xref: /openbmc/linux/fs/nilfs2/segment.c (revision 8b036556)
1 /*
2  * segment.c - NILFS segment constructor.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  *
22  */
23 
24 #include <linux/pagemap.h>
25 #include <linux/buffer_head.h>
26 #include <linux/writeback.h>
27 #include <linux/bio.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/freezer.h>
32 #include <linux/kthread.h>
33 #include <linux/crc32.h>
34 #include <linux/pagevec.h>
35 #include <linux/slab.h>
36 #include "nilfs.h"
37 #include "btnode.h"
38 #include "page.h"
39 #include "segment.h"
40 #include "sufile.h"
41 #include "cpfile.h"
42 #include "ifile.h"
43 #include "segbuf.h"
44 
45 
46 /*
47  * Segment constructor
48  */
49 #define SC_N_INODEVEC	16   /* Size of locally allocated inode vector */
50 
51 #define SC_MAX_SEGDELTA 64   /* Upper limit of the number of segments
52 				appended in collection retry loop */
53 
54 /* Construction mode */
55 enum {
56 	SC_LSEG_SR = 1,	/* Make a logical segment having a super root */
57 	SC_LSEG_DSYNC,	/* Flush data blocks of a given file and make
58 			   a logical segment without a super root */
59 	SC_FLUSH_FILE,	/* Flush data files, leads to segment writes without
60 			   creating a checkpoint */
61 	SC_FLUSH_DAT,	/* Flush DAT file. This also creates segments without
62 			   a checkpoint */
63 };
64 
65 /* Stage numbers of dirty block collection */
66 enum {
67 	NILFS_ST_INIT = 0,
68 	NILFS_ST_GC,		/* Collecting dirty blocks for GC */
69 	NILFS_ST_FILE,
70 	NILFS_ST_IFILE,
71 	NILFS_ST_CPFILE,
72 	NILFS_ST_SUFILE,
73 	NILFS_ST_DAT,
74 	NILFS_ST_SR,		/* Super root */
75 	NILFS_ST_DSYNC,		/* Data sync blocks */
76 	NILFS_ST_DONE,
77 };
78 
79 /* State flags of collection */
80 #define NILFS_CF_NODE		0x0001	/* Collecting node blocks */
81 #define NILFS_CF_IFILE_STARTED	0x0002	/* IFILE stage has started */
82 #define NILFS_CF_SUFREED	0x0004	/* segment usages has been freed */
83 #define NILFS_CF_HISTORY_MASK	(NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
84 
85 /* Operations depending on the construction mode and file type */
86 struct nilfs_sc_operations {
87 	int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
88 			    struct inode *);
89 	int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
90 			    struct inode *);
91 	int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
92 			    struct inode *);
93 	void (*write_data_binfo)(struct nilfs_sc_info *,
94 				 struct nilfs_segsum_pointer *,
95 				 union nilfs_binfo *);
96 	void (*write_node_binfo)(struct nilfs_sc_info *,
97 				 struct nilfs_segsum_pointer *,
98 				 union nilfs_binfo *);
99 };
100 
101 /*
102  * Other definitions
103  */
104 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
105 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
106 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
107 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
108 
109 #define nilfs_cnt32_gt(a, b)   \
110 	(typecheck(__u32, a) && typecheck(__u32, b) && \
111 	 ((__s32)(b) - (__s32)(a) < 0))
112 #define nilfs_cnt32_ge(a, b)   \
113 	(typecheck(__u32, a) && typecheck(__u32, b) && \
114 	 ((__s32)(a) - (__s32)(b) >= 0))
115 #define nilfs_cnt32_lt(a, b)  nilfs_cnt32_gt(b, a)
116 #define nilfs_cnt32_le(a, b)  nilfs_cnt32_ge(b, a)
117 
118 static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
119 {
120 	struct nilfs_transaction_info *cur_ti = current->journal_info;
121 	void *save = NULL;
122 
123 	if (cur_ti) {
124 		if (cur_ti->ti_magic == NILFS_TI_MAGIC)
125 			return ++cur_ti->ti_count;
126 		else {
127 			/*
128 			 * If journal_info field is occupied by other FS,
129 			 * it is saved and will be restored on
130 			 * nilfs_transaction_commit().
131 			 */
132 			printk(KERN_WARNING
133 			       "NILFS warning: journal info from a different "
134 			       "FS\n");
135 			save = current->journal_info;
136 		}
137 	}
138 	if (!ti) {
139 		ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
140 		if (!ti)
141 			return -ENOMEM;
142 		ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
143 	} else {
144 		ti->ti_flags = 0;
145 	}
146 	ti->ti_count = 0;
147 	ti->ti_save = save;
148 	ti->ti_magic = NILFS_TI_MAGIC;
149 	current->journal_info = ti;
150 	return 0;
151 }
152 
153 /**
154  * nilfs_transaction_begin - start indivisible file operations.
155  * @sb: super block
156  * @ti: nilfs_transaction_info
157  * @vacancy_check: flags for vacancy rate checks
158  *
159  * nilfs_transaction_begin() acquires a reader/writer semaphore, called
160  * the segment semaphore, to make a segment construction and write tasks
161  * exclusive.  The function is used with nilfs_transaction_commit() in pairs.
162  * The region enclosed by these two functions can be nested.  To avoid a
163  * deadlock, the semaphore is only acquired or released in the outermost call.
164  *
165  * This function allocates a nilfs_transaction_info struct to keep context
166  * information on it.  It is initialized and hooked onto the current task in
167  * the outermost call.  If a pre-allocated struct is given to @ti, it is used
168  * instead; otherwise a new struct is assigned from a slab.
169  *
170  * When @vacancy_check flag is set, this function will check the amount of
171  * free space, and will wait for the GC to reclaim disk space if low capacity.
172  *
173  * Return Value: On success, 0 is returned. On error, one of the following
174  * negative error code is returned.
175  *
176  * %-ENOMEM - Insufficient memory available.
177  *
178  * %-ENOSPC - No space left on device
179  */
180 int nilfs_transaction_begin(struct super_block *sb,
181 			    struct nilfs_transaction_info *ti,
182 			    int vacancy_check)
183 {
184 	struct the_nilfs *nilfs;
185 	int ret = nilfs_prepare_segment_lock(ti);
186 
187 	if (unlikely(ret < 0))
188 		return ret;
189 	if (ret > 0)
190 		return 0;
191 
192 	sb_start_intwrite(sb);
193 
194 	nilfs = sb->s_fs_info;
195 	down_read(&nilfs->ns_segctor_sem);
196 	if (vacancy_check && nilfs_near_disk_full(nilfs)) {
197 		up_read(&nilfs->ns_segctor_sem);
198 		ret = -ENOSPC;
199 		goto failed;
200 	}
201 	return 0;
202 
203  failed:
204 	ti = current->journal_info;
205 	current->journal_info = ti->ti_save;
206 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
207 		kmem_cache_free(nilfs_transaction_cachep, ti);
208 	sb_end_intwrite(sb);
209 	return ret;
210 }
211 
212 /**
213  * nilfs_transaction_commit - commit indivisible file operations.
214  * @sb: super block
215  *
216  * nilfs_transaction_commit() releases the read semaphore which is
217  * acquired by nilfs_transaction_begin(). This is only performed
218  * in outermost call of this function.  If a commit flag is set,
219  * nilfs_transaction_commit() sets a timer to start the segment
220  * constructor.  If a sync flag is set, it starts construction
221  * directly.
222  */
223 int nilfs_transaction_commit(struct super_block *sb)
224 {
225 	struct nilfs_transaction_info *ti = current->journal_info;
226 	struct the_nilfs *nilfs = sb->s_fs_info;
227 	int err = 0;
228 
229 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
230 	ti->ti_flags |= NILFS_TI_COMMIT;
231 	if (ti->ti_count > 0) {
232 		ti->ti_count--;
233 		return 0;
234 	}
235 	if (nilfs->ns_writer) {
236 		struct nilfs_sc_info *sci = nilfs->ns_writer;
237 
238 		if (ti->ti_flags & NILFS_TI_COMMIT)
239 			nilfs_segctor_start_timer(sci);
240 		if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
241 			nilfs_segctor_do_flush(sci, 0);
242 	}
243 	up_read(&nilfs->ns_segctor_sem);
244 	current->journal_info = ti->ti_save;
245 
246 	if (ti->ti_flags & NILFS_TI_SYNC)
247 		err = nilfs_construct_segment(sb);
248 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
249 		kmem_cache_free(nilfs_transaction_cachep, ti);
250 	sb_end_intwrite(sb);
251 	return err;
252 }
253 
254 void nilfs_transaction_abort(struct super_block *sb)
255 {
256 	struct nilfs_transaction_info *ti = current->journal_info;
257 	struct the_nilfs *nilfs = sb->s_fs_info;
258 
259 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
260 	if (ti->ti_count > 0) {
261 		ti->ti_count--;
262 		return;
263 	}
264 	up_read(&nilfs->ns_segctor_sem);
265 
266 	current->journal_info = ti->ti_save;
267 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
268 		kmem_cache_free(nilfs_transaction_cachep, ti);
269 	sb_end_intwrite(sb);
270 }
271 
272 void nilfs_relax_pressure_in_lock(struct super_block *sb)
273 {
274 	struct the_nilfs *nilfs = sb->s_fs_info;
275 	struct nilfs_sc_info *sci = nilfs->ns_writer;
276 
277 	if (!sci || !sci->sc_flush_request)
278 		return;
279 
280 	set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
281 	up_read(&nilfs->ns_segctor_sem);
282 
283 	down_write(&nilfs->ns_segctor_sem);
284 	if (sci->sc_flush_request &&
285 	    test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
286 		struct nilfs_transaction_info *ti = current->journal_info;
287 
288 		ti->ti_flags |= NILFS_TI_WRITER;
289 		nilfs_segctor_do_immediate_flush(sci);
290 		ti->ti_flags &= ~NILFS_TI_WRITER;
291 	}
292 	downgrade_write(&nilfs->ns_segctor_sem);
293 }
294 
295 static void nilfs_transaction_lock(struct super_block *sb,
296 				   struct nilfs_transaction_info *ti,
297 				   int gcflag)
298 {
299 	struct nilfs_transaction_info *cur_ti = current->journal_info;
300 	struct the_nilfs *nilfs = sb->s_fs_info;
301 	struct nilfs_sc_info *sci = nilfs->ns_writer;
302 
303 	WARN_ON(cur_ti);
304 	ti->ti_flags = NILFS_TI_WRITER;
305 	ti->ti_count = 0;
306 	ti->ti_save = cur_ti;
307 	ti->ti_magic = NILFS_TI_MAGIC;
308 	current->journal_info = ti;
309 
310 	for (;;) {
311 		down_write(&nilfs->ns_segctor_sem);
312 		if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
313 			break;
314 
315 		nilfs_segctor_do_immediate_flush(sci);
316 
317 		up_write(&nilfs->ns_segctor_sem);
318 		yield();
319 	}
320 	if (gcflag)
321 		ti->ti_flags |= NILFS_TI_GC;
322 }
323 
324 static void nilfs_transaction_unlock(struct super_block *sb)
325 {
326 	struct nilfs_transaction_info *ti = current->journal_info;
327 	struct the_nilfs *nilfs = sb->s_fs_info;
328 
329 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
330 	BUG_ON(ti->ti_count > 0);
331 
332 	up_write(&nilfs->ns_segctor_sem);
333 	current->journal_info = ti->ti_save;
334 }
335 
336 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
337 					    struct nilfs_segsum_pointer *ssp,
338 					    unsigned bytes)
339 {
340 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
341 	unsigned blocksize = sci->sc_super->s_blocksize;
342 	void *p;
343 
344 	if (unlikely(ssp->offset + bytes > blocksize)) {
345 		ssp->offset = 0;
346 		BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
347 					       &segbuf->sb_segsum_buffers));
348 		ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
349 	}
350 	p = ssp->bh->b_data + ssp->offset;
351 	ssp->offset += bytes;
352 	return p;
353 }
354 
355 /**
356  * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
357  * @sci: nilfs_sc_info
358  */
359 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
360 {
361 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
362 	struct buffer_head *sumbh;
363 	unsigned sumbytes;
364 	unsigned flags = 0;
365 	int err;
366 
367 	if (nilfs_doing_gc())
368 		flags = NILFS_SS_GC;
369 	err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
370 	if (unlikely(err))
371 		return err;
372 
373 	sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
374 	sumbytes = segbuf->sb_sum.sumbytes;
375 	sci->sc_finfo_ptr.bh = sumbh;  sci->sc_finfo_ptr.offset = sumbytes;
376 	sci->sc_binfo_ptr.bh = sumbh;  sci->sc_binfo_ptr.offset = sumbytes;
377 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
378 	return 0;
379 }
380 
381 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
382 {
383 	sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
384 	if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
385 		return -E2BIG; /* The current segment is filled up
386 				  (internal code) */
387 	sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
388 	return nilfs_segctor_reset_segment_buffer(sci);
389 }
390 
391 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
392 {
393 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
394 	int err;
395 
396 	if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
397 		err = nilfs_segctor_feed_segment(sci);
398 		if (err)
399 			return err;
400 		segbuf = sci->sc_curseg;
401 	}
402 	err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
403 	if (likely(!err))
404 		segbuf->sb_sum.flags |= NILFS_SS_SR;
405 	return err;
406 }
407 
408 /*
409  * Functions for making segment summary and payloads
410  */
411 static int nilfs_segctor_segsum_block_required(
412 	struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
413 	unsigned binfo_size)
414 {
415 	unsigned blocksize = sci->sc_super->s_blocksize;
416 	/* Size of finfo and binfo is enough small against blocksize */
417 
418 	return ssp->offset + binfo_size +
419 		(!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
420 		blocksize;
421 }
422 
423 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
424 				      struct inode *inode)
425 {
426 	sci->sc_curseg->sb_sum.nfinfo++;
427 	sci->sc_binfo_ptr = sci->sc_finfo_ptr;
428 	nilfs_segctor_map_segsum_entry(
429 		sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
430 
431 	if (NILFS_I(inode)->i_root &&
432 	    !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
433 		set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
434 	/* skip finfo */
435 }
436 
437 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
438 				    struct inode *inode)
439 {
440 	struct nilfs_finfo *finfo;
441 	struct nilfs_inode_info *ii;
442 	struct nilfs_segment_buffer *segbuf;
443 	__u64 cno;
444 
445 	if (sci->sc_blk_cnt == 0)
446 		return;
447 
448 	ii = NILFS_I(inode);
449 
450 	if (test_bit(NILFS_I_GCINODE, &ii->i_state))
451 		cno = ii->i_cno;
452 	else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
453 		cno = 0;
454 	else
455 		cno = sci->sc_cno;
456 
457 	finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
458 						 sizeof(*finfo));
459 	finfo->fi_ino = cpu_to_le64(inode->i_ino);
460 	finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
461 	finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
462 	finfo->fi_cno = cpu_to_le64(cno);
463 
464 	segbuf = sci->sc_curseg;
465 	segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
466 		sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
467 	sci->sc_finfo_ptr = sci->sc_binfo_ptr;
468 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
469 }
470 
471 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
472 					struct buffer_head *bh,
473 					struct inode *inode,
474 					unsigned binfo_size)
475 {
476 	struct nilfs_segment_buffer *segbuf;
477 	int required, err = 0;
478 
479  retry:
480 	segbuf = sci->sc_curseg;
481 	required = nilfs_segctor_segsum_block_required(
482 		sci, &sci->sc_binfo_ptr, binfo_size);
483 	if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
484 		nilfs_segctor_end_finfo(sci, inode);
485 		err = nilfs_segctor_feed_segment(sci);
486 		if (err)
487 			return err;
488 		goto retry;
489 	}
490 	if (unlikely(required)) {
491 		err = nilfs_segbuf_extend_segsum(segbuf);
492 		if (unlikely(err))
493 			goto failed;
494 	}
495 	if (sci->sc_blk_cnt == 0)
496 		nilfs_segctor_begin_finfo(sci, inode);
497 
498 	nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
499 	/* Substitution to vblocknr is delayed until update_blocknr() */
500 	nilfs_segbuf_add_file_buffer(segbuf, bh);
501 	sci->sc_blk_cnt++;
502  failed:
503 	return err;
504 }
505 
506 /*
507  * Callback functions that enumerate, mark, and collect dirty blocks
508  */
509 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
510 				   struct buffer_head *bh, struct inode *inode)
511 {
512 	int err;
513 
514 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
515 	if (err < 0)
516 		return err;
517 
518 	err = nilfs_segctor_add_file_block(sci, bh, inode,
519 					   sizeof(struct nilfs_binfo_v));
520 	if (!err)
521 		sci->sc_datablk_cnt++;
522 	return err;
523 }
524 
525 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
526 				   struct buffer_head *bh,
527 				   struct inode *inode)
528 {
529 	return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
530 }
531 
532 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
533 				   struct buffer_head *bh,
534 				   struct inode *inode)
535 {
536 	WARN_ON(!buffer_dirty(bh));
537 	return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
538 }
539 
540 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
541 					struct nilfs_segsum_pointer *ssp,
542 					union nilfs_binfo *binfo)
543 {
544 	struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
545 		sci, ssp, sizeof(*binfo_v));
546 	*binfo_v = binfo->bi_v;
547 }
548 
549 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
550 					struct nilfs_segsum_pointer *ssp,
551 					union nilfs_binfo *binfo)
552 {
553 	__le64 *vblocknr = nilfs_segctor_map_segsum_entry(
554 		sci, ssp, sizeof(*vblocknr));
555 	*vblocknr = binfo->bi_v.bi_vblocknr;
556 }
557 
558 static struct nilfs_sc_operations nilfs_sc_file_ops = {
559 	.collect_data = nilfs_collect_file_data,
560 	.collect_node = nilfs_collect_file_node,
561 	.collect_bmap = nilfs_collect_file_bmap,
562 	.write_data_binfo = nilfs_write_file_data_binfo,
563 	.write_node_binfo = nilfs_write_file_node_binfo,
564 };
565 
566 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
567 				  struct buffer_head *bh, struct inode *inode)
568 {
569 	int err;
570 
571 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
572 	if (err < 0)
573 		return err;
574 
575 	err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
576 	if (!err)
577 		sci->sc_datablk_cnt++;
578 	return err;
579 }
580 
581 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
582 				  struct buffer_head *bh, struct inode *inode)
583 {
584 	WARN_ON(!buffer_dirty(bh));
585 	return nilfs_segctor_add_file_block(sci, bh, inode,
586 					    sizeof(struct nilfs_binfo_dat));
587 }
588 
589 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
590 				       struct nilfs_segsum_pointer *ssp,
591 				       union nilfs_binfo *binfo)
592 {
593 	__le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
594 							  sizeof(*blkoff));
595 	*blkoff = binfo->bi_dat.bi_blkoff;
596 }
597 
598 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
599 				       struct nilfs_segsum_pointer *ssp,
600 				       union nilfs_binfo *binfo)
601 {
602 	struct nilfs_binfo_dat *binfo_dat =
603 		nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
604 	*binfo_dat = binfo->bi_dat;
605 }
606 
607 static struct nilfs_sc_operations nilfs_sc_dat_ops = {
608 	.collect_data = nilfs_collect_dat_data,
609 	.collect_node = nilfs_collect_file_node,
610 	.collect_bmap = nilfs_collect_dat_bmap,
611 	.write_data_binfo = nilfs_write_dat_data_binfo,
612 	.write_node_binfo = nilfs_write_dat_node_binfo,
613 };
614 
615 static struct nilfs_sc_operations nilfs_sc_dsync_ops = {
616 	.collect_data = nilfs_collect_file_data,
617 	.collect_node = NULL,
618 	.collect_bmap = NULL,
619 	.write_data_binfo = nilfs_write_file_data_binfo,
620 	.write_node_binfo = NULL,
621 };
622 
623 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
624 					      struct list_head *listp,
625 					      size_t nlimit,
626 					      loff_t start, loff_t end)
627 {
628 	struct address_space *mapping = inode->i_mapping;
629 	struct pagevec pvec;
630 	pgoff_t index = 0, last = ULONG_MAX;
631 	size_t ndirties = 0;
632 	int i;
633 
634 	if (unlikely(start != 0 || end != LLONG_MAX)) {
635 		/*
636 		 * A valid range is given for sync-ing data pages. The
637 		 * range is rounded to per-page; extra dirty buffers
638 		 * may be included if blocksize < pagesize.
639 		 */
640 		index = start >> PAGE_SHIFT;
641 		last = end >> PAGE_SHIFT;
642 	}
643 	pagevec_init(&pvec, 0);
644  repeat:
645 	if (unlikely(index > last) ||
646 	    !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
647 				min_t(pgoff_t, last - index,
648 				      PAGEVEC_SIZE - 1) + 1))
649 		return ndirties;
650 
651 	for (i = 0; i < pagevec_count(&pvec); i++) {
652 		struct buffer_head *bh, *head;
653 		struct page *page = pvec.pages[i];
654 
655 		if (unlikely(page->index > last))
656 			break;
657 
658 		lock_page(page);
659 		if (!page_has_buffers(page))
660 			create_empty_buffers(page, 1 << inode->i_blkbits, 0);
661 		unlock_page(page);
662 
663 		bh = head = page_buffers(page);
664 		do {
665 			if (!buffer_dirty(bh) || buffer_async_write(bh))
666 				continue;
667 			get_bh(bh);
668 			list_add_tail(&bh->b_assoc_buffers, listp);
669 			ndirties++;
670 			if (unlikely(ndirties >= nlimit)) {
671 				pagevec_release(&pvec);
672 				cond_resched();
673 				return ndirties;
674 			}
675 		} while (bh = bh->b_this_page, bh != head);
676 	}
677 	pagevec_release(&pvec);
678 	cond_resched();
679 	goto repeat;
680 }
681 
682 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
683 					    struct list_head *listp)
684 {
685 	struct nilfs_inode_info *ii = NILFS_I(inode);
686 	struct address_space *mapping = &ii->i_btnode_cache;
687 	struct pagevec pvec;
688 	struct buffer_head *bh, *head;
689 	unsigned int i;
690 	pgoff_t index = 0;
691 
692 	pagevec_init(&pvec, 0);
693 
694 	while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
695 				  PAGEVEC_SIZE)) {
696 		for (i = 0; i < pagevec_count(&pvec); i++) {
697 			bh = head = page_buffers(pvec.pages[i]);
698 			do {
699 				if (buffer_dirty(bh) &&
700 						!buffer_async_write(bh)) {
701 					get_bh(bh);
702 					list_add_tail(&bh->b_assoc_buffers,
703 						      listp);
704 				}
705 				bh = bh->b_this_page;
706 			} while (bh != head);
707 		}
708 		pagevec_release(&pvec);
709 		cond_resched();
710 	}
711 }
712 
713 static void nilfs_dispose_list(struct the_nilfs *nilfs,
714 			       struct list_head *head, int force)
715 {
716 	struct nilfs_inode_info *ii, *n;
717 	struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
718 	unsigned nv = 0;
719 
720 	while (!list_empty(head)) {
721 		spin_lock(&nilfs->ns_inode_lock);
722 		list_for_each_entry_safe(ii, n, head, i_dirty) {
723 			list_del_init(&ii->i_dirty);
724 			if (force) {
725 				if (unlikely(ii->i_bh)) {
726 					brelse(ii->i_bh);
727 					ii->i_bh = NULL;
728 				}
729 			} else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
730 				set_bit(NILFS_I_QUEUED, &ii->i_state);
731 				list_add_tail(&ii->i_dirty,
732 					      &nilfs->ns_dirty_files);
733 				continue;
734 			}
735 			ivec[nv++] = ii;
736 			if (nv == SC_N_INODEVEC)
737 				break;
738 		}
739 		spin_unlock(&nilfs->ns_inode_lock);
740 
741 		for (pii = ivec; nv > 0; pii++, nv--)
742 			iput(&(*pii)->vfs_inode);
743 	}
744 }
745 
746 static void nilfs_iput_work_func(struct work_struct *work)
747 {
748 	struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info,
749 						 sc_iput_work);
750 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
751 
752 	nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0);
753 }
754 
755 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
756 				     struct nilfs_root *root)
757 {
758 	int ret = 0;
759 
760 	if (nilfs_mdt_fetch_dirty(root->ifile))
761 		ret++;
762 	if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
763 		ret++;
764 	if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
765 		ret++;
766 	if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
767 		ret++;
768 	return ret;
769 }
770 
771 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
772 {
773 	return list_empty(&sci->sc_dirty_files) &&
774 		!test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
775 		sci->sc_nfreesegs == 0 &&
776 		(!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
777 }
778 
779 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
780 {
781 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
782 	int ret = 0;
783 
784 	if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
785 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
786 
787 	spin_lock(&nilfs->ns_inode_lock);
788 	if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
789 		ret++;
790 
791 	spin_unlock(&nilfs->ns_inode_lock);
792 	return ret;
793 }
794 
795 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
796 {
797 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
798 
799 	nilfs_mdt_clear_dirty(sci->sc_root->ifile);
800 	nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
801 	nilfs_mdt_clear_dirty(nilfs->ns_sufile);
802 	nilfs_mdt_clear_dirty(nilfs->ns_dat);
803 }
804 
805 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
806 {
807 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
808 	struct buffer_head *bh_cp;
809 	struct nilfs_checkpoint *raw_cp;
810 	int err;
811 
812 	/* XXX: this interface will be changed */
813 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
814 					  &raw_cp, &bh_cp);
815 	if (likely(!err)) {
816 		/* The following code is duplicated with cpfile.  But, it is
817 		   needed to collect the checkpoint even if it was not newly
818 		   created */
819 		mark_buffer_dirty(bh_cp);
820 		nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
821 		nilfs_cpfile_put_checkpoint(
822 			nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
823 	} else
824 		WARN_ON(err == -EINVAL || err == -ENOENT);
825 
826 	return err;
827 }
828 
829 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
830 {
831 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
832 	struct buffer_head *bh_cp;
833 	struct nilfs_checkpoint *raw_cp;
834 	int err;
835 
836 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
837 					  &raw_cp, &bh_cp);
838 	if (unlikely(err)) {
839 		WARN_ON(err == -EINVAL || err == -ENOENT);
840 		goto failed_ibh;
841 	}
842 	raw_cp->cp_snapshot_list.ssl_next = 0;
843 	raw_cp->cp_snapshot_list.ssl_prev = 0;
844 	raw_cp->cp_inodes_count =
845 		cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count));
846 	raw_cp->cp_blocks_count =
847 		cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count));
848 	raw_cp->cp_nblk_inc =
849 		cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
850 	raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
851 	raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
852 
853 	if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
854 		nilfs_checkpoint_clear_minor(raw_cp);
855 	else
856 		nilfs_checkpoint_set_minor(raw_cp);
857 
858 	nilfs_write_inode_common(sci->sc_root->ifile,
859 				 &raw_cp->cp_ifile_inode, 1);
860 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
861 	return 0;
862 
863  failed_ibh:
864 	return err;
865 }
866 
867 static void nilfs_fill_in_file_bmap(struct inode *ifile,
868 				    struct nilfs_inode_info *ii)
869 
870 {
871 	struct buffer_head *ibh;
872 	struct nilfs_inode *raw_inode;
873 
874 	if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
875 		ibh = ii->i_bh;
876 		BUG_ON(!ibh);
877 		raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
878 						  ibh);
879 		nilfs_bmap_write(ii->i_bmap, raw_inode);
880 		nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
881 	}
882 }
883 
884 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
885 {
886 	struct nilfs_inode_info *ii;
887 
888 	list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
889 		nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
890 		set_bit(NILFS_I_COLLECTED, &ii->i_state);
891 	}
892 }
893 
894 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
895 					     struct the_nilfs *nilfs)
896 {
897 	struct buffer_head *bh_sr;
898 	struct nilfs_super_root *raw_sr;
899 	unsigned isz, srsz;
900 
901 	bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
902 	raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
903 	isz = nilfs->ns_inode_size;
904 	srsz = NILFS_SR_BYTES(isz);
905 
906 	raw_sr->sr_bytes = cpu_to_le16(srsz);
907 	raw_sr->sr_nongc_ctime
908 		= cpu_to_le64(nilfs_doing_gc() ?
909 			      nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
910 	raw_sr->sr_flags = 0;
911 
912 	nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
913 				 NILFS_SR_DAT_OFFSET(isz), 1);
914 	nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
915 				 NILFS_SR_CPFILE_OFFSET(isz), 1);
916 	nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
917 				 NILFS_SR_SUFILE_OFFSET(isz), 1);
918 	memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
919 }
920 
921 static void nilfs_redirty_inodes(struct list_head *head)
922 {
923 	struct nilfs_inode_info *ii;
924 
925 	list_for_each_entry(ii, head, i_dirty) {
926 		if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
927 			clear_bit(NILFS_I_COLLECTED, &ii->i_state);
928 	}
929 }
930 
931 static void nilfs_drop_collected_inodes(struct list_head *head)
932 {
933 	struct nilfs_inode_info *ii;
934 
935 	list_for_each_entry(ii, head, i_dirty) {
936 		if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
937 			continue;
938 
939 		clear_bit(NILFS_I_INODE_SYNC, &ii->i_state);
940 		set_bit(NILFS_I_UPDATED, &ii->i_state);
941 	}
942 }
943 
944 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
945 				       struct inode *inode,
946 				       struct list_head *listp,
947 				       int (*collect)(struct nilfs_sc_info *,
948 						      struct buffer_head *,
949 						      struct inode *))
950 {
951 	struct buffer_head *bh, *n;
952 	int err = 0;
953 
954 	if (collect) {
955 		list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
956 			list_del_init(&bh->b_assoc_buffers);
957 			err = collect(sci, bh, inode);
958 			brelse(bh);
959 			if (unlikely(err))
960 				goto dispose_buffers;
961 		}
962 		return 0;
963 	}
964 
965  dispose_buffers:
966 	while (!list_empty(listp)) {
967 		bh = list_first_entry(listp, struct buffer_head,
968 				      b_assoc_buffers);
969 		list_del_init(&bh->b_assoc_buffers);
970 		brelse(bh);
971 	}
972 	return err;
973 }
974 
975 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
976 {
977 	/* Remaining number of blocks within segment buffer */
978 	return sci->sc_segbuf_nblocks -
979 		(sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
980 }
981 
982 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
983 				   struct inode *inode,
984 				   struct nilfs_sc_operations *sc_ops)
985 {
986 	LIST_HEAD(data_buffers);
987 	LIST_HEAD(node_buffers);
988 	int err;
989 
990 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
991 		size_t n, rest = nilfs_segctor_buffer_rest(sci);
992 
993 		n = nilfs_lookup_dirty_data_buffers(
994 			inode, &data_buffers, rest + 1, 0, LLONG_MAX);
995 		if (n > rest) {
996 			err = nilfs_segctor_apply_buffers(
997 				sci, inode, &data_buffers,
998 				sc_ops->collect_data);
999 			BUG_ON(!err); /* always receive -E2BIG or true error */
1000 			goto break_or_fail;
1001 		}
1002 	}
1003 	nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
1004 
1005 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1006 		err = nilfs_segctor_apply_buffers(
1007 			sci, inode, &data_buffers, sc_ops->collect_data);
1008 		if (unlikely(err)) {
1009 			/* dispose node list */
1010 			nilfs_segctor_apply_buffers(
1011 				sci, inode, &node_buffers, NULL);
1012 			goto break_or_fail;
1013 		}
1014 		sci->sc_stage.flags |= NILFS_CF_NODE;
1015 	}
1016 	/* Collect node */
1017 	err = nilfs_segctor_apply_buffers(
1018 		sci, inode, &node_buffers, sc_ops->collect_node);
1019 	if (unlikely(err))
1020 		goto break_or_fail;
1021 
1022 	nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1023 	err = nilfs_segctor_apply_buffers(
1024 		sci, inode, &node_buffers, sc_ops->collect_bmap);
1025 	if (unlikely(err))
1026 		goto break_or_fail;
1027 
1028 	nilfs_segctor_end_finfo(sci, inode);
1029 	sci->sc_stage.flags &= ~NILFS_CF_NODE;
1030 
1031  break_or_fail:
1032 	return err;
1033 }
1034 
1035 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1036 					 struct inode *inode)
1037 {
1038 	LIST_HEAD(data_buffers);
1039 	size_t n, rest = nilfs_segctor_buffer_rest(sci);
1040 	int err;
1041 
1042 	n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1043 					    sci->sc_dsync_start,
1044 					    sci->sc_dsync_end);
1045 
1046 	err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1047 					  nilfs_collect_file_data);
1048 	if (!err) {
1049 		nilfs_segctor_end_finfo(sci, inode);
1050 		BUG_ON(n > rest);
1051 		/* always receive -E2BIG or true error if n > rest */
1052 	}
1053 	return err;
1054 }
1055 
1056 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1057 {
1058 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1059 	struct list_head *head;
1060 	struct nilfs_inode_info *ii;
1061 	size_t ndone;
1062 	int err = 0;
1063 
1064 	switch (sci->sc_stage.scnt) {
1065 	case NILFS_ST_INIT:
1066 		/* Pre-processes */
1067 		sci->sc_stage.flags = 0;
1068 
1069 		if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1070 			sci->sc_nblk_inc = 0;
1071 			sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1072 			if (mode == SC_LSEG_DSYNC) {
1073 				sci->sc_stage.scnt = NILFS_ST_DSYNC;
1074 				goto dsync_mode;
1075 			}
1076 		}
1077 
1078 		sci->sc_stage.dirty_file_ptr = NULL;
1079 		sci->sc_stage.gc_inode_ptr = NULL;
1080 		if (mode == SC_FLUSH_DAT) {
1081 			sci->sc_stage.scnt = NILFS_ST_DAT;
1082 			goto dat_stage;
1083 		}
1084 		sci->sc_stage.scnt++;  /* Fall through */
1085 	case NILFS_ST_GC:
1086 		if (nilfs_doing_gc()) {
1087 			head = &sci->sc_gc_inodes;
1088 			ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1089 						head, i_dirty);
1090 			list_for_each_entry_continue(ii, head, i_dirty) {
1091 				err = nilfs_segctor_scan_file(
1092 					sci, &ii->vfs_inode,
1093 					&nilfs_sc_file_ops);
1094 				if (unlikely(err)) {
1095 					sci->sc_stage.gc_inode_ptr = list_entry(
1096 						ii->i_dirty.prev,
1097 						struct nilfs_inode_info,
1098 						i_dirty);
1099 					goto break_or_fail;
1100 				}
1101 				set_bit(NILFS_I_COLLECTED, &ii->i_state);
1102 			}
1103 			sci->sc_stage.gc_inode_ptr = NULL;
1104 		}
1105 		sci->sc_stage.scnt++;  /* Fall through */
1106 	case NILFS_ST_FILE:
1107 		head = &sci->sc_dirty_files;
1108 		ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1109 					i_dirty);
1110 		list_for_each_entry_continue(ii, head, i_dirty) {
1111 			clear_bit(NILFS_I_DIRTY, &ii->i_state);
1112 
1113 			err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1114 						      &nilfs_sc_file_ops);
1115 			if (unlikely(err)) {
1116 				sci->sc_stage.dirty_file_ptr =
1117 					list_entry(ii->i_dirty.prev,
1118 						   struct nilfs_inode_info,
1119 						   i_dirty);
1120 				goto break_or_fail;
1121 			}
1122 			/* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1123 			/* XXX: required ? */
1124 		}
1125 		sci->sc_stage.dirty_file_ptr = NULL;
1126 		if (mode == SC_FLUSH_FILE) {
1127 			sci->sc_stage.scnt = NILFS_ST_DONE;
1128 			return 0;
1129 		}
1130 		sci->sc_stage.scnt++;
1131 		sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1132 		/* Fall through */
1133 	case NILFS_ST_IFILE:
1134 		err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
1135 					      &nilfs_sc_file_ops);
1136 		if (unlikely(err))
1137 			break;
1138 		sci->sc_stage.scnt++;
1139 		/* Creating a checkpoint */
1140 		err = nilfs_segctor_create_checkpoint(sci);
1141 		if (unlikely(err))
1142 			break;
1143 		/* Fall through */
1144 	case NILFS_ST_CPFILE:
1145 		err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1146 					      &nilfs_sc_file_ops);
1147 		if (unlikely(err))
1148 			break;
1149 		sci->sc_stage.scnt++;  /* Fall through */
1150 	case NILFS_ST_SUFILE:
1151 		err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
1152 					 sci->sc_nfreesegs, &ndone);
1153 		if (unlikely(err)) {
1154 			nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1155 						  sci->sc_freesegs, ndone,
1156 						  NULL);
1157 			break;
1158 		}
1159 		sci->sc_stage.flags |= NILFS_CF_SUFREED;
1160 
1161 		err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1162 					      &nilfs_sc_file_ops);
1163 		if (unlikely(err))
1164 			break;
1165 		sci->sc_stage.scnt++;  /* Fall through */
1166 	case NILFS_ST_DAT:
1167  dat_stage:
1168 		err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
1169 					      &nilfs_sc_dat_ops);
1170 		if (unlikely(err))
1171 			break;
1172 		if (mode == SC_FLUSH_DAT) {
1173 			sci->sc_stage.scnt = NILFS_ST_DONE;
1174 			return 0;
1175 		}
1176 		sci->sc_stage.scnt++;  /* Fall through */
1177 	case NILFS_ST_SR:
1178 		if (mode == SC_LSEG_SR) {
1179 			/* Appending a super root */
1180 			err = nilfs_segctor_add_super_root(sci);
1181 			if (unlikely(err))
1182 				break;
1183 		}
1184 		/* End of a logical segment */
1185 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1186 		sci->sc_stage.scnt = NILFS_ST_DONE;
1187 		return 0;
1188 	case NILFS_ST_DSYNC:
1189  dsync_mode:
1190 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1191 		ii = sci->sc_dsync_inode;
1192 		if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1193 			break;
1194 
1195 		err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1196 		if (unlikely(err))
1197 			break;
1198 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1199 		sci->sc_stage.scnt = NILFS_ST_DONE;
1200 		return 0;
1201 	case NILFS_ST_DONE:
1202 		return 0;
1203 	default:
1204 		BUG();
1205 	}
1206 
1207  break_or_fail:
1208 	return err;
1209 }
1210 
1211 /**
1212  * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1213  * @sci: nilfs_sc_info
1214  * @nilfs: nilfs object
1215  */
1216 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1217 					    struct the_nilfs *nilfs)
1218 {
1219 	struct nilfs_segment_buffer *segbuf, *prev;
1220 	__u64 nextnum;
1221 	int err, alloc = 0;
1222 
1223 	segbuf = nilfs_segbuf_new(sci->sc_super);
1224 	if (unlikely(!segbuf))
1225 		return -ENOMEM;
1226 
1227 	if (list_empty(&sci->sc_write_logs)) {
1228 		nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
1229 				 nilfs->ns_pseg_offset, nilfs);
1230 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1231 			nilfs_shift_to_next_segment(nilfs);
1232 			nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1233 		}
1234 
1235 		segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1236 		nextnum = nilfs->ns_nextnum;
1237 
1238 		if (nilfs->ns_segnum == nilfs->ns_nextnum)
1239 			/* Start from the head of a new full segment */
1240 			alloc++;
1241 	} else {
1242 		/* Continue logs */
1243 		prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1244 		nilfs_segbuf_map_cont(segbuf, prev);
1245 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
1246 		nextnum = prev->sb_nextnum;
1247 
1248 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1249 			nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1250 			segbuf->sb_sum.seg_seq++;
1251 			alloc++;
1252 		}
1253 	}
1254 
1255 	err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
1256 	if (err)
1257 		goto failed;
1258 
1259 	if (alloc) {
1260 		err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1261 		if (err)
1262 			goto failed;
1263 	}
1264 	nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1265 
1266 	BUG_ON(!list_empty(&sci->sc_segbufs));
1267 	list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
1268 	sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1269 	return 0;
1270 
1271  failed:
1272 	nilfs_segbuf_free(segbuf);
1273 	return err;
1274 }
1275 
1276 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1277 					 struct the_nilfs *nilfs, int nadd)
1278 {
1279 	struct nilfs_segment_buffer *segbuf, *prev;
1280 	struct inode *sufile = nilfs->ns_sufile;
1281 	__u64 nextnextnum;
1282 	LIST_HEAD(list);
1283 	int err, ret, i;
1284 
1285 	prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1286 	/*
1287 	 * Since the segment specified with nextnum might be allocated during
1288 	 * the previous construction, the buffer including its segusage may
1289 	 * not be dirty.  The following call ensures that the buffer is dirty
1290 	 * and will pin the buffer on memory until the sufile is written.
1291 	 */
1292 	err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
1293 	if (unlikely(err))
1294 		return err;
1295 
1296 	for (i = 0; i < nadd; i++) {
1297 		/* extend segment info */
1298 		err = -ENOMEM;
1299 		segbuf = nilfs_segbuf_new(sci->sc_super);
1300 		if (unlikely(!segbuf))
1301 			goto failed;
1302 
1303 		/* map this buffer to region of segment on-disk */
1304 		nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1305 		sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1306 
1307 		/* allocate the next next full segment */
1308 		err = nilfs_sufile_alloc(sufile, &nextnextnum);
1309 		if (unlikely(err))
1310 			goto failed_segbuf;
1311 
1312 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1313 		nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1314 
1315 		list_add_tail(&segbuf->sb_list, &list);
1316 		prev = segbuf;
1317 	}
1318 	list_splice_tail(&list, &sci->sc_segbufs);
1319 	return 0;
1320 
1321  failed_segbuf:
1322 	nilfs_segbuf_free(segbuf);
1323  failed:
1324 	list_for_each_entry(segbuf, &list, sb_list) {
1325 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1326 		WARN_ON(ret); /* never fails */
1327 	}
1328 	nilfs_destroy_logs(&list);
1329 	return err;
1330 }
1331 
1332 static void nilfs_free_incomplete_logs(struct list_head *logs,
1333 				       struct the_nilfs *nilfs)
1334 {
1335 	struct nilfs_segment_buffer *segbuf, *prev;
1336 	struct inode *sufile = nilfs->ns_sufile;
1337 	int ret;
1338 
1339 	segbuf = NILFS_FIRST_SEGBUF(logs);
1340 	if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1341 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1342 		WARN_ON(ret); /* never fails */
1343 	}
1344 	if (atomic_read(&segbuf->sb_err)) {
1345 		/* Case 1: The first segment failed */
1346 		if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1347 			/* Case 1a:  Partial segment appended into an existing
1348 			   segment */
1349 			nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1350 						segbuf->sb_fseg_end);
1351 		else /* Case 1b:  New full segment */
1352 			set_nilfs_discontinued(nilfs);
1353 	}
1354 
1355 	prev = segbuf;
1356 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1357 		if (prev->sb_nextnum != segbuf->sb_nextnum) {
1358 			ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1359 			WARN_ON(ret); /* never fails */
1360 		}
1361 		if (atomic_read(&segbuf->sb_err) &&
1362 		    segbuf->sb_segnum != nilfs->ns_nextnum)
1363 			/* Case 2: extended segment (!= next) failed */
1364 			nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
1365 		prev = segbuf;
1366 	}
1367 }
1368 
1369 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1370 					  struct inode *sufile)
1371 {
1372 	struct nilfs_segment_buffer *segbuf;
1373 	unsigned long live_blocks;
1374 	int ret;
1375 
1376 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1377 		live_blocks = segbuf->sb_sum.nblocks +
1378 			(segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1379 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1380 						     live_blocks,
1381 						     sci->sc_seg_ctime);
1382 		WARN_ON(ret); /* always succeed because the segusage is dirty */
1383 	}
1384 }
1385 
1386 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
1387 {
1388 	struct nilfs_segment_buffer *segbuf;
1389 	int ret;
1390 
1391 	segbuf = NILFS_FIRST_SEGBUF(logs);
1392 	ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1393 					     segbuf->sb_pseg_start -
1394 					     segbuf->sb_fseg_start, 0);
1395 	WARN_ON(ret); /* always succeed because the segusage is dirty */
1396 
1397 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1398 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1399 						     0, 0);
1400 		WARN_ON(ret); /* always succeed */
1401 	}
1402 }
1403 
1404 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1405 					    struct nilfs_segment_buffer *last,
1406 					    struct inode *sufile)
1407 {
1408 	struct nilfs_segment_buffer *segbuf = last;
1409 	int ret;
1410 
1411 	list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1412 		sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1413 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1414 		WARN_ON(ret);
1415 	}
1416 	nilfs_truncate_logs(&sci->sc_segbufs, last);
1417 }
1418 
1419 
1420 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1421 				 struct the_nilfs *nilfs, int mode)
1422 {
1423 	struct nilfs_cstage prev_stage = sci->sc_stage;
1424 	int err, nadd = 1;
1425 
1426 	/* Collection retry loop */
1427 	for (;;) {
1428 		sci->sc_nblk_this_inc = 0;
1429 		sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1430 
1431 		err = nilfs_segctor_reset_segment_buffer(sci);
1432 		if (unlikely(err))
1433 			goto failed;
1434 
1435 		err = nilfs_segctor_collect_blocks(sci, mode);
1436 		sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1437 		if (!err)
1438 			break;
1439 
1440 		if (unlikely(err != -E2BIG))
1441 			goto failed;
1442 
1443 		/* The current segment is filled up */
1444 		if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
1445 			break;
1446 
1447 		nilfs_clear_logs(&sci->sc_segbufs);
1448 
1449 		if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1450 			err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1451 							sci->sc_freesegs,
1452 							sci->sc_nfreesegs,
1453 							NULL);
1454 			WARN_ON(err); /* do not happen */
1455 			sci->sc_stage.flags &= ~NILFS_CF_SUFREED;
1456 		}
1457 
1458 		err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1459 		if (unlikely(err))
1460 			return err;
1461 
1462 		nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1463 		sci->sc_stage = prev_stage;
1464 	}
1465 	nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1466 	return 0;
1467 
1468  failed:
1469 	return err;
1470 }
1471 
1472 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1473 				      struct buffer_head *new_bh)
1474 {
1475 	BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1476 
1477 	list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1478 	/* The caller must release old_bh */
1479 }
1480 
1481 static int
1482 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1483 				     struct nilfs_segment_buffer *segbuf,
1484 				     int mode)
1485 {
1486 	struct inode *inode = NULL;
1487 	sector_t blocknr;
1488 	unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1489 	unsigned long nblocks = 0, ndatablk = 0;
1490 	struct nilfs_sc_operations *sc_op = NULL;
1491 	struct nilfs_segsum_pointer ssp;
1492 	struct nilfs_finfo *finfo = NULL;
1493 	union nilfs_binfo binfo;
1494 	struct buffer_head *bh, *bh_org;
1495 	ino_t ino = 0;
1496 	int err = 0;
1497 
1498 	if (!nfinfo)
1499 		goto out;
1500 
1501 	blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1502 	ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1503 	ssp.offset = sizeof(struct nilfs_segment_summary);
1504 
1505 	list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1506 		if (bh == segbuf->sb_super_root)
1507 			break;
1508 		if (!finfo) {
1509 			finfo =	nilfs_segctor_map_segsum_entry(
1510 				sci, &ssp, sizeof(*finfo));
1511 			ino = le64_to_cpu(finfo->fi_ino);
1512 			nblocks = le32_to_cpu(finfo->fi_nblocks);
1513 			ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1514 
1515 			inode = bh->b_page->mapping->host;
1516 
1517 			if (mode == SC_LSEG_DSYNC)
1518 				sc_op = &nilfs_sc_dsync_ops;
1519 			else if (ino == NILFS_DAT_INO)
1520 				sc_op = &nilfs_sc_dat_ops;
1521 			else /* file blocks */
1522 				sc_op = &nilfs_sc_file_ops;
1523 		}
1524 		bh_org = bh;
1525 		get_bh(bh_org);
1526 		err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1527 					&binfo);
1528 		if (bh != bh_org)
1529 			nilfs_list_replace_buffer(bh_org, bh);
1530 		brelse(bh_org);
1531 		if (unlikely(err))
1532 			goto failed_bmap;
1533 
1534 		if (ndatablk > 0)
1535 			sc_op->write_data_binfo(sci, &ssp, &binfo);
1536 		else
1537 			sc_op->write_node_binfo(sci, &ssp, &binfo);
1538 
1539 		blocknr++;
1540 		if (--nblocks == 0) {
1541 			finfo = NULL;
1542 			if (--nfinfo == 0)
1543 				break;
1544 		} else if (ndatablk > 0)
1545 			ndatablk--;
1546 	}
1547  out:
1548 	return 0;
1549 
1550  failed_bmap:
1551 	return err;
1552 }
1553 
1554 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1555 {
1556 	struct nilfs_segment_buffer *segbuf;
1557 	int err;
1558 
1559 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1560 		err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1561 		if (unlikely(err))
1562 			return err;
1563 		nilfs_segbuf_fill_in_segsum(segbuf);
1564 	}
1565 	return 0;
1566 }
1567 
1568 static void nilfs_begin_page_io(struct page *page)
1569 {
1570 	if (!page || PageWriteback(page))
1571 		/* For split b-tree node pages, this function may be called
1572 		   twice.  We ignore the 2nd or later calls by this check. */
1573 		return;
1574 
1575 	lock_page(page);
1576 	clear_page_dirty_for_io(page);
1577 	set_page_writeback(page);
1578 	unlock_page(page);
1579 }
1580 
1581 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci)
1582 {
1583 	struct nilfs_segment_buffer *segbuf;
1584 	struct page *bd_page = NULL, *fs_page = NULL;
1585 
1586 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1587 		struct buffer_head *bh;
1588 
1589 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1590 				    b_assoc_buffers) {
1591 			set_buffer_async_write(bh);
1592 			if (bh->b_page != bd_page) {
1593 				if (bd_page) {
1594 					lock_page(bd_page);
1595 					clear_page_dirty_for_io(bd_page);
1596 					set_page_writeback(bd_page);
1597 					unlock_page(bd_page);
1598 				}
1599 				bd_page = bh->b_page;
1600 			}
1601 		}
1602 
1603 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1604 				    b_assoc_buffers) {
1605 			set_buffer_async_write(bh);
1606 			if (bh == segbuf->sb_super_root) {
1607 				if (bh->b_page != bd_page) {
1608 					lock_page(bd_page);
1609 					clear_page_dirty_for_io(bd_page);
1610 					set_page_writeback(bd_page);
1611 					unlock_page(bd_page);
1612 					bd_page = bh->b_page;
1613 				}
1614 				break;
1615 			}
1616 			if (bh->b_page != fs_page) {
1617 				nilfs_begin_page_io(fs_page);
1618 				fs_page = bh->b_page;
1619 			}
1620 		}
1621 	}
1622 	if (bd_page) {
1623 		lock_page(bd_page);
1624 		clear_page_dirty_for_io(bd_page);
1625 		set_page_writeback(bd_page);
1626 		unlock_page(bd_page);
1627 	}
1628 	nilfs_begin_page_io(fs_page);
1629 }
1630 
1631 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1632 			       struct the_nilfs *nilfs)
1633 {
1634 	int ret;
1635 
1636 	ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
1637 	list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
1638 	return ret;
1639 }
1640 
1641 static void nilfs_end_page_io(struct page *page, int err)
1642 {
1643 	if (!page)
1644 		return;
1645 
1646 	if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
1647 		/*
1648 		 * For b-tree node pages, this function may be called twice
1649 		 * or more because they might be split in a segment.
1650 		 */
1651 		if (PageDirty(page)) {
1652 			/*
1653 			 * For pages holding split b-tree node buffers, dirty
1654 			 * flag on the buffers may be cleared discretely.
1655 			 * In that case, the page is once redirtied for
1656 			 * remaining buffers, and it must be cancelled if
1657 			 * all the buffers get cleaned later.
1658 			 */
1659 			lock_page(page);
1660 			if (nilfs_page_buffers_clean(page))
1661 				__nilfs_clear_page_dirty(page);
1662 			unlock_page(page);
1663 		}
1664 		return;
1665 	}
1666 
1667 	if (!err) {
1668 		if (!nilfs_page_buffers_clean(page))
1669 			__set_page_dirty_nobuffers(page);
1670 		ClearPageError(page);
1671 	} else {
1672 		__set_page_dirty_nobuffers(page);
1673 		SetPageError(page);
1674 	}
1675 
1676 	end_page_writeback(page);
1677 }
1678 
1679 static void nilfs_abort_logs(struct list_head *logs, int err)
1680 {
1681 	struct nilfs_segment_buffer *segbuf;
1682 	struct page *bd_page = NULL, *fs_page = NULL;
1683 	struct buffer_head *bh;
1684 
1685 	if (list_empty(logs))
1686 		return;
1687 
1688 	list_for_each_entry(segbuf, logs, sb_list) {
1689 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1690 				    b_assoc_buffers) {
1691 			clear_buffer_async_write(bh);
1692 			if (bh->b_page != bd_page) {
1693 				if (bd_page)
1694 					end_page_writeback(bd_page);
1695 				bd_page = bh->b_page;
1696 			}
1697 		}
1698 
1699 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1700 				    b_assoc_buffers) {
1701 			clear_buffer_async_write(bh);
1702 			if (bh == segbuf->sb_super_root) {
1703 				if (bh->b_page != bd_page) {
1704 					end_page_writeback(bd_page);
1705 					bd_page = bh->b_page;
1706 				}
1707 				break;
1708 			}
1709 			if (bh->b_page != fs_page) {
1710 				nilfs_end_page_io(fs_page, err);
1711 				fs_page = bh->b_page;
1712 			}
1713 		}
1714 	}
1715 	if (bd_page)
1716 		end_page_writeback(bd_page);
1717 
1718 	nilfs_end_page_io(fs_page, err);
1719 }
1720 
1721 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
1722 					     struct the_nilfs *nilfs, int err)
1723 {
1724 	LIST_HEAD(logs);
1725 	int ret;
1726 
1727 	list_splice_tail_init(&sci->sc_write_logs, &logs);
1728 	ret = nilfs_wait_on_logs(&logs);
1729 	nilfs_abort_logs(&logs, ret ? : err);
1730 
1731 	list_splice_tail_init(&sci->sc_segbufs, &logs);
1732 	nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
1733 	nilfs_free_incomplete_logs(&logs, nilfs);
1734 
1735 	if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1736 		ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1737 						sci->sc_freesegs,
1738 						sci->sc_nfreesegs,
1739 						NULL);
1740 		WARN_ON(ret); /* do not happen */
1741 	}
1742 
1743 	nilfs_destroy_logs(&logs);
1744 }
1745 
1746 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1747 				   struct nilfs_segment_buffer *segbuf)
1748 {
1749 	nilfs->ns_segnum = segbuf->sb_segnum;
1750 	nilfs->ns_nextnum = segbuf->sb_nextnum;
1751 	nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1752 		+ segbuf->sb_sum.nblocks;
1753 	nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1754 	nilfs->ns_ctime = segbuf->sb_sum.ctime;
1755 }
1756 
1757 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1758 {
1759 	struct nilfs_segment_buffer *segbuf;
1760 	struct page *bd_page = NULL, *fs_page = NULL;
1761 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1762 	int update_sr = false;
1763 
1764 	list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
1765 		struct buffer_head *bh;
1766 
1767 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1768 				    b_assoc_buffers) {
1769 			set_buffer_uptodate(bh);
1770 			clear_buffer_dirty(bh);
1771 			clear_buffer_async_write(bh);
1772 			if (bh->b_page != bd_page) {
1773 				if (bd_page)
1774 					end_page_writeback(bd_page);
1775 				bd_page = bh->b_page;
1776 			}
1777 		}
1778 		/*
1779 		 * We assume that the buffers which belong to the same page
1780 		 * continue over the buffer list.
1781 		 * Under this assumption, the last BHs of pages is
1782 		 * identifiable by the discontinuity of bh->b_page
1783 		 * (page != fs_page).
1784 		 *
1785 		 * For B-tree node blocks, however, this assumption is not
1786 		 * guaranteed.  The cleanup code of B-tree node pages needs
1787 		 * special care.
1788 		 */
1789 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1790 				    b_assoc_buffers) {
1791 			set_buffer_uptodate(bh);
1792 			clear_buffer_dirty(bh);
1793 			clear_buffer_async_write(bh);
1794 			clear_buffer_delay(bh);
1795 			clear_buffer_nilfs_volatile(bh);
1796 			clear_buffer_nilfs_redirected(bh);
1797 			if (bh == segbuf->sb_super_root) {
1798 				if (bh->b_page != bd_page) {
1799 					end_page_writeback(bd_page);
1800 					bd_page = bh->b_page;
1801 				}
1802 				update_sr = true;
1803 				break;
1804 			}
1805 			if (bh->b_page != fs_page) {
1806 				nilfs_end_page_io(fs_page, 0);
1807 				fs_page = bh->b_page;
1808 			}
1809 		}
1810 
1811 		if (!nilfs_segbuf_simplex(segbuf)) {
1812 			if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
1813 				set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1814 				sci->sc_lseg_stime = jiffies;
1815 			}
1816 			if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
1817 				clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1818 		}
1819 	}
1820 	/*
1821 	 * Since pages may continue over multiple segment buffers,
1822 	 * end of the last page must be checked outside of the loop.
1823 	 */
1824 	if (bd_page)
1825 		end_page_writeback(bd_page);
1826 
1827 	nilfs_end_page_io(fs_page, 0);
1828 
1829 	nilfs_drop_collected_inodes(&sci->sc_dirty_files);
1830 
1831 	if (nilfs_doing_gc())
1832 		nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
1833 	else
1834 		nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
1835 
1836 	sci->sc_nblk_inc += sci->sc_nblk_this_inc;
1837 
1838 	segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1839 	nilfs_set_next_segment(nilfs, segbuf);
1840 
1841 	if (update_sr) {
1842 		nilfs->ns_flushed_device = 0;
1843 		nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
1844 				       segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
1845 
1846 		clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
1847 		clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
1848 		set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1849 		nilfs_segctor_clear_metadata_dirty(sci);
1850 	} else
1851 		clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1852 }
1853 
1854 static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
1855 {
1856 	int ret;
1857 
1858 	ret = nilfs_wait_on_logs(&sci->sc_write_logs);
1859 	if (!ret) {
1860 		nilfs_segctor_complete_write(sci);
1861 		nilfs_destroy_logs(&sci->sc_write_logs);
1862 	}
1863 	return ret;
1864 }
1865 
1866 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
1867 					     struct the_nilfs *nilfs)
1868 {
1869 	struct nilfs_inode_info *ii, *n;
1870 	struct inode *ifile = sci->sc_root->ifile;
1871 
1872 	spin_lock(&nilfs->ns_inode_lock);
1873  retry:
1874 	list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
1875 		if (!ii->i_bh) {
1876 			struct buffer_head *ibh;
1877 			int err;
1878 
1879 			spin_unlock(&nilfs->ns_inode_lock);
1880 			err = nilfs_ifile_get_inode_block(
1881 				ifile, ii->vfs_inode.i_ino, &ibh);
1882 			if (unlikely(err)) {
1883 				nilfs_warning(sci->sc_super, __func__,
1884 					      "failed to get inode block.\n");
1885 				return err;
1886 			}
1887 			mark_buffer_dirty(ibh);
1888 			nilfs_mdt_mark_dirty(ifile);
1889 			spin_lock(&nilfs->ns_inode_lock);
1890 			if (likely(!ii->i_bh))
1891 				ii->i_bh = ibh;
1892 			else
1893 				brelse(ibh);
1894 			goto retry;
1895 		}
1896 
1897 		clear_bit(NILFS_I_QUEUED, &ii->i_state);
1898 		set_bit(NILFS_I_BUSY, &ii->i_state);
1899 		list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
1900 	}
1901 	spin_unlock(&nilfs->ns_inode_lock);
1902 
1903 	return 0;
1904 }
1905 
1906 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
1907 					     struct the_nilfs *nilfs)
1908 {
1909 	struct nilfs_inode_info *ii, *n;
1910 	int during_mount = !(sci->sc_super->s_flags & MS_ACTIVE);
1911 	int defer_iput = false;
1912 
1913 	spin_lock(&nilfs->ns_inode_lock);
1914 	list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
1915 		if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
1916 		    test_bit(NILFS_I_DIRTY, &ii->i_state))
1917 			continue;
1918 
1919 		clear_bit(NILFS_I_BUSY, &ii->i_state);
1920 		brelse(ii->i_bh);
1921 		ii->i_bh = NULL;
1922 		list_del_init(&ii->i_dirty);
1923 		if (!ii->vfs_inode.i_nlink || during_mount) {
1924 			/*
1925 			 * Defer calling iput() to avoid deadlocks if
1926 			 * i_nlink == 0 or mount is not yet finished.
1927 			 */
1928 			list_add_tail(&ii->i_dirty, &sci->sc_iput_queue);
1929 			defer_iput = true;
1930 		} else {
1931 			spin_unlock(&nilfs->ns_inode_lock);
1932 			iput(&ii->vfs_inode);
1933 			spin_lock(&nilfs->ns_inode_lock);
1934 		}
1935 	}
1936 	spin_unlock(&nilfs->ns_inode_lock);
1937 
1938 	if (defer_iput)
1939 		schedule_work(&sci->sc_iput_work);
1940 }
1941 
1942 /*
1943  * Main procedure of segment constructor
1944  */
1945 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
1946 {
1947 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1948 	int err;
1949 
1950 	sci->sc_stage.scnt = NILFS_ST_INIT;
1951 	sci->sc_cno = nilfs->ns_cno;
1952 
1953 	err = nilfs_segctor_collect_dirty_files(sci, nilfs);
1954 	if (unlikely(err))
1955 		goto out;
1956 
1957 	if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
1958 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
1959 
1960 	if (nilfs_segctor_clean(sci))
1961 		goto out;
1962 
1963 	do {
1964 		sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
1965 
1966 		err = nilfs_segctor_begin_construction(sci, nilfs);
1967 		if (unlikely(err))
1968 			goto out;
1969 
1970 		/* Update time stamp */
1971 		sci->sc_seg_ctime = get_seconds();
1972 
1973 		err = nilfs_segctor_collect(sci, nilfs, mode);
1974 		if (unlikely(err))
1975 			goto failed;
1976 
1977 		/* Avoid empty segment */
1978 		if (sci->sc_stage.scnt == NILFS_ST_DONE &&
1979 		    nilfs_segbuf_empty(sci->sc_curseg)) {
1980 			nilfs_segctor_abort_construction(sci, nilfs, 1);
1981 			goto out;
1982 		}
1983 
1984 		err = nilfs_segctor_assign(sci, mode);
1985 		if (unlikely(err))
1986 			goto failed;
1987 
1988 		if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
1989 			nilfs_segctor_fill_in_file_bmap(sci);
1990 
1991 		if (mode == SC_LSEG_SR &&
1992 		    sci->sc_stage.scnt >= NILFS_ST_CPFILE) {
1993 			err = nilfs_segctor_fill_in_checkpoint(sci);
1994 			if (unlikely(err))
1995 				goto failed_to_write;
1996 
1997 			nilfs_segctor_fill_in_super_root(sci, nilfs);
1998 		}
1999 		nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
2000 
2001 		/* Write partial segments */
2002 		nilfs_segctor_prepare_write(sci);
2003 
2004 		nilfs_add_checksums_on_logs(&sci->sc_segbufs,
2005 					    nilfs->ns_crc_seed);
2006 
2007 		err = nilfs_segctor_write(sci, nilfs);
2008 		if (unlikely(err))
2009 			goto failed_to_write;
2010 
2011 		if (sci->sc_stage.scnt == NILFS_ST_DONE ||
2012 		    nilfs->ns_blocksize_bits != PAGE_CACHE_SHIFT) {
2013 			/*
2014 			 * At this point, we avoid double buffering
2015 			 * for blocksize < pagesize because page dirty
2016 			 * flag is turned off during write and dirty
2017 			 * buffers are not properly collected for
2018 			 * pages crossing over segments.
2019 			 */
2020 			err = nilfs_segctor_wait(sci);
2021 			if (err)
2022 				goto failed_to_write;
2023 		}
2024 	} while (sci->sc_stage.scnt != NILFS_ST_DONE);
2025 
2026  out:
2027 	nilfs_segctor_drop_written_files(sci, nilfs);
2028 	return err;
2029 
2030  failed_to_write:
2031 	if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2032 		nilfs_redirty_inodes(&sci->sc_dirty_files);
2033 
2034  failed:
2035 	if (nilfs_doing_gc())
2036 		nilfs_redirty_inodes(&sci->sc_gc_inodes);
2037 	nilfs_segctor_abort_construction(sci, nilfs, err);
2038 	goto out;
2039 }
2040 
2041 /**
2042  * nilfs_segctor_start_timer - set timer of background write
2043  * @sci: nilfs_sc_info
2044  *
2045  * If the timer has already been set, it ignores the new request.
2046  * This function MUST be called within a section locking the segment
2047  * semaphore.
2048  */
2049 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2050 {
2051 	spin_lock(&sci->sc_state_lock);
2052 	if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2053 		sci->sc_timer.expires = jiffies + sci->sc_interval;
2054 		add_timer(&sci->sc_timer);
2055 		sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2056 	}
2057 	spin_unlock(&sci->sc_state_lock);
2058 }
2059 
2060 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2061 {
2062 	spin_lock(&sci->sc_state_lock);
2063 	if (!(sci->sc_flush_request & (1 << bn))) {
2064 		unsigned long prev_req = sci->sc_flush_request;
2065 
2066 		sci->sc_flush_request |= (1 << bn);
2067 		if (!prev_req)
2068 			wake_up(&sci->sc_wait_daemon);
2069 	}
2070 	spin_unlock(&sci->sc_state_lock);
2071 }
2072 
2073 /**
2074  * nilfs_flush_segment - trigger a segment construction for resource control
2075  * @sb: super block
2076  * @ino: inode number of the file to be flushed out.
2077  */
2078 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2079 {
2080 	struct the_nilfs *nilfs = sb->s_fs_info;
2081 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2082 
2083 	if (!sci || nilfs_doing_construction())
2084 		return;
2085 	nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2086 					/* assign bit 0 to data files */
2087 }
2088 
2089 struct nilfs_segctor_wait_request {
2090 	wait_queue_t	wq;
2091 	__u32		seq;
2092 	int		err;
2093 	atomic_t	done;
2094 };
2095 
2096 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2097 {
2098 	struct nilfs_segctor_wait_request wait_req;
2099 	int err = 0;
2100 
2101 	spin_lock(&sci->sc_state_lock);
2102 	init_wait(&wait_req.wq);
2103 	wait_req.err = 0;
2104 	atomic_set(&wait_req.done, 0);
2105 	wait_req.seq = ++sci->sc_seq_request;
2106 	spin_unlock(&sci->sc_state_lock);
2107 
2108 	init_waitqueue_entry(&wait_req.wq, current);
2109 	add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2110 	set_current_state(TASK_INTERRUPTIBLE);
2111 	wake_up(&sci->sc_wait_daemon);
2112 
2113 	for (;;) {
2114 		if (atomic_read(&wait_req.done)) {
2115 			err = wait_req.err;
2116 			break;
2117 		}
2118 		if (!signal_pending(current)) {
2119 			schedule();
2120 			continue;
2121 		}
2122 		err = -ERESTARTSYS;
2123 		break;
2124 	}
2125 	finish_wait(&sci->sc_wait_request, &wait_req.wq);
2126 	return err;
2127 }
2128 
2129 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
2130 {
2131 	struct nilfs_segctor_wait_request *wrq, *n;
2132 	unsigned long flags;
2133 
2134 	spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2135 	list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
2136 				 wq.task_list) {
2137 		if (!atomic_read(&wrq->done) &&
2138 		    nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
2139 			wrq->err = err;
2140 			atomic_set(&wrq->done, 1);
2141 		}
2142 		if (atomic_read(&wrq->done)) {
2143 			wrq->wq.func(&wrq->wq,
2144 				     TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2145 				     0, NULL);
2146 		}
2147 	}
2148 	spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2149 }
2150 
2151 /**
2152  * nilfs_construct_segment - construct a logical segment
2153  * @sb: super block
2154  *
2155  * Return Value: On success, 0 is retured. On errors, one of the following
2156  * negative error code is returned.
2157  *
2158  * %-EROFS - Read only filesystem.
2159  *
2160  * %-EIO - I/O error
2161  *
2162  * %-ENOSPC - No space left on device (only in a panic state).
2163  *
2164  * %-ERESTARTSYS - Interrupted.
2165  *
2166  * %-ENOMEM - Insufficient memory available.
2167  */
2168 int nilfs_construct_segment(struct super_block *sb)
2169 {
2170 	struct the_nilfs *nilfs = sb->s_fs_info;
2171 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2172 	struct nilfs_transaction_info *ti;
2173 	int err;
2174 
2175 	if (!sci)
2176 		return -EROFS;
2177 
2178 	/* A call inside transactions causes a deadlock. */
2179 	BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2180 
2181 	err = nilfs_segctor_sync(sci);
2182 	return err;
2183 }
2184 
2185 /**
2186  * nilfs_construct_dsync_segment - construct a data-only logical segment
2187  * @sb: super block
2188  * @inode: inode whose data blocks should be written out
2189  * @start: start byte offset
2190  * @end: end byte offset (inclusive)
2191  *
2192  * Return Value: On success, 0 is retured. On errors, one of the following
2193  * negative error code is returned.
2194  *
2195  * %-EROFS - Read only filesystem.
2196  *
2197  * %-EIO - I/O error
2198  *
2199  * %-ENOSPC - No space left on device (only in a panic state).
2200  *
2201  * %-ERESTARTSYS - Interrupted.
2202  *
2203  * %-ENOMEM - Insufficient memory available.
2204  */
2205 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2206 				  loff_t start, loff_t end)
2207 {
2208 	struct the_nilfs *nilfs = sb->s_fs_info;
2209 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2210 	struct nilfs_inode_info *ii;
2211 	struct nilfs_transaction_info ti;
2212 	int err = 0;
2213 
2214 	if (!sci)
2215 		return -EROFS;
2216 
2217 	nilfs_transaction_lock(sb, &ti, 0);
2218 
2219 	ii = NILFS_I(inode);
2220 	if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) ||
2221 	    nilfs_test_opt(nilfs, STRICT_ORDER) ||
2222 	    test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2223 	    nilfs_discontinued(nilfs)) {
2224 		nilfs_transaction_unlock(sb);
2225 		err = nilfs_segctor_sync(sci);
2226 		return err;
2227 	}
2228 
2229 	spin_lock(&nilfs->ns_inode_lock);
2230 	if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2231 	    !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2232 		spin_unlock(&nilfs->ns_inode_lock);
2233 		nilfs_transaction_unlock(sb);
2234 		return 0;
2235 	}
2236 	spin_unlock(&nilfs->ns_inode_lock);
2237 	sci->sc_dsync_inode = ii;
2238 	sci->sc_dsync_start = start;
2239 	sci->sc_dsync_end = end;
2240 
2241 	err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2242 	if (!err)
2243 		nilfs->ns_flushed_device = 0;
2244 
2245 	nilfs_transaction_unlock(sb);
2246 	return err;
2247 }
2248 
2249 #define FLUSH_FILE_BIT	(0x1) /* data file only */
2250 #define FLUSH_DAT_BIT	(1 << NILFS_DAT_INO) /* DAT only */
2251 
2252 /**
2253  * nilfs_segctor_accept - record accepted sequence count of log-write requests
2254  * @sci: segment constructor object
2255  */
2256 static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
2257 {
2258 	spin_lock(&sci->sc_state_lock);
2259 	sci->sc_seq_accepted = sci->sc_seq_request;
2260 	spin_unlock(&sci->sc_state_lock);
2261 	del_timer_sync(&sci->sc_timer);
2262 }
2263 
2264 /**
2265  * nilfs_segctor_notify - notify the result of request to caller threads
2266  * @sci: segment constructor object
2267  * @mode: mode of log forming
2268  * @err: error code to be notified
2269  */
2270 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
2271 {
2272 	/* Clear requests (even when the construction failed) */
2273 	spin_lock(&sci->sc_state_lock);
2274 
2275 	if (mode == SC_LSEG_SR) {
2276 		sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2277 		sci->sc_seq_done = sci->sc_seq_accepted;
2278 		nilfs_segctor_wakeup(sci, err);
2279 		sci->sc_flush_request = 0;
2280 	} else {
2281 		if (mode == SC_FLUSH_FILE)
2282 			sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2283 		else if (mode == SC_FLUSH_DAT)
2284 			sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2285 
2286 		/* re-enable timer if checkpoint creation was not done */
2287 		if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2288 		    time_before(jiffies, sci->sc_timer.expires))
2289 			add_timer(&sci->sc_timer);
2290 	}
2291 	spin_unlock(&sci->sc_state_lock);
2292 }
2293 
2294 /**
2295  * nilfs_segctor_construct - form logs and write them to disk
2296  * @sci: segment constructor object
2297  * @mode: mode of log forming
2298  */
2299 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
2300 {
2301 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2302 	struct nilfs_super_block **sbp;
2303 	int err = 0;
2304 
2305 	nilfs_segctor_accept(sci);
2306 
2307 	if (nilfs_discontinued(nilfs))
2308 		mode = SC_LSEG_SR;
2309 	if (!nilfs_segctor_confirm(sci))
2310 		err = nilfs_segctor_do_construct(sci, mode);
2311 
2312 	if (likely(!err)) {
2313 		if (mode != SC_FLUSH_DAT)
2314 			atomic_set(&nilfs->ns_ndirtyblks, 0);
2315 		if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2316 		    nilfs_discontinued(nilfs)) {
2317 			down_write(&nilfs->ns_sem);
2318 			err = -EIO;
2319 			sbp = nilfs_prepare_super(sci->sc_super,
2320 						  nilfs_sb_will_flip(nilfs));
2321 			if (likely(sbp)) {
2322 				nilfs_set_log_cursor(sbp[0], nilfs);
2323 				err = nilfs_commit_super(sci->sc_super,
2324 							 NILFS_SB_COMMIT);
2325 			}
2326 			up_write(&nilfs->ns_sem);
2327 		}
2328 	}
2329 
2330 	nilfs_segctor_notify(sci, mode, err);
2331 	return err;
2332 }
2333 
2334 static void nilfs_construction_timeout(unsigned long data)
2335 {
2336 	struct task_struct *p = (struct task_struct *)data;
2337 	wake_up_process(p);
2338 }
2339 
2340 static void
2341 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2342 {
2343 	struct nilfs_inode_info *ii, *n;
2344 
2345 	list_for_each_entry_safe(ii, n, head, i_dirty) {
2346 		if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2347 			continue;
2348 		list_del_init(&ii->i_dirty);
2349 		truncate_inode_pages(&ii->vfs_inode.i_data, 0);
2350 		nilfs_btnode_cache_clear(&ii->i_btnode_cache);
2351 		iput(&ii->vfs_inode);
2352 	}
2353 }
2354 
2355 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2356 			 void **kbufs)
2357 {
2358 	struct the_nilfs *nilfs = sb->s_fs_info;
2359 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2360 	struct nilfs_transaction_info ti;
2361 	int err;
2362 
2363 	if (unlikely(!sci))
2364 		return -EROFS;
2365 
2366 	nilfs_transaction_lock(sb, &ti, 1);
2367 
2368 	err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
2369 	if (unlikely(err))
2370 		goto out_unlock;
2371 
2372 	err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2373 	if (unlikely(err)) {
2374 		nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
2375 		goto out_unlock;
2376 	}
2377 
2378 	sci->sc_freesegs = kbufs[4];
2379 	sci->sc_nfreesegs = argv[4].v_nmembs;
2380 	list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
2381 
2382 	for (;;) {
2383 		err = nilfs_segctor_construct(sci, SC_LSEG_SR);
2384 		nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2385 
2386 		if (likely(!err))
2387 			break;
2388 
2389 		nilfs_warning(sb, __func__,
2390 			      "segment construction failed. (err=%d)", err);
2391 		set_current_state(TASK_INTERRUPTIBLE);
2392 		schedule_timeout(sci->sc_interval);
2393 	}
2394 	if (nilfs_test_opt(nilfs, DISCARD)) {
2395 		int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
2396 						 sci->sc_nfreesegs);
2397 		if (ret) {
2398 			printk(KERN_WARNING
2399 			       "NILFS warning: error %d on discard request, "
2400 			       "turning discards off for the device\n", ret);
2401 			nilfs_clear_opt(nilfs, DISCARD);
2402 		}
2403 	}
2404 
2405  out_unlock:
2406 	sci->sc_freesegs = NULL;
2407 	sci->sc_nfreesegs = 0;
2408 	nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
2409 	nilfs_transaction_unlock(sb);
2410 	return err;
2411 }
2412 
2413 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2414 {
2415 	struct nilfs_transaction_info ti;
2416 
2417 	nilfs_transaction_lock(sci->sc_super, &ti, 0);
2418 	nilfs_segctor_construct(sci, mode);
2419 
2420 	/*
2421 	 * Unclosed segment should be retried.  We do this using sc_timer.
2422 	 * Timeout of sc_timer will invoke complete construction which leads
2423 	 * to close the current logical segment.
2424 	 */
2425 	if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2426 		nilfs_segctor_start_timer(sci);
2427 
2428 	nilfs_transaction_unlock(sci->sc_super);
2429 }
2430 
2431 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2432 {
2433 	int mode = 0;
2434 	int err;
2435 
2436 	spin_lock(&sci->sc_state_lock);
2437 	mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2438 		SC_FLUSH_DAT : SC_FLUSH_FILE;
2439 	spin_unlock(&sci->sc_state_lock);
2440 
2441 	if (mode) {
2442 		err = nilfs_segctor_do_construct(sci, mode);
2443 
2444 		spin_lock(&sci->sc_state_lock);
2445 		sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2446 			~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2447 		spin_unlock(&sci->sc_state_lock);
2448 	}
2449 	clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2450 }
2451 
2452 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2453 {
2454 	if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2455 	    time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2456 		if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2457 			return SC_FLUSH_FILE;
2458 		else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2459 			return SC_FLUSH_DAT;
2460 	}
2461 	return SC_LSEG_SR;
2462 }
2463 
2464 /**
2465  * nilfs_segctor_thread - main loop of the segment constructor thread.
2466  * @arg: pointer to a struct nilfs_sc_info.
2467  *
2468  * nilfs_segctor_thread() initializes a timer and serves as a daemon
2469  * to execute segment constructions.
2470  */
2471 static int nilfs_segctor_thread(void *arg)
2472 {
2473 	struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2474 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2475 	int timeout = 0;
2476 
2477 	sci->sc_timer.data = (unsigned long)current;
2478 	sci->sc_timer.function = nilfs_construction_timeout;
2479 
2480 	/* start sync. */
2481 	sci->sc_task = current;
2482 	wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
2483 	printk(KERN_INFO
2484 	       "segctord starting. Construction interval = %lu seconds, "
2485 	       "CP frequency < %lu seconds\n",
2486 	       sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2487 
2488 	spin_lock(&sci->sc_state_lock);
2489  loop:
2490 	for (;;) {
2491 		int mode;
2492 
2493 		if (sci->sc_state & NILFS_SEGCTOR_QUIT)
2494 			goto end_thread;
2495 
2496 		if (timeout || sci->sc_seq_request != sci->sc_seq_done)
2497 			mode = SC_LSEG_SR;
2498 		else if (!sci->sc_flush_request)
2499 			break;
2500 		else
2501 			mode = nilfs_segctor_flush_mode(sci);
2502 
2503 		spin_unlock(&sci->sc_state_lock);
2504 		nilfs_segctor_thread_construct(sci, mode);
2505 		spin_lock(&sci->sc_state_lock);
2506 		timeout = 0;
2507 	}
2508 
2509 
2510 	if (freezing(current)) {
2511 		spin_unlock(&sci->sc_state_lock);
2512 		try_to_freeze();
2513 		spin_lock(&sci->sc_state_lock);
2514 	} else {
2515 		DEFINE_WAIT(wait);
2516 		int should_sleep = 1;
2517 
2518 		prepare_to_wait(&sci->sc_wait_daemon, &wait,
2519 				TASK_INTERRUPTIBLE);
2520 
2521 		if (sci->sc_seq_request != sci->sc_seq_done)
2522 			should_sleep = 0;
2523 		else if (sci->sc_flush_request)
2524 			should_sleep = 0;
2525 		else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
2526 			should_sleep = time_before(jiffies,
2527 					sci->sc_timer.expires);
2528 
2529 		if (should_sleep) {
2530 			spin_unlock(&sci->sc_state_lock);
2531 			schedule();
2532 			spin_lock(&sci->sc_state_lock);
2533 		}
2534 		finish_wait(&sci->sc_wait_daemon, &wait);
2535 		timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2536 			   time_after_eq(jiffies, sci->sc_timer.expires));
2537 
2538 		if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
2539 			set_nilfs_discontinued(nilfs);
2540 	}
2541 	goto loop;
2542 
2543  end_thread:
2544 	spin_unlock(&sci->sc_state_lock);
2545 
2546 	/* end sync. */
2547 	sci->sc_task = NULL;
2548 	wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
2549 	return 0;
2550 }
2551 
2552 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
2553 {
2554 	struct task_struct *t;
2555 
2556 	t = kthread_run(nilfs_segctor_thread, sci, "segctord");
2557 	if (IS_ERR(t)) {
2558 		int err = PTR_ERR(t);
2559 
2560 		printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
2561 		       err);
2562 		return err;
2563 	}
2564 	wait_event(sci->sc_wait_task, sci->sc_task != NULL);
2565 	return 0;
2566 }
2567 
2568 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
2569 	__acquires(&sci->sc_state_lock)
2570 	__releases(&sci->sc_state_lock)
2571 {
2572 	sci->sc_state |= NILFS_SEGCTOR_QUIT;
2573 
2574 	while (sci->sc_task) {
2575 		wake_up(&sci->sc_wait_daemon);
2576 		spin_unlock(&sci->sc_state_lock);
2577 		wait_event(sci->sc_wait_task, sci->sc_task == NULL);
2578 		spin_lock(&sci->sc_state_lock);
2579 	}
2580 }
2581 
2582 /*
2583  * Setup & clean-up functions
2584  */
2585 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
2586 					       struct nilfs_root *root)
2587 {
2588 	struct the_nilfs *nilfs = sb->s_fs_info;
2589 	struct nilfs_sc_info *sci;
2590 
2591 	sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2592 	if (!sci)
2593 		return NULL;
2594 
2595 	sci->sc_super = sb;
2596 
2597 	nilfs_get_root(root);
2598 	sci->sc_root = root;
2599 
2600 	init_waitqueue_head(&sci->sc_wait_request);
2601 	init_waitqueue_head(&sci->sc_wait_daemon);
2602 	init_waitqueue_head(&sci->sc_wait_task);
2603 	spin_lock_init(&sci->sc_state_lock);
2604 	INIT_LIST_HEAD(&sci->sc_dirty_files);
2605 	INIT_LIST_HEAD(&sci->sc_segbufs);
2606 	INIT_LIST_HEAD(&sci->sc_write_logs);
2607 	INIT_LIST_HEAD(&sci->sc_gc_inodes);
2608 	INIT_LIST_HEAD(&sci->sc_iput_queue);
2609 	INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func);
2610 	init_timer(&sci->sc_timer);
2611 
2612 	sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2613 	sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2614 	sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2615 
2616 	if (nilfs->ns_interval)
2617 		sci->sc_interval = HZ * nilfs->ns_interval;
2618 	if (nilfs->ns_watermark)
2619 		sci->sc_watermark = nilfs->ns_watermark;
2620 	return sci;
2621 }
2622 
2623 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2624 {
2625 	int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2626 
2627 	/* The segctord thread was stopped and its timer was removed.
2628 	   But some tasks remain. */
2629 	do {
2630 		struct nilfs_transaction_info ti;
2631 
2632 		nilfs_transaction_lock(sci->sc_super, &ti, 0);
2633 		ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
2634 		nilfs_transaction_unlock(sci->sc_super);
2635 
2636 		flush_work(&sci->sc_iput_work);
2637 
2638 	} while (ret && retrycount-- > 0);
2639 }
2640 
2641 /**
2642  * nilfs_segctor_destroy - destroy the segment constructor.
2643  * @sci: nilfs_sc_info
2644  *
2645  * nilfs_segctor_destroy() kills the segctord thread and frees
2646  * the nilfs_sc_info struct.
2647  * Caller must hold the segment semaphore.
2648  */
2649 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2650 {
2651 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2652 	int flag;
2653 
2654 	up_write(&nilfs->ns_segctor_sem);
2655 
2656 	spin_lock(&sci->sc_state_lock);
2657 	nilfs_segctor_kill_thread(sci);
2658 	flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2659 		|| sci->sc_seq_request != sci->sc_seq_done);
2660 	spin_unlock(&sci->sc_state_lock);
2661 
2662 	if (flush_work(&sci->sc_iput_work))
2663 		flag = true;
2664 
2665 	if (flag || !nilfs_segctor_confirm(sci))
2666 		nilfs_segctor_write_out(sci);
2667 
2668 	if (!list_empty(&sci->sc_dirty_files)) {
2669 		nilfs_warning(sci->sc_super, __func__,
2670 			      "dirty file(s) after the final construction\n");
2671 		nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
2672 	}
2673 
2674 	if (!list_empty(&sci->sc_iput_queue)) {
2675 		nilfs_warning(sci->sc_super, __func__,
2676 			      "iput queue is not empty\n");
2677 		nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1);
2678 	}
2679 
2680 	WARN_ON(!list_empty(&sci->sc_segbufs));
2681 	WARN_ON(!list_empty(&sci->sc_write_logs));
2682 
2683 	nilfs_put_root(sci->sc_root);
2684 
2685 	down_write(&nilfs->ns_segctor_sem);
2686 
2687 	del_timer_sync(&sci->sc_timer);
2688 	kfree(sci);
2689 }
2690 
2691 /**
2692  * nilfs_attach_log_writer - attach log writer
2693  * @sb: super block instance
2694  * @root: root object of the current filesystem tree
2695  *
2696  * This allocates a log writer object, initializes it, and starts the
2697  * log writer.
2698  *
2699  * Return Value: On success, 0 is returned. On error, one of the following
2700  * negative error code is returned.
2701  *
2702  * %-ENOMEM - Insufficient memory available.
2703  */
2704 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
2705 {
2706 	struct the_nilfs *nilfs = sb->s_fs_info;
2707 	int err;
2708 
2709 	if (nilfs->ns_writer) {
2710 		/*
2711 		 * This happens if the filesystem was remounted
2712 		 * read/write after nilfs_error degenerated it into a
2713 		 * read-only mount.
2714 		 */
2715 		nilfs_detach_log_writer(sb);
2716 	}
2717 
2718 	nilfs->ns_writer = nilfs_segctor_new(sb, root);
2719 	if (!nilfs->ns_writer)
2720 		return -ENOMEM;
2721 
2722 	err = nilfs_segctor_start_thread(nilfs->ns_writer);
2723 	if (err) {
2724 		kfree(nilfs->ns_writer);
2725 		nilfs->ns_writer = NULL;
2726 	}
2727 	return err;
2728 }
2729 
2730 /**
2731  * nilfs_detach_log_writer - destroy log writer
2732  * @sb: super block instance
2733  *
2734  * This kills log writer daemon, frees the log writer object, and
2735  * destroys list of dirty files.
2736  */
2737 void nilfs_detach_log_writer(struct super_block *sb)
2738 {
2739 	struct the_nilfs *nilfs = sb->s_fs_info;
2740 	LIST_HEAD(garbage_list);
2741 
2742 	down_write(&nilfs->ns_segctor_sem);
2743 	if (nilfs->ns_writer) {
2744 		nilfs_segctor_destroy(nilfs->ns_writer);
2745 		nilfs->ns_writer = NULL;
2746 	}
2747 
2748 	/* Force to free the list of dirty files */
2749 	spin_lock(&nilfs->ns_inode_lock);
2750 	if (!list_empty(&nilfs->ns_dirty_files)) {
2751 		list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
2752 		nilfs_warning(sb, __func__,
2753 			      "Hit dirty file after stopped log writer\n");
2754 	}
2755 	spin_unlock(&nilfs->ns_inode_lock);
2756 	up_write(&nilfs->ns_segctor_sem);
2757 
2758 	nilfs_dispose_list(nilfs, &garbage_list, 1);
2759 }
2760