xref: /openbmc/linux/fs/nilfs2/segment.c (revision 4dc7ccf7)
1 /*
2  * segment.c - NILFS segment constructor.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  *
22  */
23 
24 #include <linux/pagemap.h>
25 #include <linux/buffer_head.h>
26 #include <linux/writeback.h>
27 #include <linux/bio.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/freezer.h>
32 #include <linux/kthread.h>
33 #include <linux/crc32.h>
34 #include <linux/pagevec.h>
35 #include <linux/slab.h>
36 #include "nilfs.h"
37 #include "btnode.h"
38 #include "page.h"
39 #include "segment.h"
40 #include "sufile.h"
41 #include "cpfile.h"
42 #include "ifile.h"
43 #include "segbuf.h"
44 
45 
46 /*
47  * Segment constructor
48  */
49 #define SC_N_INODEVEC	16   /* Size of locally allocated inode vector */
50 
51 #define SC_MAX_SEGDELTA 64   /* Upper limit of the number of segments
52 				appended in collection retry loop */
53 
54 /* Construction mode */
55 enum {
56 	SC_LSEG_SR = 1,	/* Make a logical segment having a super root */
57 	SC_LSEG_DSYNC,	/* Flush data blocks of a given file and make
58 			   a logical segment without a super root */
59 	SC_FLUSH_FILE,	/* Flush data files, leads to segment writes without
60 			   creating a checkpoint */
61 	SC_FLUSH_DAT,	/* Flush DAT file. This also creates segments without
62 			   a checkpoint */
63 };
64 
65 /* Stage numbers of dirty block collection */
66 enum {
67 	NILFS_ST_INIT = 0,
68 	NILFS_ST_GC,		/* Collecting dirty blocks for GC */
69 	NILFS_ST_FILE,
70 	NILFS_ST_IFILE,
71 	NILFS_ST_CPFILE,
72 	NILFS_ST_SUFILE,
73 	NILFS_ST_DAT,
74 	NILFS_ST_SR,		/* Super root */
75 	NILFS_ST_DSYNC,		/* Data sync blocks */
76 	NILFS_ST_DONE,
77 };
78 
79 /* State flags of collection */
80 #define NILFS_CF_NODE		0x0001	/* Collecting node blocks */
81 #define NILFS_CF_IFILE_STARTED	0x0002	/* IFILE stage has started */
82 #define NILFS_CF_SUFREED	0x0004	/* segment usages has been freed */
83 #define NILFS_CF_HISTORY_MASK	(NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
84 
85 /* Operations depending on the construction mode and file type */
86 struct nilfs_sc_operations {
87 	int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
88 			    struct inode *);
89 	int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
90 			    struct inode *);
91 	int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
92 			    struct inode *);
93 	void (*write_data_binfo)(struct nilfs_sc_info *,
94 				 struct nilfs_segsum_pointer *,
95 				 union nilfs_binfo *);
96 	void (*write_node_binfo)(struct nilfs_sc_info *,
97 				 struct nilfs_segsum_pointer *,
98 				 union nilfs_binfo *);
99 };
100 
101 /*
102  * Other definitions
103  */
104 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
105 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
106 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
107 static void nilfs_dispose_list(struct nilfs_sb_info *, struct list_head *,
108 			       int);
109 
110 #define nilfs_cnt32_gt(a, b)   \
111 	(typecheck(__u32, a) && typecheck(__u32, b) && \
112 	 ((__s32)(b) - (__s32)(a) < 0))
113 #define nilfs_cnt32_ge(a, b)   \
114 	(typecheck(__u32, a) && typecheck(__u32, b) && \
115 	 ((__s32)(a) - (__s32)(b) >= 0))
116 #define nilfs_cnt32_lt(a, b)  nilfs_cnt32_gt(b, a)
117 #define nilfs_cnt32_le(a, b)  nilfs_cnt32_ge(b, a)
118 
119 /*
120  * Transaction
121  */
122 static struct kmem_cache *nilfs_transaction_cachep;
123 
124 /**
125  * nilfs_init_transaction_cache - create a cache for nilfs_transaction_info
126  *
127  * nilfs_init_transaction_cache() creates a slab cache for the struct
128  * nilfs_transaction_info.
129  *
130  * Return Value: On success, it returns 0. On error, one of the following
131  * negative error code is returned.
132  *
133  * %-ENOMEM - Insufficient memory available.
134  */
135 int nilfs_init_transaction_cache(void)
136 {
137 	nilfs_transaction_cachep =
138 		kmem_cache_create("nilfs2_transaction_cache",
139 				  sizeof(struct nilfs_transaction_info),
140 				  0, SLAB_RECLAIM_ACCOUNT, NULL);
141 	return (nilfs_transaction_cachep == NULL) ? -ENOMEM : 0;
142 }
143 
144 /**
145  * nilfs_destroy_transaction_cache - destroy the cache for transaction info
146  *
147  * nilfs_destroy_transaction_cache() frees the slab cache for the struct
148  * nilfs_transaction_info.
149  */
150 void nilfs_destroy_transaction_cache(void)
151 {
152 	kmem_cache_destroy(nilfs_transaction_cachep);
153 }
154 
155 static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
156 {
157 	struct nilfs_transaction_info *cur_ti = current->journal_info;
158 	void *save = NULL;
159 
160 	if (cur_ti) {
161 		if (cur_ti->ti_magic == NILFS_TI_MAGIC)
162 			return ++cur_ti->ti_count;
163 		else {
164 			/*
165 			 * If journal_info field is occupied by other FS,
166 			 * it is saved and will be restored on
167 			 * nilfs_transaction_commit().
168 			 */
169 			printk(KERN_WARNING
170 			       "NILFS warning: journal info from a different "
171 			       "FS\n");
172 			save = current->journal_info;
173 		}
174 	}
175 	if (!ti) {
176 		ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
177 		if (!ti)
178 			return -ENOMEM;
179 		ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
180 	} else {
181 		ti->ti_flags = 0;
182 	}
183 	ti->ti_count = 0;
184 	ti->ti_save = save;
185 	ti->ti_magic = NILFS_TI_MAGIC;
186 	current->journal_info = ti;
187 	return 0;
188 }
189 
190 /**
191  * nilfs_transaction_begin - start indivisible file operations.
192  * @sb: super block
193  * @ti: nilfs_transaction_info
194  * @vacancy_check: flags for vacancy rate checks
195  *
196  * nilfs_transaction_begin() acquires a reader/writer semaphore, called
197  * the segment semaphore, to make a segment construction and write tasks
198  * exclusive.  The function is used with nilfs_transaction_commit() in pairs.
199  * The region enclosed by these two functions can be nested.  To avoid a
200  * deadlock, the semaphore is only acquired or released in the outermost call.
201  *
202  * This function allocates a nilfs_transaction_info struct to keep context
203  * information on it.  It is initialized and hooked onto the current task in
204  * the outermost call.  If a pre-allocated struct is given to @ti, it is used
205  * instead; otherwise a new struct is assigned from a slab.
206  *
207  * When @vacancy_check flag is set, this function will check the amount of
208  * free space, and will wait for the GC to reclaim disk space if low capacity.
209  *
210  * Return Value: On success, 0 is returned. On error, one of the following
211  * negative error code is returned.
212  *
213  * %-ENOMEM - Insufficient memory available.
214  *
215  * %-ENOSPC - No space left on device
216  */
217 int nilfs_transaction_begin(struct super_block *sb,
218 			    struct nilfs_transaction_info *ti,
219 			    int vacancy_check)
220 {
221 	struct nilfs_sb_info *sbi;
222 	struct the_nilfs *nilfs;
223 	int ret = nilfs_prepare_segment_lock(ti);
224 
225 	if (unlikely(ret < 0))
226 		return ret;
227 	if (ret > 0)
228 		return 0;
229 
230 	sbi = NILFS_SB(sb);
231 	nilfs = sbi->s_nilfs;
232 	down_read(&nilfs->ns_segctor_sem);
233 	if (vacancy_check && nilfs_near_disk_full(nilfs)) {
234 		up_read(&nilfs->ns_segctor_sem);
235 		ret = -ENOSPC;
236 		goto failed;
237 	}
238 	return 0;
239 
240  failed:
241 	ti = current->journal_info;
242 	current->journal_info = ti->ti_save;
243 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
244 		kmem_cache_free(nilfs_transaction_cachep, ti);
245 	return ret;
246 }
247 
248 /**
249  * nilfs_transaction_commit - commit indivisible file operations.
250  * @sb: super block
251  *
252  * nilfs_transaction_commit() releases the read semaphore which is
253  * acquired by nilfs_transaction_begin(). This is only performed
254  * in outermost call of this function.  If a commit flag is set,
255  * nilfs_transaction_commit() sets a timer to start the segment
256  * constructor.  If a sync flag is set, it starts construction
257  * directly.
258  */
259 int nilfs_transaction_commit(struct super_block *sb)
260 {
261 	struct nilfs_transaction_info *ti = current->journal_info;
262 	struct nilfs_sb_info *sbi;
263 	struct nilfs_sc_info *sci;
264 	int err = 0;
265 
266 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
267 	ti->ti_flags |= NILFS_TI_COMMIT;
268 	if (ti->ti_count > 0) {
269 		ti->ti_count--;
270 		return 0;
271 	}
272 	sbi = NILFS_SB(sb);
273 	sci = NILFS_SC(sbi);
274 	if (sci != NULL) {
275 		if (ti->ti_flags & NILFS_TI_COMMIT)
276 			nilfs_segctor_start_timer(sci);
277 		if (atomic_read(&sbi->s_nilfs->ns_ndirtyblks) >
278 		    sci->sc_watermark)
279 			nilfs_segctor_do_flush(sci, 0);
280 	}
281 	up_read(&sbi->s_nilfs->ns_segctor_sem);
282 	current->journal_info = ti->ti_save;
283 
284 	if (ti->ti_flags & NILFS_TI_SYNC)
285 		err = nilfs_construct_segment(sb);
286 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
287 		kmem_cache_free(nilfs_transaction_cachep, ti);
288 	return err;
289 }
290 
291 void nilfs_transaction_abort(struct super_block *sb)
292 {
293 	struct nilfs_transaction_info *ti = current->journal_info;
294 
295 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
296 	if (ti->ti_count > 0) {
297 		ti->ti_count--;
298 		return;
299 	}
300 	up_read(&NILFS_SB(sb)->s_nilfs->ns_segctor_sem);
301 
302 	current->journal_info = ti->ti_save;
303 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
304 		kmem_cache_free(nilfs_transaction_cachep, ti);
305 }
306 
307 void nilfs_relax_pressure_in_lock(struct super_block *sb)
308 {
309 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
310 	struct nilfs_sc_info *sci = NILFS_SC(sbi);
311 	struct the_nilfs *nilfs = sbi->s_nilfs;
312 
313 	if (!sci || !sci->sc_flush_request)
314 		return;
315 
316 	set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
317 	up_read(&nilfs->ns_segctor_sem);
318 
319 	down_write(&nilfs->ns_segctor_sem);
320 	if (sci->sc_flush_request &&
321 	    test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
322 		struct nilfs_transaction_info *ti = current->journal_info;
323 
324 		ti->ti_flags |= NILFS_TI_WRITER;
325 		nilfs_segctor_do_immediate_flush(sci);
326 		ti->ti_flags &= ~NILFS_TI_WRITER;
327 	}
328 	downgrade_write(&nilfs->ns_segctor_sem);
329 }
330 
331 static void nilfs_transaction_lock(struct nilfs_sb_info *sbi,
332 				   struct nilfs_transaction_info *ti,
333 				   int gcflag)
334 {
335 	struct nilfs_transaction_info *cur_ti = current->journal_info;
336 
337 	WARN_ON(cur_ti);
338 	ti->ti_flags = NILFS_TI_WRITER;
339 	ti->ti_count = 0;
340 	ti->ti_save = cur_ti;
341 	ti->ti_magic = NILFS_TI_MAGIC;
342 	INIT_LIST_HEAD(&ti->ti_garbage);
343 	current->journal_info = ti;
344 
345 	for (;;) {
346 		down_write(&sbi->s_nilfs->ns_segctor_sem);
347 		if (!test_bit(NILFS_SC_PRIOR_FLUSH, &NILFS_SC(sbi)->sc_flags))
348 			break;
349 
350 		nilfs_segctor_do_immediate_flush(NILFS_SC(sbi));
351 
352 		up_write(&sbi->s_nilfs->ns_segctor_sem);
353 		yield();
354 	}
355 	if (gcflag)
356 		ti->ti_flags |= NILFS_TI_GC;
357 }
358 
359 static void nilfs_transaction_unlock(struct nilfs_sb_info *sbi)
360 {
361 	struct nilfs_transaction_info *ti = current->journal_info;
362 
363 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
364 	BUG_ON(ti->ti_count > 0);
365 
366 	up_write(&sbi->s_nilfs->ns_segctor_sem);
367 	current->journal_info = ti->ti_save;
368 	if (!list_empty(&ti->ti_garbage))
369 		nilfs_dispose_list(sbi, &ti->ti_garbage, 0);
370 }
371 
372 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
373 					    struct nilfs_segsum_pointer *ssp,
374 					    unsigned bytes)
375 {
376 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
377 	unsigned blocksize = sci->sc_super->s_blocksize;
378 	void *p;
379 
380 	if (unlikely(ssp->offset + bytes > blocksize)) {
381 		ssp->offset = 0;
382 		BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
383 					       &segbuf->sb_segsum_buffers));
384 		ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
385 	}
386 	p = ssp->bh->b_data + ssp->offset;
387 	ssp->offset += bytes;
388 	return p;
389 }
390 
391 /**
392  * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
393  * @sci: nilfs_sc_info
394  */
395 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
396 {
397 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
398 	struct buffer_head *sumbh;
399 	unsigned sumbytes;
400 	unsigned flags = 0;
401 	int err;
402 
403 	if (nilfs_doing_gc())
404 		flags = NILFS_SS_GC;
405 	err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime);
406 	if (unlikely(err))
407 		return err;
408 
409 	sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
410 	sumbytes = segbuf->sb_sum.sumbytes;
411 	sci->sc_finfo_ptr.bh = sumbh;  sci->sc_finfo_ptr.offset = sumbytes;
412 	sci->sc_binfo_ptr.bh = sumbh;  sci->sc_binfo_ptr.offset = sumbytes;
413 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
414 	return 0;
415 }
416 
417 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
418 {
419 	sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
420 	if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
421 		return -E2BIG; /* The current segment is filled up
422 				  (internal code) */
423 	sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
424 	return nilfs_segctor_reset_segment_buffer(sci);
425 }
426 
427 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
428 {
429 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
430 	int err;
431 
432 	if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
433 		err = nilfs_segctor_feed_segment(sci);
434 		if (err)
435 			return err;
436 		segbuf = sci->sc_curseg;
437 	}
438 	err = nilfs_segbuf_extend_payload(segbuf, &sci->sc_super_root);
439 	if (likely(!err))
440 		segbuf->sb_sum.flags |= NILFS_SS_SR;
441 	return err;
442 }
443 
444 /*
445  * Functions for making segment summary and payloads
446  */
447 static int nilfs_segctor_segsum_block_required(
448 	struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
449 	unsigned binfo_size)
450 {
451 	unsigned blocksize = sci->sc_super->s_blocksize;
452 	/* Size of finfo and binfo is enough small against blocksize */
453 
454 	return ssp->offset + binfo_size +
455 		(!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
456 		blocksize;
457 }
458 
459 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
460 				      struct inode *inode)
461 {
462 	sci->sc_curseg->sb_sum.nfinfo++;
463 	sci->sc_binfo_ptr = sci->sc_finfo_ptr;
464 	nilfs_segctor_map_segsum_entry(
465 		sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
466 
467 	if (inode->i_sb && !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
468 		set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
469 	/* skip finfo */
470 }
471 
472 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
473 				    struct inode *inode)
474 {
475 	struct nilfs_finfo *finfo;
476 	struct nilfs_inode_info *ii;
477 	struct nilfs_segment_buffer *segbuf;
478 
479 	if (sci->sc_blk_cnt == 0)
480 		return;
481 
482 	ii = NILFS_I(inode);
483 	finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
484 						 sizeof(*finfo));
485 	finfo->fi_ino = cpu_to_le64(inode->i_ino);
486 	finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
487 	finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
488 	finfo->fi_cno = cpu_to_le64(ii->i_cno);
489 
490 	segbuf = sci->sc_curseg;
491 	segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
492 		sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
493 	sci->sc_finfo_ptr = sci->sc_binfo_ptr;
494 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
495 }
496 
497 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
498 					struct buffer_head *bh,
499 					struct inode *inode,
500 					unsigned binfo_size)
501 {
502 	struct nilfs_segment_buffer *segbuf;
503 	int required, err = 0;
504 
505  retry:
506 	segbuf = sci->sc_curseg;
507 	required = nilfs_segctor_segsum_block_required(
508 		sci, &sci->sc_binfo_ptr, binfo_size);
509 	if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
510 		nilfs_segctor_end_finfo(sci, inode);
511 		err = nilfs_segctor_feed_segment(sci);
512 		if (err)
513 			return err;
514 		goto retry;
515 	}
516 	if (unlikely(required)) {
517 		err = nilfs_segbuf_extend_segsum(segbuf);
518 		if (unlikely(err))
519 			goto failed;
520 	}
521 	if (sci->sc_blk_cnt == 0)
522 		nilfs_segctor_begin_finfo(sci, inode);
523 
524 	nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
525 	/* Substitution to vblocknr is delayed until update_blocknr() */
526 	nilfs_segbuf_add_file_buffer(segbuf, bh);
527 	sci->sc_blk_cnt++;
528  failed:
529 	return err;
530 }
531 
532 static int nilfs_handle_bmap_error(int err, const char *fname,
533 				   struct inode *inode, struct super_block *sb)
534 {
535 	if (err == -EINVAL) {
536 		nilfs_error(sb, fname, "broken bmap (inode=%lu)\n",
537 			    inode->i_ino);
538 		err = -EIO;
539 	}
540 	return err;
541 }
542 
543 /*
544  * Callback functions that enumerate, mark, and collect dirty blocks
545  */
546 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
547 				   struct buffer_head *bh, struct inode *inode)
548 {
549 	int err;
550 
551 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
552 	if (unlikely(err < 0))
553 		return nilfs_handle_bmap_error(err, __func__, inode,
554 					       sci->sc_super);
555 
556 	err = nilfs_segctor_add_file_block(sci, bh, inode,
557 					   sizeof(struct nilfs_binfo_v));
558 	if (!err)
559 		sci->sc_datablk_cnt++;
560 	return err;
561 }
562 
563 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
564 				   struct buffer_head *bh,
565 				   struct inode *inode)
566 {
567 	int err;
568 
569 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
570 	if (unlikely(err < 0))
571 		return nilfs_handle_bmap_error(err, __func__, inode,
572 					       sci->sc_super);
573 	return 0;
574 }
575 
576 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
577 				   struct buffer_head *bh,
578 				   struct inode *inode)
579 {
580 	WARN_ON(!buffer_dirty(bh));
581 	return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
582 }
583 
584 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
585 					struct nilfs_segsum_pointer *ssp,
586 					union nilfs_binfo *binfo)
587 {
588 	struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
589 		sci, ssp, sizeof(*binfo_v));
590 	*binfo_v = binfo->bi_v;
591 }
592 
593 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
594 					struct nilfs_segsum_pointer *ssp,
595 					union nilfs_binfo *binfo)
596 {
597 	__le64 *vblocknr = nilfs_segctor_map_segsum_entry(
598 		sci, ssp, sizeof(*vblocknr));
599 	*vblocknr = binfo->bi_v.bi_vblocknr;
600 }
601 
602 struct nilfs_sc_operations nilfs_sc_file_ops = {
603 	.collect_data = nilfs_collect_file_data,
604 	.collect_node = nilfs_collect_file_node,
605 	.collect_bmap = nilfs_collect_file_bmap,
606 	.write_data_binfo = nilfs_write_file_data_binfo,
607 	.write_node_binfo = nilfs_write_file_node_binfo,
608 };
609 
610 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
611 				  struct buffer_head *bh, struct inode *inode)
612 {
613 	int err;
614 
615 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
616 	if (unlikely(err < 0))
617 		return nilfs_handle_bmap_error(err, __func__, inode,
618 					       sci->sc_super);
619 
620 	err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
621 	if (!err)
622 		sci->sc_datablk_cnt++;
623 	return err;
624 }
625 
626 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
627 				  struct buffer_head *bh, struct inode *inode)
628 {
629 	WARN_ON(!buffer_dirty(bh));
630 	return nilfs_segctor_add_file_block(sci, bh, inode,
631 					    sizeof(struct nilfs_binfo_dat));
632 }
633 
634 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
635 				       struct nilfs_segsum_pointer *ssp,
636 				       union nilfs_binfo *binfo)
637 {
638 	__le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
639 							  sizeof(*blkoff));
640 	*blkoff = binfo->bi_dat.bi_blkoff;
641 }
642 
643 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
644 				       struct nilfs_segsum_pointer *ssp,
645 				       union nilfs_binfo *binfo)
646 {
647 	struct nilfs_binfo_dat *binfo_dat =
648 		nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
649 	*binfo_dat = binfo->bi_dat;
650 }
651 
652 struct nilfs_sc_operations nilfs_sc_dat_ops = {
653 	.collect_data = nilfs_collect_dat_data,
654 	.collect_node = nilfs_collect_file_node,
655 	.collect_bmap = nilfs_collect_dat_bmap,
656 	.write_data_binfo = nilfs_write_dat_data_binfo,
657 	.write_node_binfo = nilfs_write_dat_node_binfo,
658 };
659 
660 struct nilfs_sc_operations nilfs_sc_dsync_ops = {
661 	.collect_data = nilfs_collect_file_data,
662 	.collect_node = NULL,
663 	.collect_bmap = NULL,
664 	.write_data_binfo = nilfs_write_file_data_binfo,
665 	.write_node_binfo = NULL,
666 };
667 
668 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
669 					      struct list_head *listp,
670 					      size_t nlimit,
671 					      loff_t start, loff_t end)
672 {
673 	struct address_space *mapping = inode->i_mapping;
674 	struct pagevec pvec;
675 	pgoff_t index = 0, last = ULONG_MAX;
676 	size_t ndirties = 0;
677 	int i;
678 
679 	if (unlikely(start != 0 || end != LLONG_MAX)) {
680 		/*
681 		 * A valid range is given for sync-ing data pages. The
682 		 * range is rounded to per-page; extra dirty buffers
683 		 * may be included if blocksize < pagesize.
684 		 */
685 		index = start >> PAGE_SHIFT;
686 		last = end >> PAGE_SHIFT;
687 	}
688 	pagevec_init(&pvec, 0);
689  repeat:
690 	if (unlikely(index > last) ||
691 	    !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
692 				min_t(pgoff_t, last - index,
693 				      PAGEVEC_SIZE - 1) + 1))
694 		return ndirties;
695 
696 	for (i = 0; i < pagevec_count(&pvec); i++) {
697 		struct buffer_head *bh, *head;
698 		struct page *page = pvec.pages[i];
699 
700 		if (unlikely(page->index > last))
701 			break;
702 
703 		if (mapping->host) {
704 			lock_page(page);
705 			if (!page_has_buffers(page))
706 				create_empty_buffers(page,
707 						     1 << inode->i_blkbits, 0);
708 			unlock_page(page);
709 		}
710 
711 		bh = head = page_buffers(page);
712 		do {
713 			if (!buffer_dirty(bh))
714 				continue;
715 			get_bh(bh);
716 			list_add_tail(&bh->b_assoc_buffers, listp);
717 			ndirties++;
718 			if (unlikely(ndirties >= nlimit)) {
719 				pagevec_release(&pvec);
720 				cond_resched();
721 				return ndirties;
722 			}
723 		} while (bh = bh->b_this_page, bh != head);
724 	}
725 	pagevec_release(&pvec);
726 	cond_resched();
727 	goto repeat;
728 }
729 
730 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
731 					    struct list_head *listp)
732 {
733 	struct nilfs_inode_info *ii = NILFS_I(inode);
734 	struct address_space *mapping = &ii->i_btnode_cache;
735 	struct pagevec pvec;
736 	struct buffer_head *bh, *head;
737 	unsigned int i;
738 	pgoff_t index = 0;
739 
740 	pagevec_init(&pvec, 0);
741 
742 	while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
743 				  PAGEVEC_SIZE)) {
744 		for (i = 0; i < pagevec_count(&pvec); i++) {
745 			bh = head = page_buffers(pvec.pages[i]);
746 			do {
747 				if (buffer_dirty(bh)) {
748 					get_bh(bh);
749 					list_add_tail(&bh->b_assoc_buffers,
750 						      listp);
751 				}
752 				bh = bh->b_this_page;
753 			} while (bh != head);
754 		}
755 		pagevec_release(&pvec);
756 		cond_resched();
757 	}
758 }
759 
760 static void nilfs_dispose_list(struct nilfs_sb_info *sbi,
761 			       struct list_head *head, int force)
762 {
763 	struct nilfs_inode_info *ii, *n;
764 	struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
765 	unsigned nv = 0;
766 
767 	while (!list_empty(head)) {
768 		spin_lock(&sbi->s_inode_lock);
769 		list_for_each_entry_safe(ii, n, head, i_dirty) {
770 			list_del_init(&ii->i_dirty);
771 			if (force) {
772 				if (unlikely(ii->i_bh)) {
773 					brelse(ii->i_bh);
774 					ii->i_bh = NULL;
775 				}
776 			} else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
777 				set_bit(NILFS_I_QUEUED, &ii->i_state);
778 				list_add_tail(&ii->i_dirty,
779 					      &sbi->s_dirty_files);
780 				continue;
781 			}
782 			ivec[nv++] = ii;
783 			if (nv == SC_N_INODEVEC)
784 				break;
785 		}
786 		spin_unlock(&sbi->s_inode_lock);
787 
788 		for (pii = ivec; nv > 0; pii++, nv--)
789 			iput(&(*pii)->vfs_inode);
790 	}
791 }
792 
793 static int nilfs_test_metadata_dirty(struct nilfs_sb_info *sbi)
794 {
795 	struct the_nilfs *nilfs = sbi->s_nilfs;
796 	int ret = 0;
797 
798 	if (nilfs_mdt_fetch_dirty(sbi->s_ifile))
799 		ret++;
800 	if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
801 		ret++;
802 	if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
803 		ret++;
804 	if (ret || nilfs_doing_gc())
805 		if (nilfs_mdt_fetch_dirty(nilfs_dat_inode(nilfs)))
806 			ret++;
807 	return ret;
808 }
809 
810 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
811 {
812 	return list_empty(&sci->sc_dirty_files) &&
813 		!test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
814 		sci->sc_nfreesegs == 0 &&
815 		(!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
816 }
817 
818 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
819 {
820 	struct nilfs_sb_info *sbi = sci->sc_sbi;
821 	int ret = 0;
822 
823 	if (nilfs_test_metadata_dirty(sbi))
824 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
825 
826 	spin_lock(&sbi->s_inode_lock);
827 	if (list_empty(&sbi->s_dirty_files) && nilfs_segctor_clean(sci))
828 		ret++;
829 
830 	spin_unlock(&sbi->s_inode_lock);
831 	return ret;
832 }
833 
834 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
835 {
836 	struct nilfs_sb_info *sbi = sci->sc_sbi;
837 	struct the_nilfs *nilfs = sbi->s_nilfs;
838 
839 	nilfs_mdt_clear_dirty(sbi->s_ifile);
840 	nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
841 	nilfs_mdt_clear_dirty(nilfs->ns_sufile);
842 	nilfs_mdt_clear_dirty(nilfs_dat_inode(nilfs));
843 }
844 
845 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
846 {
847 	struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
848 	struct buffer_head *bh_cp;
849 	struct nilfs_checkpoint *raw_cp;
850 	int err;
851 
852 	/* XXX: this interface will be changed */
853 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
854 					  &raw_cp, &bh_cp);
855 	if (likely(!err)) {
856 		/* The following code is duplicated with cpfile.  But, it is
857 		   needed to collect the checkpoint even if it was not newly
858 		   created */
859 		nilfs_mdt_mark_buffer_dirty(bh_cp);
860 		nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
861 		nilfs_cpfile_put_checkpoint(
862 			nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
863 	} else
864 		WARN_ON(err == -EINVAL || err == -ENOENT);
865 
866 	return err;
867 }
868 
869 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
870 {
871 	struct nilfs_sb_info *sbi = sci->sc_sbi;
872 	struct the_nilfs *nilfs = sbi->s_nilfs;
873 	struct buffer_head *bh_cp;
874 	struct nilfs_checkpoint *raw_cp;
875 	int err;
876 
877 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
878 					  &raw_cp, &bh_cp);
879 	if (unlikely(err)) {
880 		WARN_ON(err == -EINVAL || err == -ENOENT);
881 		goto failed_ibh;
882 	}
883 	raw_cp->cp_snapshot_list.ssl_next = 0;
884 	raw_cp->cp_snapshot_list.ssl_prev = 0;
885 	raw_cp->cp_inodes_count =
886 		cpu_to_le64(atomic_read(&sbi->s_inodes_count));
887 	raw_cp->cp_blocks_count =
888 		cpu_to_le64(atomic_read(&sbi->s_blocks_count));
889 	raw_cp->cp_nblk_inc =
890 		cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
891 	raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
892 	raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
893 
894 	if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
895 		nilfs_checkpoint_clear_minor(raw_cp);
896 	else
897 		nilfs_checkpoint_set_minor(raw_cp);
898 
899 	nilfs_write_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode, 1);
900 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
901 	return 0;
902 
903  failed_ibh:
904 	return err;
905 }
906 
907 static void nilfs_fill_in_file_bmap(struct inode *ifile,
908 				    struct nilfs_inode_info *ii)
909 
910 {
911 	struct buffer_head *ibh;
912 	struct nilfs_inode *raw_inode;
913 
914 	if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
915 		ibh = ii->i_bh;
916 		BUG_ON(!ibh);
917 		raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
918 						  ibh);
919 		nilfs_bmap_write(ii->i_bmap, raw_inode);
920 		nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
921 	}
922 }
923 
924 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci,
925 					    struct inode *ifile)
926 {
927 	struct nilfs_inode_info *ii;
928 
929 	list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
930 		nilfs_fill_in_file_bmap(ifile, ii);
931 		set_bit(NILFS_I_COLLECTED, &ii->i_state);
932 	}
933 }
934 
935 /*
936  * CRC calculation routines
937  */
938 static void nilfs_fill_in_super_root_crc(struct buffer_head *bh_sr, u32 seed)
939 {
940 	struct nilfs_super_root *raw_sr =
941 		(struct nilfs_super_root *)bh_sr->b_data;
942 	u32 crc;
943 
944 	crc = crc32_le(seed,
945 		       (unsigned char *)raw_sr + sizeof(raw_sr->sr_sum),
946 		       NILFS_SR_BYTES - sizeof(raw_sr->sr_sum));
947 	raw_sr->sr_sum = cpu_to_le32(crc);
948 }
949 
950 static void nilfs_segctor_fill_in_checksums(struct nilfs_sc_info *sci,
951 					    u32 seed)
952 {
953 	struct nilfs_segment_buffer *segbuf;
954 
955 	if (sci->sc_super_root)
956 		nilfs_fill_in_super_root_crc(sci->sc_super_root, seed);
957 
958 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
959 		nilfs_segbuf_fill_in_segsum_crc(segbuf, seed);
960 		nilfs_segbuf_fill_in_data_crc(segbuf, seed);
961 	}
962 }
963 
964 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
965 					     struct the_nilfs *nilfs)
966 {
967 	struct buffer_head *bh_sr = sci->sc_super_root;
968 	struct nilfs_super_root *raw_sr =
969 		(struct nilfs_super_root *)bh_sr->b_data;
970 	unsigned isz = nilfs->ns_inode_size;
971 
972 	raw_sr->sr_bytes = cpu_to_le16(NILFS_SR_BYTES);
973 	raw_sr->sr_nongc_ctime
974 		= cpu_to_le64(nilfs_doing_gc() ?
975 			      nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
976 	raw_sr->sr_flags = 0;
977 
978 	nilfs_write_inode_common(nilfs_dat_inode(nilfs), (void *)raw_sr +
979 				 NILFS_SR_DAT_OFFSET(isz), 1);
980 	nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
981 				 NILFS_SR_CPFILE_OFFSET(isz), 1);
982 	nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
983 				 NILFS_SR_SUFILE_OFFSET(isz), 1);
984 }
985 
986 static void nilfs_redirty_inodes(struct list_head *head)
987 {
988 	struct nilfs_inode_info *ii;
989 
990 	list_for_each_entry(ii, head, i_dirty) {
991 		if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
992 			clear_bit(NILFS_I_COLLECTED, &ii->i_state);
993 	}
994 }
995 
996 static void nilfs_drop_collected_inodes(struct list_head *head)
997 {
998 	struct nilfs_inode_info *ii;
999 
1000 	list_for_each_entry(ii, head, i_dirty) {
1001 		if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
1002 			continue;
1003 
1004 		clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
1005 		set_bit(NILFS_I_UPDATED, &ii->i_state);
1006 	}
1007 }
1008 
1009 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
1010 				       struct inode *inode,
1011 				       struct list_head *listp,
1012 				       int (*collect)(struct nilfs_sc_info *,
1013 						      struct buffer_head *,
1014 						      struct inode *))
1015 {
1016 	struct buffer_head *bh, *n;
1017 	int err = 0;
1018 
1019 	if (collect) {
1020 		list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
1021 			list_del_init(&bh->b_assoc_buffers);
1022 			err = collect(sci, bh, inode);
1023 			brelse(bh);
1024 			if (unlikely(err))
1025 				goto dispose_buffers;
1026 		}
1027 		return 0;
1028 	}
1029 
1030  dispose_buffers:
1031 	while (!list_empty(listp)) {
1032 		bh = list_entry(listp->next, struct buffer_head,
1033 				b_assoc_buffers);
1034 		list_del_init(&bh->b_assoc_buffers);
1035 		brelse(bh);
1036 	}
1037 	return err;
1038 }
1039 
1040 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
1041 {
1042 	/* Remaining number of blocks within segment buffer */
1043 	return sci->sc_segbuf_nblocks -
1044 		(sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
1045 }
1046 
1047 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
1048 				   struct inode *inode,
1049 				   struct nilfs_sc_operations *sc_ops)
1050 {
1051 	LIST_HEAD(data_buffers);
1052 	LIST_HEAD(node_buffers);
1053 	int err;
1054 
1055 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1056 		size_t n, rest = nilfs_segctor_buffer_rest(sci);
1057 
1058 		n = nilfs_lookup_dirty_data_buffers(
1059 			inode, &data_buffers, rest + 1, 0, LLONG_MAX);
1060 		if (n > rest) {
1061 			err = nilfs_segctor_apply_buffers(
1062 				sci, inode, &data_buffers,
1063 				sc_ops->collect_data);
1064 			BUG_ON(!err); /* always receive -E2BIG or true error */
1065 			goto break_or_fail;
1066 		}
1067 	}
1068 	nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
1069 
1070 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1071 		err = nilfs_segctor_apply_buffers(
1072 			sci, inode, &data_buffers, sc_ops->collect_data);
1073 		if (unlikely(err)) {
1074 			/* dispose node list */
1075 			nilfs_segctor_apply_buffers(
1076 				sci, inode, &node_buffers, NULL);
1077 			goto break_or_fail;
1078 		}
1079 		sci->sc_stage.flags |= NILFS_CF_NODE;
1080 	}
1081 	/* Collect node */
1082 	err = nilfs_segctor_apply_buffers(
1083 		sci, inode, &node_buffers, sc_ops->collect_node);
1084 	if (unlikely(err))
1085 		goto break_or_fail;
1086 
1087 	nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1088 	err = nilfs_segctor_apply_buffers(
1089 		sci, inode, &node_buffers, sc_ops->collect_bmap);
1090 	if (unlikely(err))
1091 		goto break_or_fail;
1092 
1093 	nilfs_segctor_end_finfo(sci, inode);
1094 	sci->sc_stage.flags &= ~NILFS_CF_NODE;
1095 
1096  break_or_fail:
1097 	return err;
1098 }
1099 
1100 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1101 					 struct inode *inode)
1102 {
1103 	LIST_HEAD(data_buffers);
1104 	size_t n, rest = nilfs_segctor_buffer_rest(sci);
1105 	int err;
1106 
1107 	n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1108 					    sci->sc_dsync_start,
1109 					    sci->sc_dsync_end);
1110 
1111 	err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1112 					  nilfs_collect_file_data);
1113 	if (!err) {
1114 		nilfs_segctor_end_finfo(sci, inode);
1115 		BUG_ON(n > rest);
1116 		/* always receive -E2BIG or true error if n > rest */
1117 	}
1118 	return err;
1119 }
1120 
1121 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1122 {
1123 	struct nilfs_sb_info *sbi = sci->sc_sbi;
1124 	struct the_nilfs *nilfs = sbi->s_nilfs;
1125 	struct list_head *head;
1126 	struct nilfs_inode_info *ii;
1127 	size_t ndone;
1128 	int err = 0;
1129 
1130 	switch (sci->sc_stage.scnt) {
1131 	case NILFS_ST_INIT:
1132 		/* Pre-processes */
1133 		sci->sc_stage.flags = 0;
1134 
1135 		if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1136 			sci->sc_nblk_inc = 0;
1137 			sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1138 			if (mode == SC_LSEG_DSYNC) {
1139 				sci->sc_stage.scnt = NILFS_ST_DSYNC;
1140 				goto dsync_mode;
1141 			}
1142 		}
1143 
1144 		sci->sc_stage.dirty_file_ptr = NULL;
1145 		sci->sc_stage.gc_inode_ptr = NULL;
1146 		if (mode == SC_FLUSH_DAT) {
1147 			sci->sc_stage.scnt = NILFS_ST_DAT;
1148 			goto dat_stage;
1149 		}
1150 		sci->sc_stage.scnt++;  /* Fall through */
1151 	case NILFS_ST_GC:
1152 		if (nilfs_doing_gc()) {
1153 			head = &sci->sc_gc_inodes;
1154 			ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1155 						head, i_dirty);
1156 			list_for_each_entry_continue(ii, head, i_dirty) {
1157 				err = nilfs_segctor_scan_file(
1158 					sci, &ii->vfs_inode,
1159 					&nilfs_sc_file_ops);
1160 				if (unlikely(err)) {
1161 					sci->sc_stage.gc_inode_ptr = list_entry(
1162 						ii->i_dirty.prev,
1163 						struct nilfs_inode_info,
1164 						i_dirty);
1165 					goto break_or_fail;
1166 				}
1167 				set_bit(NILFS_I_COLLECTED, &ii->i_state);
1168 			}
1169 			sci->sc_stage.gc_inode_ptr = NULL;
1170 		}
1171 		sci->sc_stage.scnt++;  /* Fall through */
1172 	case NILFS_ST_FILE:
1173 		head = &sci->sc_dirty_files;
1174 		ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1175 					i_dirty);
1176 		list_for_each_entry_continue(ii, head, i_dirty) {
1177 			clear_bit(NILFS_I_DIRTY, &ii->i_state);
1178 
1179 			err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1180 						      &nilfs_sc_file_ops);
1181 			if (unlikely(err)) {
1182 				sci->sc_stage.dirty_file_ptr =
1183 					list_entry(ii->i_dirty.prev,
1184 						   struct nilfs_inode_info,
1185 						   i_dirty);
1186 				goto break_or_fail;
1187 			}
1188 			/* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1189 			/* XXX: required ? */
1190 		}
1191 		sci->sc_stage.dirty_file_ptr = NULL;
1192 		if (mode == SC_FLUSH_FILE) {
1193 			sci->sc_stage.scnt = NILFS_ST_DONE;
1194 			return 0;
1195 		}
1196 		sci->sc_stage.scnt++;
1197 		sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1198 		/* Fall through */
1199 	case NILFS_ST_IFILE:
1200 		err = nilfs_segctor_scan_file(sci, sbi->s_ifile,
1201 					      &nilfs_sc_file_ops);
1202 		if (unlikely(err))
1203 			break;
1204 		sci->sc_stage.scnt++;
1205 		/* Creating a checkpoint */
1206 		err = nilfs_segctor_create_checkpoint(sci);
1207 		if (unlikely(err))
1208 			break;
1209 		/* Fall through */
1210 	case NILFS_ST_CPFILE:
1211 		err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1212 					      &nilfs_sc_file_ops);
1213 		if (unlikely(err))
1214 			break;
1215 		sci->sc_stage.scnt++;  /* Fall through */
1216 	case NILFS_ST_SUFILE:
1217 		err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
1218 					 sci->sc_nfreesegs, &ndone);
1219 		if (unlikely(err)) {
1220 			nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1221 						  sci->sc_freesegs, ndone,
1222 						  NULL);
1223 			break;
1224 		}
1225 		sci->sc_stage.flags |= NILFS_CF_SUFREED;
1226 
1227 		err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1228 					      &nilfs_sc_file_ops);
1229 		if (unlikely(err))
1230 			break;
1231 		sci->sc_stage.scnt++;  /* Fall through */
1232 	case NILFS_ST_DAT:
1233  dat_stage:
1234 		err = nilfs_segctor_scan_file(sci, nilfs_dat_inode(nilfs),
1235 					      &nilfs_sc_dat_ops);
1236 		if (unlikely(err))
1237 			break;
1238 		if (mode == SC_FLUSH_DAT) {
1239 			sci->sc_stage.scnt = NILFS_ST_DONE;
1240 			return 0;
1241 		}
1242 		sci->sc_stage.scnt++;  /* Fall through */
1243 	case NILFS_ST_SR:
1244 		if (mode == SC_LSEG_SR) {
1245 			/* Appending a super root */
1246 			err = nilfs_segctor_add_super_root(sci);
1247 			if (unlikely(err))
1248 				break;
1249 		}
1250 		/* End of a logical segment */
1251 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1252 		sci->sc_stage.scnt = NILFS_ST_DONE;
1253 		return 0;
1254 	case NILFS_ST_DSYNC:
1255  dsync_mode:
1256 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1257 		ii = sci->sc_dsync_inode;
1258 		if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1259 			break;
1260 
1261 		err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1262 		if (unlikely(err))
1263 			break;
1264 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1265 		sci->sc_stage.scnt = NILFS_ST_DONE;
1266 		return 0;
1267 	case NILFS_ST_DONE:
1268 		return 0;
1269 	default:
1270 		BUG();
1271 	}
1272 
1273  break_or_fail:
1274 	return err;
1275 }
1276 
1277 /**
1278  * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1279  * @sci: nilfs_sc_info
1280  * @nilfs: nilfs object
1281  */
1282 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1283 					    struct the_nilfs *nilfs)
1284 {
1285 	struct nilfs_segment_buffer *segbuf, *prev;
1286 	__u64 nextnum;
1287 	int err, alloc = 0;
1288 
1289 	segbuf = nilfs_segbuf_new(sci->sc_super);
1290 	if (unlikely(!segbuf))
1291 		return -ENOMEM;
1292 
1293 	if (list_empty(&sci->sc_write_logs)) {
1294 		nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
1295 				 nilfs->ns_pseg_offset, nilfs);
1296 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1297 			nilfs_shift_to_next_segment(nilfs);
1298 			nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1299 		}
1300 
1301 		segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1302 		nextnum = nilfs->ns_nextnum;
1303 
1304 		if (nilfs->ns_segnum == nilfs->ns_nextnum)
1305 			/* Start from the head of a new full segment */
1306 			alloc++;
1307 	} else {
1308 		/* Continue logs */
1309 		prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1310 		nilfs_segbuf_map_cont(segbuf, prev);
1311 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
1312 		nextnum = prev->sb_nextnum;
1313 
1314 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1315 			nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1316 			segbuf->sb_sum.seg_seq++;
1317 			alloc++;
1318 		}
1319 	}
1320 
1321 	err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
1322 	if (err)
1323 		goto failed;
1324 
1325 	if (alloc) {
1326 		err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1327 		if (err)
1328 			goto failed;
1329 	}
1330 	nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1331 
1332 	BUG_ON(!list_empty(&sci->sc_segbufs));
1333 	list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
1334 	sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1335 	return 0;
1336 
1337  failed:
1338 	nilfs_segbuf_free(segbuf);
1339 	return err;
1340 }
1341 
1342 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1343 					 struct the_nilfs *nilfs, int nadd)
1344 {
1345 	struct nilfs_segment_buffer *segbuf, *prev;
1346 	struct inode *sufile = nilfs->ns_sufile;
1347 	__u64 nextnextnum;
1348 	LIST_HEAD(list);
1349 	int err, ret, i;
1350 
1351 	prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1352 	/*
1353 	 * Since the segment specified with nextnum might be allocated during
1354 	 * the previous construction, the buffer including its segusage may
1355 	 * not be dirty.  The following call ensures that the buffer is dirty
1356 	 * and will pin the buffer on memory until the sufile is written.
1357 	 */
1358 	err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
1359 	if (unlikely(err))
1360 		return err;
1361 
1362 	for (i = 0; i < nadd; i++) {
1363 		/* extend segment info */
1364 		err = -ENOMEM;
1365 		segbuf = nilfs_segbuf_new(sci->sc_super);
1366 		if (unlikely(!segbuf))
1367 			goto failed;
1368 
1369 		/* map this buffer to region of segment on-disk */
1370 		nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1371 		sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1372 
1373 		/* allocate the next next full segment */
1374 		err = nilfs_sufile_alloc(sufile, &nextnextnum);
1375 		if (unlikely(err))
1376 			goto failed_segbuf;
1377 
1378 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1379 		nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1380 
1381 		list_add_tail(&segbuf->sb_list, &list);
1382 		prev = segbuf;
1383 	}
1384 	list_splice_tail(&list, &sci->sc_segbufs);
1385 	return 0;
1386 
1387  failed_segbuf:
1388 	nilfs_segbuf_free(segbuf);
1389  failed:
1390 	list_for_each_entry(segbuf, &list, sb_list) {
1391 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1392 		WARN_ON(ret); /* never fails */
1393 	}
1394 	nilfs_destroy_logs(&list);
1395 	return err;
1396 }
1397 
1398 static void nilfs_free_incomplete_logs(struct list_head *logs,
1399 				       struct the_nilfs *nilfs)
1400 {
1401 	struct nilfs_segment_buffer *segbuf, *prev;
1402 	struct inode *sufile = nilfs->ns_sufile;
1403 	int ret;
1404 
1405 	segbuf = NILFS_FIRST_SEGBUF(logs);
1406 	if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1407 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1408 		WARN_ON(ret); /* never fails */
1409 	}
1410 	if (atomic_read(&segbuf->sb_err)) {
1411 		/* Case 1: The first segment failed */
1412 		if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1413 			/* Case 1a:  Partial segment appended into an existing
1414 			   segment */
1415 			nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1416 						segbuf->sb_fseg_end);
1417 		else /* Case 1b:  New full segment */
1418 			set_nilfs_discontinued(nilfs);
1419 	}
1420 
1421 	prev = segbuf;
1422 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1423 		if (prev->sb_nextnum != segbuf->sb_nextnum) {
1424 			ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1425 			WARN_ON(ret); /* never fails */
1426 		}
1427 		if (atomic_read(&segbuf->sb_err) &&
1428 		    segbuf->sb_segnum != nilfs->ns_nextnum)
1429 			/* Case 2: extended segment (!= next) failed */
1430 			nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
1431 		prev = segbuf;
1432 	}
1433 }
1434 
1435 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1436 					  struct inode *sufile)
1437 {
1438 	struct nilfs_segment_buffer *segbuf;
1439 	unsigned long live_blocks;
1440 	int ret;
1441 
1442 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1443 		live_blocks = segbuf->sb_sum.nblocks +
1444 			(segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1445 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1446 						     live_blocks,
1447 						     sci->sc_seg_ctime);
1448 		WARN_ON(ret); /* always succeed because the segusage is dirty */
1449 	}
1450 }
1451 
1452 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
1453 {
1454 	struct nilfs_segment_buffer *segbuf;
1455 	int ret;
1456 
1457 	segbuf = NILFS_FIRST_SEGBUF(logs);
1458 	ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1459 					     segbuf->sb_pseg_start -
1460 					     segbuf->sb_fseg_start, 0);
1461 	WARN_ON(ret); /* always succeed because the segusage is dirty */
1462 
1463 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1464 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1465 						     0, 0);
1466 		WARN_ON(ret); /* always succeed */
1467 	}
1468 }
1469 
1470 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1471 					    struct nilfs_segment_buffer *last,
1472 					    struct inode *sufile)
1473 {
1474 	struct nilfs_segment_buffer *segbuf = last;
1475 	int ret;
1476 
1477 	list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1478 		sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1479 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1480 		WARN_ON(ret);
1481 	}
1482 	nilfs_truncate_logs(&sci->sc_segbufs, last);
1483 }
1484 
1485 
1486 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1487 				 struct the_nilfs *nilfs, int mode)
1488 {
1489 	struct nilfs_cstage prev_stage = sci->sc_stage;
1490 	int err, nadd = 1;
1491 
1492 	/* Collection retry loop */
1493 	for (;;) {
1494 		sci->sc_super_root = NULL;
1495 		sci->sc_nblk_this_inc = 0;
1496 		sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1497 
1498 		err = nilfs_segctor_reset_segment_buffer(sci);
1499 		if (unlikely(err))
1500 			goto failed;
1501 
1502 		err = nilfs_segctor_collect_blocks(sci, mode);
1503 		sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1504 		if (!err)
1505 			break;
1506 
1507 		if (unlikely(err != -E2BIG))
1508 			goto failed;
1509 
1510 		/* The current segment is filled up */
1511 		if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
1512 			break;
1513 
1514 		nilfs_clear_logs(&sci->sc_segbufs);
1515 
1516 		err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1517 		if (unlikely(err))
1518 			return err;
1519 
1520 		if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1521 			err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1522 							sci->sc_freesegs,
1523 							sci->sc_nfreesegs,
1524 							NULL);
1525 			WARN_ON(err); /* do not happen */
1526 		}
1527 		nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1528 		sci->sc_stage = prev_stage;
1529 	}
1530 	nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1531 	return 0;
1532 
1533  failed:
1534 	return err;
1535 }
1536 
1537 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1538 				      struct buffer_head *new_bh)
1539 {
1540 	BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1541 
1542 	list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1543 	/* The caller must release old_bh */
1544 }
1545 
1546 static int
1547 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1548 				     struct nilfs_segment_buffer *segbuf,
1549 				     int mode)
1550 {
1551 	struct inode *inode = NULL;
1552 	sector_t blocknr;
1553 	unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1554 	unsigned long nblocks = 0, ndatablk = 0;
1555 	struct nilfs_sc_operations *sc_op = NULL;
1556 	struct nilfs_segsum_pointer ssp;
1557 	struct nilfs_finfo *finfo = NULL;
1558 	union nilfs_binfo binfo;
1559 	struct buffer_head *bh, *bh_org;
1560 	ino_t ino = 0;
1561 	int err = 0;
1562 
1563 	if (!nfinfo)
1564 		goto out;
1565 
1566 	blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1567 	ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1568 	ssp.offset = sizeof(struct nilfs_segment_summary);
1569 
1570 	list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1571 		if (bh == sci->sc_super_root)
1572 			break;
1573 		if (!finfo) {
1574 			finfo =	nilfs_segctor_map_segsum_entry(
1575 				sci, &ssp, sizeof(*finfo));
1576 			ino = le64_to_cpu(finfo->fi_ino);
1577 			nblocks = le32_to_cpu(finfo->fi_nblocks);
1578 			ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1579 
1580 			if (buffer_nilfs_node(bh))
1581 				inode = NILFS_BTNC_I(bh->b_page->mapping);
1582 			else
1583 				inode = NILFS_AS_I(bh->b_page->mapping);
1584 
1585 			if (mode == SC_LSEG_DSYNC)
1586 				sc_op = &nilfs_sc_dsync_ops;
1587 			else if (ino == NILFS_DAT_INO)
1588 				sc_op = &nilfs_sc_dat_ops;
1589 			else /* file blocks */
1590 				sc_op = &nilfs_sc_file_ops;
1591 		}
1592 		bh_org = bh;
1593 		get_bh(bh_org);
1594 		err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1595 					&binfo);
1596 		if (bh != bh_org)
1597 			nilfs_list_replace_buffer(bh_org, bh);
1598 		brelse(bh_org);
1599 		if (unlikely(err))
1600 			goto failed_bmap;
1601 
1602 		if (ndatablk > 0)
1603 			sc_op->write_data_binfo(sci, &ssp, &binfo);
1604 		else
1605 			sc_op->write_node_binfo(sci, &ssp, &binfo);
1606 
1607 		blocknr++;
1608 		if (--nblocks == 0) {
1609 			finfo = NULL;
1610 			if (--nfinfo == 0)
1611 				break;
1612 		} else if (ndatablk > 0)
1613 			ndatablk--;
1614 	}
1615  out:
1616 	return 0;
1617 
1618  failed_bmap:
1619 	err = nilfs_handle_bmap_error(err, __func__, inode, sci->sc_super);
1620 	return err;
1621 }
1622 
1623 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1624 {
1625 	struct nilfs_segment_buffer *segbuf;
1626 	int err;
1627 
1628 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1629 		err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1630 		if (unlikely(err))
1631 			return err;
1632 		nilfs_segbuf_fill_in_segsum(segbuf);
1633 	}
1634 	return 0;
1635 }
1636 
1637 static int
1638 nilfs_copy_replace_page_buffers(struct page *page, struct list_head *out)
1639 {
1640 	struct page *clone_page;
1641 	struct buffer_head *bh, *head, *bh2;
1642 	void *kaddr;
1643 
1644 	bh = head = page_buffers(page);
1645 
1646 	clone_page = nilfs_alloc_private_page(bh->b_bdev, bh->b_size, 0);
1647 	if (unlikely(!clone_page))
1648 		return -ENOMEM;
1649 
1650 	bh2 = page_buffers(clone_page);
1651 	kaddr = kmap_atomic(page, KM_USER0);
1652 	do {
1653 		if (list_empty(&bh->b_assoc_buffers))
1654 			continue;
1655 		get_bh(bh2);
1656 		page_cache_get(clone_page); /* for each bh */
1657 		memcpy(bh2->b_data, kaddr + bh_offset(bh), bh2->b_size);
1658 		bh2->b_blocknr = bh->b_blocknr;
1659 		list_replace(&bh->b_assoc_buffers, &bh2->b_assoc_buffers);
1660 		list_add_tail(&bh->b_assoc_buffers, out);
1661 	} while (bh = bh->b_this_page, bh2 = bh2->b_this_page, bh != head);
1662 	kunmap_atomic(kaddr, KM_USER0);
1663 
1664 	if (!TestSetPageWriteback(clone_page))
1665 		inc_zone_page_state(clone_page, NR_WRITEBACK);
1666 	unlock_page(clone_page);
1667 
1668 	return 0;
1669 }
1670 
1671 static int nilfs_test_page_to_be_frozen(struct page *page)
1672 {
1673 	struct address_space *mapping = page->mapping;
1674 
1675 	if (!mapping || !mapping->host || S_ISDIR(mapping->host->i_mode))
1676 		return 0;
1677 
1678 	if (page_mapped(page)) {
1679 		ClearPageChecked(page);
1680 		return 1;
1681 	}
1682 	return PageChecked(page);
1683 }
1684 
1685 static int nilfs_begin_page_io(struct page *page, struct list_head *out)
1686 {
1687 	if (!page || PageWriteback(page))
1688 		/* For split b-tree node pages, this function may be called
1689 		   twice.  We ignore the 2nd or later calls by this check. */
1690 		return 0;
1691 
1692 	lock_page(page);
1693 	clear_page_dirty_for_io(page);
1694 	set_page_writeback(page);
1695 	unlock_page(page);
1696 
1697 	if (nilfs_test_page_to_be_frozen(page)) {
1698 		int err = nilfs_copy_replace_page_buffers(page, out);
1699 		if (unlikely(err))
1700 			return err;
1701 	}
1702 	return 0;
1703 }
1704 
1705 static int nilfs_segctor_prepare_write(struct nilfs_sc_info *sci,
1706 				       struct page **failed_page)
1707 {
1708 	struct nilfs_segment_buffer *segbuf;
1709 	struct page *bd_page = NULL, *fs_page = NULL;
1710 	struct list_head *list = &sci->sc_copied_buffers;
1711 	int err;
1712 
1713 	*failed_page = NULL;
1714 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1715 		struct buffer_head *bh;
1716 
1717 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1718 				    b_assoc_buffers) {
1719 			if (bh->b_page != bd_page) {
1720 				if (bd_page) {
1721 					lock_page(bd_page);
1722 					clear_page_dirty_for_io(bd_page);
1723 					set_page_writeback(bd_page);
1724 					unlock_page(bd_page);
1725 				}
1726 				bd_page = bh->b_page;
1727 			}
1728 		}
1729 
1730 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1731 				    b_assoc_buffers) {
1732 			if (bh == sci->sc_super_root) {
1733 				if (bh->b_page != bd_page) {
1734 					lock_page(bd_page);
1735 					clear_page_dirty_for_io(bd_page);
1736 					set_page_writeback(bd_page);
1737 					unlock_page(bd_page);
1738 					bd_page = bh->b_page;
1739 				}
1740 				break;
1741 			}
1742 			if (bh->b_page != fs_page) {
1743 				err = nilfs_begin_page_io(fs_page, list);
1744 				if (unlikely(err)) {
1745 					*failed_page = fs_page;
1746 					goto out;
1747 				}
1748 				fs_page = bh->b_page;
1749 			}
1750 		}
1751 	}
1752 	if (bd_page) {
1753 		lock_page(bd_page);
1754 		clear_page_dirty_for_io(bd_page);
1755 		set_page_writeback(bd_page);
1756 		unlock_page(bd_page);
1757 	}
1758 	err = nilfs_begin_page_io(fs_page, list);
1759 	if (unlikely(err))
1760 		*failed_page = fs_page;
1761  out:
1762 	return err;
1763 }
1764 
1765 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1766 			       struct the_nilfs *nilfs)
1767 {
1768 	int ret;
1769 
1770 	ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
1771 	list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
1772 	return ret;
1773 }
1774 
1775 static void __nilfs_end_page_io(struct page *page, int err)
1776 {
1777 	if (!err) {
1778 		if (!nilfs_page_buffers_clean(page))
1779 			__set_page_dirty_nobuffers(page);
1780 		ClearPageError(page);
1781 	} else {
1782 		__set_page_dirty_nobuffers(page);
1783 		SetPageError(page);
1784 	}
1785 
1786 	if (buffer_nilfs_allocated(page_buffers(page))) {
1787 		if (TestClearPageWriteback(page))
1788 			dec_zone_page_state(page, NR_WRITEBACK);
1789 	} else
1790 		end_page_writeback(page);
1791 }
1792 
1793 static void nilfs_end_page_io(struct page *page, int err)
1794 {
1795 	if (!page)
1796 		return;
1797 
1798 	if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
1799 		/*
1800 		 * For b-tree node pages, this function may be called twice
1801 		 * or more because they might be split in a segment.
1802 		 */
1803 		if (PageDirty(page)) {
1804 			/*
1805 			 * For pages holding split b-tree node buffers, dirty
1806 			 * flag on the buffers may be cleared discretely.
1807 			 * In that case, the page is once redirtied for
1808 			 * remaining buffers, and it must be cancelled if
1809 			 * all the buffers get cleaned later.
1810 			 */
1811 			lock_page(page);
1812 			if (nilfs_page_buffers_clean(page))
1813 				__nilfs_clear_page_dirty(page);
1814 			unlock_page(page);
1815 		}
1816 		return;
1817 	}
1818 
1819 	__nilfs_end_page_io(page, err);
1820 }
1821 
1822 static void nilfs_clear_copied_buffers(struct list_head *list, int err)
1823 {
1824 	struct buffer_head *bh, *head;
1825 	struct page *page;
1826 
1827 	while (!list_empty(list)) {
1828 		bh = list_entry(list->next, struct buffer_head,
1829 				b_assoc_buffers);
1830 		page = bh->b_page;
1831 		page_cache_get(page);
1832 		head = bh = page_buffers(page);
1833 		do {
1834 			if (!list_empty(&bh->b_assoc_buffers)) {
1835 				list_del_init(&bh->b_assoc_buffers);
1836 				if (!err) {
1837 					set_buffer_uptodate(bh);
1838 					clear_buffer_dirty(bh);
1839 					clear_buffer_nilfs_volatile(bh);
1840 				}
1841 				brelse(bh); /* for b_assoc_buffers */
1842 			}
1843 		} while ((bh = bh->b_this_page) != head);
1844 
1845 		__nilfs_end_page_io(page, err);
1846 		page_cache_release(page);
1847 	}
1848 }
1849 
1850 static void nilfs_abort_logs(struct list_head *logs, struct page *failed_page,
1851 			     struct buffer_head *bh_sr, int err)
1852 {
1853 	struct nilfs_segment_buffer *segbuf;
1854 	struct page *bd_page = NULL, *fs_page = NULL;
1855 	struct buffer_head *bh;
1856 
1857 	if (list_empty(logs))
1858 		return;
1859 
1860 	list_for_each_entry(segbuf, logs, sb_list) {
1861 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1862 				    b_assoc_buffers) {
1863 			if (bh->b_page != bd_page) {
1864 				if (bd_page)
1865 					end_page_writeback(bd_page);
1866 				bd_page = bh->b_page;
1867 			}
1868 		}
1869 
1870 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1871 				    b_assoc_buffers) {
1872 			if (bh == bh_sr) {
1873 				if (bh->b_page != bd_page) {
1874 					end_page_writeback(bd_page);
1875 					bd_page = bh->b_page;
1876 				}
1877 				break;
1878 			}
1879 			if (bh->b_page != fs_page) {
1880 				nilfs_end_page_io(fs_page, err);
1881 				if (fs_page && fs_page == failed_page)
1882 					return;
1883 				fs_page = bh->b_page;
1884 			}
1885 		}
1886 	}
1887 	if (bd_page)
1888 		end_page_writeback(bd_page);
1889 
1890 	nilfs_end_page_io(fs_page, err);
1891 }
1892 
1893 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
1894 					     struct the_nilfs *nilfs, int err)
1895 {
1896 	LIST_HEAD(logs);
1897 	int ret;
1898 
1899 	list_splice_tail_init(&sci->sc_write_logs, &logs);
1900 	ret = nilfs_wait_on_logs(&logs);
1901 	nilfs_abort_logs(&logs, NULL, sci->sc_super_root, ret ? : err);
1902 
1903 	list_splice_tail_init(&sci->sc_segbufs, &logs);
1904 	nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
1905 	nilfs_free_incomplete_logs(&logs, nilfs);
1906 	nilfs_clear_copied_buffers(&sci->sc_copied_buffers, err);
1907 
1908 	if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1909 		ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1910 						sci->sc_freesegs,
1911 						sci->sc_nfreesegs,
1912 						NULL);
1913 		WARN_ON(ret); /* do not happen */
1914 	}
1915 
1916 	nilfs_destroy_logs(&logs);
1917 	sci->sc_super_root = NULL;
1918 }
1919 
1920 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1921 				   struct nilfs_segment_buffer *segbuf)
1922 {
1923 	nilfs->ns_segnum = segbuf->sb_segnum;
1924 	nilfs->ns_nextnum = segbuf->sb_nextnum;
1925 	nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1926 		+ segbuf->sb_sum.nblocks;
1927 	nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1928 	nilfs->ns_ctime = segbuf->sb_sum.ctime;
1929 }
1930 
1931 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1932 {
1933 	struct nilfs_segment_buffer *segbuf;
1934 	struct page *bd_page = NULL, *fs_page = NULL;
1935 	struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
1936 	int update_sr = (sci->sc_super_root != NULL);
1937 
1938 	list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
1939 		struct buffer_head *bh;
1940 
1941 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1942 				    b_assoc_buffers) {
1943 			set_buffer_uptodate(bh);
1944 			clear_buffer_dirty(bh);
1945 			if (bh->b_page != bd_page) {
1946 				if (bd_page)
1947 					end_page_writeback(bd_page);
1948 				bd_page = bh->b_page;
1949 			}
1950 		}
1951 		/*
1952 		 * We assume that the buffers which belong to the same page
1953 		 * continue over the buffer list.
1954 		 * Under this assumption, the last BHs of pages is
1955 		 * identifiable by the discontinuity of bh->b_page
1956 		 * (page != fs_page).
1957 		 *
1958 		 * For B-tree node blocks, however, this assumption is not
1959 		 * guaranteed.  The cleanup code of B-tree node pages needs
1960 		 * special care.
1961 		 */
1962 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1963 				    b_assoc_buffers) {
1964 			set_buffer_uptodate(bh);
1965 			clear_buffer_dirty(bh);
1966 			clear_buffer_nilfs_volatile(bh);
1967 			if (bh == sci->sc_super_root) {
1968 				if (bh->b_page != bd_page) {
1969 					end_page_writeback(bd_page);
1970 					bd_page = bh->b_page;
1971 				}
1972 				break;
1973 			}
1974 			if (bh->b_page != fs_page) {
1975 				nilfs_end_page_io(fs_page, 0);
1976 				fs_page = bh->b_page;
1977 			}
1978 		}
1979 
1980 		if (!NILFS_SEG_SIMPLEX(&segbuf->sb_sum)) {
1981 			if (NILFS_SEG_LOGBGN(&segbuf->sb_sum)) {
1982 				set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1983 				sci->sc_lseg_stime = jiffies;
1984 			}
1985 			if (NILFS_SEG_LOGEND(&segbuf->sb_sum))
1986 				clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1987 		}
1988 	}
1989 	/*
1990 	 * Since pages may continue over multiple segment buffers,
1991 	 * end of the last page must be checked outside of the loop.
1992 	 */
1993 	if (bd_page)
1994 		end_page_writeback(bd_page);
1995 
1996 	nilfs_end_page_io(fs_page, 0);
1997 
1998 	nilfs_clear_copied_buffers(&sci->sc_copied_buffers, 0);
1999 
2000 	nilfs_drop_collected_inodes(&sci->sc_dirty_files);
2001 
2002 	if (nilfs_doing_gc()) {
2003 		nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
2004 		if (update_sr)
2005 			nilfs_commit_gcdat_inode(nilfs);
2006 	} else
2007 		nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
2008 
2009 	sci->sc_nblk_inc += sci->sc_nblk_this_inc;
2010 
2011 	segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
2012 	nilfs_set_next_segment(nilfs, segbuf);
2013 
2014 	if (update_sr) {
2015 		nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
2016 				       segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
2017 		set_nilfs_sb_dirty(nilfs);
2018 
2019 		clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
2020 		clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2021 		set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
2022 		nilfs_segctor_clear_metadata_dirty(sci);
2023 	} else
2024 		clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
2025 }
2026 
2027 static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
2028 {
2029 	int ret;
2030 
2031 	ret = nilfs_wait_on_logs(&sci->sc_write_logs);
2032 	if (!ret) {
2033 		nilfs_segctor_complete_write(sci);
2034 		nilfs_destroy_logs(&sci->sc_write_logs);
2035 	}
2036 	return ret;
2037 }
2038 
2039 static int nilfs_segctor_check_in_files(struct nilfs_sc_info *sci,
2040 					struct nilfs_sb_info *sbi)
2041 {
2042 	struct nilfs_inode_info *ii, *n;
2043 	__u64 cno = sbi->s_nilfs->ns_cno;
2044 
2045 	spin_lock(&sbi->s_inode_lock);
2046  retry:
2047 	list_for_each_entry_safe(ii, n, &sbi->s_dirty_files, i_dirty) {
2048 		if (!ii->i_bh) {
2049 			struct buffer_head *ibh;
2050 			int err;
2051 
2052 			spin_unlock(&sbi->s_inode_lock);
2053 			err = nilfs_ifile_get_inode_block(
2054 				sbi->s_ifile, ii->vfs_inode.i_ino, &ibh);
2055 			if (unlikely(err)) {
2056 				nilfs_warning(sbi->s_super, __func__,
2057 					      "failed to get inode block.\n");
2058 				return err;
2059 			}
2060 			nilfs_mdt_mark_buffer_dirty(ibh);
2061 			nilfs_mdt_mark_dirty(sbi->s_ifile);
2062 			spin_lock(&sbi->s_inode_lock);
2063 			if (likely(!ii->i_bh))
2064 				ii->i_bh = ibh;
2065 			else
2066 				brelse(ibh);
2067 			goto retry;
2068 		}
2069 		ii->i_cno = cno;
2070 
2071 		clear_bit(NILFS_I_QUEUED, &ii->i_state);
2072 		set_bit(NILFS_I_BUSY, &ii->i_state);
2073 		list_del(&ii->i_dirty);
2074 		list_add_tail(&ii->i_dirty, &sci->sc_dirty_files);
2075 	}
2076 	spin_unlock(&sbi->s_inode_lock);
2077 
2078 	NILFS_I(sbi->s_ifile)->i_cno = cno;
2079 
2080 	return 0;
2081 }
2082 
2083 static void nilfs_segctor_check_out_files(struct nilfs_sc_info *sci,
2084 					  struct nilfs_sb_info *sbi)
2085 {
2086 	struct nilfs_transaction_info *ti = current->journal_info;
2087 	struct nilfs_inode_info *ii, *n;
2088 	__u64 cno = sbi->s_nilfs->ns_cno;
2089 
2090 	spin_lock(&sbi->s_inode_lock);
2091 	list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
2092 		if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
2093 		    test_bit(NILFS_I_DIRTY, &ii->i_state)) {
2094 			/* The current checkpoint number (=nilfs->ns_cno) is
2095 			   changed between check-in and check-out only if the
2096 			   super root is written out.  So, we can update i_cno
2097 			   for the inodes that remain in the dirty list. */
2098 			ii->i_cno = cno;
2099 			continue;
2100 		}
2101 		clear_bit(NILFS_I_BUSY, &ii->i_state);
2102 		brelse(ii->i_bh);
2103 		ii->i_bh = NULL;
2104 		list_del(&ii->i_dirty);
2105 		list_add_tail(&ii->i_dirty, &ti->ti_garbage);
2106 	}
2107 	spin_unlock(&sbi->s_inode_lock);
2108 }
2109 
2110 /*
2111  * Main procedure of segment constructor
2112  */
2113 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
2114 {
2115 	struct nilfs_sb_info *sbi = sci->sc_sbi;
2116 	struct the_nilfs *nilfs = sbi->s_nilfs;
2117 	struct page *failed_page;
2118 	int err, has_sr = 0;
2119 
2120 	sci->sc_stage.scnt = NILFS_ST_INIT;
2121 
2122 	err = nilfs_segctor_check_in_files(sci, sbi);
2123 	if (unlikely(err))
2124 		goto out;
2125 
2126 	if (nilfs_test_metadata_dirty(sbi))
2127 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2128 
2129 	if (nilfs_segctor_clean(sci))
2130 		goto out;
2131 
2132 	do {
2133 		sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
2134 
2135 		err = nilfs_segctor_begin_construction(sci, nilfs);
2136 		if (unlikely(err))
2137 			goto out;
2138 
2139 		/* Update time stamp */
2140 		sci->sc_seg_ctime = get_seconds();
2141 
2142 		err = nilfs_segctor_collect(sci, nilfs, mode);
2143 		if (unlikely(err))
2144 			goto failed;
2145 
2146 		has_sr = (sci->sc_super_root != NULL);
2147 
2148 		/* Avoid empty segment */
2149 		if (sci->sc_stage.scnt == NILFS_ST_DONE &&
2150 		    NILFS_SEG_EMPTY(&sci->sc_curseg->sb_sum)) {
2151 			nilfs_segctor_abort_construction(sci, nilfs, 1);
2152 			goto out;
2153 		}
2154 
2155 		err = nilfs_segctor_assign(sci, mode);
2156 		if (unlikely(err))
2157 			goto failed;
2158 
2159 		if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2160 			nilfs_segctor_fill_in_file_bmap(sci, sbi->s_ifile);
2161 
2162 		if (has_sr) {
2163 			err = nilfs_segctor_fill_in_checkpoint(sci);
2164 			if (unlikely(err))
2165 				goto failed_to_write;
2166 
2167 			nilfs_segctor_fill_in_super_root(sci, nilfs);
2168 		}
2169 		nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
2170 
2171 		/* Write partial segments */
2172 		err = nilfs_segctor_prepare_write(sci, &failed_page);
2173 		if (err) {
2174 			nilfs_abort_logs(&sci->sc_segbufs, failed_page,
2175 					 sci->sc_super_root, err);
2176 			goto failed_to_write;
2177 		}
2178 		nilfs_segctor_fill_in_checksums(sci, nilfs->ns_crc_seed);
2179 
2180 		err = nilfs_segctor_write(sci, nilfs);
2181 		if (unlikely(err))
2182 			goto failed_to_write;
2183 
2184 		if (sci->sc_stage.scnt == NILFS_ST_DONE ||
2185 		    nilfs->ns_blocksize_bits != PAGE_CACHE_SHIFT) {
2186 			/*
2187 			 * At this point, we avoid double buffering
2188 			 * for blocksize < pagesize because page dirty
2189 			 * flag is turned off during write and dirty
2190 			 * buffers are not properly collected for
2191 			 * pages crossing over segments.
2192 			 */
2193 			err = nilfs_segctor_wait(sci);
2194 			if (err)
2195 				goto failed_to_write;
2196 		}
2197 	} while (sci->sc_stage.scnt != NILFS_ST_DONE);
2198 
2199 	sci->sc_super_root = NULL;
2200 
2201  out:
2202 	nilfs_segctor_check_out_files(sci, sbi);
2203 	return err;
2204 
2205  failed_to_write:
2206 	if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2207 		nilfs_redirty_inodes(&sci->sc_dirty_files);
2208 
2209  failed:
2210 	if (nilfs_doing_gc())
2211 		nilfs_redirty_inodes(&sci->sc_gc_inodes);
2212 	nilfs_segctor_abort_construction(sci, nilfs, err);
2213 	goto out;
2214 }
2215 
2216 /**
2217  * nilfs_segctor_start_timer - set timer of background write
2218  * @sci: nilfs_sc_info
2219  *
2220  * If the timer has already been set, it ignores the new request.
2221  * This function MUST be called within a section locking the segment
2222  * semaphore.
2223  */
2224 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2225 {
2226 	spin_lock(&sci->sc_state_lock);
2227 	if (sci->sc_timer && !(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2228 		sci->sc_timer->expires = jiffies + sci->sc_interval;
2229 		add_timer(sci->sc_timer);
2230 		sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2231 	}
2232 	spin_unlock(&sci->sc_state_lock);
2233 }
2234 
2235 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2236 {
2237 	spin_lock(&sci->sc_state_lock);
2238 	if (!(sci->sc_flush_request & (1 << bn))) {
2239 		unsigned long prev_req = sci->sc_flush_request;
2240 
2241 		sci->sc_flush_request |= (1 << bn);
2242 		if (!prev_req)
2243 			wake_up(&sci->sc_wait_daemon);
2244 	}
2245 	spin_unlock(&sci->sc_state_lock);
2246 }
2247 
2248 /**
2249  * nilfs_flush_segment - trigger a segment construction for resource control
2250  * @sb: super block
2251  * @ino: inode number of the file to be flushed out.
2252  */
2253 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2254 {
2255 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
2256 	struct nilfs_sc_info *sci = NILFS_SC(sbi);
2257 
2258 	if (!sci || nilfs_doing_construction())
2259 		return;
2260 	nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2261 					/* assign bit 0 to data files */
2262 }
2263 
2264 struct nilfs_segctor_wait_request {
2265 	wait_queue_t	wq;
2266 	__u32		seq;
2267 	int		err;
2268 	atomic_t	done;
2269 };
2270 
2271 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2272 {
2273 	struct nilfs_segctor_wait_request wait_req;
2274 	int err = 0;
2275 
2276 	spin_lock(&sci->sc_state_lock);
2277 	init_wait(&wait_req.wq);
2278 	wait_req.err = 0;
2279 	atomic_set(&wait_req.done, 0);
2280 	wait_req.seq = ++sci->sc_seq_request;
2281 	spin_unlock(&sci->sc_state_lock);
2282 
2283 	init_waitqueue_entry(&wait_req.wq, current);
2284 	add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2285 	set_current_state(TASK_INTERRUPTIBLE);
2286 	wake_up(&sci->sc_wait_daemon);
2287 
2288 	for (;;) {
2289 		if (atomic_read(&wait_req.done)) {
2290 			err = wait_req.err;
2291 			break;
2292 		}
2293 		if (!signal_pending(current)) {
2294 			schedule();
2295 			continue;
2296 		}
2297 		err = -ERESTARTSYS;
2298 		break;
2299 	}
2300 	finish_wait(&sci->sc_wait_request, &wait_req.wq);
2301 	return err;
2302 }
2303 
2304 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
2305 {
2306 	struct nilfs_segctor_wait_request *wrq, *n;
2307 	unsigned long flags;
2308 
2309 	spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2310 	list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
2311 				 wq.task_list) {
2312 		if (!atomic_read(&wrq->done) &&
2313 		    nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
2314 			wrq->err = err;
2315 			atomic_set(&wrq->done, 1);
2316 		}
2317 		if (atomic_read(&wrq->done)) {
2318 			wrq->wq.func(&wrq->wq,
2319 				     TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2320 				     0, NULL);
2321 		}
2322 	}
2323 	spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2324 }
2325 
2326 /**
2327  * nilfs_construct_segment - construct a logical segment
2328  * @sb: super block
2329  *
2330  * Return Value: On success, 0 is retured. On errors, one of the following
2331  * negative error code is returned.
2332  *
2333  * %-EROFS - Read only filesystem.
2334  *
2335  * %-EIO - I/O error
2336  *
2337  * %-ENOSPC - No space left on device (only in a panic state).
2338  *
2339  * %-ERESTARTSYS - Interrupted.
2340  *
2341  * %-ENOMEM - Insufficient memory available.
2342  */
2343 int nilfs_construct_segment(struct super_block *sb)
2344 {
2345 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
2346 	struct nilfs_sc_info *sci = NILFS_SC(sbi);
2347 	struct nilfs_transaction_info *ti;
2348 	int err;
2349 
2350 	if (!sci)
2351 		return -EROFS;
2352 
2353 	/* A call inside transactions causes a deadlock. */
2354 	BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2355 
2356 	err = nilfs_segctor_sync(sci);
2357 	return err;
2358 }
2359 
2360 /**
2361  * nilfs_construct_dsync_segment - construct a data-only logical segment
2362  * @sb: super block
2363  * @inode: inode whose data blocks should be written out
2364  * @start: start byte offset
2365  * @end: end byte offset (inclusive)
2366  *
2367  * Return Value: On success, 0 is retured. On errors, one of the following
2368  * negative error code is returned.
2369  *
2370  * %-EROFS - Read only filesystem.
2371  *
2372  * %-EIO - I/O error
2373  *
2374  * %-ENOSPC - No space left on device (only in a panic state).
2375  *
2376  * %-ERESTARTSYS - Interrupted.
2377  *
2378  * %-ENOMEM - Insufficient memory available.
2379  */
2380 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2381 				  loff_t start, loff_t end)
2382 {
2383 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
2384 	struct nilfs_sc_info *sci = NILFS_SC(sbi);
2385 	struct nilfs_inode_info *ii;
2386 	struct nilfs_transaction_info ti;
2387 	int err = 0;
2388 
2389 	if (!sci)
2390 		return -EROFS;
2391 
2392 	nilfs_transaction_lock(sbi, &ti, 0);
2393 
2394 	ii = NILFS_I(inode);
2395 	if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
2396 	    nilfs_test_opt(sbi, STRICT_ORDER) ||
2397 	    test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2398 	    nilfs_discontinued(sbi->s_nilfs)) {
2399 		nilfs_transaction_unlock(sbi);
2400 		err = nilfs_segctor_sync(sci);
2401 		return err;
2402 	}
2403 
2404 	spin_lock(&sbi->s_inode_lock);
2405 	if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2406 	    !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2407 		spin_unlock(&sbi->s_inode_lock);
2408 		nilfs_transaction_unlock(sbi);
2409 		return 0;
2410 	}
2411 	spin_unlock(&sbi->s_inode_lock);
2412 	sci->sc_dsync_inode = ii;
2413 	sci->sc_dsync_start = start;
2414 	sci->sc_dsync_end = end;
2415 
2416 	err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2417 
2418 	nilfs_transaction_unlock(sbi);
2419 	return err;
2420 }
2421 
2422 #define FLUSH_FILE_BIT	(0x1) /* data file only */
2423 #define FLUSH_DAT_BIT	(1 << NILFS_DAT_INO) /* DAT only */
2424 
2425 /**
2426  * nilfs_segctor_accept - record accepted sequence count of log-write requests
2427  * @sci: segment constructor object
2428  */
2429 static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
2430 {
2431 	spin_lock(&sci->sc_state_lock);
2432 	sci->sc_seq_accepted = sci->sc_seq_request;
2433 	spin_unlock(&sci->sc_state_lock);
2434 
2435 	if (sci->sc_timer)
2436 		del_timer_sync(sci->sc_timer);
2437 }
2438 
2439 /**
2440  * nilfs_segctor_notify - notify the result of request to caller threads
2441  * @sci: segment constructor object
2442  * @mode: mode of log forming
2443  * @err: error code to be notified
2444  */
2445 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
2446 {
2447 	/* Clear requests (even when the construction failed) */
2448 	spin_lock(&sci->sc_state_lock);
2449 
2450 	if (mode == SC_LSEG_SR) {
2451 		sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2452 		sci->sc_seq_done = sci->sc_seq_accepted;
2453 		nilfs_segctor_wakeup(sci, err);
2454 		sci->sc_flush_request = 0;
2455 	} else {
2456 		if (mode == SC_FLUSH_FILE)
2457 			sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2458 		else if (mode == SC_FLUSH_DAT)
2459 			sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2460 
2461 		/* re-enable timer if checkpoint creation was not done */
2462 		if (sci->sc_timer && (sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2463 		    time_before(jiffies, sci->sc_timer->expires))
2464 			add_timer(sci->sc_timer);
2465 	}
2466 	spin_unlock(&sci->sc_state_lock);
2467 }
2468 
2469 /**
2470  * nilfs_segctor_construct - form logs and write them to disk
2471  * @sci: segment constructor object
2472  * @mode: mode of log forming
2473  */
2474 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
2475 {
2476 	struct nilfs_sb_info *sbi = sci->sc_sbi;
2477 	struct the_nilfs *nilfs = sbi->s_nilfs;
2478 	int err = 0;
2479 
2480 	nilfs_segctor_accept(sci);
2481 
2482 	if (nilfs_discontinued(nilfs))
2483 		mode = SC_LSEG_SR;
2484 	if (!nilfs_segctor_confirm(sci))
2485 		err = nilfs_segctor_do_construct(sci, mode);
2486 
2487 	if (likely(!err)) {
2488 		if (mode != SC_FLUSH_DAT)
2489 			atomic_set(&nilfs->ns_ndirtyblks, 0);
2490 		if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2491 		    nilfs_discontinued(nilfs)) {
2492 			down_write(&nilfs->ns_sem);
2493 			err = nilfs_commit_super(
2494 				sbi, nilfs_altsb_need_update(nilfs));
2495 			up_write(&nilfs->ns_sem);
2496 		}
2497 	}
2498 
2499 	nilfs_segctor_notify(sci, mode, err);
2500 	return err;
2501 }
2502 
2503 static void nilfs_construction_timeout(unsigned long data)
2504 {
2505 	struct task_struct *p = (struct task_struct *)data;
2506 	wake_up_process(p);
2507 }
2508 
2509 static void
2510 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2511 {
2512 	struct nilfs_inode_info *ii, *n;
2513 
2514 	list_for_each_entry_safe(ii, n, head, i_dirty) {
2515 		if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2516 			continue;
2517 		hlist_del_init(&ii->vfs_inode.i_hash);
2518 		list_del_init(&ii->i_dirty);
2519 		nilfs_clear_gcinode(&ii->vfs_inode);
2520 	}
2521 }
2522 
2523 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2524 			 void **kbufs)
2525 {
2526 	struct nilfs_sb_info *sbi = NILFS_SB(sb);
2527 	struct nilfs_sc_info *sci = NILFS_SC(sbi);
2528 	struct the_nilfs *nilfs = sbi->s_nilfs;
2529 	struct nilfs_transaction_info ti;
2530 	int err;
2531 
2532 	if (unlikely(!sci))
2533 		return -EROFS;
2534 
2535 	nilfs_transaction_lock(sbi, &ti, 1);
2536 
2537 	err = nilfs_init_gcdat_inode(nilfs);
2538 	if (unlikely(err))
2539 		goto out_unlock;
2540 
2541 	err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2542 	if (unlikely(err))
2543 		goto out_unlock;
2544 
2545 	sci->sc_freesegs = kbufs[4];
2546 	sci->sc_nfreesegs = argv[4].v_nmembs;
2547 	list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
2548 
2549 	for (;;) {
2550 		err = nilfs_segctor_construct(sci, SC_LSEG_SR);
2551 		nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2552 
2553 		if (likely(!err))
2554 			break;
2555 
2556 		nilfs_warning(sb, __func__,
2557 			      "segment construction failed. (err=%d)", err);
2558 		set_current_state(TASK_INTERRUPTIBLE);
2559 		schedule_timeout(sci->sc_interval);
2560 	}
2561 	if (nilfs_test_opt(sbi, DISCARD)) {
2562 		int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
2563 						 sci->sc_nfreesegs);
2564 		if (ret) {
2565 			printk(KERN_WARNING
2566 			       "NILFS warning: error %d on discard request, "
2567 			       "turning discards off for the device\n", ret);
2568 			nilfs_clear_opt(sbi, DISCARD);
2569 		}
2570 	}
2571 
2572  out_unlock:
2573 	sci->sc_freesegs = NULL;
2574 	sci->sc_nfreesegs = 0;
2575 	nilfs_clear_gcdat_inode(nilfs);
2576 	nilfs_transaction_unlock(sbi);
2577 	return err;
2578 }
2579 
2580 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2581 {
2582 	struct nilfs_sb_info *sbi = sci->sc_sbi;
2583 	struct nilfs_transaction_info ti;
2584 
2585 	nilfs_transaction_lock(sbi, &ti, 0);
2586 	nilfs_segctor_construct(sci, mode);
2587 
2588 	/*
2589 	 * Unclosed segment should be retried.  We do this using sc_timer.
2590 	 * Timeout of sc_timer will invoke complete construction which leads
2591 	 * to close the current logical segment.
2592 	 */
2593 	if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2594 		nilfs_segctor_start_timer(sci);
2595 
2596 	nilfs_transaction_unlock(sbi);
2597 }
2598 
2599 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2600 {
2601 	int mode = 0;
2602 	int err;
2603 
2604 	spin_lock(&sci->sc_state_lock);
2605 	mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2606 		SC_FLUSH_DAT : SC_FLUSH_FILE;
2607 	spin_unlock(&sci->sc_state_lock);
2608 
2609 	if (mode) {
2610 		err = nilfs_segctor_do_construct(sci, mode);
2611 
2612 		spin_lock(&sci->sc_state_lock);
2613 		sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2614 			~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2615 		spin_unlock(&sci->sc_state_lock);
2616 	}
2617 	clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2618 }
2619 
2620 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2621 {
2622 	if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2623 	    time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2624 		if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2625 			return SC_FLUSH_FILE;
2626 		else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2627 			return SC_FLUSH_DAT;
2628 	}
2629 	return SC_LSEG_SR;
2630 }
2631 
2632 /**
2633  * nilfs_segctor_thread - main loop of the segment constructor thread.
2634  * @arg: pointer to a struct nilfs_sc_info.
2635  *
2636  * nilfs_segctor_thread() initializes a timer and serves as a daemon
2637  * to execute segment constructions.
2638  */
2639 static int nilfs_segctor_thread(void *arg)
2640 {
2641 	struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2642 	struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
2643 	struct timer_list timer;
2644 	int timeout = 0;
2645 
2646 	init_timer(&timer);
2647 	timer.data = (unsigned long)current;
2648 	timer.function = nilfs_construction_timeout;
2649 	sci->sc_timer = &timer;
2650 
2651 	/* start sync. */
2652 	sci->sc_task = current;
2653 	wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
2654 	printk(KERN_INFO
2655 	       "segctord starting. Construction interval = %lu seconds, "
2656 	       "CP frequency < %lu seconds\n",
2657 	       sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2658 
2659 	spin_lock(&sci->sc_state_lock);
2660  loop:
2661 	for (;;) {
2662 		int mode;
2663 
2664 		if (sci->sc_state & NILFS_SEGCTOR_QUIT)
2665 			goto end_thread;
2666 
2667 		if (timeout || sci->sc_seq_request != sci->sc_seq_done)
2668 			mode = SC_LSEG_SR;
2669 		else if (!sci->sc_flush_request)
2670 			break;
2671 		else
2672 			mode = nilfs_segctor_flush_mode(sci);
2673 
2674 		spin_unlock(&sci->sc_state_lock);
2675 		nilfs_segctor_thread_construct(sci, mode);
2676 		spin_lock(&sci->sc_state_lock);
2677 		timeout = 0;
2678 	}
2679 
2680 
2681 	if (freezing(current)) {
2682 		spin_unlock(&sci->sc_state_lock);
2683 		refrigerator();
2684 		spin_lock(&sci->sc_state_lock);
2685 	} else {
2686 		DEFINE_WAIT(wait);
2687 		int should_sleep = 1;
2688 
2689 		prepare_to_wait(&sci->sc_wait_daemon, &wait,
2690 				TASK_INTERRUPTIBLE);
2691 
2692 		if (sci->sc_seq_request != sci->sc_seq_done)
2693 			should_sleep = 0;
2694 		else if (sci->sc_flush_request)
2695 			should_sleep = 0;
2696 		else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
2697 			should_sleep = time_before(jiffies,
2698 						   sci->sc_timer->expires);
2699 
2700 		if (should_sleep) {
2701 			spin_unlock(&sci->sc_state_lock);
2702 			schedule();
2703 			spin_lock(&sci->sc_state_lock);
2704 		}
2705 		finish_wait(&sci->sc_wait_daemon, &wait);
2706 		timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2707 			   time_after_eq(jiffies, sci->sc_timer->expires));
2708 
2709 		if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
2710 			set_nilfs_discontinued(nilfs);
2711 	}
2712 	goto loop;
2713 
2714  end_thread:
2715 	spin_unlock(&sci->sc_state_lock);
2716 	del_timer_sync(sci->sc_timer);
2717 	sci->sc_timer = NULL;
2718 
2719 	/* end sync. */
2720 	sci->sc_task = NULL;
2721 	wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
2722 	return 0;
2723 }
2724 
2725 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
2726 {
2727 	struct task_struct *t;
2728 
2729 	t = kthread_run(nilfs_segctor_thread, sci, "segctord");
2730 	if (IS_ERR(t)) {
2731 		int err = PTR_ERR(t);
2732 
2733 		printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
2734 		       err);
2735 		return err;
2736 	}
2737 	wait_event(sci->sc_wait_task, sci->sc_task != NULL);
2738 	return 0;
2739 }
2740 
2741 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
2742 {
2743 	sci->sc_state |= NILFS_SEGCTOR_QUIT;
2744 
2745 	while (sci->sc_task) {
2746 		wake_up(&sci->sc_wait_daemon);
2747 		spin_unlock(&sci->sc_state_lock);
2748 		wait_event(sci->sc_wait_task, sci->sc_task == NULL);
2749 		spin_lock(&sci->sc_state_lock);
2750 	}
2751 }
2752 
2753 static int nilfs_segctor_init(struct nilfs_sc_info *sci)
2754 {
2755 	sci->sc_seq_done = sci->sc_seq_request;
2756 
2757 	return nilfs_segctor_start_thread(sci);
2758 }
2759 
2760 /*
2761  * Setup & clean-up functions
2762  */
2763 static struct nilfs_sc_info *nilfs_segctor_new(struct nilfs_sb_info *sbi)
2764 {
2765 	struct nilfs_sc_info *sci;
2766 
2767 	sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2768 	if (!sci)
2769 		return NULL;
2770 
2771 	sci->sc_sbi = sbi;
2772 	sci->sc_super = sbi->s_super;
2773 
2774 	init_waitqueue_head(&sci->sc_wait_request);
2775 	init_waitqueue_head(&sci->sc_wait_daemon);
2776 	init_waitqueue_head(&sci->sc_wait_task);
2777 	spin_lock_init(&sci->sc_state_lock);
2778 	INIT_LIST_HEAD(&sci->sc_dirty_files);
2779 	INIT_LIST_HEAD(&sci->sc_segbufs);
2780 	INIT_LIST_HEAD(&sci->sc_write_logs);
2781 	INIT_LIST_HEAD(&sci->sc_gc_inodes);
2782 	INIT_LIST_HEAD(&sci->sc_copied_buffers);
2783 
2784 	sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2785 	sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2786 	sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2787 
2788 	if (sbi->s_interval)
2789 		sci->sc_interval = sbi->s_interval;
2790 	if (sbi->s_watermark)
2791 		sci->sc_watermark = sbi->s_watermark;
2792 	return sci;
2793 }
2794 
2795 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2796 {
2797 	int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2798 
2799 	/* The segctord thread was stopped and its timer was removed.
2800 	   But some tasks remain. */
2801 	do {
2802 		struct nilfs_sb_info *sbi = sci->sc_sbi;
2803 		struct nilfs_transaction_info ti;
2804 
2805 		nilfs_transaction_lock(sbi, &ti, 0);
2806 		ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
2807 		nilfs_transaction_unlock(sbi);
2808 
2809 	} while (ret && retrycount-- > 0);
2810 }
2811 
2812 /**
2813  * nilfs_segctor_destroy - destroy the segment constructor.
2814  * @sci: nilfs_sc_info
2815  *
2816  * nilfs_segctor_destroy() kills the segctord thread and frees
2817  * the nilfs_sc_info struct.
2818  * Caller must hold the segment semaphore.
2819  */
2820 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2821 {
2822 	struct nilfs_sb_info *sbi = sci->sc_sbi;
2823 	int flag;
2824 
2825 	up_write(&sbi->s_nilfs->ns_segctor_sem);
2826 
2827 	spin_lock(&sci->sc_state_lock);
2828 	nilfs_segctor_kill_thread(sci);
2829 	flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2830 		|| sci->sc_seq_request != sci->sc_seq_done);
2831 	spin_unlock(&sci->sc_state_lock);
2832 
2833 	if (flag || !nilfs_segctor_confirm(sci))
2834 		nilfs_segctor_write_out(sci);
2835 
2836 	WARN_ON(!list_empty(&sci->sc_copied_buffers));
2837 
2838 	if (!list_empty(&sci->sc_dirty_files)) {
2839 		nilfs_warning(sbi->s_super, __func__,
2840 			      "dirty file(s) after the final construction\n");
2841 		nilfs_dispose_list(sbi, &sci->sc_dirty_files, 1);
2842 	}
2843 
2844 	WARN_ON(!list_empty(&sci->sc_segbufs));
2845 	WARN_ON(!list_empty(&sci->sc_write_logs));
2846 
2847 	down_write(&sbi->s_nilfs->ns_segctor_sem);
2848 
2849 	kfree(sci);
2850 }
2851 
2852 /**
2853  * nilfs_attach_segment_constructor - attach a segment constructor
2854  * @sbi: nilfs_sb_info
2855  *
2856  * nilfs_attach_segment_constructor() allocates a struct nilfs_sc_info,
2857  * initializes it, and starts the segment constructor.
2858  *
2859  * Return Value: On success, 0 is returned. On error, one of the following
2860  * negative error code is returned.
2861  *
2862  * %-ENOMEM - Insufficient memory available.
2863  */
2864 int nilfs_attach_segment_constructor(struct nilfs_sb_info *sbi)
2865 {
2866 	struct the_nilfs *nilfs = sbi->s_nilfs;
2867 	int err;
2868 
2869 	if (NILFS_SC(sbi)) {
2870 		/*
2871 		 * This happens if the filesystem was remounted
2872 		 * read/write after nilfs_error degenerated it into a
2873 		 * read-only mount.
2874 		 */
2875 		nilfs_detach_segment_constructor(sbi);
2876 	}
2877 
2878 	sbi->s_sc_info = nilfs_segctor_new(sbi);
2879 	if (!sbi->s_sc_info)
2880 		return -ENOMEM;
2881 
2882 	nilfs_attach_writer(nilfs, sbi);
2883 	err = nilfs_segctor_init(NILFS_SC(sbi));
2884 	if (err) {
2885 		nilfs_detach_writer(nilfs, sbi);
2886 		kfree(sbi->s_sc_info);
2887 		sbi->s_sc_info = NULL;
2888 	}
2889 	return err;
2890 }
2891 
2892 /**
2893  * nilfs_detach_segment_constructor - destroy the segment constructor
2894  * @sbi: nilfs_sb_info
2895  *
2896  * nilfs_detach_segment_constructor() kills the segment constructor daemon,
2897  * frees the struct nilfs_sc_info, and destroy the dirty file list.
2898  */
2899 void nilfs_detach_segment_constructor(struct nilfs_sb_info *sbi)
2900 {
2901 	struct the_nilfs *nilfs = sbi->s_nilfs;
2902 	LIST_HEAD(garbage_list);
2903 
2904 	down_write(&nilfs->ns_segctor_sem);
2905 	if (NILFS_SC(sbi)) {
2906 		nilfs_segctor_destroy(NILFS_SC(sbi));
2907 		sbi->s_sc_info = NULL;
2908 	}
2909 
2910 	/* Force to free the list of dirty files */
2911 	spin_lock(&sbi->s_inode_lock);
2912 	if (!list_empty(&sbi->s_dirty_files)) {
2913 		list_splice_init(&sbi->s_dirty_files, &garbage_list);
2914 		nilfs_warning(sbi->s_super, __func__,
2915 			      "Non empty dirty list after the last "
2916 			      "segment construction\n");
2917 	}
2918 	spin_unlock(&sbi->s_inode_lock);
2919 	up_write(&nilfs->ns_segctor_sem);
2920 
2921 	nilfs_dispose_list(sbi, &garbage_list, 1);
2922 	nilfs_detach_writer(nilfs, sbi);
2923 }
2924