1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * NILFS segment constructor. 4 * 5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 6 * 7 * Written by Ryusuke Konishi. 8 * 9 */ 10 11 #include <linux/pagemap.h> 12 #include <linux/buffer_head.h> 13 #include <linux/writeback.h> 14 #include <linux/bitops.h> 15 #include <linux/bio.h> 16 #include <linux/completion.h> 17 #include <linux/blkdev.h> 18 #include <linux/backing-dev.h> 19 #include <linux/freezer.h> 20 #include <linux/kthread.h> 21 #include <linux/crc32.h> 22 #include <linux/pagevec.h> 23 #include <linux/slab.h> 24 #include <linux/sched/signal.h> 25 26 #include "nilfs.h" 27 #include "btnode.h" 28 #include "page.h" 29 #include "segment.h" 30 #include "sufile.h" 31 #include "cpfile.h" 32 #include "ifile.h" 33 #include "segbuf.h" 34 35 36 /* 37 * Segment constructor 38 */ 39 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */ 40 41 #define SC_MAX_SEGDELTA 64 /* 42 * Upper limit of the number of segments 43 * appended in collection retry loop 44 */ 45 46 /* Construction mode */ 47 enum { 48 SC_LSEG_SR = 1, /* Make a logical segment having a super root */ 49 SC_LSEG_DSYNC, /* 50 * Flush data blocks of a given file and make 51 * a logical segment without a super root. 52 */ 53 SC_FLUSH_FILE, /* 54 * Flush data files, leads to segment writes without 55 * creating a checkpoint. 56 */ 57 SC_FLUSH_DAT, /* 58 * Flush DAT file. This also creates segments 59 * without a checkpoint. 60 */ 61 }; 62 63 /* Stage numbers of dirty block collection */ 64 enum { 65 NILFS_ST_INIT = 0, 66 NILFS_ST_GC, /* Collecting dirty blocks for GC */ 67 NILFS_ST_FILE, 68 NILFS_ST_IFILE, 69 NILFS_ST_CPFILE, 70 NILFS_ST_SUFILE, 71 NILFS_ST_DAT, 72 NILFS_ST_SR, /* Super root */ 73 NILFS_ST_DSYNC, /* Data sync blocks */ 74 NILFS_ST_DONE, 75 }; 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/nilfs2.h> 79 80 /* 81 * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are 82 * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of 83 * the variable must use them because transition of stage count must involve 84 * trace events (trace_nilfs2_collection_stage_transition). 85 * 86 * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't 87 * produce tracepoint events. It is provided just for making the intention 88 * clear. 89 */ 90 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci) 91 { 92 sci->sc_stage.scnt++; 93 trace_nilfs2_collection_stage_transition(sci); 94 } 95 96 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt) 97 { 98 sci->sc_stage.scnt = next_scnt; 99 trace_nilfs2_collection_stage_transition(sci); 100 } 101 102 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci) 103 { 104 return sci->sc_stage.scnt; 105 } 106 107 /* State flags of collection */ 108 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */ 109 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */ 110 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */ 111 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED) 112 113 /* Operations depending on the construction mode and file type */ 114 struct nilfs_sc_operations { 115 int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *, 116 struct inode *); 117 int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *, 118 struct inode *); 119 int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *, 120 struct inode *); 121 void (*write_data_binfo)(struct nilfs_sc_info *, 122 struct nilfs_segsum_pointer *, 123 union nilfs_binfo *); 124 void (*write_node_binfo)(struct nilfs_sc_info *, 125 struct nilfs_segsum_pointer *, 126 union nilfs_binfo *); 127 }; 128 129 /* 130 * Other definitions 131 */ 132 static void nilfs_segctor_start_timer(struct nilfs_sc_info *); 133 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int); 134 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *); 135 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int); 136 137 #define nilfs_cnt32_ge(a, b) \ 138 (typecheck(__u32, a) && typecheck(__u32, b) && \ 139 ((__s32)(a) - (__s32)(b) >= 0)) 140 141 static int nilfs_prepare_segment_lock(struct super_block *sb, 142 struct nilfs_transaction_info *ti) 143 { 144 struct nilfs_transaction_info *cur_ti = current->journal_info; 145 void *save = NULL; 146 147 if (cur_ti) { 148 if (cur_ti->ti_magic == NILFS_TI_MAGIC) 149 return ++cur_ti->ti_count; 150 151 /* 152 * If journal_info field is occupied by other FS, 153 * it is saved and will be restored on 154 * nilfs_transaction_commit(). 155 */ 156 nilfs_warn(sb, "journal info from a different FS"); 157 save = current->journal_info; 158 } 159 if (!ti) { 160 ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS); 161 if (!ti) 162 return -ENOMEM; 163 ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC; 164 } else { 165 ti->ti_flags = 0; 166 } 167 ti->ti_count = 0; 168 ti->ti_save = save; 169 ti->ti_magic = NILFS_TI_MAGIC; 170 current->journal_info = ti; 171 return 0; 172 } 173 174 /** 175 * nilfs_transaction_begin - start indivisible file operations. 176 * @sb: super block 177 * @ti: nilfs_transaction_info 178 * @vacancy_check: flags for vacancy rate checks 179 * 180 * nilfs_transaction_begin() acquires a reader/writer semaphore, called 181 * the segment semaphore, to make a segment construction and write tasks 182 * exclusive. The function is used with nilfs_transaction_commit() in pairs. 183 * The region enclosed by these two functions can be nested. To avoid a 184 * deadlock, the semaphore is only acquired or released in the outermost call. 185 * 186 * This function allocates a nilfs_transaction_info struct to keep context 187 * information on it. It is initialized and hooked onto the current task in 188 * the outermost call. If a pre-allocated struct is given to @ti, it is used 189 * instead; otherwise a new struct is assigned from a slab. 190 * 191 * When @vacancy_check flag is set, this function will check the amount of 192 * free space, and will wait for the GC to reclaim disk space if low capacity. 193 * 194 * Return Value: On success, 0 is returned. On error, one of the following 195 * negative error code is returned. 196 * 197 * %-ENOMEM - Insufficient memory available. 198 * 199 * %-ENOSPC - No space left on device 200 */ 201 int nilfs_transaction_begin(struct super_block *sb, 202 struct nilfs_transaction_info *ti, 203 int vacancy_check) 204 { 205 struct the_nilfs *nilfs; 206 int ret = nilfs_prepare_segment_lock(sb, ti); 207 struct nilfs_transaction_info *trace_ti; 208 209 if (unlikely(ret < 0)) 210 return ret; 211 if (ret > 0) { 212 trace_ti = current->journal_info; 213 214 trace_nilfs2_transaction_transition(sb, trace_ti, 215 trace_ti->ti_count, trace_ti->ti_flags, 216 TRACE_NILFS2_TRANSACTION_BEGIN); 217 return 0; 218 } 219 220 sb_start_intwrite(sb); 221 222 nilfs = sb->s_fs_info; 223 down_read(&nilfs->ns_segctor_sem); 224 if (vacancy_check && nilfs_near_disk_full(nilfs)) { 225 up_read(&nilfs->ns_segctor_sem); 226 ret = -ENOSPC; 227 goto failed; 228 } 229 230 trace_ti = current->journal_info; 231 trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count, 232 trace_ti->ti_flags, 233 TRACE_NILFS2_TRANSACTION_BEGIN); 234 return 0; 235 236 failed: 237 ti = current->journal_info; 238 current->journal_info = ti->ti_save; 239 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 240 kmem_cache_free(nilfs_transaction_cachep, ti); 241 sb_end_intwrite(sb); 242 return ret; 243 } 244 245 /** 246 * nilfs_transaction_commit - commit indivisible file operations. 247 * @sb: super block 248 * 249 * nilfs_transaction_commit() releases the read semaphore which is 250 * acquired by nilfs_transaction_begin(). This is only performed 251 * in outermost call of this function. If a commit flag is set, 252 * nilfs_transaction_commit() sets a timer to start the segment 253 * constructor. If a sync flag is set, it starts construction 254 * directly. 255 */ 256 int nilfs_transaction_commit(struct super_block *sb) 257 { 258 struct nilfs_transaction_info *ti = current->journal_info; 259 struct the_nilfs *nilfs = sb->s_fs_info; 260 int err = 0; 261 262 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 263 ti->ti_flags |= NILFS_TI_COMMIT; 264 if (ti->ti_count > 0) { 265 ti->ti_count--; 266 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 267 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT); 268 return 0; 269 } 270 if (nilfs->ns_writer) { 271 struct nilfs_sc_info *sci = nilfs->ns_writer; 272 273 if (ti->ti_flags & NILFS_TI_COMMIT) 274 nilfs_segctor_start_timer(sci); 275 if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark) 276 nilfs_segctor_do_flush(sci, 0); 277 } 278 up_read(&nilfs->ns_segctor_sem); 279 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 280 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT); 281 282 current->journal_info = ti->ti_save; 283 284 if (ti->ti_flags & NILFS_TI_SYNC) 285 err = nilfs_construct_segment(sb); 286 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 287 kmem_cache_free(nilfs_transaction_cachep, ti); 288 sb_end_intwrite(sb); 289 return err; 290 } 291 292 void nilfs_transaction_abort(struct super_block *sb) 293 { 294 struct nilfs_transaction_info *ti = current->journal_info; 295 struct the_nilfs *nilfs = sb->s_fs_info; 296 297 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 298 if (ti->ti_count > 0) { 299 ti->ti_count--; 300 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 301 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT); 302 return; 303 } 304 up_read(&nilfs->ns_segctor_sem); 305 306 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 307 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT); 308 309 current->journal_info = ti->ti_save; 310 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 311 kmem_cache_free(nilfs_transaction_cachep, ti); 312 sb_end_intwrite(sb); 313 } 314 315 void nilfs_relax_pressure_in_lock(struct super_block *sb) 316 { 317 struct the_nilfs *nilfs = sb->s_fs_info; 318 struct nilfs_sc_info *sci = nilfs->ns_writer; 319 320 if (sb_rdonly(sb) || unlikely(!sci) || !sci->sc_flush_request) 321 return; 322 323 set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); 324 up_read(&nilfs->ns_segctor_sem); 325 326 down_write(&nilfs->ns_segctor_sem); 327 if (sci->sc_flush_request && 328 test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) { 329 struct nilfs_transaction_info *ti = current->journal_info; 330 331 ti->ti_flags |= NILFS_TI_WRITER; 332 nilfs_segctor_do_immediate_flush(sci); 333 ti->ti_flags &= ~NILFS_TI_WRITER; 334 } 335 downgrade_write(&nilfs->ns_segctor_sem); 336 } 337 338 static void nilfs_transaction_lock(struct super_block *sb, 339 struct nilfs_transaction_info *ti, 340 int gcflag) 341 { 342 struct nilfs_transaction_info *cur_ti = current->journal_info; 343 struct the_nilfs *nilfs = sb->s_fs_info; 344 struct nilfs_sc_info *sci = nilfs->ns_writer; 345 346 WARN_ON(cur_ti); 347 ti->ti_flags = NILFS_TI_WRITER; 348 ti->ti_count = 0; 349 ti->ti_save = cur_ti; 350 ti->ti_magic = NILFS_TI_MAGIC; 351 current->journal_info = ti; 352 353 for (;;) { 354 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 355 ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK); 356 357 down_write(&nilfs->ns_segctor_sem); 358 if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) 359 break; 360 361 nilfs_segctor_do_immediate_flush(sci); 362 363 up_write(&nilfs->ns_segctor_sem); 364 cond_resched(); 365 } 366 if (gcflag) 367 ti->ti_flags |= NILFS_TI_GC; 368 369 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 370 ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK); 371 } 372 373 static void nilfs_transaction_unlock(struct super_block *sb) 374 { 375 struct nilfs_transaction_info *ti = current->journal_info; 376 struct the_nilfs *nilfs = sb->s_fs_info; 377 378 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 379 BUG_ON(ti->ti_count > 0); 380 381 up_write(&nilfs->ns_segctor_sem); 382 current->journal_info = ti->ti_save; 383 384 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 385 ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK); 386 } 387 388 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci, 389 struct nilfs_segsum_pointer *ssp, 390 unsigned int bytes) 391 { 392 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 393 unsigned int blocksize = sci->sc_super->s_blocksize; 394 void *p; 395 396 if (unlikely(ssp->offset + bytes > blocksize)) { 397 ssp->offset = 0; 398 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh, 399 &segbuf->sb_segsum_buffers)); 400 ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh); 401 } 402 p = ssp->bh->b_data + ssp->offset; 403 ssp->offset += bytes; 404 return p; 405 } 406 407 /** 408 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer 409 * @sci: nilfs_sc_info 410 */ 411 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci) 412 { 413 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 414 struct buffer_head *sumbh; 415 unsigned int sumbytes; 416 unsigned int flags = 0; 417 int err; 418 419 if (nilfs_doing_gc()) 420 flags = NILFS_SS_GC; 421 err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno); 422 if (unlikely(err)) 423 return err; 424 425 sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); 426 sumbytes = segbuf->sb_sum.sumbytes; 427 sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes; 428 sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes; 429 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; 430 return 0; 431 } 432 433 /** 434 * nilfs_segctor_zeropad_segsum - zero pad the rest of the segment summary area 435 * @sci: segment constructor object 436 * 437 * nilfs_segctor_zeropad_segsum() zero-fills unallocated space at the end of 438 * the current segment summary block. 439 */ 440 static void nilfs_segctor_zeropad_segsum(struct nilfs_sc_info *sci) 441 { 442 struct nilfs_segsum_pointer *ssp; 443 444 ssp = sci->sc_blk_cnt > 0 ? &sci->sc_binfo_ptr : &sci->sc_finfo_ptr; 445 if (ssp->offset < ssp->bh->b_size) 446 memset(ssp->bh->b_data + ssp->offset, 0, 447 ssp->bh->b_size - ssp->offset); 448 } 449 450 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci) 451 { 452 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; 453 if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs)) 454 return -E2BIG; /* 455 * The current segment is filled up 456 * (internal code) 457 */ 458 nilfs_segctor_zeropad_segsum(sci); 459 sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg); 460 return nilfs_segctor_reset_segment_buffer(sci); 461 } 462 463 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci) 464 { 465 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 466 int err; 467 468 if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) { 469 err = nilfs_segctor_feed_segment(sci); 470 if (err) 471 return err; 472 segbuf = sci->sc_curseg; 473 } 474 err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root); 475 if (likely(!err)) 476 segbuf->sb_sum.flags |= NILFS_SS_SR; 477 return err; 478 } 479 480 /* 481 * Functions for making segment summary and payloads 482 */ 483 static int nilfs_segctor_segsum_block_required( 484 struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp, 485 unsigned int binfo_size) 486 { 487 unsigned int blocksize = sci->sc_super->s_blocksize; 488 /* Size of finfo and binfo is enough small against blocksize */ 489 490 return ssp->offset + binfo_size + 491 (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) > 492 blocksize; 493 } 494 495 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci, 496 struct inode *inode) 497 { 498 sci->sc_curseg->sb_sum.nfinfo++; 499 sci->sc_binfo_ptr = sci->sc_finfo_ptr; 500 nilfs_segctor_map_segsum_entry( 501 sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo)); 502 503 if (NILFS_I(inode)->i_root && 504 !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)) 505 set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); 506 /* skip finfo */ 507 } 508 509 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci, 510 struct inode *inode) 511 { 512 struct nilfs_finfo *finfo; 513 struct nilfs_inode_info *ii; 514 struct nilfs_segment_buffer *segbuf; 515 __u64 cno; 516 517 if (sci->sc_blk_cnt == 0) 518 return; 519 520 ii = NILFS_I(inode); 521 522 if (test_bit(NILFS_I_GCINODE, &ii->i_state)) 523 cno = ii->i_cno; 524 else if (NILFS_ROOT_METADATA_FILE(inode->i_ino)) 525 cno = 0; 526 else 527 cno = sci->sc_cno; 528 529 finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr, 530 sizeof(*finfo)); 531 finfo->fi_ino = cpu_to_le64(inode->i_ino); 532 finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt); 533 finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt); 534 finfo->fi_cno = cpu_to_le64(cno); 535 536 segbuf = sci->sc_curseg; 537 segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset + 538 sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1); 539 sci->sc_finfo_ptr = sci->sc_binfo_ptr; 540 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; 541 } 542 543 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci, 544 struct buffer_head *bh, 545 struct inode *inode, 546 unsigned int binfo_size) 547 { 548 struct nilfs_segment_buffer *segbuf; 549 int required, err = 0; 550 551 retry: 552 segbuf = sci->sc_curseg; 553 required = nilfs_segctor_segsum_block_required( 554 sci, &sci->sc_binfo_ptr, binfo_size); 555 if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) { 556 nilfs_segctor_end_finfo(sci, inode); 557 err = nilfs_segctor_feed_segment(sci); 558 if (err) 559 return err; 560 goto retry; 561 } 562 if (unlikely(required)) { 563 nilfs_segctor_zeropad_segsum(sci); 564 err = nilfs_segbuf_extend_segsum(segbuf); 565 if (unlikely(err)) 566 goto failed; 567 } 568 if (sci->sc_blk_cnt == 0) 569 nilfs_segctor_begin_finfo(sci, inode); 570 571 nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size); 572 /* Substitution to vblocknr is delayed until update_blocknr() */ 573 nilfs_segbuf_add_file_buffer(segbuf, bh); 574 sci->sc_blk_cnt++; 575 failed: 576 return err; 577 } 578 579 /* 580 * Callback functions that enumerate, mark, and collect dirty blocks 581 */ 582 static int nilfs_collect_file_data(struct nilfs_sc_info *sci, 583 struct buffer_head *bh, struct inode *inode) 584 { 585 int err; 586 587 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 588 if (err < 0) 589 return err; 590 591 err = nilfs_segctor_add_file_block(sci, bh, inode, 592 sizeof(struct nilfs_binfo_v)); 593 if (!err) 594 sci->sc_datablk_cnt++; 595 return err; 596 } 597 598 static int nilfs_collect_file_node(struct nilfs_sc_info *sci, 599 struct buffer_head *bh, 600 struct inode *inode) 601 { 602 return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 603 } 604 605 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci, 606 struct buffer_head *bh, 607 struct inode *inode) 608 { 609 WARN_ON(!buffer_dirty(bh)); 610 return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); 611 } 612 613 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci, 614 struct nilfs_segsum_pointer *ssp, 615 union nilfs_binfo *binfo) 616 { 617 struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry( 618 sci, ssp, sizeof(*binfo_v)); 619 *binfo_v = binfo->bi_v; 620 } 621 622 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci, 623 struct nilfs_segsum_pointer *ssp, 624 union nilfs_binfo *binfo) 625 { 626 __le64 *vblocknr = nilfs_segctor_map_segsum_entry( 627 sci, ssp, sizeof(*vblocknr)); 628 *vblocknr = binfo->bi_v.bi_vblocknr; 629 } 630 631 static const struct nilfs_sc_operations nilfs_sc_file_ops = { 632 .collect_data = nilfs_collect_file_data, 633 .collect_node = nilfs_collect_file_node, 634 .collect_bmap = nilfs_collect_file_bmap, 635 .write_data_binfo = nilfs_write_file_data_binfo, 636 .write_node_binfo = nilfs_write_file_node_binfo, 637 }; 638 639 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci, 640 struct buffer_head *bh, struct inode *inode) 641 { 642 int err; 643 644 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 645 if (err < 0) 646 return err; 647 648 err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); 649 if (!err) 650 sci->sc_datablk_cnt++; 651 return err; 652 } 653 654 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci, 655 struct buffer_head *bh, struct inode *inode) 656 { 657 WARN_ON(!buffer_dirty(bh)); 658 return nilfs_segctor_add_file_block(sci, bh, inode, 659 sizeof(struct nilfs_binfo_dat)); 660 } 661 662 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci, 663 struct nilfs_segsum_pointer *ssp, 664 union nilfs_binfo *binfo) 665 { 666 __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp, 667 sizeof(*blkoff)); 668 *blkoff = binfo->bi_dat.bi_blkoff; 669 } 670 671 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci, 672 struct nilfs_segsum_pointer *ssp, 673 union nilfs_binfo *binfo) 674 { 675 struct nilfs_binfo_dat *binfo_dat = 676 nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat)); 677 *binfo_dat = binfo->bi_dat; 678 } 679 680 static const struct nilfs_sc_operations nilfs_sc_dat_ops = { 681 .collect_data = nilfs_collect_dat_data, 682 .collect_node = nilfs_collect_file_node, 683 .collect_bmap = nilfs_collect_dat_bmap, 684 .write_data_binfo = nilfs_write_dat_data_binfo, 685 .write_node_binfo = nilfs_write_dat_node_binfo, 686 }; 687 688 static const struct nilfs_sc_operations nilfs_sc_dsync_ops = { 689 .collect_data = nilfs_collect_file_data, 690 .collect_node = NULL, 691 .collect_bmap = NULL, 692 .write_data_binfo = nilfs_write_file_data_binfo, 693 .write_node_binfo = NULL, 694 }; 695 696 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode, 697 struct list_head *listp, 698 size_t nlimit, 699 loff_t start, loff_t end) 700 { 701 struct address_space *mapping = inode->i_mapping; 702 struct folio_batch fbatch; 703 pgoff_t index = 0, last = ULONG_MAX; 704 size_t ndirties = 0; 705 int i; 706 707 if (unlikely(start != 0 || end != LLONG_MAX)) { 708 /* 709 * A valid range is given for sync-ing data pages. The 710 * range is rounded to per-page; extra dirty buffers 711 * may be included if blocksize < pagesize. 712 */ 713 index = start >> PAGE_SHIFT; 714 last = end >> PAGE_SHIFT; 715 } 716 folio_batch_init(&fbatch); 717 repeat: 718 if (unlikely(index > last) || 719 !filemap_get_folios_tag(mapping, &index, last, 720 PAGECACHE_TAG_DIRTY, &fbatch)) 721 return ndirties; 722 723 for (i = 0; i < folio_batch_count(&fbatch); i++) { 724 struct buffer_head *bh, *head; 725 struct folio *folio = fbatch.folios[i]; 726 727 folio_lock(folio); 728 head = folio_buffers(folio); 729 if (!head) { 730 create_empty_buffers(&folio->page, i_blocksize(inode), 0); 731 head = folio_buffers(folio); 732 } 733 folio_unlock(folio); 734 735 bh = head; 736 do { 737 if (!buffer_dirty(bh) || buffer_async_write(bh)) 738 continue; 739 get_bh(bh); 740 list_add_tail(&bh->b_assoc_buffers, listp); 741 ndirties++; 742 if (unlikely(ndirties >= nlimit)) { 743 folio_batch_release(&fbatch); 744 cond_resched(); 745 return ndirties; 746 } 747 } while (bh = bh->b_this_page, bh != head); 748 } 749 folio_batch_release(&fbatch); 750 cond_resched(); 751 goto repeat; 752 } 753 754 static void nilfs_lookup_dirty_node_buffers(struct inode *inode, 755 struct list_head *listp) 756 { 757 struct nilfs_inode_info *ii = NILFS_I(inode); 758 struct inode *btnc_inode = ii->i_assoc_inode; 759 struct folio_batch fbatch; 760 struct buffer_head *bh, *head; 761 unsigned int i; 762 pgoff_t index = 0; 763 764 if (!btnc_inode) 765 return; 766 folio_batch_init(&fbatch); 767 768 while (filemap_get_folios_tag(btnc_inode->i_mapping, &index, 769 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, &fbatch)) { 770 for (i = 0; i < folio_batch_count(&fbatch); i++) { 771 bh = head = folio_buffers(fbatch.folios[i]); 772 do { 773 if (buffer_dirty(bh) && 774 !buffer_async_write(bh)) { 775 get_bh(bh); 776 list_add_tail(&bh->b_assoc_buffers, 777 listp); 778 } 779 bh = bh->b_this_page; 780 } while (bh != head); 781 } 782 folio_batch_release(&fbatch); 783 cond_resched(); 784 } 785 } 786 787 static void nilfs_dispose_list(struct the_nilfs *nilfs, 788 struct list_head *head, int force) 789 { 790 struct nilfs_inode_info *ii, *n; 791 struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii; 792 unsigned int nv = 0; 793 794 while (!list_empty(head)) { 795 spin_lock(&nilfs->ns_inode_lock); 796 list_for_each_entry_safe(ii, n, head, i_dirty) { 797 list_del_init(&ii->i_dirty); 798 if (force) { 799 if (unlikely(ii->i_bh)) { 800 brelse(ii->i_bh); 801 ii->i_bh = NULL; 802 } 803 } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) { 804 set_bit(NILFS_I_QUEUED, &ii->i_state); 805 list_add_tail(&ii->i_dirty, 806 &nilfs->ns_dirty_files); 807 continue; 808 } 809 ivec[nv++] = ii; 810 if (nv == SC_N_INODEVEC) 811 break; 812 } 813 spin_unlock(&nilfs->ns_inode_lock); 814 815 for (pii = ivec; nv > 0; pii++, nv--) 816 iput(&(*pii)->vfs_inode); 817 } 818 } 819 820 static void nilfs_iput_work_func(struct work_struct *work) 821 { 822 struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info, 823 sc_iput_work); 824 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 825 826 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0); 827 } 828 829 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs, 830 struct nilfs_root *root) 831 { 832 int ret = 0; 833 834 if (nilfs_mdt_fetch_dirty(root->ifile)) 835 ret++; 836 if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile)) 837 ret++; 838 if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile)) 839 ret++; 840 if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat)) 841 ret++; 842 return ret; 843 } 844 845 static int nilfs_segctor_clean(struct nilfs_sc_info *sci) 846 { 847 return list_empty(&sci->sc_dirty_files) && 848 !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) && 849 sci->sc_nfreesegs == 0 && 850 (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes)); 851 } 852 853 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci) 854 { 855 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 856 int ret = 0; 857 858 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) 859 set_bit(NILFS_SC_DIRTY, &sci->sc_flags); 860 861 spin_lock(&nilfs->ns_inode_lock); 862 if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci)) 863 ret++; 864 865 spin_unlock(&nilfs->ns_inode_lock); 866 return ret; 867 } 868 869 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci) 870 { 871 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 872 873 nilfs_mdt_clear_dirty(sci->sc_root->ifile); 874 nilfs_mdt_clear_dirty(nilfs->ns_cpfile); 875 nilfs_mdt_clear_dirty(nilfs->ns_sufile); 876 nilfs_mdt_clear_dirty(nilfs->ns_dat); 877 } 878 879 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci) 880 { 881 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 882 struct buffer_head *bh_cp; 883 struct nilfs_checkpoint *raw_cp; 884 int err; 885 886 /* XXX: this interface will be changed */ 887 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1, 888 &raw_cp, &bh_cp); 889 if (likely(!err)) { 890 /* 891 * The following code is duplicated with cpfile. But, it is 892 * needed to collect the checkpoint even if it was not newly 893 * created. 894 */ 895 mark_buffer_dirty(bh_cp); 896 nilfs_mdt_mark_dirty(nilfs->ns_cpfile); 897 nilfs_cpfile_put_checkpoint( 898 nilfs->ns_cpfile, nilfs->ns_cno, bh_cp); 899 } else if (err == -EINVAL || err == -ENOENT) { 900 nilfs_error(sci->sc_super, 901 "checkpoint creation failed due to metadata corruption."); 902 err = -EIO; 903 } 904 return err; 905 } 906 907 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci) 908 { 909 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 910 struct buffer_head *bh_cp; 911 struct nilfs_checkpoint *raw_cp; 912 int err; 913 914 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0, 915 &raw_cp, &bh_cp); 916 if (unlikely(err)) { 917 if (err == -EINVAL || err == -ENOENT) { 918 nilfs_error(sci->sc_super, 919 "checkpoint finalization failed due to metadata corruption."); 920 err = -EIO; 921 } 922 goto failed_ibh; 923 } 924 raw_cp->cp_snapshot_list.ssl_next = 0; 925 raw_cp->cp_snapshot_list.ssl_prev = 0; 926 raw_cp->cp_inodes_count = 927 cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count)); 928 raw_cp->cp_blocks_count = 929 cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count)); 930 raw_cp->cp_nblk_inc = 931 cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc); 932 raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime); 933 raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno); 934 935 if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)) 936 nilfs_checkpoint_clear_minor(raw_cp); 937 else 938 nilfs_checkpoint_set_minor(raw_cp); 939 940 nilfs_write_inode_common(sci->sc_root->ifile, 941 &raw_cp->cp_ifile_inode, 1); 942 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp); 943 return 0; 944 945 failed_ibh: 946 return err; 947 } 948 949 static void nilfs_fill_in_file_bmap(struct inode *ifile, 950 struct nilfs_inode_info *ii) 951 952 { 953 struct buffer_head *ibh; 954 struct nilfs_inode *raw_inode; 955 956 if (test_bit(NILFS_I_BMAP, &ii->i_state)) { 957 ibh = ii->i_bh; 958 BUG_ON(!ibh); 959 raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino, 960 ibh); 961 nilfs_bmap_write(ii->i_bmap, raw_inode); 962 nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh); 963 } 964 } 965 966 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci) 967 { 968 struct nilfs_inode_info *ii; 969 970 list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) { 971 nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii); 972 set_bit(NILFS_I_COLLECTED, &ii->i_state); 973 } 974 } 975 976 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci, 977 struct the_nilfs *nilfs) 978 { 979 struct buffer_head *bh_sr; 980 struct nilfs_super_root *raw_sr; 981 unsigned int isz, srsz; 982 983 bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root; 984 985 lock_buffer(bh_sr); 986 raw_sr = (struct nilfs_super_root *)bh_sr->b_data; 987 isz = nilfs->ns_inode_size; 988 srsz = NILFS_SR_BYTES(isz); 989 990 raw_sr->sr_sum = 0; /* Ensure initialization within this update */ 991 raw_sr->sr_bytes = cpu_to_le16(srsz); 992 raw_sr->sr_nongc_ctime 993 = cpu_to_le64(nilfs_doing_gc() ? 994 nilfs->ns_nongc_ctime : sci->sc_seg_ctime); 995 raw_sr->sr_flags = 0; 996 997 nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr + 998 NILFS_SR_DAT_OFFSET(isz), 1); 999 nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr + 1000 NILFS_SR_CPFILE_OFFSET(isz), 1); 1001 nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr + 1002 NILFS_SR_SUFILE_OFFSET(isz), 1); 1003 memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz); 1004 set_buffer_uptodate(bh_sr); 1005 unlock_buffer(bh_sr); 1006 } 1007 1008 static void nilfs_redirty_inodes(struct list_head *head) 1009 { 1010 struct nilfs_inode_info *ii; 1011 1012 list_for_each_entry(ii, head, i_dirty) { 1013 if (test_bit(NILFS_I_COLLECTED, &ii->i_state)) 1014 clear_bit(NILFS_I_COLLECTED, &ii->i_state); 1015 } 1016 } 1017 1018 static void nilfs_drop_collected_inodes(struct list_head *head) 1019 { 1020 struct nilfs_inode_info *ii; 1021 1022 list_for_each_entry(ii, head, i_dirty) { 1023 if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state)) 1024 continue; 1025 1026 clear_bit(NILFS_I_INODE_SYNC, &ii->i_state); 1027 set_bit(NILFS_I_UPDATED, &ii->i_state); 1028 } 1029 } 1030 1031 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci, 1032 struct inode *inode, 1033 struct list_head *listp, 1034 int (*collect)(struct nilfs_sc_info *, 1035 struct buffer_head *, 1036 struct inode *)) 1037 { 1038 struct buffer_head *bh, *n; 1039 int err = 0; 1040 1041 if (collect) { 1042 list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) { 1043 list_del_init(&bh->b_assoc_buffers); 1044 err = collect(sci, bh, inode); 1045 brelse(bh); 1046 if (unlikely(err)) 1047 goto dispose_buffers; 1048 } 1049 return 0; 1050 } 1051 1052 dispose_buffers: 1053 while (!list_empty(listp)) { 1054 bh = list_first_entry(listp, struct buffer_head, 1055 b_assoc_buffers); 1056 list_del_init(&bh->b_assoc_buffers); 1057 brelse(bh); 1058 } 1059 return err; 1060 } 1061 1062 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci) 1063 { 1064 /* Remaining number of blocks within segment buffer */ 1065 return sci->sc_segbuf_nblocks - 1066 (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks); 1067 } 1068 1069 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci, 1070 struct inode *inode, 1071 const struct nilfs_sc_operations *sc_ops) 1072 { 1073 LIST_HEAD(data_buffers); 1074 LIST_HEAD(node_buffers); 1075 int err; 1076 1077 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { 1078 size_t n, rest = nilfs_segctor_buffer_rest(sci); 1079 1080 n = nilfs_lookup_dirty_data_buffers( 1081 inode, &data_buffers, rest + 1, 0, LLONG_MAX); 1082 if (n > rest) { 1083 err = nilfs_segctor_apply_buffers( 1084 sci, inode, &data_buffers, 1085 sc_ops->collect_data); 1086 BUG_ON(!err); /* always receive -E2BIG or true error */ 1087 goto break_or_fail; 1088 } 1089 } 1090 nilfs_lookup_dirty_node_buffers(inode, &node_buffers); 1091 1092 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { 1093 err = nilfs_segctor_apply_buffers( 1094 sci, inode, &data_buffers, sc_ops->collect_data); 1095 if (unlikely(err)) { 1096 /* dispose node list */ 1097 nilfs_segctor_apply_buffers( 1098 sci, inode, &node_buffers, NULL); 1099 goto break_or_fail; 1100 } 1101 sci->sc_stage.flags |= NILFS_CF_NODE; 1102 } 1103 /* Collect node */ 1104 err = nilfs_segctor_apply_buffers( 1105 sci, inode, &node_buffers, sc_ops->collect_node); 1106 if (unlikely(err)) 1107 goto break_or_fail; 1108 1109 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers); 1110 err = nilfs_segctor_apply_buffers( 1111 sci, inode, &node_buffers, sc_ops->collect_bmap); 1112 if (unlikely(err)) 1113 goto break_or_fail; 1114 1115 nilfs_segctor_end_finfo(sci, inode); 1116 sci->sc_stage.flags &= ~NILFS_CF_NODE; 1117 1118 break_or_fail: 1119 return err; 1120 } 1121 1122 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci, 1123 struct inode *inode) 1124 { 1125 LIST_HEAD(data_buffers); 1126 size_t n, rest = nilfs_segctor_buffer_rest(sci); 1127 int err; 1128 1129 n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1, 1130 sci->sc_dsync_start, 1131 sci->sc_dsync_end); 1132 1133 err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers, 1134 nilfs_collect_file_data); 1135 if (!err) { 1136 nilfs_segctor_end_finfo(sci, inode); 1137 BUG_ON(n > rest); 1138 /* always receive -E2BIG or true error if n > rest */ 1139 } 1140 return err; 1141 } 1142 1143 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode) 1144 { 1145 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 1146 struct list_head *head; 1147 struct nilfs_inode_info *ii; 1148 size_t ndone; 1149 int err = 0; 1150 1151 switch (nilfs_sc_cstage_get(sci)) { 1152 case NILFS_ST_INIT: 1153 /* Pre-processes */ 1154 sci->sc_stage.flags = 0; 1155 1156 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) { 1157 sci->sc_nblk_inc = 0; 1158 sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN; 1159 if (mode == SC_LSEG_DSYNC) { 1160 nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC); 1161 goto dsync_mode; 1162 } 1163 } 1164 1165 sci->sc_stage.dirty_file_ptr = NULL; 1166 sci->sc_stage.gc_inode_ptr = NULL; 1167 if (mode == SC_FLUSH_DAT) { 1168 nilfs_sc_cstage_set(sci, NILFS_ST_DAT); 1169 goto dat_stage; 1170 } 1171 nilfs_sc_cstage_inc(sci); 1172 fallthrough; 1173 case NILFS_ST_GC: 1174 if (nilfs_doing_gc()) { 1175 head = &sci->sc_gc_inodes; 1176 ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr, 1177 head, i_dirty); 1178 list_for_each_entry_continue(ii, head, i_dirty) { 1179 err = nilfs_segctor_scan_file( 1180 sci, &ii->vfs_inode, 1181 &nilfs_sc_file_ops); 1182 if (unlikely(err)) { 1183 sci->sc_stage.gc_inode_ptr = list_entry( 1184 ii->i_dirty.prev, 1185 struct nilfs_inode_info, 1186 i_dirty); 1187 goto break_or_fail; 1188 } 1189 set_bit(NILFS_I_COLLECTED, &ii->i_state); 1190 } 1191 sci->sc_stage.gc_inode_ptr = NULL; 1192 } 1193 nilfs_sc_cstage_inc(sci); 1194 fallthrough; 1195 case NILFS_ST_FILE: 1196 head = &sci->sc_dirty_files; 1197 ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head, 1198 i_dirty); 1199 list_for_each_entry_continue(ii, head, i_dirty) { 1200 clear_bit(NILFS_I_DIRTY, &ii->i_state); 1201 1202 err = nilfs_segctor_scan_file(sci, &ii->vfs_inode, 1203 &nilfs_sc_file_ops); 1204 if (unlikely(err)) { 1205 sci->sc_stage.dirty_file_ptr = 1206 list_entry(ii->i_dirty.prev, 1207 struct nilfs_inode_info, 1208 i_dirty); 1209 goto break_or_fail; 1210 } 1211 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */ 1212 /* XXX: required ? */ 1213 } 1214 sci->sc_stage.dirty_file_ptr = NULL; 1215 if (mode == SC_FLUSH_FILE) { 1216 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1217 return 0; 1218 } 1219 nilfs_sc_cstage_inc(sci); 1220 sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED; 1221 fallthrough; 1222 case NILFS_ST_IFILE: 1223 err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile, 1224 &nilfs_sc_file_ops); 1225 if (unlikely(err)) 1226 break; 1227 nilfs_sc_cstage_inc(sci); 1228 /* Creating a checkpoint */ 1229 err = nilfs_segctor_create_checkpoint(sci); 1230 if (unlikely(err)) 1231 break; 1232 fallthrough; 1233 case NILFS_ST_CPFILE: 1234 err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile, 1235 &nilfs_sc_file_ops); 1236 if (unlikely(err)) 1237 break; 1238 nilfs_sc_cstage_inc(sci); 1239 fallthrough; 1240 case NILFS_ST_SUFILE: 1241 err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs, 1242 sci->sc_nfreesegs, &ndone); 1243 if (unlikely(err)) { 1244 nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1245 sci->sc_freesegs, ndone, 1246 NULL); 1247 break; 1248 } 1249 sci->sc_stage.flags |= NILFS_CF_SUFREED; 1250 1251 err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile, 1252 &nilfs_sc_file_ops); 1253 if (unlikely(err)) 1254 break; 1255 nilfs_sc_cstage_inc(sci); 1256 fallthrough; 1257 case NILFS_ST_DAT: 1258 dat_stage: 1259 err = nilfs_segctor_scan_file(sci, nilfs->ns_dat, 1260 &nilfs_sc_dat_ops); 1261 if (unlikely(err)) 1262 break; 1263 if (mode == SC_FLUSH_DAT) { 1264 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1265 return 0; 1266 } 1267 nilfs_sc_cstage_inc(sci); 1268 fallthrough; 1269 case NILFS_ST_SR: 1270 if (mode == SC_LSEG_SR) { 1271 /* Appending a super root */ 1272 err = nilfs_segctor_add_super_root(sci); 1273 if (unlikely(err)) 1274 break; 1275 } 1276 /* End of a logical segment */ 1277 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; 1278 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1279 return 0; 1280 case NILFS_ST_DSYNC: 1281 dsync_mode: 1282 sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT; 1283 ii = sci->sc_dsync_inode; 1284 if (!test_bit(NILFS_I_BUSY, &ii->i_state)) 1285 break; 1286 1287 err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode); 1288 if (unlikely(err)) 1289 break; 1290 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; 1291 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1292 return 0; 1293 case NILFS_ST_DONE: 1294 return 0; 1295 default: 1296 BUG(); 1297 } 1298 1299 break_or_fail: 1300 return err; 1301 } 1302 1303 /** 1304 * nilfs_segctor_begin_construction - setup segment buffer to make a new log 1305 * @sci: nilfs_sc_info 1306 * @nilfs: nilfs object 1307 */ 1308 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci, 1309 struct the_nilfs *nilfs) 1310 { 1311 struct nilfs_segment_buffer *segbuf, *prev; 1312 __u64 nextnum; 1313 int err, alloc = 0; 1314 1315 segbuf = nilfs_segbuf_new(sci->sc_super); 1316 if (unlikely(!segbuf)) 1317 return -ENOMEM; 1318 1319 if (list_empty(&sci->sc_write_logs)) { 1320 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 1321 nilfs->ns_pseg_offset, nilfs); 1322 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { 1323 nilfs_shift_to_next_segment(nilfs); 1324 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs); 1325 } 1326 1327 segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq; 1328 nextnum = nilfs->ns_nextnum; 1329 1330 if (nilfs->ns_segnum == nilfs->ns_nextnum) 1331 /* Start from the head of a new full segment */ 1332 alloc++; 1333 } else { 1334 /* Continue logs */ 1335 prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs); 1336 nilfs_segbuf_map_cont(segbuf, prev); 1337 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq; 1338 nextnum = prev->sb_nextnum; 1339 1340 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { 1341 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); 1342 segbuf->sb_sum.seg_seq++; 1343 alloc++; 1344 } 1345 } 1346 1347 err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum); 1348 if (err) 1349 goto failed; 1350 1351 if (alloc) { 1352 err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum); 1353 if (err) 1354 goto failed; 1355 } 1356 nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs); 1357 1358 BUG_ON(!list_empty(&sci->sc_segbufs)); 1359 list_add_tail(&segbuf->sb_list, &sci->sc_segbufs); 1360 sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks; 1361 return 0; 1362 1363 failed: 1364 nilfs_segbuf_free(segbuf); 1365 return err; 1366 } 1367 1368 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci, 1369 struct the_nilfs *nilfs, int nadd) 1370 { 1371 struct nilfs_segment_buffer *segbuf, *prev; 1372 struct inode *sufile = nilfs->ns_sufile; 1373 __u64 nextnextnum; 1374 LIST_HEAD(list); 1375 int err, ret, i; 1376 1377 prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs); 1378 /* 1379 * Since the segment specified with nextnum might be allocated during 1380 * the previous construction, the buffer including its segusage may 1381 * not be dirty. The following call ensures that the buffer is dirty 1382 * and will pin the buffer on memory until the sufile is written. 1383 */ 1384 err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum); 1385 if (unlikely(err)) 1386 return err; 1387 1388 for (i = 0; i < nadd; i++) { 1389 /* extend segment info */ 1390 err = -ENOMEM; 1391 segbuf = nilfs_segbuf_new(sci->sc_super); 1392 if (unlikely(!segbuf)) 1393 goto failed; 1394 1395 /* map this buffer to region of segment on-disk */ 1396 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); 1397 sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks; 1398 1399 /* allocate the next next full segment */ 1400 err = nilfs_sufile_alloc(sufile, &nextnextnum); 1401 if (unlikely(err)) 1402 goto failed_segbuf; 1403 1404 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1; 1405 nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs); 1406 1407 list_add_tail(&segbuf->sb_list, &list); 1408 prev = segbuf; 1409 } 1410 list_splice_tail(&list, &sci->sc_segbufs); 1411 return 0; 1412 1413 failed_segbuf: 1414 nilfs_segbuf_free(segbuf); 1415 failed: 1416 list_for_each_entry(segbuf, &list, sb_list) { 1417 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1418 WARN_ON(ret); /* never fails */ 1419 } 1420 nilfs_destroy_logs(&list); 1421 return err; 1422 } 1423 1424 static void nilfs_free_incomplete_logs(struct list_head *logs, 1425 struct the_nilfs *nilfs) 1426 { 1427 struct nilfs_segment_buffer *segbuf, *prev; 1428 struct inode *sufile = nilfs->ns_sufile; 1429 int ret; 1430 1431 segbuf = NILFS_FIRST_SEGBUF(logs); 1432 if (nilfs->ns_nextnum != segbuf->sb_nextnum) { 1433 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1434 WARN_ON(ret); /* never fails */ 1435 } 1436 if (atomic_read(&segbuf->sb_err)) { 1437 /* Case 1: The first segment failed */ 1438 if (segbuf->sb_pseg_start != segbuf->sb_fseg_start) 1439 /* 1440 * Case 1a: Partial segment appended into an existing 1441 * segment 1442 */ 1443 nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start, 1444 segbuf->sb_fseg_end); 1445 else /* Case 1b: New full segment */ 1446 set_nilfs_discontinued(nilfs); 1447 } 1448 1449 prev = segbuf; 1450 list_for_each_entry_continue(segbuf, logs, sb_list) { 1451 if (prev->sb_nextnum != segbuf->sb_nextnum) { 1452 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1453 WARN_ON(ret); /* never fails */ 1454 } 1455 if (atomic_read(&segbuf->sb_err) && 1456 segbuf->sb_segnum != nilfs->ns_nextnum) 1457 /* Case 2: extended segment (!= next) failed */ 1458 nilfs_sufile_set_error(sufile, segbuf->sb_segnum); 1459 prev = segbuf; 1460 } 1461 } 1462 1463 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci, 1464 struct inode *sufile) 1465 { 1466 struct nilfs_segment_buffer *segbuf; 1467 unsigned long live_blocks; 1468 int ret; 1469 1470 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1471 live_blocks = segbuf->sb_sum.nblocks + 1472 (segbuf->sb_pseg_start - segbuf->sb_fseg_start); 1473 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1474 live_blocks, 1475 sci->sc_seg_ctime); 1476 WARN_ON(ret); /* always succeed because the segusage is dirty */ 1477 } 1478 } 1479 1480 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile) 1481 { 1482 struct nilfs_segment_buffer *segbuf; 1483 int ret; 1484 1485 segbuf = NILFS_FIRST_SEGBUF(logs); 1486 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1487 segbuf->sb_pseg_start - 1488 segbuf->sb_fseg_start, 0); 1489 WARN_ON(ret); /* always succeed because the segusage is dirty */ 1490 1491 list_for_each_entry_continue(segbuf, logs, sb_list) { 1492 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1493 0, 0); 1494 WARN_ON(ret); /* always succeed */ 1495 } 1496 } 1497 1498 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci, 1499 struct nilfs_segment_buffer *last, 1500 struct inode *sufile) 1501 { 1502 struct nilfs_segment_buffer *segbuf = last; 1503 int ret; 1504 1505 list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) { 1506 sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks; 1507 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1508 WARN_ON(ret); 1509 } 1510 nilfs_truncate_logs(&sci->sc_segbufs, last); 1511 } 1512 1513 1514 static int nilfs_segctor_collect(struct nilfs_sc_info *sci, 1515 struct the_nilfs *nilfs, int mode) 1516 { 1517 struct nilfs_cstage prev_stage = sci->sc_stage; 1518 int err, nadd = 1; 1519 1520 /* Collection retry loop */ 1521 for (;;) { 1522 sci->sc_nblk_this_inc = 0; 1523 sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs); 1524 1525 err = nilfs_segctor_reset_segment_buffer(sci); 1526 if (unlikely(err)) 1527 goto failed; 1528 1529 err = nilfs_segctor_collect_blocks(sci, mode); 1530 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; 1531 if (!err) 1532 break; 1533 1534 if (unlikely(err != -E2BIG)) 1535 goto failed; 1536 1537 /* The current segment is filled up */ 1538 if (mode != SC_LSEG_SR || 1539 nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE) 1540 break; 1541 1542 nilfs_clear_logs(&sci->sc_segbufs); 1543 1544 if (sci->sc_stage.flags & NILFS_CF_SUFREED) { 1545 err = nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1546 sci->sc_freesegs, 1547 sci->sc_nfreesegs, 1548 NULL); 1549 WARN_ON(err); /* do not happen */ 1550 sci->sc_stage.flags &= ~NILFS_CF_SUFREED; 1551 } 1552 1553 err = nilfs_segctor_extend_segments(sci, nilfs, nadd); 1554 if (unlikely(err)) 1555 return err; 1556 1557 nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA); 1558 sci->sc_stage = prev_stage; 1559 } 1560 nilfs_segctor_zeropad_segsum(sci); 1561 nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile); 1562 return 0; 1563 1564 failed: 1565 return err; 1566 } 1567 1568 static void nilfs_list_replace_buffer(struct buffer_head *old_bh, 1569 struct buffer_head *new_bh) 1570 { 1571 BUG_ON(!list_empty(&new_bh->b_assoc_buffers)); 1572 1573 list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers); 1574 /* The caller must release old_bh */ 1575 } 1576 1577 static int 1578 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci, 1579 struct nilfs_segment_buffer *segbuf, 1580 int mode) 1581 { 1582 struct inode *inode = NULL; 1583 sector_t blocknr; 1584 unsigned long nfinfo = segbuf->sb_sum.nfinfo; 1585 unsigned long nblocks = 0, ndatablk = 0; 1586 const struct nilfs_sc_operations *sc_op = NULL; 1587 struct nilfs_segsum_pointer ssp; 1588 struct nilfs_finfo *finfo = NULL; 1589 union nilfs_binfo binfo; 1590 struct buffer_head *bh, *bh_org; 1591 ino_t ino = 0; 1592 int err = 0; 1593 1594 if (!nfinfo) 1595 goto out; 1596 1597 blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk; 1598 ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); 1599 ssp.offset = sizeof(struct nilfs_segment_summary); 1600 1601 list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) { 1602 if (bh == segbuf->sb_super_root) 1603 break; 1604 if (!finfo) { 1605 finfo = nilfs_segctor_map_segsum_entry( 1606 sci, &ssp, sizeof(*finfo)); 1607 ino = le64_to_cpu(finfo->fi_ino); 1608 nblocks = le32_to_cpu(finfo->fi_nblocks); 1609 ndatablk = le32_to_cpu(finfo->fi_ndatablk); 1610 1611 inode = bh->b_folio->mapping->host; 1612 1613 if (mode == SC_LSEG_DSYNC) 1614 sc_op = &nilfs_sc_dsync_ops; 1615 else if (ino == NILFS_DAT_INO) 1616 sc_op = &nilfs_sc_dat_ops; 1617 else /* file blocks */ 1618 sc_op = &nilfs_sc_file_ops; 1619 } 1620 bh_org = bh; 1621 get_bh(bh_org); 1622 err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr, 1623 &binfo); 1624 if (bh != bh_org) 1625 nilfs_list_replace_buffer(bh_org, bh); 1626 brelse(bh_org); 1627 if (unlikely(err)) 1628 goto failed_bmap; 1629 1630 if (ndatablk > 0) 1631 sc_op->write_data_binfo(sci, &ssp, &binfo); 1632 else 1633 sc_op->write_node_binfo(sci, &ssp, &binfo); 1634 1635 blocknr++; 1636 if (--nblocks == 0) { 1637 finfo = NULL; 1638 if (--nfinfo == 0) 1639 break; 1640 } else if (ndatablk > 0) 1641 ndatablk--; 1642 } 1643 out: 1644 return 0; 1645 1646 failed_bmap: 1647 return err; 1648 } 1649 1650 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode) 1651 { 1652 struct nilfs_segment_buffer *segbuf; 1653 int err; 1654 1655 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1656 err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode); 1657 if (unlikely(err)) 1658 return err; 1659 nilfs_segbuf_fill_in_segsum(segbuf); 1660 } 1661 return 0; 1662 } 1663 1664 static void nilfs_begin_page_io(struct page *page) 1665 { 1666 if (!page || PageWriteback(page)) 1667 /* 1668 * For split b-tree node pages, this function may be called 1669 * twice. We ignore the 2nd or later calls by this check. 1670 */ 1671 return; 1672 1673 lock_page(page); 1674 clear_page_dirty_for_io(page); 1675 set_page_writeback(page); 1676 unlock_page(page); 1677 } 1678 1679 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci) 1680 { 1681 struct nilfs_segment_buffer *segbuf; 1682 struct page *bd_page = NULL, *fs_page = NULL; 1683 1684 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1685 struct buffer_head *bh; 1686 1687 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1688 b_assoc_buffers) { 1689 if (bh->b_page != bd_page) { 1690 if (bd_page) { 1691 lock_page(bd_page); 1692 clear_page_dirty_for_io(bd_page); 1693 set_page_writeback(bd_page); 1694 unlock_page(bd_page); 1695 } 1696 bd_page = bh->b_page; 1697 } 1698 } 1699 1700 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1701 b_assoc_buffers) { 1702 set_buffer_async_write(bh); 1703 if (bh == segbuf->sb_super_root) { 1704 if (bh->b_page != bd_page) { 1705 lock_page(bd_page); 1706 clear_page_dirty_for_io(bd_page); 1707 set_page_writeback(bd_page); 1708 unlock_page(bd_page); 1709 bd_page = bh->b_page; 1710 } 1711 break; 1712 } 1713 if (bh->b_page != fs_page) { 1714 nilfs_begin_page_io(fs_page); 1715 fs_page = bh->b_page; 1716 } 1717 } 1718 } 1719 if (bd_page) { 1720 lock_page(bd_page); 1721 clear_page_dirty_for_io(bd_page); 1722 set_page_writeback(bd_page); 1723 unlock_page(bd_page); 1724 } 1725 nilfs_begin_page_io(fs_page); 1726 } 1727 1728 static int nilfs_segctor_write(struct nilfs_sc_info *sci, 1729 struct the_nilfs *nilfs) 1730 { 1731 int ret; 1732 1733 ret = nilfs_write_logs(&sci->sc_segbufs, nilfs); 1734 list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs); 1735 return ret; 1736 } 1737 1738 static void nilfs_end_page_io(struct page *page, int err) 1739 { 1740 if (!page) 1741 return; 1742 1743 if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) { 1744 /* 1745 * For b-tree node pages, this function may be called twice 1746 * or more because they might be split in a segment. 1747 */ 1748 if (PageDirty(page)) { 1749 /* 1750 * For pages holding split b-tree node buffers, dirty 1751 * flag on the buffers may be cleared discretely. 1752 * In that case, the page is once redirtied for 1753 * remaining buffers, and it must be cancelled if 1754 * all the buffers get cleaned later. 1755 */ 1756 lock_page(page); 1757 if (nilfs_page_buffers_clean(page)) 1758 __nilfs_clear_page_dirty(page); 1759 unlock_page(page); 1760 } 1761 return; 1762 } 1763 1764 if (!err) { 1765 if (!nilfs_page_buffers_clean(page)) 1766 __set_page_dirty_nobuffers(page); 1767 ClearPageError(page); 1768 } else { 1769 __set_page_dirty_nobuffers(page); 1770 SetPageError(page); 1771 } 1772 1773 end_page_writeback(page); 1774 } 1775 1776 static void nilfs_abort_logs(struct list_head *logs, int err) 1777 { 1778 struct nilfs_segment_buffer *segbuf; 1779 struct page *bd_page = NULL, *fs_page = NULL; 1780 struct buffer_head *bh; 1781 1782 if (list_empty(logs)) 1783 return; 1784 1785 list_for_each_entry(segbuf, logs, sb_list) { 1786 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1787 b_assoc_buffers) { 1788 clear_buffer_uptodate(bh); 1789 if (bh->b_page != bd_page) { 1790 if (bd_page) 1791 end_page_writeback(bd_page); 1792 bd_page = bh->b_page; 1793 } 1794 } 1795 1796 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1797 b_assoc_buffers) { 1798 clear_buffer_async_write(bh); 1799 if (bh == segbuf->sb_super_root) { 1800 clear_buffer_uptodate(bh); 1801 if (bh->b_page != bd_page) { 1802 end_page_writeback(bd_page); 1803 bd_page = bh->b_page; 1804 } 1805 break; 1806 } 1807 if (bh->b_page != fs_page) { 1808 nilfs_end_page_io(fs_page, err); 1809 fs_page = bh->b_page; 1810 } 1811 } 1812 } 1813 if (bd_page) 1814 end_page_writeback(bd_page); 1815 1816 nilfs_end_page_io(fs_page, err); 1817 } 1818 1819 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci, 1820 struct the_nilfs *nilfs, int err) 1821 { 1822 LIST_HEAD(logs); 1823 int ret; 1824 1825 list_splice_tail_init(&sci->sc_write_logs, &logs); 1826 ret = nilfs_wait_on_logs(&logs); 1827 nilfs_abort_logs(&logs, ret ? : err); 1828 1829 list_splice_tail_init(&sci->sc_segbufs, &logs); 1830 nilfs_cancel_segusage(&logs, nilfs->ns_sufile); 1831 nilfs_free_incomplete_logs(&logs, nilfs); 1832 1833 if (sci->sc_stage.flags & NILFS_CF_SUFREED) { 1834 ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1835 sci->sc_freesegs, 1836 sci->sc_nfreesegs, 1837 NULL); 1838 WARN_ON(ret); /* do not happen */ 1839 } 1840 1841 nilfs_destroy_logs(&logs); 1842 } 1843 1844 static void nilfs_set_next_segment(struct the_nilfs *nilfs, 1845 struct nilfs_segment_buffer *segbuf) 1846 { 1847 nilfs->ns_segnum = segbuf->sb_segnum; 1848 nilfs->ns_nextnum = segbuf->sb_nextnum; 1849 nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start 1850 + segbuf->sb_sum.nblocks; 1851 nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq; 1852 nilfs->ns_ctime = segbuf->sb_sum.ctime; 1853 } 1854 1855 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci) 1856 { 1857 struct nilfs_segment_buffer *segbuf; 1858 struct page *bd_page = NULL, *fs_page = NULL; 1859 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 1860 int update_sr = false; 1861 1862 list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) { 1863 struct buffer_head *bh; 1864 1865 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1866 b_assoc_buffers) { 1867 set_buffer_uptodate(bh); 1868 clear_buffer_dirty(bh); 1869 if (bh->b_page != bd_page) { 1870 if (bd_page) 1871 end_page_writeback(bd_page); 1872 bd_page = bh->b_page; 1873 } 1874 } 1875 /* 1876 * We assume that the buffers which belong to the same page 1877 * continue over the buffer list. 1878 * Under this assumption, the last BHs of pages is 1879 * identifiable by the discontinuity of bh->b_page 1880 * (page != fs_page). 1881 * 1882 * For B-tree node blocks, however, this assumption is not 1883 * guaranteed. The cleanup code of B-tree node pages needs 1884 * special care. 1885 */ 1886 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1887 b_assoc_buffers) { 1888 const unsigned long set_bits = BIT(BH_Uptodate); 1889 const unsigned long clear_bits = 1890 (BIT(BH_Dirty) | BIT(BH_Async_Write) | 1891 BIT(BH_Delay) | BIT(BH_NILFS_Volatile) | 1892 BIT(BH_NILFS_Redirected)); 1893 1894 set_mask_bits(&bh->b_state, clear_bits, set_bits); 1895 if (bh == segbuf->sb_super_root) { 1896 if (bh->b_page != bd_page) { 1897 end_page_writeback(bd_page); 1898 bd_page = bh->b_page; 1899 } 1900 update_sr = true; 1901 break; 1902 } 1903 if (bh->b_page != fs_page) { 1904 nilfs_end_page_io(fs_page, 0); 1905 fs_page = bh->b_page; 1906 } 1907 } 1908 1909 if (!nilfs_segbuf_simplex(segbuf)) { 1910 if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) { 1911 set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); 1912 sci->sc_lseg_stime = jiffies; 1913 } 1914 if (segbuf->sb_sum.flags & NILFS_SS_LOGEND) 1915 clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); 1916 } 1917 } 1918 /* 1919 * Since pages may continue over multiple segment buffers, 1920 * end of the last page must be checked outside of the loop. 1921 */ 1922 if (bd_page) 1923 end_page_writeback(bd_page); 1924 1925 nilfs_end_page_io(fs_page, 0); 1926 1927 nilfs_drop_collected_inodes(&sci->sc_dirty_files); 1928 1929 if (nilfs_doing_gc()) 1930 nilfs_drop_collected_inodes(&sci->sc_gc_inodes); 1931 else 1932 nilfs->ns_nongc_ctime = sci->sc_seg_ctime; 1933 1934 sci->sc_nblk_inc += sci->sc_nblk_this_inc; 1935 1936 segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs); 1937 nilfs_set_next_segment(nilfs, segbuf); 1938 1939 if (update_sr) { 1940 nilfs->ns_flushed_device = 0; 1941 nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start, 1942 segbuf->sb_sum.seg_seq, nilfs->ns_cno++); 1943 1944 clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); 1945 clear_bit(NILFS_SC_DIRTY, &sci->sc_flags); 1946 set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); 1947 nilfs_segctor_clear_metadata_dirty(sci); 1948 } else 1949 clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); 1950 } 1951 1952 static int nilfs_segctor_wait(struct nilfs_sc_info *sci) 1953 { 1954 int ret; 1955 1956 ret = nilfs_wait_on_logs(&sci->sc_write_logs); 1957 if (!ret) { 1958 nilfs_segctor_complete_write(sci); 1959 nilfs_destroy_logs(&sci->sc_write_logs); 1960 } 1961 return ret; 1962 } 1963 1964 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci, 1965 struct the_nilfs *nilfs) 1966 { 1967 struct nilfs_inode_info *ii, *n; 1968 struct inode *ifile = sci->sc_root->ifile; 1969 1970 spin_lock(&nilfs->ns_inode_lock); 1971 retry: 1972 list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) { 1973 if (!ii->i_bh) { 1974 struct buffer_head *ibh; 1975 int err; 1976 1977 spin_unlock(&nilfs->ns_inode_lock); 1978 err = nilfs_ifile_get_inode_block( 1979 ifile, ii->vfs_inode.i_ino, &ibh); 1980 if (unlikely(err)) { 1981 nilfs_warn(sci->sc_super, 1982 "log writer: error %d getting inode block (ino=%lu)", 1983 err, ii->vfs_inode.i_ino); 1984 return err; 1985 } 1986 spin_lock(&nilfs->ns_inode_lock); 1987 if (likely(!ii->i_bh)) 1988 ii->i_bh = ibh; 1989 else 1990 brelse(ibh); 1991 goto retry; 1992 } 1993 1994 // Always redirty the buffer to avoid race condition 1995 mark_buffer_dirty(ii->i_bh); 1996 nilfs_mdt_mark_dirty(ifile); 1997 1998 clear_bit(NILFS_I_QUEUED, &ii->i_state); 1999 set_bit(NILFS_I_BUSY, &ii->i_state); 2000 list_move_tail(&ii->i_dirty, &sci->sc_dirty_files); 2001 } 2002 spin_unlock(&nilfs->ns_inode_lock); 2003 2004 return 0; 2005 } 2006 2007 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci, 2008 struct the_nilfs *nilfs) 2009 { 2010 struct nilfs_inode_info *ii, *n; 2011 int during_mount = !(sci->sc_super->s_flags & SB_ACTIVE); 2012 int defer_iput = false; 2013 2014 spin_lock(&nilfs->ns_inode_lock); 2015 list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) { 2016 if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) || 2017 test_bit(NILFS_I_DIRTY, &ii->i_state)) 2018 continue; 2019 2020 clear_bit(NILFS_I_BUSY, &ii->i_state); 2021 brelse(ii->i_bh); 2022 ii->i_bh = NULL; 2023 list_del_init(&ii->i_dirty); 2024 if (!ii->vfs_inode.i_nlink || during_mount) { 2025 /* 2026 * Defer calling iput() to avoid deadlocks if 2027 * i_nlink == 0 or mount is not yet finished. 2028 */ 2029 list_add_tail(&ii->i_dirty, &sci->sc_iput_queue); 2030 defer_iput = true; 2031 } else { 2032 spin_unlock(&nilfs->ns_inode_lock); 2033 iput(&ii->vfs_inode); 2034 spin_lock(&nilfs->ns_inode_lock); 2035 } 2036 } 2037 spin_unlock(&nilfs->ns_inode_lock); 2038 2039 if (defer_iput) 2040 schedule_work(&sci->sc_iput_work); 2041 } 2042 2043 /* 2044 * Main procedure of segment constructor 2045 */ 2046 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode) 2047 { 2048 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2049 int err; 2050 2051 if (sb_rdonly(sci->sc_super)) 2052 return -EROFS; 2053 2054 nilfs_sc_cstage_set(sci, NILFS_ST_INIT); 2055 sci->sc_cno = nilfs->ns_cno; 2056 2057 err = nilfs_segctor_collect_dirty_files(sci, nilfs); 2058 if (unlikely(err)) 2059 goto out; 2060 2061 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) 2062 set_bit(NILFS_SC_DIRTY, &sci->sc_flags); 2063 2064 if (nilfs_segctor_clean(sci)) 2065 goto out; 2066 2067 do { 2068 sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK; 2069 2070 err = nilfs_segctor_begin_construction(sci, nilfs); 2071 if (unlikely(err)) 2072 goto out; 2073 2074 /* Update time stamp */ 2075 sci->sc_seg_ctime = ktime_get_real_seconds(); 2076 2077 err = nilfs_segctor_collect(sci, nilfs, mode); 2078 if (unlikely(err)) 2079 goto failed; 2080 2081 /* Avoid empty segment */ 2082 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE && 2083 nilfs_segbuf_empty(sci->sc_curseg)) { 2084 nilfs_segctor_abort_construction(sci, nilfs, 1); 2085 goto out; 2086 } 2087 2088 err = nilfs_segctor_assign(sci, mode); 2089 if (unlikely(err)) 2090 goto failed; 2091 2092 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED) 2093 nilfs_segctor_fill_in_file_bmap(sci); 2094 2095 if (mode == SC_LSEG_SR && 2096 nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) { 2097 err = nilfs_segctor_fill_in_checkpoint(sci); 2098 if (unlikely(err)) 2099 goto failed_to_write; 2100 2101 nilfs_segctor_fill_in_super_root(sci, nilfs); 2102 } 2103 nilfs_segctor_update_segusage(sci, nilfs->ns_sufile); 2104 2105 /* Write partial segments */ 2106 nilfs_segctor_prepare_write(sci); 2107 2108 nilfs_add_checksums_on_logs(&sci->sc_segbufs, 2109 nilfs->ns_crc_seed); 2110 2111 err = nilfs_segctor_write(sci, nilfs); 2112 if (unlikely(err)) 2113 goto failed_to_write; 2114 2115 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE || 2116 nilfs->ns_blocksize_bits != PAGE_SHIFT) { 2117 /* 2118 * At this point, we avoid double buffering 2119 * for blocksize < pagesize because page dirty 2120 * flag is turned off during write and dirty 2121 * buffers are not properly collected for 2122 * pages crossing over segments. 2123 */ 2124 err = nilfs_segctor_wait(sci); 2125 if (err) 2126 goto failed_to_write; 2127 } 2128 } while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE); 2129 2130 out: 2131 nilfs_segctor_drop_written_files(sci, nilfs); 2132 return err; 2133 2134 failed_to_write: 2135 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED) 2136 nilfs_redirty_inodes(&sci->sc_dirty_files); 2137 2138 failed: 2139 if (nilfs_doing_gc()) 2140 nilfs_redirty_inodes(&sci->sc_gc_inodes); 2141 nilfs_segctor_abort_construction(sci, nilfs, err); 2142 goto out; 2143 } 2144 2145 /** 2146 * nilfs_segctor_start_timer - set timer of background write 2147 * @sci: nilfs_sc_info 2148 * 2149 * If the timer has already been set, it ignores the new request. 2150 * This function MUST be called within a section locking the segment 2151 * semaphore. 2152 */ 2153 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci) 2154 { 2155 spin_lock(&sci->sc_state_lock); 2156 if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) { 2157 sci->sc_timer.expires = jiffies + sci->sc_interval; 2158 add_timer(&sci->sc_timer); 2159 sci->sc_state |= NILFS_SEGCTOR_COMMIT; 2160 } 2161 spin_unlock(&sci->sc_state_lock); 2162 } 2163 2164 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn) 2165 { 2166 spin_lock(&sci->sc_state_lock); 2167 if (!(sci->sc_flush_request & BIT(bn))) { 2168 unsigned long prev_req = sci->sc_flush_request; 2169 2170 sci->sc_flush_request |= BIT(bn); 2171 if (!prev_req) 2172 wake_up(&sci->sc_wait_daemon); 2173 } 2174 spin_unlock(&sci->sc_state_lock); 2175 } 2176 2177 /** 2178 * nilfs_flush_segment - trigger a segment construction for resource control 2179 * @sb: super block 2180 * @ino: inode number of the file to be flushed out. 2181 */ 2182 void nilfs_flush_segment(struct super_block *sb, ino_t ino) 2183 { 2184 struct the_nilfs *nilfs = sb->s_fs_info; 2185 struct nilfs_sc_info *sci = nilfs->ns_writer; 2186 2187 if (!sci || nilfs_doing_construction()) 2188 return; 2189 nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0); 2190 /* assign bit 0 to data files */ 2191 } 2192 2193 struct nilfs_segctor_wait_request { 2194 wait_queue_entry_t wq; 2195 __u32 seq; 2196 int err; 2197 atomic_t done; 2198 }; 2199 2200 static int nilfs_segctor_sync(struct nilfs_sc_info *sci) 2201 { 2202 struct nilfs_segctor_wait_request wait_req; 2203 int err = 0; 2204 2205 spin_lock(&sci->sc_state_lock); 2206 init_wait(&wait_req.wq); 2207 wait_req.err = 0; 2208 atomic_set(&wait_req.done, 0); 2209 wait_req.seq = ++sci->sc_seq_request; 2210 spin_unlock(&sci->sc_state_lock); 2211 2212 init_waitqueue_entry(&wait_req.wq, current); 2213 add_wait_queue(&sci->sc_wait_request, &wait_req.wq); 2214 set_current_state(TASK_INTERRUPTIBLE); 2215 wake_up(&sci->sc_wait_daemon); 2216 2217 for (;;) { 2218 if (atomic_read(&wait_req.done)) { 2219 err = wait_req.err; 2220 break; 2221 } 2222 if (!signal_pending(current)) { 2223 schedule(); 2224 continue; 2225 } 2226 err = -ERESTARTSYS; 2227 break; 2228 } 2229 finish_wait(&sci->sc_wait_request, &wait_req.wq); 2230 return err; 2231 } 2232 2233 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err) 2234 { 2235 struct nilfs_segctor_wait_request *wrq, *n; 2236 unsigned long flags; 2237 2238 spin_lock_irqsave(&sci->sc_wait_request.lock, flags); 2239 list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.head, wq.entry) { 2240 if (!atomic_read(&wrq->done) && 2241 nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) { 2242 wrq->err = err; 2243 atomic_set(&wrq->done, 1); 2244 } 2245 if (atomic_read(&wrq->done)) { 2246 wrq->wq.func(&wrq->wq, 2247 TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 2248 0, NULL); 2249 } 2250 } 2251 spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags); 2252 } 2253 2254 /** 2255 * nilfs_construct_segment - construct a logical segment 2256 * @sb: super block 2257 * 2258 * Return Value: On success, 0 is returned. On errors, one of the following 2259 * negative error code is returned. 2260 * 2261 * %-EROFS - Read only filesystem. 2262 * 2263 * %-EIO - I/O error 2264 * 2265 * %-ENOSPC - No space left on device (only in a panic state). 2266 * 2267 * %-ERESTARTSYS - Interrupted. 2268 * 2269 * %-ENOMEM - Insufficient memory available. 2270 */ 2271 int nilfs_construct_segment(struct super_block *sb) 2272 { 2273 struct the_nilfs *nilfs = sb->s_fs_info; 2274 struct nilfs_sc_info *sci = nilfs->ns_writer; 2275 struct nilfs_transaction_info *ti; 2276 2277 if (sb_rdonly(sb) || unlikely(!sci)) 2278 return -EROFS; 2279 2280 /* A call inside transactions causes a deadlock. */ 2281 BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC); 2282 2283 return nilfs_segctor_sync(sci); 2284 } 2285 2286 /** 2287 * nilfs_construct_dsync_segment - construct a data-only logical segment 2288 * @sb: super block 2289 * @inode: inode whose data blocks should be written out 2290 * @start: start byte offset 2291 * @end: end byte offset (inclusive) 2292 * 2293 * Return Value: On success, 0 is returned. On errors, one of the following 2294 * negative error code is returned. 2295 * 2296 * %-EROFS - Read only filesystem. 2297 * 2298 * %-EIO - I/O error 2299 * 2300 * %-ENOSPC - No space left on device (only in a panic state). 2301 * 2302 * %-ERESTARTSYS - Interrupted. 2303 * 2304 * %-ENOMEM - Insufficient memory available. 2305 */ 2306 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode, 2307 loff_t start, loff_t end) 2308 { 2309 struct the_nilfs *nilfs = sb->s_fs_info; 2310 struct nilfs_sc_info *sci = nilfs->ns_writer; 2311 struct nilfs_inode_info *ii; 2312 struct nilfs_transaction_info ti; 2313 int err = 0; 2314 2315 if (sb_rdonly(sb) || unlikely(!sci)) 2316 return -EROFS; 2317 2318 nilfs_transaction_lock(sb, &ti, 0); 2319 2320 ii = NILFS_I(inode); 2321 if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) || 2322 nilfs_test_opt(nilfs, STRICT_ORDER) || 2323 test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || 2324 nilfs_discontinued(nilfs)) { 2325 nilfs_transaction_unlock(sb); 2326 err = nilfs_segctor_sync(sci); 2327 return err; 2328 } 2329 2330 spin_lock(&nilfs->ns_inode_lock); 2331 if (!test_bit(NILFS_I_QUEUED, &ii->i_state) && 2332 !test_bit(NILFS_I_BUSY, &ii->i_state)) { 2333 spin_unlock(&nilfs->ns_inode_lock); 2334 nilfs_transaction_unlock(sb); 2335 return 0; 2336 } 2337 spin_unlock(&nilfs->ns_inode_lock); 2338 sci->sc_dsync_inode = ii; 2339 sci->sc_dsync_start = start; 2340 sci->sc_dsync_end = end; 2341 2342 err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC); 2343 if (!err) 2344 nilfs->ns_flushed_device = 0; 2345 2346 nilfs_transaction_unlock(sb); 2347 return err; 2348 } 2349 2350 #define FLUSH_FILE_BIT (0x1) /* data file only */ 2351 #define FLUSH_DAT_BIT BIT(NILFS_DAT_INO) /* DAT only */ 2352 2353 /** 2354 * nilfs_segctor_accept - record accepted sequence count of log-write requests 2355 * @sci: segment constructor object 2356 */ 2357 static void nilfs_segctor_accept(struct nilfs_sc_info *sci) 2358 { 2359 spin_lock(&sci->sc_state_lock); 2360 sci->sc_seq_accepted = sci->sc_seq_request; 2361 spin_unlock(&sci->sc_state_lock); 2362 del_timer_sync(&sci->sc_timer); 2363 } 2364 2365 /** 2366 * nilfs_segctor_notify - notify the result of request to caller threads 2367 * @sci: segment constructor object 2368 * @mode: mode of log forming 2369 * @err: error code to be notified 2370 */ 2371 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err) 2372 { 2373 /* Clear requests (even when the construction failed) */ 2374 spin_lock(&sci->sc_state_lock); 2375 2376 if (mode == SC_LSEG_SR) { 2377 sci->sc_state &= ~NILFS_SEGCTOR_COMMIT; 2378 sci->sc_seq_done = sci->sc_seq_accepted; 2379 nilfs_segctor_wakeup(sci, err); 2380 sci->sc_flush_request = 0; 2381 } else { 2382 if (mode == SC_FLUSH_FILE) 2383 sci->sc_flush_request &= ~FLUSH_FILE_BIT; 2384 else if (mode == SC_FLUSH_DAT) 2385 sci->sc_flush_request &= ~FLUSH_DAT_BIT; 2386 2387 /* re-enable timer if checkpoint creation was not done */ 2388 if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && 2389 time_before(jiffies, sci->sc_timer.expires)) 2390 add_timer(&sci->sc_timer); 2391 } 2392 spin_unlock(&sci->sc_state_lock); 2393 } 2394 2395 /** 2396 * nilfs_segctor_construct - form logs and write them to disk 2397 * @sci: segment constructor object 2398 * @mode: mode of log forming 2399 */ 2400 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode) 2401 { 2402 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2403 struct nilfs_super_block **sbp; 2404 int err = 0; 2405 2406 nilfs_segctor_accept(sci); 2407 2408 if (nilfs_discontinued(nilfs)) 2409 mode = SC_LSEG_SR; 2410 if (!nilfs_segctor_confirm(sci)) 2411 err = nilfs_segctor_do_construct(sci, mode); 2412 2413 if (likely(!err)) { 2414 if (mode != SC_FLUSH_DAT) 2415 atomic_set(&nilfs->ns_ndirtyblks, 0); 2416 if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) && 2417 nilfs_discontinued(nilfs)) { 2418 down_write(&nilfs->ns_sem); 2419 err = -EIO; 2420 sbp = nilfs_prepare_super(sci->sc_super, 2421 nilfs_sb_will_flip(nilfs)); 2422 if (likely(sbp)) { 2423 nilfs_set_log_cursor(sbp[0], nilfs); 2424 err = nilfs_commit_super(sci->sc_super, 2425 NILFS_SB_COMMIT); 2426 } 2427 up_write(&nilfs->ns_sem); 2428 } 2429 } 2430 2431 nilfs_segctor_notify(sci, mode, err); 2432 return err; 2433 } 2434 2435 static void nilfs_construction_timeout(struct timer_list *t) 2436 { 2437 struct nilfs_sc_info *sci = from_timer(sci, t, sc_timer); 2438 2439 wake_up_process(sci->sc_timer_task); 2440 } 2441 2442 static void 2443 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head) 2444 { 2445 struct nilfs_inode_info *ii, *n; 2446 2447 list_for_each_entry_safe(ii, n, head, i_dirty) { 2448 if (!test_bit(NILFS_I_UPDATED, &ii->i_state)) 2449 continue; 2450 list_del_init(&ii->i_dirty); 2451 truncate_inode_pages(&ii->vfs_inode.i_data, 0); 2452 nilfs_btnode_cache_clear(ii->i_assoc_inode->i_mapping); 2453 iput(&ii->vfs_inode); 2454 } 2455 } 2456 2457 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv, 2458 void **kbufs) 2459 { 2460 struct the_nilfs *nilfs = sb->s_fs_info; 2461 struct nilfs_sc_info *sci = nilfs->ns_writer; 2462 struct nilfs_transaction_info ti; 2463 int err; 2464 2465 if (unlikely(!sci)) 2466 return -EROFS; 2467 2468 nilfs_transaction_lock(sb, &ti, 1); 2469 2470 err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat); 2471 if (unlikely(err)) 2472 goto out_unlock; 2473 2474 err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs); 2475 if (unlikely(err)) { 2476 nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat); 2477 goto out_unlock; 2478 } 2479 2480 sci->sc_freesegs = kbufs[4]; 2481 sci->sc_nfreesegs = argv[4].v_nmembs; 2482 list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes); 2483 2484 for (;;) { 2485 err = nilfs_segctor_construct(sci, SC_LSEG_SR); 2486 nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes); 2487 2488 if (likely(!err)) 2489 break; 2490 2491 nilfs_warn(sb, "error %d cleaning segments", err); 2492 set_current_state(TASK_INTERRUPTIBLE); 2493 schedule_timeout(sci->sc_interval); 2494 } 2495 if (nilfs_test_opt(nilfs, DISCARD)) { 2496 int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs, 2497 sci->sc_nfreesegs); 2498 if (ret) { 2499 nilfs_warn(sb, 2500 "error %d on discard request, turning discards off for the device", 2501 ret); 2502 nilfs_clear_opt(nilfs, DISCARD); 2503 } 2504 } 2505 2506 out_unlock: 2507 sci->sc_freesegs = NULL; 2508 sci->sc_nfreesegs = 0; 2509 nilfs_mdt_clear_shadow_map(nilfs->ns_dat); 2510 nilfs_transaction_unlock(sb); 2511 return err; 2512 } 2513 2514 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode) 2515 { 2516 struct nilfs_transaction_info ti; 2517 2518 nilfs_transaction_lock(sci->sc_super, &ti, 0); 2519 nilfs_segctor_construct(sci, mode); 2520 2521 /* 2522 * Unclosed segment should be retried. We do this using sc_timer. 2523 * Timeout of sc_timer will invoke complete construction which leads 2524 * to close the current logical segment. 2525 */ 2526 if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) 2527 nilfs_segctor_start_timer(sci); 2528 2529 nilfs_transaction_unlock(sci->sc_super); 2530 } 2531 2532 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci) 2533 { 2534 int mode = 0; 2535 2536 spin_lock(&sci->sc_state_lock); 2537 mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ? 2538 SC_FLUSH_DAT : SC_FLUSH_FILE; 2539 spin_unlock(&sci->sc_state_lock); 2540 2541 if (mode) { 2542 nilfs_segctor_do_construct(sci, mode); 2543 2544 spin_lock(&sci->sc_state_lock); 2545 sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ? 2546 ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT; 2547 spin_unlock(&sci->sc_state_lock); 2548 } 2549 clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); 2550 } 2551 2552 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci) 2553 { 2554 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || 2555 time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) { 2556 if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT)) 2557 return SC_FLUSH_FILE; 2558 else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT)) 2559 return SC_FLUSH_DAT; 2560 } 2561 return SC_LSEG_SR; 2562 } 2563 2564 /** 2565 * nilfs_segctor_thread - main loop of the segment constructor thread. 2566 * @arg: pointer to a struct nilfs_sc_info. 2567 * 2568 * nilfs_segctor_thread() initializes a timer and serves as a daemon 2569 * to execute segment constructions. 2570 */ 2571 static int nilfs_segctor_thread(void *arg) 2572 { 2573 struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg; 2574 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2575 int timeout = 0; 2576 2577 sci->sc_timer_task = current; 2578 2579 /* start sync. */ 2580 sci->sc_task = current; 2581 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */ 2582 nilfs_info(sci->sc_super, 2583 "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds", 2584 sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ); 2585 2586 spin_lock(&sci->sc_state_lock); 2587 loop: 2588 for (;;) { 2589 int mode; 2590 2591 if (sci->sc_state & NILFS_SEGCTOR_QUIT) 2592 goto end_thread; 2593 2594 if (timeout || sci->sc_seq_request != sci->sc_seq_done) 2595 mode = SC_LSEG_SR; 2596 else if (sci->sc_flush_request) 2597 mode = nilfs_segctor_flush_mode(sci); 2598 else 2599 break; 2600 2601 spin_unlock(&sci->sc_state_lock); 2602 nilfs_segctor_thread_construct(sci, mode); 2603 spin_lock(&sci->sc_state_lock); 2604 timeout = 0; 2605 } 2606 2607 2608 if (freezing(current)) { 2609 spin_unlock(&sci->sc_state_lock); 2610 try_to_freeze(); 2611 spin_lock(&sci->sc_state_lock); 2612 } else { 2613 DEFINE_WAIT(wait); 2614 int should_sleep = 1; 2615 2616 prepare_to_wait(&sci->sc_wait_daemon, &wait, 2617 TASK_INTERRUPTIBLE); 2618 2619 if (sci->sc_seq_request != sci->sc_seq_done) 2620 should_sleep = 0; 2621 else if (sci->sc_flush_request) 2622 should_sleep = 0; 2623 else if (sci->sc_state & NILFS_SEGCTOR_COMMIT) 2624 should_sleep = time_before(jiffies, 2625 sci->sc_timer.expires); 2626 2627 if (should_sleep) { 2628 spin_unlock(&sci->sc_state_lock); 2629 schedule(); 2630 spin_lock(&sci->sc_state_lock); 2631 } 2632 finish_wait(&sci->sc_wait_daemon, &wait); 2633 timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && 2634 time_after_eq(jiffies, sci->sc_timer.expires)); 2635 2636 if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs)) 2637 set_nilfs_discontinued(nilfs); 2638 } 2639 goto loop; 2640 2641 end_thread: 2642 /* end sync. */ 2643 sci->sc_task = NULL; 2644 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */ 2645 spin_unlock(&sci->sc_state_lock); 2646 return 0; 2647 } 2648 2649 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci) 2650 { 2651 struct task_struct *t; 2652 2653 t = kthread_run(nilfs_segctor_thread, sci, "segctord"); 2654 if (IS_ERR(t)) { 2655 int err = PTR_ERR(t); 2656 2657 nilfs_err(sci->sc_super, "error %d creating segctord thread", 2658 err); 2659 return err; 2660 } 2661 wait_event(sci->sc_wait_task, sci->sc_task != NULL); 2662 return 0; 2663 } 2664 2665 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci) 2666 __acquires(&sci->sc_state_lock) 2667 __releases(&sci->sc_state_lock) 2668 { 2669 sci->sc_state |= NILFS_SEGCTOR_QUIT; 2670 2671 while (sci->sc_task) { 2672 wake_up(&sci->sc_wait_daemon); 2673 spin_unlock(&sci->sc_state_lock); 2674 wait_event(sci->sc_wait_task, sci->sc_task == NULL); 2675 spin_lock(&sci->sc_state_lock); 2676 } 2677 } 2678 2679 /* 2680 * Setup & clean-up functions 2681 */ 2682 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb, 2683 struct nilfs_root *root) 2684 { 2685 struct the_nilfs *nilfs = sb->s_fs_info; 2686 struct nilfs_sc_info *sci; 2687 2688 sci = kzalloc(sizeof(*sci), GFP_KERNEL); 2689 if (!sci) 2690 return NULL; 2691 2692 sci->sc_super = sb; 2693 2694 nilfs_get_root(root); 2695 sci->sc_root = root; 2696 2697 init_waitqueue_head(&sci->sc_wait_request); 2698 init_waitqueue_head(&sci->sc_wait_daemon); 2699 init_waitqueue_head(&sci->sc_wait_task); 2700 spin_lock_init(&sci->sc_state_lock); 2701 INIT_LIST_HEAD(&sci->sc_dirty_files); 2702 INIT_LIST_HEAD(&sci->sc_segbufs); 2703 INIT_LIST_HEAD(&sci->sc_write_logs); 2704 INIT_LIST_HEAD(&sci->sc_gc_inodes); 2705 INIT_LIST_HEAD(&sci->sc_iput_queue); 2706 INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func); 2707 timer_setup(&sci->sc_timer, nilfs_construction_timeout, 0); 2708 2709 sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT; 2710 sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ; 2711 sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK; 2712 2713 if (nilfs->ns_interval) 2714 sci->sc_interval = HZ * nilfs->ns_interval; 2715 if (nilfs->ns_watermark) 2716 sci->sc_watermark = nilfs->ns_watermark; 2717 return sci; 2718 } 2719 2720 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci) 2721 { 2722 int ret, retrycount = NILFS_SC_CLEANUP_RETRY; 2723 2724 /* 2725 * The segctord thread was stopped and its timer was removed. 2726 * But some tasks remain. 2727 */ 2728 do { 2729 struct nilfs_transaction_info ti; 2730 2731 nilfs_transaction_lock(sci->sc_super, &ti, 0); 2732 ret = nilfs_segctor_construct(sci, SC_LSEG_SR); 2733 nilfs_transaction_unlock(sci->sc_super); 2734 2735 flush_work(&sci->sc_iput_work); 2736 2737 } while (ret && ret != -EROFS && retrycount-- > 0); 2738 } 2739 2740 /** 2741 * nilfs_segctor_destroy - destroy the segment constructor. 2742 * @sci: nilfs_sc_info 2743 * 2744 * nilfs_segctor_destroy() kills the segctord thread and frees 2745 * the nilfs_sc_info struct. 2746 * Caller must hold the segment semaphore. 2747 */ 2748 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci) 2749 { 2750 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2751 int flag; 2752 2753 up_write(&nilfs->ns_segctor_sem); 2754 2755 spin_lock(&sci->sc_state_lock); 2756 nilfs_segctor_kill_thread(sci); 2757 flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request 2758 || sci->sc_seq_request != sci->sc_seq_done); 2759 spin_unlock(&sci->sc_state_lock); 2760 2761 if (flush_work(&sci->sc_iput_work)) 2762 flag = true; 2763 2764 if (flag || !nilfs_segctor_confirm(sci)) 2765 nilfs_segctor_write_out(sci); 2766 2767 if (!list_empty(&sci->sc_dirty_files)) { 2768 nilfs_warn(sci->sc_super, 2769 "disposed unprocessed dirty file(s) when stopping log writer"); 2770 nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1); 2771 } 2772 2773 if (!list_empty(&sci->sc_iput_queue)) { 2774 nilfs_warn(sci->sc_super, 2775 "disposed unprocessed inode(s) in iput queue when stopping log writer"); 2776 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1); 2777 } 2778 2779 WARN_ON(!list_empty(&sci->sc_segbufs)); 2780 WARN_ON(!list_empty(&sci->sc_write_logs)); 2781 2782 nilfs_put_root(sci->sc_root); 2783 2784 down_write(&nilfs->ns_segctor_sem); 2785 2786 timer_shutdown_sync(&sci->sc_timer); 2787 kfree(sci); 2788 } 2789 2790 /** 2791 * nilfs_attach_log_writer - attach log writer 2792 * @sb: super block instance 2793 * @root: root object of the current filesystem tree 2794 * 2795 * This allocates a log writer object, initializes it, and starts the 2796 * log writer. 2797 * 2798 * Return Value: On success, 0 is returned. On error, one of the following 2799 * negative error code is returned. 2800 * 2801 * %-ENOMEM - Insufficient memory available. 2802 */ 2803 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root) 2804 { 2805 struct the_nilfs *nilfs = sb->s_fs_info; 2806 int err; 2807 2808 if (nilfs->ns_writer) { 2809 /* 2810 * This happens if the filesystem is made read-only by 2811 * __nilfs_error or nilfs_remount and then remounted 2812 * read/write. In these cases, reuse the existing 2813 * writer. 2814 */ 2815 return 0; 2816 } 2817 2818 nilfs->ns_writer = nilfs_segctor_new(sb, root); 2819 if (!nilfs->ns_writer) 2820 return -ENOMEM; 2821 2822 inode_attach_wb(nilfs->ns_bdev->bd_inode, NULL); 2823 2824 err = nilfs_segctor_start_thread(nilfs->ns_writer); 2825 if (unlikely(err)) 2826 nilfs_detach_log_writer(sb); 2827 2828 return err; 2829 } 2830 2831 /** 2832 * nilfs_detach_log_writer - destroy log writer 2833 * @sb: super block instance 2834 * 2835 * This kills log writer daemon, frees the log writer object, and 2836 * destroys list of dirty files. 2837 */ 2838 void nilfs_detach_log_writer(struct super_block *sb) 2839 { 2840 struct the_nilfs *nilfs = sb->s_fs_info; 2841 LIST_HEAD(garbage_list); 2842 2843 down_write(&nilfs->ns_segctor_sem); 2844 if (nilfs->ns_writer) { 2845 nilfs_segctor_destroy(nilfs->ns_writer); 2846 nilfs->ns_writer = NULL; 2847 } 2848 set_nilfs_purging(nilfs); 2849 2850 /* Force to free the list of dirty files */ 2851 spin_lock(&nilfs->ns_inode_lock); 2852 if (!list_empty(&nilfs->ns_dirty_files)) { 2853 list_splice_init(&nilfs->ns_dirty_files, &garbage_list); 2854 nilfs_warn(sb, 2855 "disposed unprocessed dirty file(s) when detaching log writer"); 2856 } 2857 spin_unlock(&nilfs->ns_inode_lock); 2858 up_write(&nilfs->ns_segctor_sem); 2859 2860 nilfs_dispose_list(nilfs, &garbage_list, 1); 2861 clear_nilfs_purging(nilfs); 2862 } 2863