
446 	if (sci->sc_blk_cnt == 0)
447 		return;
448 
449 	ii = NILFS_I(inode);
450 
451 	if (test_bit(NILFS_I_GCINODE, &ii->i_state))
452 		cno = ii->i_cno;
453 	else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
454 		cno = 0;
455 	else
456 		cno = sci->sc_cno;
457 
458 	finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
459 						 sizeof(*finfo));
460 	finfo->fi_ino = cpu_to_le64(inode->i_ino);
461 	finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
462 	finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
463 	finfo->fi_cno = cpu_to_le64(cno);
464 
465 	segbuf = sci->sc_curseg;
466 	segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
467 		sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
468 	sci->sc_finfo_ptr = sci->sc_binfo_ptr;
469 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
470 }
471 
472 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
473 					struct buffer_head *bh,
474 					struct inode *inode,
475 					unsigned binfo_size)
476 {
477 	struct nilfs_segment_buffer *segbuf;
478 	int required, err = 0;
479 
480  retry:
481 	segbuf = sci->sc_curseg;
482 	required = nilfs_segctor_segsum_block_required(
483 		sci, &sci->sc_binfo_ptr, binfo_size);
484 	if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
485 		nilfs_segctor_end_finfo(sci, inode);
486 		err = nilfs_segctor_feed_segment(sci);
487 		if (err)
488 			return err;
489 		goto retry;
490 	}
491 	if (unlikely(required)) {
492 		err = nilfs_segbuf_extend_segsum(segbuf);
493 		if (unlikely(err))
494 			goto failed;
495 	}
496 	if (sci->sc_blk_cnt == 0)
497 		nilfs_segctor_begin_finfo(sci, inode);
498 
499 	nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
500 	/* Substitution to vblocknr is delayed until update_blocknr() */
501 	nilfs_segbuf_add_file_buffer(segbuf, bh);
502 	sci->sc_blk_cnt++;
503  failed:
504 	return err;
505 }
506 
507 /*
508  * Callback functions that enumerate, mark, and collect dirty blocks
509  */
510 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
511 				   struct buffer_head *bh, struct inode *inode)
512 {
513 	int err;
514 
515 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
516 	if (err < 0)
517 		return err;
518 
519 	err = nilfs_segctor_add_file_block(sci, bh, inode,
520 					   sizeof(struct nilfs_binfo_v));
521 	if (!err)
522 		sci->sc_datablk_cnt++;
523 	return err;
524 }
525 
526 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
527 				   struct buffer_head *bh,
528 				   struct inode *inode)
529 {
530 	return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
531 }
532 
533 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
534 				   struct buffer_head *bh,
535 				   struct inode *inode)
536 {
537 	WARN_ON(!buffer_dirty(bh));
538 	return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
539 }
540 
541 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
542 					struct nilfs_segsum_pointer *ssp,
543 					union nilfs_binfo *binfo)
544 {
545 	struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
546 		sci, ssp, sizeof(*binfo_v));
547 	*binfo_v = binfo->bi_v;
548 }
549 
550 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
551 					struct nilfs_segsum_pointer *ssp,
552 					union nilfs_binfo *binfo)
553 {
554 	__le64 *vblocknr = nilfs_segctor_map_segsum_entry(
555 		sci, ssp, sizeof(*vblocknr));
556 	*vblocknr = binfo->bi_v.bi_vblocknr;
557 }
558 
559 static struct nilfs_sc_operations nilfs_sc_file_ops = {
560 	.collect_data = nilfs_collect_file_data,
561 	.collect_node = nilfs_collect_file_node,
562 	.collect_bmap = nilfs_collect_file_bmap,
563 	.write_data_binfo = nilfs_write_file_data_binfo,
564 	.write_node_binfo = nilfs_write_file_node_binfo,
565 };
566 
567 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
568 				  struct buffer_head *bh, struct inode *inode)
569 {
570 	int err;
571 
572 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
573 	if (err < 0)
574 		return err;
575 
576 	err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
577 	if (!err)
578 		sci->sc_datablk_cnt++;
579 	return err;
580 }
581 
582 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
583 				  struct buffer_head *bh, struct inode *inode)
584 {
585 	WARN_ON(!buffer_dirty(bh));
586 	return nilfs_segctor_add_file_block(sci, bh, inode,
587 					    sizeof(struct nilfs_binfo_dat));
588 }
589 
590 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
591 				       struct nilfs_segsum_pointer *ssp,
592 				       union nilfs_binfo *binfo)
593 {
594 	__le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
595 							  sizeof(*blkoff));
596 	*blkoff = binfo->bi_dat.bi_blkoff;
597 }
598 
599 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
600 				       struct nilfs_segsum_pointer *ssp,
601 				       union nilfs_binfo *binfo)
602 {
603 	struct nilfs_binfo_dat *binfo_dat =
604 		nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
605 	*binfo_dat = binfo->bi_dat;
606 }
607 
608 static struct nilfs_sc_operations nilfs_sc_dat_ops = {
609 	.collect_data = nilfs_collect_dat_data,
610 	.collect_node = nilfs_collect_file_node,
611 	.collect_bmap = nilfs_collect_dat_bmap,
612 	.write_data_binfo = nilfs_write_dat_data_binfo,
613 	.write_node_binfo = nilfs_write_dat_node_binfo,
614 };
615 
616 static struct nilfs_sc_operations nilfs_sc_dsync_ops = {
617 	.collect_data = nilfs_collect_file_data,
618 	.collect_node = NULL,
619 	.collect_bmap = NULL,
620 	.write_data_binfo = nilfs_write_file_data_binfo,
621 	.write_node_binfo = NULL,
622 };
623 
624 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
625 					      struct list_head *listp,
626 					      size_t nlimit,
627 					      loff_t start, loff_t end)
628 {
629 	struct address_space *mapping = inode->i_mapping;
630 	struct pagevec pvec;
631 	pgoff_t index = 0, last = ULONG_MAX;
632 	size_t ndirties = 0;
633 	int i;
634 
635 	if (unlikely(start != 0 || end != LLONG_MAX)) {
636 		/*
637 		 * A valid range is given for sync-ing data pages. The
638 		 * range is rounded to per-page; extra dirty buffers
639 		 * may be included if blocksize < pagesize.
640 		 */
641 		index = start >> PAGE_SHIFT;
642 		last = end >> PAGE_SHIFT;
643 	}
644 	pagevec_init(&pvec, 0);
645  repeat:
646 	if (unlikely(index > last) ||
647 	    !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
648 				min_t(pgoff_t, last - index,
649 				      PAGEVEC_SIZE - 1) + 1))
650 		return ndirties;
651 
652 	for (i = 0; i < pagevec_count(&pvec); i++) {
653 		struct buffer_head *bh, *head;
654 		struct page *page = pvec.pages[i];
655 
656 		if (unlikely(page->index > last))
657 			break;
658 
659 		lock_page(page);
660 		if (!page_has_buffers(page))
661 			create_empty_buffers(page, 1 << inode->i_blkbits, 0);
662 		unlock_page(page);
663 
664 		bh = head = page_buffers(page);
665 		do {
666 			if (!buffer_dirty(bh) || buffer_async_write(bh))
667 				continue;
668 			get_bh(bh);
669 			list_add_tail(&bh->b_assoc_buffers, listp);
670 			ndirties++;
671 			if (unlikely(ndirties >= nlimit)) {
672 				pagevec_release(&pvec);
673 				cond_resched();
674 				return ndirties;
675 			}
676 		} while (bh = bh->b_this_page, bh != head);
677 	}
678 	pagevec_release(&pvec);
679 	cond_resched();
680 	goto repeat;
681 }
682 
683 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
684 					    struct list_head *listp)
685 {
686 	struct nilfs_inode_info *ii = NILFS_I(inode);
687 	struct address_space *mapping = &ii->i_btnode_cache;
688 	struct pagevec pvec;
689 	struct buffer_head *bh, *head;
690 	unsigned int i;
691 	pgoff_t index = 0;
692 
693 	pagevec_init(&pvec, 0);
694 
695 	while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
696 				  PAGEVEC_SIZE)) {
697 		for (i = 0; i < pagevec_count(&pvec); i++) {
698 			bh = head = page_buffers(pvec.pages[i]);
699 			do {
700 				if (buffer_dirty(bh) &&
701 						!buffer_async_write(bh)) {
702 					get_bh(bh);
703 					list_add_tail(&bh->b_assoc_buffers,
704 						      listp);
705 				}
706 				bh = bh->b_this_page;
707 			} while (bh != head);
708 		}
709 		pagevec_release(&pvec);
710 		cond_resched();
711 	}
712 }
713 
714 static void nilfs_dispose_list(struct the_nilfs *nilfs,
715 			       struct list_head *head, int force)
716 {
717 	struct nilfs_inode_info *ii, *n;
718 	struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
719 	unsigned nv = 0;
720 
721 	while (!list_empty(head)) {
722 		spin_lock(&nilfs->ns_inode_lock);
723 		list_for_each_entry_safe(ii, n, head, i_dirty) {
724 			list_del_init(&ii->i_dirty);
725 			if (force) {
726 				if (unlikely(ii->i_bh)) {
727 					brelse(ii->i_bh);
728 					ii->i_bh = NULL;
729 				}
730 			} else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
731 				set_bit(NILFS_I_QUEUED, &ii->i_state);
732 				list_add_tail(&ii->i_dirty,
733 					      &nilfs->ns_dirty_files);
734 				continue;
735 			}
736 			ivec[nv++] = ii;
737 			if (nv == SC_N_INODEVEC)
738 				break;
739 		}
740 		spin_unlock(&nilfs->ns_inode_lock);
741 
742 		for (pii = ivec; nv > 0; pii++, nv--)
743 			iput(&(*pii)->vfs_inode);
744 	}
745 }
746 
747 static void nilfs_iput_work_func(struct work_struct *work)
748 {
749 	struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info,
750 						 sc_iput_work);
751 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
752 
753 	nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0);
754 }
755 
756 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
757 				     struct nilfs_root *root)
758 {
759 	int ret = 0;
760 
761 	if (nilfs_mdt_fetch_dirty(root->ifile))
762 		ret++;
763 	if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
764 		ret++;
765 	if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
766 		ret++;
767 	if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
768 		ret++;
769 	return ret;
770 }
771 
772 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
773 {
774 	return list_empty(&sci->sc_dirty_files) &&
775 		!test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
776 		sci->sc_nfreesegs == 0 &&
777 		(!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
778 }
779 
780 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
781 {
782 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
783 	int ret = 0;
784 
785 	if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
786 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
787 
788 	spin_lock(&nilfs->ns_inode_lock);
789 	if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
790 		ret++;
791 
792 	spin_unlock(&nilfs->ns_inode_lock);
793 	return ret;
794 }
795 
796 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
797 {
798 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
799 
800 	nilfs_mdt_clear_dirty(sci->sc_root->ifile);
801 	nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
802 	nilfs_mdt_clear_dirty(nilfs->ns_sufile);
803 	nilfs_mdt_clear_dirty(nilfs->ns_dat);
804 }
805 
806 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
807 {
808 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
809 	struct buffer_head *bh_cp;
810 	struct nilfs_checkpoint *raw_cp;
811 	int err;
812 
813 	/* XXX: this interface will be changed */
814 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
815 					  &raw_cp, &bh_cp);
816 	if (likely(!err)) {
817 		/* The following code is duplicated with cpfile.  But, it is
818 		   needed to collect the checkpoint even if it was not newly
819 		   created */
820 		mark_buffer_dirty(bh_cp);
821 		nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
822 		nilfs_cpfile_put_checkpoint(
823 			nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
824 	} else
825 		WARN_ON(err == -EINVAL || err == -ENOENT);
826 
827 	return err;
828 }
829 
830 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
831 {
832 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
833 	struct buffer_head *bh_cp;
834 	struct nilfs_checkpoint *raw_cp;
835 	int err;
836 
837 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
838 					  &raw_cp, &bh_cp);
839 	if (unlikely(err)) {
840 		WARN_ON(err == -EINVAL || err == -ENOENT);
841 		goto failed_ibh;
842 	}
843 	raw_cp->cp_snapshot_list.ssl_next = 0;
844 	raw_cp->cp_snapshot_list.ssl_prev = 0;
845 	raw_cp->cp_inodes_count =
846 		cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count));
847 	raw_cp->cp_blocks_count =
848 		cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count));
849 	raw_cp->cp_nblk_inc =
850 		cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
851 	raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
852 	raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
853 
854 	if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
855 		nilfs_checkpoint_clear_minor(raw_cp);
856 	else
857 		nilfs_checkpoint_set_minor(raw_cp);
858 
859 	nilfs_write_inode_common(sci->sc_root->ifile,
860 				 &raw_cp->cp_ifile_inode, 1);
861 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
862 	return 0;
863 
864  failed_ibh:
865 	return err;
866 }
867 
868 static void nilfs_fill_in_file_bmap(struct inode *ifile,
869 				    struct nilfs_inode_info *ii)
870 
871 {
872 	struct buffer_head *ibh;
873 	struct nilfs_inode *raw_inode;
874 
875 	if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
876 		ibh = ii->i_bh;
877 		BUG_ON(!ibh);
878 		raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
879 						  ibh);
880 		nilfs_bmap_write(ii->i_bmap, raw_inode);
881 		nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
882 	}
883 }
884 
885 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
886 {
887 	struct nilfs_inode_info *ii;
888 
889 	list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
890 		nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
891 		set_bit(NILFS_I_COLLECTED, &ii->i_state);
892 	}
893 }
894 
895 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
896 					     struct the_nilfs *nilfs)
897 {
898 	struct buffer_head *bh_sr;
899 	struct nilfs_super_root *raw_sr;
900 	unsigned isz, srsz;
901 
902 	bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
903 	raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
904 	isz = nilfs->ns_inode_size;
905 	srsz = NILFS_SR_BYTES(isz);
906 
907 	raw_sr->sr_bytes = cpu_to_le16(srsz);
908 	raw_sr->sr_nongc_ctime
909 		= cpu_to_le64(nilfs_doing_gc() ?
910 			      nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
911 	raw_sr->sr_flags = 0;
912 
913 	nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
914 				 NILFS_SR_DAT_OFFSET(isz), 1);
915 	nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
916 				 NILFS_SR_CPFILE_OFFSET(isz), 1);
917 	nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
918 				 NILFS_SR_SUFILE_OFFSET(isz), 1);
919 	memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
920 }
921 
922 static void nilfs_redirty_inodes(struct list_head *head)
923 {
924 	struct nilfs_inode_info *ii;
925 
926 	list_for_each_entry(ii, head, i_dirty) {
927 		if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
928 			clear_bit(NILFS_I_COLLECTED, &ii->i_state);
929 	}
930 }
931 
932 static void nilfs_drop_collected_inodes(struct list_head *head)
933 {
934 	struct nilfs_inode_info *ii;
935 
936 	list_for_each_entry(ii, head, i_dirty) {
937 		if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
938 			continue;
939 
940 		clear_bit(NILFS_I_INODE_SYNC, &ii->i_state);
941 		set_bit(NILFS_I_UPDATED, &ii->i_state);
942 	}
943 }
944 
945 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
946 				       struct inode *inode,
947 				       struct list_head *listp,
948 				       int (*collect)(struct nilfs_sc_info *,
949 						      struct buffer_head *,
950 						      struct inode *))
951 {
952 	struct buffer_head *bh, *n;
953 	int err = 0;
954 
955 	if (collect) {
956 		list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
957 			list_del_init(&bh->b_assoc_buffers);
958 			err = collect(sci, bh, inode);
959 			brelse(bh);
960 			if (unlikely(err))
961 				goto dispose_buffers;
962 		}
963 		return 0;
964 	}
965 
966  dispose_buffers:
967 	while (!list_empty(listp)) {
968 		bh = list_first_entry(listp, struct buffer_head,
969 				      b_assoc_buffers);
970 		list_del_init(&bh->b_assoc_buffers);
971 		brelse(bh);
972 	}
973 	return err;
974 }
975 
976 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
977 {
978 	/* Remaining number of blocks within segment buffer */
979 	return sci->sc_segbuf_nblocks -
980 		(sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
981 }
982 
983 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
984 				   struct inode *inode,
985 				   struct nilfs_sc_operations *sc_ops)
986 {
987 	LIST_HEAD(data_buffers);
988 	LIST_HEAD(node_buffers);
989 	int err;
990 
991 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
992 		size_t n, rest = nilfs_segctor_buffer_rest(sci);
993 
994 		n = nilfs_lookup_dirty_data_buffers(
995 			inode, &data_buffers, rest + 1, 0, LLONG_MAX);
996 		if (n > rest) {
997 			err = nilfs_segctor_apply_buffers(
998 				sci, inode, &data_buffers,
999 				sc_ops->collect_data);
1000 			BUG_ON(!err); /* always receive -E2BIG or true error */
1001 			goto break_or_fail;
1002 		}
1003 	}
1004 	nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
1005 
1006 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1007 		err = nilfs_segctor_apply_buffers(
1008 			sci, inode, &data_buffers, sc_ops->collect_data);
1009 		if (unlikely(err)) {
1010 			/* dispose node list */
1011 			nilfs_segctor_apply_buffers(
1012 				sci, inode, &node_buffers, NULL);
1013 			goto break_or_fail;
1014 		}
1015 		sci->sc_stage.flags |= NILFS_CF_NODE;
1016 	}
1017 	/* Collect node */
1018 	err = nilfs_segctor_apply_buffers(
1019 		sci, inode, &node_buffers, sc_ops->collect_node);
1020 	if (unlikely(err))
1021 		goto break_or_fail;
1022 
1023 	nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1024 	err = nilfs_segctor_apply_buffers(
1025 		sci, inode, &node_buffers, sc_ops->collect_bmap);
1026 	if (unlikely(err))
1027 		goto break_or_fail;
1028 
1029 	nilfs_segctor_end_finfo(sci, inode);
1030 	sci->sc_stage.flags &= ~NILFS_CF_NODE;
1031 
1032  break_or_fail:
1033 	return err;
1034 }
1035 
1036 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1037 					 struct inode *inode)
1038 {
1039 	LIST_HEAD(data_buffers);
1040 	size_t n, rest = nilfs_segctor_buffer_rest(sci);
1041 	int err;
1042 
1043 	n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1044 					    sci->sc_dsync_start,
1045 					    sci->sc_dsync_end);
1046 
1047 	err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1048 					  nilfs_collect_file_data);
1049 	if (!err) {
1050 		nilfs_segctor_end_finfo(sci, inode);
1051 		BUG_ON(n > rest);
1052 		/* always receive -E2BIG or true error if n > rest */
1053 	}
1054 	return err;
1055 }
1056 
1057 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1058 {
1059 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1060 	struct list_head *head;
1061 	struct nilfs_inode_info *ii;
1062 	size_t ndone;
1063 	int err = 0;
1064 
1065 	switch (sci->sc_stage.scnt) {
1066 	case NILFS_ST_INIT:
1067 		/* Pre-processes */
1068 		sci->sc_stage.flags = 0;
1069 
1070 		if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1071 			sci->sc_nblk_inc = 0;
1072 			sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1073 			if (mode == SC_LSEG_DSYNC) {
1074 				sci->sc_stage.scnt = NILFS_ST_DSYNC;
1075 				goto dsync_mode;
1076 			}
1077 		}
1078 
1079 		sci->sc_stage.dirty_file_ptr = NULL;
1080 		sci->sc_stage.gc_inode_ptr = NULL;
1081 		if (mode == SC_FLUSH_DAT) {
1082 			sci->sc_stage.scnt = NILFS_ST_DAT;
1083 			goto dat_stage;
1084 		}
1085 		sci->sc_stage.scnt++;  /* Fall through */
1086 	case NILFS_ST_GC:
1087 		if (nilfs_doing_gc()) {
1088 			head = &sci->sc_gc_inodes;
1089 			ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1090 						head, i_dirty);
1091 			list_for_each_entry_continue(ii, head, i_dirty) {
1092 				err = nilfs_segctor_scan_file(
1093 					sci, &ii->vfs_inode,
1094 					&nilfs_sc_file_ops);
1095 				if (unlikely(err)) {
1096 					sci->sc_stage.gc_inode_ptr = list_entry(
1097 						ii->i_dirty.prev,
1098 						struct nilfs_inode_info,
1099 						i_dirty);
1100 					goto break_or_fail;
1101 				}
1102 				set_bit(NILFS_I_COLLECTED, &ii->i_state);
1103 			}
1104 			sci->sc_stage.gc_inode_ptr = NULL;
1105 		}
1106 		sci->sc_stage.scnt++;  /* Fall through */
1107 	case NILFS_ST_FILE:
1108 		head = &sci->sc_dirty_files;
1109 		ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1110 					i_dirty);
1111 		list_for_each_entry_continue(ii, head, i_dirty) {
1112 			clear_bit(NILFS_I_DIRTY, &ii->i_state);
1113 
1114 			err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1115 						      &nilfs_sc_file_ops);
1116 			if (unlikely(err)) {
1117 				sci->sc_stage.dirty_file_ptr =
1118 					list_entry(ii->i_dirty.prev,
1119 						   struct nilfs_inode_info,
1120 						   i_dirty);
1121 				goto break_or_fail;
1122 			}
1123 			/* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1124 			/* XXX: required ? */
1125 		}
1126 		sci->sc_stage.dirty_file_ptr = NULL;
1127 		if (mode == SC_FLUSH_FILE) {
1128 			sci->sc_stage.scnt = NILFS_ST_DONE;
1129 			return 0;
1130 		}
1131 		sci->sc_stage.scnt++;
1132 		sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1133 		/* Fall through */
1134 	case NILFS_ST_IFILE:
1135 		err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
1136 					      &nilfs_sc_file_ops);
1137 		if (unlikely(err))
1138 			break;
1139 		sci->sc_stage.scnt++;
1140 		/* Creating a checkpoint */
1141 		err = nilfs_segctor_create_checkpoint(sci);
1142 		if (unlikely(err))
1143 			break;
1144 		/* Fall through */
1145 	case NILFS_ST_CPFILE:
1146 		err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1147 					      &nilfs_sc_file_ops);
1148 		if (unlikely(err))
1149 			break;
1150 		sci->sc_stage.scnt++;  /* Fall through */
1151 	case NILFS_ST_SUFILE:
1152 		err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
1153 					 sci->sc_nfreesegs, &ndone);
1154 		if (unlikely(err)) {
1155 			nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1156 						  sci->sc_freesegs, ndone,
1157 						  NULL);
1158 			break;
1159 		}
1160 		sci->sc_stage.flags |= NILFS_CF_SUFREED;
1161 
1162 		err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1163 					      &nilfs_sc_file_ops);
1164 		if (unlikely(err))
1165 			break;
1166 		sci->sc_stage.scnt++;  /* Fall through */
1167 	case NILFS_ST_DAT:
1168  dat_stage:
1169 		err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
1170 					      &nilfs_sc_dat_ops);
1171 		if (unlikely(err))
1172 			break;
1173 		if (mode == SC_FLUSH_DAT) {
1174 			sci->sc_stage.scnt = NILFS_ST_DONE;
1175 			return 0;
1176 		}
1177 		sci->sc_stage.scnt++;  /* Fall through */
1178 	case NILFS_ST_SR:
1179 		if (mode == SC_LSEG_SR) {
1180 			/* Appending a super root */
1181 			err = nilfs_segctor_add_super_root(sci);
1182 			if (unlikely(err))
1183 				break;
1184 		}
1185 		/* End of a logical segment */
1186 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1187 		sci->sc_stage.scnt = NILFS_ST_DONE;
1188 		return 0;
1189 	case NILFS_ST_DSYNC:
1190  dsync_mode:
1191 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1192 		ii = sci->sc_dsync_inode;
1193 		if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1194 			break;
1195 
1196 		err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1197 		if (unlikely(err))
1198 			break;
1199 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1200 		sci->sc_stage.scnt = NILFS_ST_DONE;
1201 		return 0;
1202 	case NILFS_ST_DONE:
1203 		return 0;
1204 	default:
1205 		BUG();
1206 	}
1207 
1208  break_or_fail:
1209 	return err;
1210 }
1211 
1212 /**
1213  * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1214  * @sci: nilfs_sc_info
1215  * @nilfs: nilfs object
1216  */
1217 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1218 					    struct the_nilfs *nilfs)
1219 {
1220 	struct nilfs_segment_buffer *segbuf, *prev;
1221 	__u64 nextnum;
1222 	int err, alloc = 0;
1223 
1224 	segbuf = nilfs_segbuf_new(sci->sc_super);
1225 	if (unlikely(!segbuf))
1226 		return -ENOMEM;
1227 
1228 	if (list_empty(&sci->sc_write_logs)) {
1229 		nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
1230 				 nilfs->ns_pseg_offset, nilfs);
1231 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1232 			nilfs_shift_to_next_segment(nilfs);
1233 			nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1234 		}
1235 
1236 		segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1237 		nextnum = nilfs->ns_nextnum;
1238 
1239 		if (nilfs->ns_segnum == nilfs->ns_nextnum)
1240 			/* Start from the head of a new full segment */
1241 			alloc++;
1242 	} else {
1243 		/* Continue logs */
1244 		prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1245 		nilfs_segbuf_map_cont(segbuf, prev);
1246 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
1247 		nextnum = prev->sb_nextnum;
1248 
1249 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1250 			nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1251 			segbuf->sb_sum.seg_seq++;
1252 			alloc++;
1253 		}
1254 	}
1255 
1256 	err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
1257 	if (err)
1258 		goto failed;
1259 
1260 	if (alloc) {
1261 		err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1262 		if (err)
1263 			goto failed;
1264 	}
1265 	nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1266 
1267 	BUG_ON(!list_empty(&sci->sc_segbufs));
1268 	list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
1269 	sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1270 	return 0;
1271 
1272  failed:
1273 	nilfs_segbuf_free(segbuf);
1274 	return err;
1275 }
1276 
1277 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1278 					 struct the_nilfs *nilfs, int nadd)
1279 {
1280 	struct nilfs_segment_buffer *segbuf, *prev;
1281 	struct inode *sufile = nilfs->ns_sufile;
1282 	__u64 nextnextnum;
1283 	LIST_HEAD(list);
1284 	int err, ret, i;
1285 
1286 	prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1287 	/*
1288 	 * Since the segment specified with nextnum might be allocated during
1289 	 * the previous construction, the buffer including its segusage may
1290 	 * not be dirty.  The following call ensures that the buffer is dirty
1291 	 * and will pin the buffer on memory until the sufile is written.
1292 	 */
1293 	err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
1294 	if (unlikely(err))
1295 		return err;
1296 
1297 	for (i = 0; i < nadd; i++) {
1298 		/* extend segment info */
1299 		err = -ENOMEM;
1300 		segbuf = nilfs_segbuf_new(sci->sc_super);
1301 		if (unlikely(!segbuf))
1302 			goto failed;
1303 
1304 		/* map this buffer to region of segment on-disk */
1305 		nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1306 		sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1307 
1308 		/* allocate the next next full segment */
1309 		err = nilfs_sufile_alloc(sufile, &nextnextnum);
1310 		if (unlikely(err))
1311 			goto failed_segbuf;
1312 
1313 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1314 		nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1315 
1316 		list_add_tail(&segbuf->sb_list, &list);
1317 		prev = segbuf;
1318 	}
1319 	list_splice_tail(&list, &sci->sc_segbufs);
1320 	return 0;
1321 
1322  failed_segbuf:
1323 	nilfs_segbuf_free(segbuf);
1324  failed:
1325 	list_for_each_entry(segbuf, &list, sb_list) {
1326 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1327 		WARN_ON(ret); /* never fails */
1328 	}
1329 	nilfs_destroy_logs(&list);
1330 	return err;
1331 }
1332 
1333 static void nilfs_free_incomplete_logs(struct list_head *logs,
1334 				       struct the_nilfs *nilfs)
1335 {
1336 	struct nilfs_segment_buffer *segbuf, *prev;
1337 	struct inode *sufile = nilfs->ns_sufile;
1338 	int ret;
1339 
1340 	segbuf = NILFS_FIRST_SEGBUF(logs);
1341 	if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1342 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1343 		WARN_ON(ret); /* never fails */
1344 	}
1345 	if (atomic_read(&segbuf->sb_err)) {
1346 		/* Case 1: The first segment failed */
1347 		if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1348 			/* Case 1a:  Partial segment appended into an existing
1349 			   segment */
1350 			nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1351 						segbuf->sb_fseg_end);
1352 		else /* Case 1b:  New full segment */
1353 			set_nilfs_discontinued(nilfs);
1354 	}
1355 
1356 	prev = segbuf;
1357 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1358 		if (prev->sb_nextnum != segbuf->sb_nextnum) {
1359 			ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1360 			WARN_ON(ret); /* never fails */
1361 		}
1362 		if (atomic_read(&segbuf->sb_err) &&
1363 		    segbuf->sb_segnum != nilfs->ns_nextnum)
1364 			/* Case 2: extended segment (!= next) failed */
1365 			nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
1366 		prev = segbuf;
1367 	}
1368 }
1369 
1370 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1371 					  struct inode *sufile)
1372 {
1373 	struct nilfs_segment_buffer *segbuf;
1374 	unsigned long live_blocks;
1375 	int ret;
1376 
1377 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1378 		live_blocks = segbuf->sb_sum.nblocks +
1379 			(segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1380 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1381 						     live_blocks,
1382 						     sci->sc_seg_ctime);
1383 		WARN_ON(ret); /* always succeed because the segusage is dirty */
1384 	}
1385 }
1386 
1387 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
1388 {
1389 	struct nilfs_segment_buffer *segbuf;
1390 	int ret;
1391 
1392 	segbuf = NILFS_FIRST_SEGBUF(logs);
1393 	ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1394 					     segbuf->sb_pseg_start -
1395 					     segbuf->sb_fseg_start, 0);
1396 	WARN_ON(ret); /* always succeed because the segusage is dirty */
1397 
1398 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1399 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1400 						     0, 0);
1401 		WARN_ON(ret); /* always succeed */
1402 	}
1403 }
1404 
1405 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1406 					    struct nilfs_segment_buffer *last,
1407 					    struct inode *sufile)
1408 {
1409 	struct nilfs_segment_buffer *segbuf = last;
1410 	int ret;
1411 
1412 	list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1413 		sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1414 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1415 		WARN_ON(ret);
1416 	}
1417 	nilfs_truncate_logs(&sci->sc_segbufs, last);
1418 }
1419 
1420 
1421 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1422 				 struct the_nilfs *nilfs, int mode)
1423 {
1424 	struct nilfs_cstage prev_stage = sci->sc_stage;
1425 	int err, nadd = 1;
1426 
1427 	/* Collection retry loop */
1428 	for (;;) {
1429 		sci->sc_nblk_this_inc = 0;
1430 		sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1431 
1432 		err = nilfs_segctor_reset_segment_buffer(sci);
1433 		if (unlikely(err))
1434 			goto failed;
1435 
1436 		err = nilfs_segctor_collect_blocks(sci, mode);
1437 		sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1438 		if (!err)
1439 			break;
1440 
1441 		if (unlikely(err != -E2BIG))
1442 			goto failed;
1443 
1444 		/* The current segment is filled up */
1445 		if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
1446 			break;
1447 
1448 		nilfs_clear_logs(&sci->sc_segbufs);
1449 
1450 		if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1451 			err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1452 							sci->sc_freesegs,
1453 							sci->sc_nfreesegs,
1454 							NULL);
1455 			WARN_ON(err); /* do not happen */
1456 			sci->sc_stage.flags &= ~NILFS_CF_SUFREED;
1457 		}
1458 
1459 		err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1460 		if (unlikely(err))
1461 			return err;
1462 
1463 		nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1464 		sci->sc_stage = prev_stage;
1465 	}
1466 	nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1467 	return 0;
1468 
1469  failed:
1470 	return err;
1471 }
1472 
1473 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1474 				      struct buffer_head *new_bh)
1475 {
1476 	BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1477 
1478 	list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1479 	/* The caller must release old_bh */
1480 }
1481 
1482 static int
1483 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1484 				     struct nilfs_segment_buffer *segbuf,
1485 				     int mode)
1486 {
1487 	struct inode *inode = NULL;
1488 	sector_t blocknr;
1489 	unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1490 	unsigned long nblocks = 0, ndatablk = 0;
1491 	struct nilfs_sc_operations *sc_op = NULL;
1492 	struct nilfs_segsum_pointer ssp;
1493 	struct nilfs_finfo *finfo = NULL;
1494 	union nilfs_binfo binfo;
1495 	struct buffer_head *bh, *bh_org;
1496 	ino_t ino = 0;
1497 	int err = 0;
1498 
1499 	if (!nfinfo)
1500 		goto out;
1501 
1502 	blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1503 	ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1504 	ssp.offset = sizeof(struct nilfs_segment_summary);
1505 
1506 	list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1507 		if (bh == segbuf->sb_super_root)
1508 			break;
1509 		if (!finfo) {
1510 			finfo =	nilfs_segctor_map_segsum_entry(
1511 				sci, &ssp, sizeof(*finfo));
1512 			ino = le64_to_cpu(finfo->fi_ino);
1513 			nblocks = le32_to_cpu(finfo->fi_nblocks);
1514 			ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1515 
1516 			inode = bh->b_page->mapping->host;
1517 
1518 			if (mode == SC_LSEG_DSYNC)
1519 				sc_op = &nilfs_sc_dsync_ops;
1520 			else if (ino == NILFS_DAT_INO)
1521 				sc_op = &nilfs_sc_dat_ops;
1522 			else /* file blocks */
1523 				sc_op = &nilfs_sc_file_ops;
1524 		}
1525 		bh_org = bh;
1526 		get_bh(bh_org);
1527 		err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1528 					&binfo);
1529 		if (bh != bh_org)
1530 			nilfs_list_replace_buffer(bh_org, bh);
1531 		brelse(bh_org);
1532 		if (unlikely(err))
1533 			goto failed_bmap;
1534 
1535 		if (ndatablk > 0)
1536 			sc_op->write_data_binfo(sci, &ssp, &binfo);
1537 		else
1538 			sc_op->write_node_binfo(sci, &ssp, &binfo);
1539 
1540 		blocknr++;
1541 		if (--nblocks == 0) {
1542 			finfo = NULL;
1543 			if (--nfinfo == 0)
1544 				break;
1545 		} else if (ndatablk > 0)
1546 			ndatablk--;
1547 	}
1548  out:
1549 	return 0;
1550 
1551  failed_bmap:
1552 	return err;
1553 }
1554 
1555 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1556 {
1557 	struct nilfs_segment_buffer *segbuf;
1558 	int err;
1559 
1560 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1561 		err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1562 		if (unlikely(err))
1563 			return err;
1564 		nilfs_segbuf_fill_in_segsum(segbuf);
1565 	}
1566 	return 0;
1567 }
1568 
1569 static void nilfs_begin_page_io(struct page *page)
1570 {
1571 	if (!page || PageWriteback(page))
1572 		/* For split b-tree node pages, this function may be called
1573 		   twice.  We ignore the 2nd or later calls by this check. */
1574 		return;
1575 
1576 	lock_page(page);
1577 	clear_page_dirty_for_io(page);
1578 	set_page_writeback(page);
1579 	unlock_page(page);
1580 }
1581 
1582 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci)
1583 {
1584 	struct nilfs_segment_buffer *segbuf;
1585 	struct page *bd_page = NULL, *fs_page = NULL;
1586 
1587 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1588 		struct buffer_head *bh;
1589 
1590 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1591 				    b_assoc_buffers) {
1592 			if (bh->b_page != bd_page) {
1593 				if (bd_page) {
1594 					lock_page(bd_page);
1595 					clear_page_dirty_for_io(bd_page);
1596 					set_page_writeback(bd_page);
1597 					unlock_page(bd_page);
1598 				}
1599 				bd_page = bh->b_page;
1600 			}
1601 		}
1602 
1603 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1604 				    b_assoc_buffers) {
1605 			set_buffer_async_write(bh);
1606 			if (bh == segbuf->sb_super_root) {
1607 				if (bh->b_page != bd_page) {
1608 					lock_page(bd_page);
1609 					clear_page_dirty_for_io(bd_page);
1610 					set_page_writeback(bd_page);
1611 					unlock_page(bd_page);
1612 					bd_page = bh->b_page;
1613 				}
1614 				break;
1615 			}
1616 			if (bh->b_page != fs_page) {
1617 				nilfs_begin_page_io(fs_page);
1618 				fs_page = bh->b_page;
1619 			}
1620 		}
1621 	}
1622 	if (bd_page) {
1623 		lock_page(bd_page);
1624 		clear_page_dirty_for_io(bd_page);
1625 		set_page_writeback(bd_page);
1626 		unlock_page(bd_page);
1627 	}
1628 	nilfs_begin_page_io(fs_page);
1629 }
1630 
1631 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1632 			       struct the_nilfs *nilfs)
1633 {
1634 	int ret;
1635 
1636 	ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
1637 	list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
1638 	return ret;
1639 }
1640 
1641 static void nilfs_end_page_io(struct page *page, int err)
1642 {
1643 	if (!page)
1644 		return;
1645 
1646 	if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
1647 		/*
1648 		 * For b-tree node pages, this function may be called twice
1649 		 * or more because they might be split in a segment.
1650 		 */
1651 		if (PageDirty(page)) {
1652 			/*
1653 			 * For pages holding split b-tree node buffers, dirty
1654 			 * flag on the buffers may be cleared discretely.
1655 			 * In that case, the page is once redirtied for
1656 			 * remaining buffers, and it must be cancelled if
1657 			 * all the buffers get cleaned later.
1658 			 */
1659 			lock_page(page);
1660 			if (nilfs_page_buffers_clean(page))
1661 				__nilfs_clear_page_dirty(page);
1662 			unlock_page(page);
1663 		}
1664 		return;
1665 	}
1666 
1667 	if (!err) {
1668 		if (!nilfs_page_buffers_clean(page))
1669 			__set_page_dirty_nobuffers(page);
1670 		ClearPageError(page);
1671 	} else {
1672 		__set_page_dirty_nobuffers(page);
1673 		SetPageError(page);
1674 	}
1675 
1676 	end_page_writeback(page);
1677 }
1678 
1679 static void nilfs_abort_logs(struct list_head *logs, int err)
1680 {
1681 	struct nilfs_segment_buffer *segbuf;
1682 	struct page *bd_page = NULL, *fs_page = NULL;
1683 	struct buffer_head *bh;
1684 
1685 	if (list_empty(logs))
1686 		return;
1687 
1688 	list_for_each_entry(segbuf, logs, sb_list) {
1689 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1690 				    b_assoc_buffers) {
1691 			if (bh->b_page != bd_page) {
1692 				if (bd_page)
1693 					end_page_writeback(bd_page);
1694 				bd_page = bh->b_page;
1695 			}
1696 		}
1697 
1698 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1699 				    b_assoc_buffers) {
1700 			clear_buffer_async_write(bh);
1701 			if (bh == segbuf->sb_super_root) {
1702 				if (bh->b_page != bd_page) {
1703 					end_page_writeback(bd_page);
1704 					bd_page = bh->b_page;
1705 				}
1706 				break;
1707 			}
1708 			if (bh->b_page != fs_page) {
1709 				nilfs_end_page_io(fs_page, err);
1710 				fs_page = bh->b_page;
1711 			}
1712 		}
1713 	}
1714 	if (bd_page)
1715 		end_page_writeback(bd_page);
1716 
1717 	nilfs_end_page_io(fs_page, err);
1718 }
1719 
1720 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
1721 					     struct the_nilfs *nilfs, int err)
1722 {
1723 	LIST_HEAD(logs);
1724 	int ret;
1725 
1726 	list_splice_tail_init(&sci->sc_write_logs, &logs);
1727 	ret = nilfs_wait_on_logs(&logs);
1728 	nilfs_abort_logs(&logs, ret ? : err);
1729 
1730 	list_splice_tail_init(&sci->sc_segbufs, &logs);
1731 	nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
1732 	nilfs_free_incomplete_logs(&logs, nilfs);
1733 
1734 	if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1735 		ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1736 						sci->sc_freesegs,
1737 						sci->sc_nfreesegs,
1738 						NULL);
1739 		WARN_ON(ret); /* do not happen */
1740 	}
1741 
1742 	nilfs_destroy_logs(&logs);
1743 }
1744 
1745 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1746 				   struct nilfs_segment_buffer *segbuf)
1747 {
1748 	nilfs->ns_segnum = segbuf->sb_segnum;
1749 	nilfs->ns_nextnum = segbuf->sb_nextnum;
1750 	nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1751 		+ segbuf->sb_sum.nblocks;
1752 	nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1753 	nilfs->ns_ctime = segbuf->sb_sum.ctime;
1754 }
1755 
1756 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1757 {
1758 	struct nilfs_segment_buffer *segbuf;
1759 	struct page *bd_page = NULL, *fs_page = NULL;
1760 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1761 	int update_sr = false;
1762 
1763 	list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
1764 		struct buffer_head *bh;
1765 
1766 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1767 				    b_assoc_buffers) {
1768 			set_buffer_uptodate(bh);
1769 			clear_buffer_dirty(bh);
1770 			if (bh->b_page != bd_page) {
1771 				if (bd_page)
1772 					end_page_writeback(bd_page);
1773 				bd_page = bh->b_page;
1774 			}
1775 		}
1776 		/*
1777 		 * We assume that the buffers which belong to the same page
1778 		 * continue over the buffer list.
1779 		 * Under this assumption, the last BHs of pages is
1780 		 * identifiable by the discontinuity of bh->b_page
1781 		 * (page != fs_page).
1782 		 *
1783 		 * For B-tree node blocks, however, this assumption is not
1784 		 * guaranteed.  The cleanup code of B-tree node pages needs
1785 		 * special care.
1786 		 */
1787 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1788 				    b_assoc_buffers) {
1789 			const unsigned long set_bits = (1 << BH_Uptodate);
1790 			const unsigned long clear_bits =
1791 				(1 << BH_Dirty | 1 << BH_Async_Write |
1792 				 1 << BH_Delay | 1 << BH_NILFS_Volatile |
1793 				 1 << BH_NILFS_Redirected);
1794 
1795 			set_mask_bits(&bh->b_state, clear_bits, set_bits);
1796 			if (bh == segbuf->sb_super_root) {
1797 				if (bh->b_page != bd_page) {
1798 					end_page_writeback(bd_page);
1799 					bd_page = bh->b_page;
1800 				}
1801 				update_sr = true;
1802 				break;
1803 			}
1804 			if (bh->b_page != fs_page) {
1805 				nilfs_end_page_io(fs_page, 0);
1806 				fs_page = bh->b_page;
1807 			}
1808 		}
1809 
1810 		if (!nilfs_segbuf_simplex(segbuf)) {
1811 			if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
1812 				set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1813 				sci->sc_lseg_stime = jiffies;
1814 			}
1815 			if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
1816 				clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1817 		}
1818 	}
1819 	/*
1820 	 * Since pages may continue over multiple segment buffers,
1821 	 * end of the last page must be checked outside of the loop.
1822 	 */
1823 	if (bd_page)
1824 		end_page_writeback(bd_page);
1825 
1826 	nilfs_end_page_io(fs_page, 0);
1827 
1828 	nilfs_drop_collected_inodes(&sci->sc_dirty_files);
1829 
1830 	if (nilfs_doing_gc())
1831 		nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
1832 	else
1833 		nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
1834 
1835 	sci->sc_nblk_inc += sci->sc_nblk_this_inc;
1836 
1837 	segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1838 	nilfs_set_next_segment(nilfs, segbuf);
1839 
1840 	if (update_sr) {
1841 		nilfs->ns_flushed_device = 0;
1842 		nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
1843 				       segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
1844 
1845 		clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
1846 		clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
1847 		set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1848 		nilfs_segctor_clear_metadata_dirty(sci);
1849 	} else
1850 		clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1851 }
1852 
1853 static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
1854 {
1855 	int ret;
1856 
1857 	ret = nilfs_wait_on_logs(&sci->sc_write_logs);
1858 	if (!ret) {
1859 		nilfs_segctor_complete_write(sci);
1860 		nilfs_destroy_logs(&sci->sc_write_logs);
1861 	}
1862 	return ret;
1863 }
1864 
1865 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
1866 					     struct the_nilfs *nilfs)
1867 {
1868 	struct nilfs_inode_info *ii, *n;
1869 	struct inode *ifile = sci->sc_root->ifile;
1870 
1871 	spin_lock(&nilfs->ns_inode_lock);
1872  retry:
1873 	list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
1874 		if (!ii->i_bh) {
1875 			struct buffer_head *ibh;
1876 			int err;
1877 
1878 			spin_unlock(&nilfs->ns_inode_lock);
1879 			err = nilfs_ifile_get_inode_block(
1880 				ifile, ii->vfs_inode.i_ino, &ibh);
1881 			if (unlikely(err)) {
1882 				nilfs_warning(sci->sc_super, __func__,
1883 					      "failed to get inode block.\n");
1884 				return err;
1885 			}
1886 			mark_buffer_dirty(ibh);
1887 			nilfs_mdt_mark_dirty(ifile);
1888 			spin_lock(&nilfs->ns_inode_lock);
1889 			if (likely(!ii->i_bh))
1890 				ii->i_bh = ibh;
1891 			else
1892 				brelse(ibh);
1893 			goto retry;
1894 		}
1895 
1896 		clear_bit(NILFS_I_QUEUED, &ii->i_state);
1897 		set_bit(NILFS_I_BUSY, &ii->i_state);
1898 		list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
1899 	}
1900 	spin_unlock(&nilfs->ns_inode_lock);
1901 
1902 	return 0;
1903 }
1904 
1905 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
1906 					     struct the_nilfs *nilfs)
1907 {
1908 	struct nilfs_inode_info *ii, *n;
1909 	int during_mount = !(sci->sc_super->s_flags & MS_ACTIVE);
1910 	int defer_iput = false;
1911 
1912 	spin_lock(&nilfs->ns_inode_lock);
1913 	list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
1914 		if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
1915 		    test_bit(NILFS_I_DIRTY, &ii->i_state))
1916 			continue;
1917 
1918 		clear_bit(NILFS_I_BUSY, &ii->i_state);
1919 		brelse(ii->i_bh);
1920 		ii->i_bh = NULL;
1921 		list_del_init(&ii->i_dirty);
1922 		if (!ii->vfs_inode.i_nlink || during_mount) {
1923 			/*
1924 			 * Defer calling iput() to avoid deadlocks if
1925 			 * i_nlink == 0 or mount is not yet finished.
1926 			 */
1927 			list_add_tail(&ii->i_dirty, &sci->sc_iput_queue);
1928 			defer_iput = true;
1929 		} else {
1930 			spin_unlock(&nilfs->ns_inode_lock);
1931 			iput(&ii->vfs_inode);
1932 			spin_lock(&nilfs->ns_inode_lock);
1933 		}
1934 	}
1935 	spin_unlock(&nilfs->ns_inode_lock);
1936 
1937 	if (defer_iput)
1938 		schedule_work(&sci->sc_iput_work);
1939 }
1940 
1941 /*
1942  * Main procedure of segment constructor
1943  */
1944 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
1945 {
1946 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1947 	int err;
1948 
1949 	sci->sc_stage.scnt = NILFS_ST_INIT;
1950 	sci->sc_cno = nilfs->ns_cno;
1951 
1952 	err = nilfs_segctor_collect_dirty_files(sci, nilfs);
1953 	if (unlikely(err))
1954 		goto out;
1955 
1956 	if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
1957 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
1958 
1959 	if (nilfs_segctor_clean(sci))
1960 		goto out;
1961 
1962 	do {
1963 		sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
1964 
1965 		err = nilfs_segctor_begin_construction(sci, nilfs);
1966 		if (unlikely(err))
1967 			goto out;
1968 
1969 		/* Update time stamp */
1970 		sci->sc_seg_ctime = get_seconds();
1971 
1972 		err = nilfs_segctor_collect(sci, nilfs, mode);
1973 		if (unlikely(err))
1974 			goto failed;
1975 
1976 		/* Avoid empty segment */
1977 		if (sci->sc_stage.scnt == NILFS_ST_DONE &&
1978 		    nilfs_segbuf_empty(sci->sc_curseg)) {
1979 			nilfs_segctor_abort_construction(sci, nilfs, 1);
1980 			goto out;
1981 		}
1982 
1983 		err = nilfs_segctor_assign(sci, mode);
1984 		if (unlikely(err))
1985 			goto failed;
1986 
1987 		if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
1988 			nilfs_segctor_fill_in_file_bmap(sci);
1989 
1990 		if (mode == SC_LSEG_SR &&
1991 		    sci->sc_stage.scnt >= NILFS_ST_CPFILE) {
1992 			err = nilfs_segctor_fill_in_checkpoint(sci);
1993 			if (unlikely(err))
1994 				goto failed_to_write;
1995 
1996 			nilfs_segctor_fill_in_super_root(sci, nilfs);
1997 		}
1998 		nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
1999 
2000 		/* Write partial segments */
2001 		nilfs_segctor_prepare_write(sci);
2002 
2003 		nilfs_add_checksums_on_logs(&sci->sc_segbufs,
2004 					    nilfs->ns_crc_seed);
2005 
2006 		err = nilfs_segctor_write(sci, nilfs);
2007 		if (unlikely(err))
2008 			goto failed_to_write;
2009 
2010 		if (sci->sc_stage.scnt == NILFS_ST_DONE ||
2011 		    nilfs->ns_blocksize_bits != PAGE_CACHE_SHIFT) {
2012 			/*
2013 			 * At this point, we avoid double buffering
2014 			 * for blocksize < pagesize because page dirty
2015 			 * flag is turned off during write and dirty
2016 			 * buffers are not properly collected for
2017 			 * pages crossing over segments.
2018 			 */
2019 			err = nilfs_segctor_wait(sci);
2020 			if (err)
2021 				goto failed_to_write;
2022 		}
2023 	} while (sci->sc_stage.scnt != NILFS_ST_DONE);
2024 
2025  out:
2026 	nilfs_segctor_drop_written_files(sci, nilfs);
2027 	return err;
2028 
2029  failed_to_write:
2030 	if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2031 		nilfs_redirty_inodes(&sci->sc_dirty_files);
2032 
2033  failed:
2034 	if (nilfs_doing_gc())
2035 		nilfs_redirty_inodes(&sci->sc_gc_inodes);
2036 	nilfs_segctor_abort_construction(sci, nilfs, err);
2037 	goto out;
2038 }
2039 
2040 /**
2041  * nilfs_segctor_start_timer - set timer of background write
2042  * @sci: nilfs_sc_info
2043  *
2044  * If the timer has already been set, it ignores the new request.
2045  * This function MUST be called within a section locking the segment
2046  * semaphore.
2047  */
2048 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2049 {
2050 	spin_lock(&sci->sc_state_lock);
2051 	if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2052 		sci->sc_timer.expires = jiffies + sci->sc_interval;
2053 		add_timer(&sci->sc_timer);
2054 		sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2055 	}
2056 	spin_unlock(&sci->sc_state_lock);
2057 }
2058 
2059 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2060 {
2061 	spin_lock(&sci->sc_state_lock);
2062 	if (!(sci->sc_flush_request & (1 << bn))) {
2063 		unsigned long prev_req = sci->sc_flush_request;
2064 
2065 		sci->sc_flush_request |= (1 << bn);
2066 		if (!prev_req)
2067 			wake_up(&sci->sc_wait_daemon);
2068 	}
2069 	spin_unlock(&sci->sc_state_lock);
2070 }
2071 
2072 /**
2073  * nilfs_flush_segment - trigger a segment construction for resource control
2074  * @sb: super block
2075  * @ino: inode number of the file to be flushed out.
2076  */
2077 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2078 {
2079 	struct the_nilfs *nilfs = sb->s_fs_info;
2080 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2081 
2082 	if (!sci || nilfs_doing_construction())
2083 		return;
2084 	nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2085 					/* assign bit 0 to data files */
2086 }
2087 
2088 struct nilfs_segctor_wait_request {
2089 	wait_queue_t	wq;
2090 	__u32		seq;
2091 	int		err;
2092 	atomic_t	done;
2093 };
2094 
2095 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2096 {
2097 	struct nilfs_segctor_wait_request wait_req;
2098 	int err = 0;
2099 
2100 	spin_lock(&sci->sc_state_lock);
2101 	init_wait(&wait_req.wq);
2102 	wait_req.err = 0;
2103 	atomic_set(&wait_req.done, 0);
2104 	wait_req.seq = ++sci->sc_seq_request;
2105 	spin_unlock(&sci->sc_state_lock);
2106 
2107 	init_waitqueue_entry(&wait_req.wq, current);
2108 	add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2109 	set_current_state(TASK_INTERRUPTIBLE);
2110 	wake_up(&sci->sc_wait_daemon);
2111 
2112 	for (;;) {
2113 		if (atomic_read(&wait_req.done)) {
2114 			err = wait_req.err;
2115 			break;
2116 		}
2117 		if (!signal_pending(current)) {
2118 			schedule();
2119 			continue;
2120 		}
2121 		err = -ERESTARTSYS;
2122 		break;
2123 	}
2124 	finish_wait(&sci->sc_wait_request, &wait_req.wq);
2125 	return err;
2126 }
2127 
2128 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
2129 {
2130 	struct nilfs_segctor_wait_request *wrq, *n;
2131 	unsigned long flags;
2132 
2133 	spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2134 	list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
2135 				 wq.task_list) {
2136 		if (!atomic_read(&wrq->done) &&
2137 		    nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
2138 			wrq->err = err;
2139 			atomic_set(&wrq->done, 1);
2140 		}
2141 		if (atomic_read(&wrq->done)) {
2142 			wrq->wq.func(&wrq->wq,
2143 				     TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2144 				     0, NULL);
2145 		}
2146 	}
2147 	spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2148 }
2149 
2150 /**
2151  * nilfs_construct_segment - construct a logical segment
2152  * @sb: super block
2153  *
2154  * Return Value: On success, 0 is retured. On errors, one of the following
2155  * negative error code is returned.
2156  *
2157  * %-EROFS - Read only filesystem.
2158  *
2159  * %-EIO - I/O error
2160  *
2161  * %-ENOSPC - No space left on device (only in a panic state).
2162  *
2163  * %-ERESTARTSYS - Interrupted.
2164  *
2165  * %-ENOMEM - Insufficient memory available.
2166  */
2167 int nilfs_construct_segment(struct super_block *sb)
2168 {
2169 	struct the_nilfs *nilfs = sb->s_fs_info;
2170 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2171 	struct nilfs_transaction_info *ti;
2172 	int err;
2173 
2174 	if (!sci)
2175 		return -EROFS;
2176 
2177 	/* A call inside transactions causes a deadlock. */
2178 	BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2179 
2180 	err = nilfs_segctor_sync(sci);
2181 	return err;
2182 }
2183 
2184 /**
2185  * nilfs_construct_dsync_segment - construct a data-only logical segment
2186  * @sb: super block
2187  * @inode: inode whose data blocks should be written out
2188  * @start: start byte offset
2189  * @end: end byte offset (inclusive)
2190  *
2191  * Return Value: On success, 0 is retured. On errors, one of the following
2192  * negative error code is returned.
2193  *
2194  * %-EROFS - Read only filesystem.
2195  *
2196  * %-EIO - I/O error
2197  *
2198  * %-ENOSPC - No space left on device (only in a panic state).
2199  *
2200  * %-ERESTARTSYS - Interrupted.
2201  *
2202  * %-ENOMEM - Insufficient memory available.
2203  */
2204 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2205 				  loff_t start, loff_t end)
2206 {
2207 	struct the_nilfs *nilfs = sb->s_fs_info;
2208 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2209 	struct nilfs_inode_info *ii;
2210 	struct nilfs_transaction_info ti;
2211 	int err = 0;
2212 
2213 	if (!sci)
2214 		return -EROFS;
2215 
2216 	nilfs_transaction_lock(sb, &ti, 0);
2217 
2218 	ii = NILFS_I(inode);
2219 	if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) ||
2220 	    nilfs_test_opt(nilfs, STRICT_ORDER) ||
2221 	    test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2222 	    nilfs_discontinued(nilfs)) {
2223 		nilfs_transaction_unlock(sb);
2224 		err = nilfs_segctor_sync(sci);
2225 		return err;
2226 	}
2227 
2228 	spin_lock(&nilfs->ns_inode_lock);
2229 	if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2230 	    !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2231 		spin_unlock(&nilfs->ns_inode_lock);
2232 		nilfs_transaction_unlock(sb);
2233 		return 0;
2234 	}
2235 	spin_unlock(&nilfs->ns_inode_lock);
2236 	sci->sc_dsync_inode = ii;
2237 	sci->sc_dsync_start = start;
2238 	sci->sc_dsync_end = end;
2239 
2240 	err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2241 	if (!err)
2242 		nilfs->ns_flushed_device = 0;
2243 
2244 	nilfs_transaction_unlock(sb);
2245 	return err;
2246 }
2247 
2248 #define FLUSH_FILE_BIT	(0x1) /* data file only */
2249 #define FLUSH_DAT_BIT	(1 << NILFS_DAT_INO) /* DAT only */
2250 
2251 /**
2252  * nilfs_segctor_accept - record accepted sequence count of log-write requests
2253  * @sci: segment constructor object
2254  */
2255 static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
2256 {
2257 	spin_lock(&sci->sc_state_lock);
2258 	sci->sc_seq_accepted = sci->sc_seq_request;
2259 	spin_unlock(&sci->sc_state_lock);
2260 	del_timer_sync(&sci->sc_timer);
2261 }
2262 
2263 /**
2264  * nilfs_segctor_notify - notify the result of request to caller threads
2265  * @sci: segment constructor object
2266  * @mode: mode of log forming
2267  * @err: error code to be notified
2268  */
2269 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
2270 {
2271 	/* Clear requests (even when the construction failed) */
2272 	spin_lock(&sci->sc_state_lock);
2273 
2274 	if (mode == SC_LSEG_SR) {
2275 		sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2276 		sci->sc_seq_done = sci->sc_seq_accepted;
2277 		nilfs_segctor_wakeup(sci, err);
2278 		sci->sc_flush_request = 0;
2279 	} else {
2280 		if (mode == SC_FLUSH_FILE)
2281 			sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2282 		else if (mode == SC_FLUSH_DAT)
2283 			sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2284 
2285 		/* re-enable timer if checkpoint creation was not done */
2286 		if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2287 		    time_before(jiffies, sci->sc_timer.expires))
2288 			add_timer(&sci->sc_timer);
2289 	}
2290 	spin_unlock(&sci->sc_state_lock);
2291 }
2292 
2293 /**
2294  * nilfs_segctor_construct - form logs and write them to disk
2295  * @sci: segment constructor object
2296  * @mode: mode of log forming
2297  */
2298 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
2299 {
2300 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2301 	struct nilfs_super_block **sbp;
2302 	int err = 0;
2303 
2304 	nilfs_segctor_accept(sci);
2305 
2306 	if (nilfs_discontinued(nilfs))
2307 		mode = SC_LSEG_SR;
2308 	if (!nilfs_segctor_confirm(sci))
2309 		err = nilfs_segctor_do_construct(sci, mode);
2310 
2311 	if (likely(!err)) {
2312 		if (mode != SC_FLUSH_DAT)
2313 			atomic_set(&nilfs->ns_ndirtyblks, 0);
2314 		if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2315 		    nilfs_discontinued(nilfs)) {
2316 			down_write(&nilfs->ns_sem);
2317 			err = -EIO;
2318 			sbp = nilfs_prepare_super(sci->sc_super,
2319 						  nilfs_sb_will_flip(nilfs));
2320 			if (likely(sbp)) {
2321 				nilfs_set_log_cursor(sbp[0], nilfs);
2322 				err = nilfs_commit_super(sci->sc_super,
2323 							 NILFS_SB_COMMIT);
2324 			}
2325 			up_write(&nilfs->ns_sem);
2326 		}
2327 	}
2328 
2329 	nilfs_segctor_notify(sci, mode, err);
2330 	return err;
2331 }
2332 
2333 static void nilfs_construction_timeout(unsigned long data)
2334 {
2335 	struct task_struct *p = (struct task_struct *)data;
2336 	wake_up_process(p);
2337 }
2338 
2339 static void
2340 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2341 {
2342 	struct nilfs_inode_info *ii, *n;
2343 
2344 	list_for_each_entry_safe(ii, n, head, i_dirty) {
2345 		if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2346 			continue;
2347 		list_del_init(&ii->i_dirty);
2348 		truncate_inode_pages(&ii->vfs_inode.i_data, 0);
2349 		nilfs_btnode_cache_clear(&ii->i_btnode_cache);
2350 		iput(&ii->vfs_inode);
2351 	}
2352 }
2353 
2354 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2355 			 void **kbufs)
2356 {
2357 	struct the_nilfs *nilfs = sb->s_fs_info;
2358 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2359 	struct nilfs_transaction_info ti;
2360 	int err;
2361 
2362 	if (unlikely(!sci))
2363 		return -EROFS;
2364 
2365 	nilfs_transaction_lock(sb, &ti, 1);
2366 
2367 	err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
2368 	if (unlikely(err))
2369 		goto out_unlock;
2370 
2371 	err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2372 	if (unlikely(err)) {
2373 		nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
2374 		goto out_unlock;
2375 	}
2376 
2377 	sci->sc_freesegs = kbufs[4];
2378 	sci->sc_nfreesegs = argv[4].v_nmembs;
2379 	list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
2380 
2381 	for (;;) {
2382 		err = nilfs_segctor_construct(sci, SC_LSEG_SR);
2383 		nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2384 
2385 		if (likely(!err))
2386 			break;
2387 
2388 		nilfs_warning(sb, __func__,
2389 			      "segment construction failed. (err=%d)", err);
2390 		set_current_state(TASK_INTERRUPTIBLE);
2391 		schedule_timeout(sci->sc_interval);
2392 	}
2393 	if (nilfs_test_opt(nilfs, DISCARD)) {
2394 		int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
2395 						 sci->sc_nfreesegs);
2396 		if (ret) {
2397 			printk(KERN_WARNING
2398 			       "NILFS warning: error %d on discard request, "
2399 			       "turning discards off for the device\n", ret);
2400 			nilfs_clear_opt(nilfs, DISCARD);
2401 		}
2402 	}
2403 
2404  out_unlock:
2405 	sci->sc_freesegs = NULL;
2406 	sci->sc_nfreesegs = 0;
2407 	nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
2408 	nilfs_transaction_unlock(sb);
2409 	return err;
2410 }
2411 
2412 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2413 {
2414 	struct nilfs_transaction_info ti;
2415 
2416 	nilfs_transaction_lock(sci->sc_super, &ti, 0);
2417 	nilfs_segctor_construct(sci, mode);
2418 
2419 	/*
2420 	 * Unclosed segment should be retried.  We do this using sc_timer.
2421 	 * Timeout of sc_timer will invoke complete construction which leads
2422 	 * to close the current logical segment.
2423 	 */
2424 	if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2425 		nilfs_segctor_start_timer(sci);
2426 
2427 	nilfs_transaction_unlock(sci->sc_super);
2428 }
2429 
2430 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2431 {
2432 	int mode = 0;
2433 	int err;
2434 
2435 	spin_lock(&sci->sc_state_lock);
2436 	mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2437 		SC_FLUSH_DAT : SC_FLUSH_FILE;
2438 	spin_unlock(&sci->sc_state_lock);
2439 
2440 	if (mode) {
2441 		err = nilfs_segctor_do_construct(sci, mode);
2442 
2443 		spin_lock(&sci->sc_state_lock);
2444 		sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2445 			~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2446 		spin_unlock(&sci->sc_state_lock);
2447 	}
2448 	clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2449 }
2450 
2451 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2452 {
2453 	if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2454 	    time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2455 		if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2456 			return SC_FLUSH_FILE;
2457 		else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2458 			return SC_FLUSH_DAT;
2459 	}
2460 	return SC_LSEG_SR;
2461 }
2462 
2463 /**
2464  * nilfs_segctor_thread - main loop of the segment constructor thread.
2465  * @arg: pointer to a struct nilfs_sc_info.
2466  *
2467  * nilfs_segctor_thread() initializes a timer and serves as a daemon
2468  * to execute segment constructions.
2469  */
2470 static int nilfs_segctor_thread(void *arg)
2471 {
2472 	struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2473 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2474 	int timeout = 0;
2475 
2476 	sci->sc_timer.data = (unsigned long)current;
2477 	sci->sc_timer.function = nilfs_construction_timeout;
2478 
2479 	/* start sync. */
2480 	sci->sc_task = current;
2481 	wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
2482 	printk(KERN_INFO
2483 	       "segctord starting. Construction interval = %lu seconds, "
2484 	       "CP frequency < %lu seconds\n",
2485 	       sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2486 
2487 	spin_lock(&sci->sc_state_lock);
2488  loop:
2489 	for (;;) {
2490 		int mode;
2491 
2492 		if (sci->sc_state & NILFS_SEGCTOR_QUIT)
2493 			goto end_thread;
2494 
2495 		if (timeout || sci->sc_seq_request != sci->sc_seq_done)
2496 			mode = SC_LSEG_SR;
2497 		else if (!sci->sc_flush_request)
2498 			break;
2499 		else
2500 			mode = nilfs_segctor_flush_mode(sci);
2501 
2502 		spin_unlock(&sci->sc_state_lock);
2503 		nilfs_segctor_thread_construct(sci, mode);
2504 		spin_lock(&sci->sc_state_lock);
2505 		timeout = 0;
2506 	}
2507 
2508 
2509 	if (freezing(current)) {
2510 		spin_unlock(&sci->sc_state_lock);
2511 		try_to_freeze();
2512 		spin_lock(&sci->sc_state_lock);
2513 	} else {
2514 		DEFINE_WAIT(wait);
2515 		int should_sleep = 1;
2516 
2517 		prepare_to_wait(&sci->sc_wait_daemon, &wait,
2518 				TASK_INTERRUPTIBLE);
2519 
2520 		if (sci->sc_seq_request != sci->sc_seq_done)
2521 			should_sleep = 0;
2522 		else if (sci->sc_flush_request)
2523 			should_sleep = 0;
2524 		else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
2525 			should_sleep = time_before(jiffies,
2526 					sci->sc_timer.expires);
2527 
2528 		if (should_sleep) {
2529 			spin_unlock(&sci->sc_state_lock);
2530 			schedule();
2531 			spin_lock(&sci->sc_state_lock);
2532 		}
2533 		finish_wait(&sci->sc_wait_daemon, &wait);
2534 		timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2535 			   time_after_eq(jiffies, sci->sc_timer.expires));
2536 
2537 		if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
2538 			set_nilfs_discontinued(nilfs);
2539 	}
2540 	goto loop;
2541 
2542  end_thread:
2543 	spin_unlock(&sci->sc_state_lock);
2544 
2545 	/* end sync. */
2546 	sci->sc_task = NULL;
2547 	wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
2548 	return 0;
2549 }
2550 
2551 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
2552 {
2553 	struct task_struct *t;
2554 
2555 	t = kthread_run(nilfs_segctor_thread, sci, "segctord");
2556 	if (IS_ERR(t)) {
2557 		int err = PTR_ERR(t);
2558 
2559 		printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
2560 		       err);
2561 		return err;
2562 	}
2563 	wait_event(sci->sc_wait_task, sci->sc_task != NULL);
2564 	return 0;
2565 }
2566 
2567 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
2568 	__acquires(&sci->sc_state_lock)
2569 	__releases(&sci->sc_state_lock)
2570 {
2571 	sci->sc_state |= NILFS_SEGCTOR_QUIT;
2572 
2573 	while (sci->sc_task) {
2574 		wake_up(&sci->sc_wait_daemon);
2575 		spin_unlock(&sci->sc_state_lock);
2576 		wait_event(sci->sc_wait_task, sci->sc_task == NULL);
2577 		spin_lock(&sci->sc_state_lock);
2578 	}
2579 }
2580 
2581 /*
2582  * Setup & clean-up functions
2583  */
2584 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
2585 					       struct nilfs_root *root)
2586 {
2587 	struct the_nilfs *nilfs = sb->s_fs_info;
2588 	struct nilfs_sc_info *sci;
2589 
2590 	sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2591 	if (!sci)
2592 		return NULL;
2593 
2594 	sci->sc_super = sb;
2595 
2596 	nilfs_get_root(root);
2597 	sci->sc_root = root;
2598 
2599 	init_waitqueue_head(&sci->sc_wait_request);
2600 	init_waitqueue_head(&sci->sc_wait_daemon);
2601 	init_waitqueue_head(&sci->sc_wait_task);
2602 	spin_lock_init(&sci->sc_state_lock);
2603 	INIT_LIST_HEAD(&sci->sc_dirty_files);
2604 	INIT_LIST_HEAD(&sci->sc_segbufs);
2605 	INIT_LIST_HEAD(&sci->sc_write_logs);
2606 	INIT_LIST_HEAD(&sci->sc_gc_inodes);
2607 	INIT_LIST_HEAD(&sci->sc_iput_queue);
2608 	INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func);
2609 	init_timer(&sci->sc_timer);
2610 
2611 	sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2612 	sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2613 	sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2614 
2615 	if (nilfs->ns_interval)
2616 		sci->sc_interval = HZ * nilfs->ns_interval;
2617 	if (nilfs->ns_watermark)
2618 		sci->sc_watermark = nilfs->ns_watermark;
2619 	return sci;
2620 }
2621 
2622 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2623 {
2624 	int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2625 
2626 	/* The segctord thread was stopped and its timer was removed.
2627 	   But some tasks remain. */
2628 	do {
2629 		struct nilfs_transaction_info ti;
2630 
2631 		nilfs_transaction_lock(sci->sc_super, &ti, 0);
2632 		ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
2633 		nilfs_transaction_unlock(sci->sc_super);
2634 
2635 		flush_work(&sci->sc_iput_work);
2636 
2637 	} while (ret && retrycount-- > 0);
2638 }
2639 
2640 /**
2641  * nilfs_segctor_destroy - destroy the segment constructor.
2642  * @sci: nilfs_sc_info
2643  *
2644  * nilfs_segctor_destroy() kills the segctord thread and frees
2645  * the nilfs_sc_info struct.
2646  * Caller must hold the segment semaphore.
2647  */
2648 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2649 {
2650 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2651 	int flag;
2652 
2653 	up_write(&nilfs->ns_segctor_sem);
2654 
2655 	spin_lock(&sci->sc_state_lock);
2656 	nilfs_segctor_kill_thread(sci);
2657 	flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2658 		|| sci->sc_seq_request != sci->sc_seq_done);
2659 	spin_unlock(&sci->sc_state_lock);
2660 
2661 	if (flush_work(&sci->sc_iput_work))
2662 		flag = true;
2663 
2664 	if (flag || !nilfs_segctor_confirm(sci))
2665 		nilfs_segctor_write_out(sci);
2666 
2667 	if (!list_empty(&sci->sc_dirty_files)) {
2668 		nilfs_warning(sci->sc_super, __func__,
2669 			      "dirty file(s) after the final construction\n");
2670 		nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
2671 	}
2672 
2673 	if (!list_empty(&sci->sc_iput_queue)) {
2674 		nilfs_warning(sci->sc_super, __func__,
2675 			      "iput queue is not empty\n");
2676 		nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1);
2677 	}
2678 
2679 	WARN_ON(!list_empty(&sci->sc_segbufs));
2680 	WARN_ON(!list_empty(&sci->sc_write_logs));
2681 
2682 	nilfs_put_root(sci->sc_root);
2683 
2684 	down_write(&nilfs->ns_segctor_sem);
2685 
2686 	del_timer_sync(&sci->sc_timer);
2687 	kfree(sci);
2688 }
2689 
2690 /**
2691  * nilfs_attach_log_writer - attach log writer
2692  * @sb: super block instance
2693  * @root: root object of the current filesystem tree
2694  *
2695  * This allocates a log writer object, initializes it, and starts the
2696  * log writer.
2697  *
2698  * Return Value: On success, 0 is returned. On error, one of the following
2699  * negative error code is returned.
2700  *
2701  * %-ENOMEM - Insufficient memory available.
2702  */
2703 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
2704 {
2705 	struct the_nilfs *nilfs = sb->s_fs_info;
2706 	int err;
2707 
2708 	if (nilfs->ns_writer) {
2709 		/*
2710 		 * This happens if the filesystem was remounted
2711 		 * read/write after nilfs_error degenerated it into a
2712 		 * read-only mount.
2713 		 */
2714 		nilfs_detach_log_writer(sb);
2715 	}
2716 
2717 	nilfs->ns_writer = nilfs_segctor_new(sb, root);
2718 	if (!nilfs->ns_writer)
2719 		return -ENOMEM;
2720 
2721 	err = nilfs_segctor_start_thread(nilfs->ns_writer);
2722 	if (err) {
2723 		kfree(nilfs->ns_writer);
2724 		nilfs->ns_writer = NULL;
2725 	}
2726 	return err;
2727 }
2728 
2729 /**
2730  * nilfs_detach_log_writer - destroy log writer
2731  * @sb: super block instance
2732  *
2733  * This kills log writer daemon, frees the log writer object, and
2734  * destroys list of dirty files.
2735  */
2736 void nilfs_detach_log_writer(struct super_block *sb)
2737 {
2738 	struct the_nilfs *nilfs = sb->s_fs_info;
2739 	LIST_HEAD(garbage_list);
2740 
2741 	down_write(&nilfs->ns_segctor_sem);
2742 	if (nilfs->ns_writer) {
2743 		nilfs_segctor_destroy(nilfs->ns_writer);
2744 		nilfs->ns_writer = NULL;
2745 	}
2746 
2747 	/* Force to free the list of dirty files */
2748 	spin_lock(&nilfs->ns_inode_lock);
2749 	if (!list_empty(&nilfs->ns_dirty_files)) {
2750 		list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
2751 		nilfs_warning(sb, __func__,
2752 			      "Hit dirty file after stopped log writer\n");
2753 	}
2754 	spin_unlock(&nilfs->ns_inode_lock);
2755 	up_write(&nilfs->ns_segctor_sem);
2756 
2757 	nilfs_dispose_list(nilfs, &garbage_list, 1);
2758 }
2759