xref: /openbmc/linux/fs/nilfs2/segment.c (revision 25985edc)
1 /*
2  * segment.c - NILFS segment constructor.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  *
22  */
23 
24 #include <linux/pagemap.h>
25 #include <linux/buffer_head.h>
26 #include <linux/writeback.h>
27 #include <linux/bio.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/freezer.h>
32 #include <linux/kthread.h>
33 #include <linux/crc32.h>
34 #include <linux/pagevec.h>
35 #include <linux/slab.h>
36 #include "nilfs.h"
37 #include "btnode.h"
38 #include "page.h"
39 #include "segment.h"
40 #include "sufile.h"
41 #include "cpfile.h"
42 #include "ifile.h"
43 #include "segbuf.h"
44 
45 
46 /*
47  * Segment constructor
48  */
49 #define SC_N_INODEVEC	16   /* Size of locally allocated inode vector */
50 
51 #define SC_MAX_SEGDELTA 64   /* Upper limit of the number of segments
52 				appended in collection retry loop */
53 
54 /* Construction mode */
55 enum {
56 	SC_LSEG_SR = 1,	/* Make a logical segment having a super root */
57 	SC_LSEG_DSYNC,	/* Flush data blocks of a given file and make
58 			   a logical segment without a super root */
59 	SC_FLUSH_FILE,	/* Flush data files, leads to segment writes without
60 			   creating a checkpoint */
61 	SC_FLUSH_DAT,	/* Flush DAT file. This also creates segments without
62 			   a checkpoint */
63 };
64 
65 /* Stage numbers of dirty block collection */
66 enum {
67 	NILFS_ST_INIT = 0,
68 	NILFS_ST_GC,		/* Collecting dirty blocks for GC */
69 	NILFS_ST_FILE,
70 	NILFS_ST_IFILE,
71 	NILFS_ST_CPFILE,
72 	NILFS_ST_SUFILE,
73 	NILFS_ST_DAT,
74 	NILFS_ST_SR,		/* Super root */
75 	NILFS_ST_DSYNC,		/* Data sync blocks */
76 	NILFS_ST_DONE,
77 };
78 
79 /* State flags of collection */
80 #define NILFS_CF_NODE		0x0001	/* Collecting node blocks */
81 #define NILFS_CF_IFILE_STARTED	0x0002	/* IFILE stage has started */
82 #define NILFS_CF_SUFREED	0x0004	/* segment usages has been freed */
83 #define NILFS_CF_HISTORY_MASK	(NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
84 
85 /* Operations depending on the construction mode and file type */
86 struct nilfs_sc_operations {
87 	int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
88 			    struct inode *);
89 	int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
90 			    struct inode *);
91 	int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
92 			    struct inode *);
93 	void (*write_data_binfo)(struct nilfs_sc_info *,
94 				 struct nilfs_segsum_pointer *,
95 				 union nilfs_binfo *);
96 	void (*write_node_binfo)(struct nilfs_sc_info *,
97 				 struct nilfs_segsum_pointer *,
98 				 union nilfs_binfo *);
99 };
100 
101 /*
102  * Other definitions
103  */
104 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
105 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
106 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
107 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
108 
109 #define nilfs_cnt32_gt(a, b)   \
110 	(typecheck(__u32, a) && typecheck(__u32, b) && \
111 	 ((__s32)(b) - (__s32)(a) < 0))
112 #define nilfs_cnt32_ge(a, b)   \
113 	(typecheck(__u32, a) && typecheck(__u32, b) && \
114 	 ((__s32)(a) - (__s32)(b) >= 0))
115 #define nilfs_cnt32_lt(a, b)  nilfs_cnt32_gt(b, a)
116 #define nilfs_cnt32_le(a, b)  nilfs_cnt32_ge(b, a)
117 
118 static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
119 {
120 	struct nilfs_transaction_info *cur_ti = current->journal_info;
121 	void *save = NULL;
122 
123 	if (cur_ti) {
124 		if (cur_ti->ti_magic == NILFS_TI_MAGIC)
125 			return ++cur_ti->ti_count;
126 		else {
127 			/*
128 			 * If journal_info field is occupied by other FS,
129 			 * it is saved and will be restored on
130 			 * nilfs_transaction_commit().
131 			 */
132 			printk(KERN_WARNING
133 			       "NILFS warning: journal info from a different "
134 			       "FS\n");
135 			save = current->journal_info;
136 		}
137 	}
138 	if (!ti) {
139 		ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
140 		if (!ti)
141 			return -ENOMEM;
142 		ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
143 	} else {
144 		ti->ti_flags = 0;
145 	}
146 	ti->ti_count = 0;
147 	ti->ti_save = save;
148 	ti->ti_magic = NILFS_TI_MAGIC;
149 	current->journal_info = ti;
150 	return 0;
151 }
152 
153 /**
154  * nilfs_transaction_begin - start indivisible file operations.
155  * @sb: super block
156  * @ti: nilfs_transaction_info
157  * @vacancy_check: flags for vacancy rate checks
158  *
159  * nilfs_transaction_begin() acquires a reader/writer semaphore, called
160  * the segment semaphore, to make a segment construction and write tasks
161  * exclusive.  The function is used with nilfs_transaction_commit() in pairs.
162  * The region enclosed by these two functions can be nested.  To avoid a
163  * deadlock, the semaphore is only acquired or released in the outermost call.
164  *
165  * This function allocates a nilfs_transaction_info struct to keep context
166  * information on it.  It is initialized and hooked onto the current task in
167  * the outermost call.  If a pre-allocated struct is given to @ti, it is used
168  * instead; otherwise a new struct is assigned from a slab.
169  *
170  * When @vacancy_check flag is set, this function will check the amount of
171  * free space, and will wait for the GC to reclaim disk space if low capacity.
172  *
173  * Return Value: On success, 0 is returned. On error, one of the following
174  * negative error code is returned.
175  *
176  * %-ENOMEM - Insufficient memory available.
177  *
178  * %-ENOSPC - No space left on device
179  */
180 int nilfs_transaction_begin(struct super_block *sb,
181 			    struct nilfs_transaction_info *ti,
182 			    int vacancy_check)
183 {
184 	struct the_nilfs *nilfs;
185 	int ret = nilfs_prepare_segment_lock(ti);
186 
187 	if (unlikely(ret < 0))
188 		return ret;
189 	if (ret > 0)
190 		return 0;
191 
192 	vfs_check_frozen(sb, SB_FREEZE_WRITE);
193 
194 	nilfs = sb->s_fs_info;
195 	down_read(&nilfs->ns_segctor_sem);
196 	if (vacancy_check && nilfs_near_disk_full(nilfs)) {
197 		up_read(&nilfs->ns_segctor_sem);
198 		ret = -ENOSPC;
199 		goto failed;
200 	}
201 	return 0;
202 
203  failed:
204 	ti = current->journal_info;
205 	current->journal_info = ti->ti_save;
206 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
207 		kmem_cache_free(nilfs_transaction_cachep, ti);
208 	return ret;
209 }
210 
211 /**
212  * nilfs_transaction_commit - commit indivisible file operations.
213  * @sb: super block
214  *
215  * nilfs_transaction_commit() releases the read semaphore which is
216  * acquired by nilfs_transaction_begin(). This is only performed
217  * in outermost call of this function.  If a commit flag is set,
218  * nilfs_transaction_commit() sets a timer to start the segment
219  * constructor.  If a sync flag is set, it starts construction
220  * directly.
221  */
222 int nilfs_transaction_commit(struct super_block *sb)
223 {
224 	struct nilfs_transaction_info *ti = current->journal_info;
225 	struct the_nilfs *nilfs = sb->s_fs_info;
226 	int err = 0;
227 
228 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
229 	ti->ti_flags |= NILFS_TI_COMMIT;
230 	if (ti->ti_count > 0) {
231 		ti->ti_count--;
232 		return 0;
233 	}
234 	if (nilfs->ns_writer) {
235 		struct nilfs_sc_info *sci = nilfs->ns_writer;
236 
237 		if (ti->ti_flags & NILFS_TI_COMMIT)
238 			nilfs_segctor_start_timer(sci);
239 		if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
240 			nilfs_segctor_do_flush(sci, 0);
241 	}
242 	up_read(&nilfs->ns_segctor_sem);
243 	current->journal_info = ti->ti_save;
244 
245 	if (ti->ti_flags & NILFS_TI_SYNC)
246 		err = nilfs_construct_segment(sb);
247 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
248 		kmem_cache_free(nilfs_transaction_cachep, ti);
249 	return err;
250 }
251 
252 void nilfs_transaction_abort(struct super_block *sb)
253 {
254 	struct nilfs_transaction_info *ti = current->journal_info;
255 	struct the_nilfs *nilfs = sb->s_fs_info;
256 
257 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
258 	if (ti->ti_count > 0) {
259 		ti->ti_count--;
260 		return;
261 	}
262 	up_read(&nilfs->ns_segctor_sem);
263 
264 	current->journal_info = ti->ti_save;
265 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
266 		kmem_cache_free(nilfs_transaction_cachep, ti);
267 }
268 
269 void nilfs_relax_pressure_in_lock(struct super_block *sb)
270 {
271 	struct the_nilfs *nilfs = sb->s_fs_info;
272 	struct nilfs_sc_info *sci = nilfs->ns_writer;
273 
274 	if (!sci || !sci->sc_flush_request)
275 		return;
276 
277 	set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
278 	up_read(&nilfs->ns_segctor_sem);
279 
280 	down_write(&nilfs->ns_segctor_sem);
281 	if (sci->sc_flush_request &&
282 	    test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
283 		struct nilfs_transaction_info *ti = current->journal_info;
284 
285 		ti->ti_flags |= NILFS_TI_WRITER;
286 		nilfs_segctor_do_immediate_flush(sci);
287 		ti->ti_flags &= ~NILFS_TI_WRITER;
288 	}
289 	downgrade_write(&nilfs->ns_segctor_sem);
290 }
291 
292 static void nilfs_transaction_lock(struct super_block *sb,
293 				   struct nilfs_transaction_info *ti,
294 				   int gcflag)
295 {
296 	struct nilfs_transaction_info *cur_ti = current->journal_info;
297 	struct the_nilfs *nilfs = sb->s_fs_info;
298 	struct nilfs_sc_info *sci = nilfs->ns_writer;
299 
300 	WARN_ON(cur_ti);
301 	ti->ti_flags = NILFS_TI_WRITER;
302 	ti->ti_count = 0;
303 	ti->ti_save = cur_ti;
304 	ti->ti_magic = NILFS_TI_MAGIC;
305 	INIT_LIST_HEAD(&ti->ti_garbage);
306 	current->journal_info = ti;
307 
308 	for (;;) {
309 		down_write(&nilfs->ns_segctor_sem);
310 		if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
311 			break;
312 
313 		nilfs_segctor_do_immediate_flush(sci);
314 
315 		up_write(&nilfs->ns_segctor_sem);
316 		yield();
317 	}
318 	if (gcflag)
319 		ti->ti_flags |= NILFS_TI_GC;
320 }
321 
322 static void nilfs_transaction_unlock(struct super_block *sb)
323 {
324 	struct nilfs_transaction_info *ti = current->journal_info;
325 	struct the_nilfs *nilfs = sb->s_fs_info;
326 
327 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
328 	BUG_ON(ti->ti_count > 0);
329 
330 	up_write(&nilfs->ns_segctor_sem);
331 	current->journal_info = ti->ti_save;
332 	if (!list_empty(&ti->ti_garbage))
333 		nilfs_dispose_list(nilfs, &ti->ti_garbage, 0);
334 }
335 
336 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
337 					    struct nilfs_segsum_pointer *ssp,
338 					    unsigned bytes)
339 {
340 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
341 	unsigned blocksize = sci->sc_super->s_blocksize;
342 	void *p;
343 
344 	if (unlikely(ssp->offset + bytes > blocksize)) {
345 		ssp->offset = 0;
346 		BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
347 					       &segbuf->sb_segsum_buffers));
348 		ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
349 	}
350 	p = ssp->bh->b_data + ssp->offset;
351 	ssp->offset += bytes;
352 	return p;
353 }
354 
355 /**
356  * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
357  * @sci: nilfs_sc_info
358  */
359 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
360 {
361 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
362 	struct buffer_head *sumbh;
363 	unsigned sumbytes;
364 	unsigned flags = 0;
365 	int err;
366 
367 	if (nilfs_doing_gc())
368 		flags = NILFS_SS_GC;
369 	err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
370 	if (unlikely(err))
371 		return err;
372 
373 	sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
374 	sumbytes = segbuf->sb_sum.sumbytes;
375 	sci->sc_finfo_ptr.bh = sumbh;  sci->sc_finfo_ptr.offset = sumbytes;
376 	sci->sc_binfo_ptr.bh = sumbh;  sci->sc_binfo_ptr.offset = sumbytes;
377 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
378 	return 0;
379 }
380 
381 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
382 {
383 	sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
384 	if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
385 		return -E2BIG; /* The current segment is filled up
386 				  (internal code) */
387 	sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
388 	return nilfs_segctor_reset_segment_buffer(sci);
389 }
390 
391 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
392 {
393 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
394 	int err;
395 
396 	if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
397 		err = nilfs_segctor_feed_segment(sci);
398 		if (err)
399 			return err;
400 		segbuf = sci->sc_curseg;
401 	}
402 	err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
403 	if (likely(!err))
404 		segbuf->sb_sum.flags |= NILFS_SS_SR;
405 	return err;
406 }
407 
408 /*
409  * Functions for making segment summary and payloads
410  */
411 static int nilfs_segctor_segsum_block_required(
412 	struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
413 	unsigned binfo_size)
414 {
415 	unsigned blocksize = sci->sc_super->s_blocksize;
416 	/* Size of finfo and binfo is enough small against blocksize */
417 
418 	return ssp->offset + binfo_size +
419 		(!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
420 		blocksize;
421 }
422 
423 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
424 				      struct inode *inode)
425 {
426 	sci->sc_curseg->sb_sum.nfinfo++;
427 	sci->sc_binfo_ptr = sci->sc_finfo_ptr;
428 	nilfs_segctor_map_segsum_entry(
429 		sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
430 
431 	if (NILFS_I(inode)->i_root &&
432 	    !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
433 		set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
434 	/* skip finfo */
435 }
436 
437 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
438 				    struct inode *inode)
439 {
440 	struct nilfs_finfo *finfo;
441 	struct nilfs_inode_info *ii;
442 	struct nilfs_segment_buffer *segbuf;
443 	__u64 cno;
444 
445 	if (sci->sc_blk_cnt == 0)
446 		return;
447 
448 	ii = NILFS_I(inode);
449 
450 	if (test_bit(NILFS_I_GCINODE, &ii->i_state))
451 		cno = ii->i_cno;
452 	else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
453 		cno = 0;
454 	else
455 		cno = sci->sc_cno;
456 
457 	finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
458 						 sizeof(*finfo));
459 	finfo->fi_ino = cpu_to_le64(inode->i_ino);
460 	finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
461 	finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
462 	finfo->fi_cno = cpu_to_le64(cno);
463 
464 	segbuf = sci->sc_curseg;
465 	segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
466 		sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
467 	sci->sc_finfo_ptr = sci->sc_binfo_ptr;
468 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
469 }
470 
471 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
472 					struct buffer_head *bh,
473 					struct inode *inode,
474 					unsigned binfo_size)
475 {
476 	struct nilfs_segment_buffer *segbuf;
477 	int required, err = 0;
478 
479  retry:
480 	segbuf = sci->sc_curseg;
481 	required = nilfs_segctor_segsum_block_required(
482 		sci, &sci->sc_binfo_ptr, binfo_size);
483 	if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
484 		nilfs_segctor_end_finfo(sci, inode);
485 		err = nilfs_segctor_feed_segment(sci);
486 		if (err)
487 			return err;
488 		goto retry;
489 	}
490 	if (unlikely(required)) {
491 		err = nilfs_segbuf_extend_segsum(segbuf);
492 		if (unlikely(err))
493 			goto failed;
494 	}
495 	if (sci->sc_blk_cnt == 0)
496 		nilfs_segctor_begin_finfo(sci, inode);
497 
498 	nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
499 	/* Substitution to vblocknr is delayed until update_blocknr() */
500 	nilfs_segbuf_add_file_buffer(segbuf, bh);
501 	sci->sc_blk_cnt++;
502  failed:
503 	return err;
504 }
505 
506 /*
507  * Callback functions that enumerate, mark, and collect dirty blocks
508  */
509 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
510 				   struct buffer_head *bh, struct inode *inode)
511 {
512 	int err;
513 
514 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
515 	if (err < 0)
516 		return err;
517 
518 	err = nilfs_segctor_add_file_block(sci, bh, inode,
519 					   sizeof(struct nilfs_binfo_v));
520 	if (!err)
521 		sci->sc_datablk_cnt++;
522 	return err;
523 }
524 
525 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
526 				   struct buffer_head *bh,
527 				   struct inode *inode)
528 {
529 	return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
530 }
531 
532 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
533 				   struct buffer_head *bh,
534 				   struct inode *inode)
535 {
536 	WARN_ON(!buffer_dirty(bh));
537 	return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
538 }
539 
540 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
541 					struct nilfs_segsum_pointer *ssp,
542 					union nilfs_binfo *binfo)
543 {
544 	struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
545 		sci, ssp, sizeof(*binfo_v));
546 	*binfo_v = binfo->bi_v;
547 }
548 
549 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
550 					struct nilfs_segsum_pointer *ssp,
551 					union nilfs_binfo *binfo)
552 {
553 	__le64 *vblocknr = nilfs_segctor_map_segsum_entry(
554 		sci, ssp, sizeof(*vblocknr));
555 	*vblocknr = binfo->bi_v.bi_vblocknr;
556 }
557 
558 static struct nilfs_sc_operations nilfs_sc_file_ops = {
559 	.collect_data = nilfs_collect_file_data,
560 	.collect_node = nilfs_collect_file_node,
561 	.collect_bmap = nilfs_collect_file_bmap,
562 	.write_data_binfo = nilfs_write_file_data_binfo,
563 	.write_node_binfo = nilfs_write_file_node_binfo,
564 };
565 
566 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
567 				  struct buffer_head *bh, struct inode *inode)
568 {
569 	int err;
570 
571 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
572 	if (err < 0)
573 		return err;
574 
575 	err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
576 	if (!err)
577 		sci->sc_datablk_cnt++;
578 	return err;
579 }
580 
581 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
582 				  struct buffer_head *bh, struct inode *inode)
583 {
584 	WARN_ON(!buffer_dirty(bh));
585 	return nilfs_segctor_add_file_block(sci, bh, inode,
586 					    sizeof(struct nilfs_binfo_dat));
587 }
588 
589 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
590 				       struct nilfs_segsum_pointer *ssp,
591 				       union nilfs_binfo *binfo)
592 {
593 	__le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
594 							  sizeof(*blkoff));
595 	*blkoff = binfo->bi_dat.bi_blkoff;
596 }
597 
598 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
599 				       struct nilfs_segsum_pointer *ssp,
600 				       union nilfs_binfo *binfo)
601 {
602 	struct nilfs_binfo_dat *binfo_dat =
603 		nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
604 	*binfo_dat = binfo->bi_dat;
605 }
606 
607 static struct nilfs_sc_operations nilfs_sc_dat_ops = {
608 	.collect_data = nilfs_collect_dat_data,
609 	.collect_node = nilfs_collect_file_node,
610 	.collect_bmap = nilfs_collect_dat_bmap,
611 	.write_data_binfo = nilfs_write_dat_data_binfo,
612 	.write_node_binfo = nilfs_write_dat_node_binfo,
613 };
614 
615 static struct nilfs_sc_operations nilfs_sc_dsync_ops = {
616 	.collect_data = nilfs_collect_file_data,
617 	.collect_node = NULL,
618 	.collect_bmap = NULL,
619 	.write_data_binfo = nilfs_write_file_data_binfo,
620 	.write_node_binfo = NULL,
621 };
622 
623 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
624 					      struct list_head *listp,
625 					      size_t nlimit,
626 					      loff_t start, loff_t end)
627 {
628 	struct address_space *mapping = inode->i_mapping;
629 	struct pagevec pvec;
630 	pgoff_t index = 0, last = ULONG_MAX;
631 	size_t ndirties = 0;
632 	int i;
633 
634 	if (unlikely(start != 0 || end != LLONG_MAX)) {
635 		/*
636 		 * A valid range is given for sync-ing data pages. The
637 		 * range is rounded to per-page; extra dirty buffers
638 		 * may be included if blocksize < pagesize.
639 		 */
640 		index = start >> PAGE_SHIFT;
641 		last = end >> PAGE_SHIFT;
642 	}
643 	pagevec_init(&pvec, 0);
644  repeat:
645 	if (unlikely(index > last) ||
646 	    !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
647 				min_t(pgoff_t, last - index,
648 				      PAGEVEC_SIZE - 1) + 1))
649 		return ndirties;
650 
651 	for (i = 0; i < pagevec_count(&pvec); i++) {
652 		struct buffer_head *bh, *head;
653 		struct page *page = pvec.pages[i];
654 
655 		if (unlikely(page->index > last))
656 			break;
657 
658 		if (mapping->host) {
659 			lock_page(page);
660 			if (!page_has_buffers(page))
661 				create_empty_buffers(page,
662 						     1 << inode->i_blkbits, 0);
663 			unlock_page(page);
664 		}
665 
666 		bh = head = page_buffers(page);
667 		do {
668 			if (!buffer_dirty(bh))
669 				continue;
670 			get_bh(bh);
671 			list_add_tail(&bh->b_assoc_buffers, listp);
672 			ndirties++;
673 			if (unlikely(ndirties >= nlimit)) {
674 				pagevec_release(&pvec);
675 				cond_resched();
676 				return ndirties;
677 			}
678 		} while (bh = bh->b_this_page, bh != head);
679 	}
680 	pagevec_release(&pvec);
681 	cond_resched();
682 	goto repeat;
683 }
684 
685 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
686 					    struct list_head *listp)
687 {
688 	struct nilfs_inode_info *ii = NILFS_I(inode);
689 	struct address_space *mapping = &ii->i_btnode_cache;
690 	struct pagevec pvec;
691 	struct buffer_head *bh, *head;
692 	unsigned int i;
693 	pgoff_t index = 0;
694 
695 	pagevec_init(&pvec, 0);
696 
697 	while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
698 				  PAGEVEC_SIZE)) {
699 		for (i = 0; i < pagevec_count(&pvec); i++) {
700 			bh = head = page_buffers(pvec.pages[i]);
701 			do {
702 				if (buffer_dirty(bh)) {
703 					get_bh(bh);
704 					list_add_tail(&bh->b_assoc_buffers,
705 						      listp);
706 				}
707 				bh = bh->b_this_page;
708 			} while (bh != head);
709 		}
710 		pagevec_release(&pvec);
711 		cond_resched();
712 	}
713 }
714 
715 static void nilfs_dispose_list(struct the_nilfs *nilfs,
716 			       struct list_head *head, int force)
717 {
718 	struct nilfs_inode_info *ii, *n;
719 	struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
720 	unsigned nv = 0;
721 
722 	while (!list_empty(head)) {
723 		spin_lock(&nilfs->ns_inode_lock);
724 		list_for_each_entry_safe(ii, n, head, i_dirty) {
725 			list_del_init(&ii->i_dirty);
726 			if (force) {
727 				if (unlikely(ii->i_bh)) {
728 					brelse(ii->i_bh);
729 					ii->i_bh = NULL;
730 				}
731 			} else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
732 				set_bit(NILFS_I_QUEUED, &ii->i_state);
733 				list_add_tail(&ii->i_dirty,
734 					      &nilfs->ns_dirty_files);
735 				continue;
736 			}
737 			ivec[nv++] = ii;
738 			if (nv == SC_N_INODEVEC)
739 				break;
740 		}
741 		spin_unlock(&nilfs->ns_inode_lock);
742 
743 		for (pii = ivec; nv > 0; pii++, nv--)
744 			iput(&(*pii)->vfs_inode);
745 	}
746 }
747 
748 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
749 				     struct nilfs_root *root)
750 {
751 	int ret = 0;
752 
753 	if (nilfs_mdt_fetch_dirty(root->ifile))
754 		ret++;
755 	if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
756 		ret++;
757 	if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
758 		ret++;
759 	if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
760 		ret++;
761 	return ret;
762 }
763 
764 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
765 {
766 	return list_empty(&sci->sc_dirty_files) &&
767 		!test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
768 		sci->sc_nfreesegs == 0 &&
769 		(!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
770 }
771 
772 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
773 {
774 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
775 	int ret = 0;
776 
777 	if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
778 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
779 
780 	spin_lock(&nilfs->ns_inode_lock);
781 	if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
782 		ret++;
783 
784 	spin_unlock(&nilfs->ns_inode_lock);
785 	return ret;
786 }
787 
788 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
789 {
790 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
791 
792 	nilfs_mdt_clear_dirty(sci->sc_root->ifile);
793 	nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
794 	nilfs_mdt_clear_dirty(nilfs->ns_sufile);
795 	nilfs_mdt_clear_dirty(nilfs->ns_dat);
796 }
797 
798 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
799 {
800 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
801 	struct buffer_head *bh_cp;
802 	struct nilfs_checkpoint *raw_cp;
803 	int err;
804 
805 	/* XXX: this interface will be changed */
806 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
807 					  &raw_cp, &bh_cp);
808 	if (likely(!err)) {
809 		/* The following code is duplicated with cpfile.  But, it is
810 		   needed to collect the checkpoint even if it was not newly
811 		   created */
812 		nilfs_mdt_mark_buffer_dirty(bh_cp);
813 		nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
814 		nilfs_cpfile_put_checkpoint(
815 			nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
816 	} else
817 		WARN_ON(err == -EINVAL || err == -ENOENT);
818 
819 	return err;
820 }
821 
822 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
823 {
824 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
825 	struct buffer_head *bh_cp;
826 	struct nilfs_checkpoint *raw_cp;
827 	int err;
828 
829 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
830 					  &raw_cp, &bh_cp);
831 	if (unlikely(err)) {
832 		WARN_ON(err == -EINVAL || err == -ENOENT);
833 		goto failed_ibh;
834 	}
835 	raw_cp->cp_snapshot_list.ssl_next = 0;
836 	raw_cp->cp_snapshot_list.ssl_prev = 0;
837 	raw_cp->cp_inodes_count =
838 		cpu_to_le64(atomic_read(&sci->sc_root->inodes_count));
839 	raw_cp->cp_blocks_count =
840 		cpu_to_le64(atomic_read(&sci->sc_root->blocks_count));
841 	raw_cp->cp_nblk_inc =
842 		cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
843 	raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
844 	raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
845 
846 	if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
847 		nilfs_checkpoint_clear_minor(raw_cp);
848 	else
849 		nilfs_checkpoint_set_minor(raw_cp);
850 
851 	nilfs_write_inode_common(sci->sc_root->ifile,
852 				 &raw_cp->cp_ifile_inode, 1);
853 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
854 	return 0;
855 
856  failed_ibh:
857 	return err;
858 }
859 
860 static void nilfs_fill_in_file_bmap(struct inode *ifile,
861 				    struct nilfs_inode_info *ii)
862 
863 {
864 	struct buffer_head *ibh;
865 	struct nilfs_inode *raw_inode;
866 
867 	if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
868 		ibh = ii->i_bh;
869 		BUG_ON(!ibh);
870 		raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
871 						  ibh);
872 		nilfs_bmap_write(ii->i_bmap, raw_inode);
873 		nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
874 	}
875 }
876 
877 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
878 {
879 	struct nilfs_inode_info *ii;
880 
881 	list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
882 		nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
883 		set_bit(NILFS_I_COLLECTED, &ii->i_state);
884 	}
885 }
886 
887 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
888 					     struct the_nilfs *nilfs)
889 {
890 	struct buffer_head *bh_sr;
891 	struct nilfs_super_root *raw_sr;
892 	unsigned isz = nilfs->ns_inode_size;
893 
894 	bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
895 	raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
896 
897 	raw_sr->sr_bytes = cpu_to_le16(NILFS_SR_BYTES);
898 	raw_sr->sr_nongc_ctime
899 		= cpu_to_le64(nilfs_doing_gc() ?
900 			      nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
901 	raw_sr->sr_flags = 0;
902 
903 	nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
904 				 NILFS_SR_DAT_OFFSET(isz), 1);
905 	nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
906 				 NILFS_SR_CPFILE_OFFSET(isz), 1);
907 	nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
908 				 NILFS_SR_SUFILE_OFFSET(isz), 1);
909 }
910 
911 static void nilfs_redirty_inodes(struct list_head *head)
912 {
913 	struct nilfs_inode_info *ii;
914 
915 	list_for_each_entry(ii, head, i_dirty) {
916 		if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
917 			clear_bit(NILFS_I_COLLECTED, &ii->i_state);
918 	}
919 }
920 
921 static void nilfs_drop_collected_inodes(struct list_head *head)
922 {
923 	struct nilfs_inode_info *ii;
924 
925 	list_for_each_entry(ii, head, i_dirty) {
926 		if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
927 			continue;
928 
929 		clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
930 		set_bit(NILFS_I_UPDATED, &ii->i_state);
931 	}
932 }
933 
934 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
935 				       struct inode *inode,
936 				       struct list_head *listp,
937 				       int (*collect)(struct nilfs_sc_info *,
938 						      struct buffer_head *,
939 						      struct inode *))
940 {
941 	struct buffer_head *bh, *n;
942 	int err = 0;
943 
944 	if (collect) {
945 		list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
946 			list_del_init(&bh->b_assoc_buffers);
947 			err = collect(sci, bh, inode);
948 			brelse(bh);
949 			if (unlikely(err))
950 				goto dispose_buffers;
951 		}
952 		return 0;
953 	}
954 
955  dispose_buffers:
956 	while (!list_empty(listp)) {
957 		bh = list_entry(listp->next, struct buffer_head,
958 				b_assoc_buffers);
959 		list_del_init(&bh->b_assoc_buffers);
960 		brelse(bh);
961 	}
962 	return err;
963 }
964 
965 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
966 {
967 	/* Remaining number of blocks within segment buffer */
968 	return sci->sc_segbuf_nblocks -
969 		(sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
970 }
971 
972 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
973 				   struct inode *inode,
974 				   struct nilfs_sc_operations *sc_ops)
975 {
976 	LIST_HEAD(data_buffers);
977 	LIST_HEAD(node_buffers);
978 	int err;
979 
980 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
981 		size_t n, rest = nilfs_segctor_buffer_rest(sci);
982 
983 		n = nilfs_lookup_dirty_data_buffers(
984 			inode, &data_buffers, rest + 1, 0, LLONG_MAX);
985 		if (n > rest) {
986 			err = nilfs_segctor_apply_buffers(
987 				sci, inode, &data_buffers,
988 				sc_ops->collect_data);
989 			BUG_ON(!err); /* always receive -E2BIG or true error */
990 			goto break_or_fail;
991 		}
992 	}
993 	nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
994 
995 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
996 		err = nilfs_segctor_apply_buffers(
997 			sci, inode, &data_buffers, sc_ops->collect_data);
998 		if (unlikely(err)) {
999 			/* dispose node list */
1000 			nilfs_segctor_apply_buffers(
1001 				sci, inode, &node_buffers, NULL);
1002 			goto break_or_fail;
1003 		}
1004 		sci->sc_stage.flags |= NILFS_CF_NODE;
1005 	}
1006 	/* Collect node */
1007 	err = nilfs_segctor_apply_buffers(
1008 		sci, inode, &node_buffers, sc_ops->collect_node);
1009 	if (unlikely(err))
1010 		goto break_or_fail;
1011 
1012 	nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1013 	err = nilfs_segctor_apply_buffers(
1014 		sci, inode, &node_buffers, sc_ops->collect_bmap);
1015 	if (unlikely(err))
1016 		goto break_or_fail;
1017 
1018 	nilfs_segctor_end_finfo(sci, inode);
1019 	sci->sc_stage.flags &= ~NILFS_CF_NODE;
1020 
1021  break_or_fail:
1022 	return err;
1023 }
1024 
1025 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1026 					 struct inode *inode)
1027 {
1028 	LIST_HEAD(data_buffers);
1029 	size_t n, rest = nilfs_segctor_buffer_rest(sci);
1030 	int err;
1031 
1032 	n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1033 					    sci->sc_dsync_start,
1034 					    sci->sc_dsync_end);
1035 
1036 	err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1037 					  nilfs_collect_file_data);
1038 	if (!err) {
1039 		nilfs_segctor_end_finfo(sci, inode);
1040 		BUG_ON(n > rest);
1041 		/* always receive -E2BIG or true error if n > rest */
1042 	}
1043 	return err;
1044 }
1045 
1046 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1047 {
1048 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1049 	struct list_head *head;
1050 	struct nilfs_inode_info *ii;
1051 	size_t ndone;
1052 	int err = 0;
1053 
1054 	switch (sci->sc_stage.scnt) {
1055 	case NILFS_ST_INIT:
1056 		/* Pre-processes */
1057 		sci->sc_stage.flags = 0;
1058 
1059 		if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1060 			sci->sc_nblk_inc = 0;
1061 			sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1062 			if (mode == SC_LSEG_DSYNC) {
1063 				sci->sc_stage.scnt = NILFS_ST_DSYNC;
1064 				goto dsync_mode;
1065 			}
1066 		}
1067 
1068 		sci->sc_stage.dirty_file_ptr = NULL;
1069 		sci->sc_stage.gc_inode_ptr = NULL;
1070 		if (mode == SC_FLUSH_DAT) {
1071 			sci->sc_stage.scnt = NILFS_ST_DAT;
1072 			goto dat_stage;
1073 		}
1074 		sci->sc_stage.scnt++;  /* Fall through */
1075 	case NILFS_ST_GC:
1076 		if (nilfs_doing_gc()) {
1077 			head = &sci->sc_gc_inodes;
1078 			ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1079 						head, i_dirty);
1080 			list_for_each_entry_continue(ii, head, i_dirty) {
1081 				err = nilfs_segctor_scan_file(
1082 					sci, &ii->vfs_inode,
1083 					&nilfs_sc_file_ops);
1084 				if (unlikely(err)) {
1085 					sci->sc_stage.gc_inode_ptr = list_entry(
1086 						ii->i_dirty.prev,
1087 						struct nilfs_inode_info,
1088 						i_dirty);
1089 					goto break_or_fail;
1090 				}
1091 				set_bit(NILFS_I_COLLECTED, &ii->i_state);
1092 			}
1093 			sci->sc_stage.gc_inode_ptr = NULL;
1094 		}
1095 		sci->sc_stage.scnt++;  /* Fall through */
1096 	case NILFS_ST_FILE:
1097 		head = &sci->sc_dirty_files;
1098 		ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1099 					i_dirty);
1100 		list_for_each_entry_continue(ii, head, i_dirty) {
1101 			clear_bit(NILFS_I_DIRTY, &ii->i_state);
1102 
1103 			err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1104 						      &nilfs_sc_file_ops);
1105 			if (unlikely(err)) {
1106 				sci->sc_stage.dirty_file_ptr =
1107 					list_entry(ii->i_dirty.prev,
1108 						   struct nilfs_inode_info,
1109 						   i_dirty);
1110 				goto break_or_fail;
1111 			}
1112 			/* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1113 			/* XXX: required ? */
1114 		}
1115 		sci->sc_stage.dirty_file_ptr = NULL;
1116 		if (mode == SC_FLUSH_FILE) {
1117 			sci->sc_stage.scnt = NILFS_ST_DONE;
1118 			return 0;
1119 		}
1120 		sci->sc_stage.scnt++;
1121 		sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1122 		/* Fall through */
1123 	case NILFS_ST_IFILE:
1124 		err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
1125 					      &nilfs_sc_file_ops);
1126 		if (unlikely(err))
1127 			break;
1128 		sci->sc_stage.scnt++;
1129 		/* Creating a checkpoint */
1130 		err = nilfs_segctor_create_checkpoint(sci);
1131 		if (unlikely(err))
1132 			break;
1133 		/* Fall through */
1134 	case NILFS_ST_CPFILE:
1135 		err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1136 					      &nilfs_sc_file_ops);
1137 		if (unlikely(err))
1138 			break;
1139 		sci->sc_stage.scnt++;  /* Fall through */
1140 	case NILFS_ST_SUFILE:
1141 		err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
1142 					 sci->sc_nfreesegs, &ndone);
1143 		if (unlikely(err)) {
1144 			nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1145 						  sci->sc_freesegs, ndone,
1146 						  NULL);
1147 			break;
1148 		}
1149 		sci->sc_stage.flags |= NILFS_CF_SUFREED;
1150 
1151 		err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1152 					      &nilfs_sc_file_ops);
1153 		if (unlikely(err))
1154 			break;
1155 		sci->sc_stage.scnt++;  /* Fall through */
1156 	case NILFS_ST_DAT:
1157  dat_stage:
1158 		err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
1159 					      &nilfs_sc_dat_ops);
1160 		if (unlikely(err))
1161 			break;
1162 		if (mode == SC_FLUSH_DAT) {
1163 			sci->sc_stage.scnt = NILFS_ST_DONE;
1164 			return 0;
1165 		}
1166 		sci->sc_stage.scnt++;  /* Fall through */
1167 	case NILFS_ST_SR:
1168 		if (mode == SC_LSEG_SR) {
1169 			/* Appending a super root */
1170 			err = nilfs_segctor_add_super_root(sci);
1171 			if (unlikely(err))
1172 				break;
1173 		}
1174 		/* End of a logical segment */
1175 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1176 		sci->sc_stage.scnt = NILFS_ST_DONE;
1177 		return 0;
1178 	case NILFS_ST_DSYNC:
1179  dsync_mode:
1180 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1181 		ii = sci->sc_dsync_inode;
1182 		if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1183 			break;
1184 
1185 		err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1186 		if (unlikely(err))
1187 			break;
1188 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1189 		sci->sc_stage.scnt = NILFS_ST_DONE;
1190 		return 0;
1191 	case NILFS_ST_DONE:
1192 		return 0;
1193 	default:
1194 		BUG();
1195 	}
1196 
1197  break_or_fail:
1198 	return err;
1199 }
1200 
1201 /**
1202  * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1203  * @sci: nilfs_sc_info
1204  * @nilfs: nilfs object
1205  */
1206 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1207 					    struct the_nilfs *nilfs)
1208 {
1209 	struct nilfs_segment_buffer *segbuf, *prev;
1210 	__u64 nextnum;
1211 	int err, alloc = 0;
1212 
1213 	segbuf = nilfs_segbuf_new(sci->sc_super);
1214 	if (unlikely(!segbuf))
1215 		return -ENOMEM;
1216 
1217 	if (list_empty(&sci->sc_write_logs)) {
1218 		nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
1219 				 nilfs->ns_pseg_offset, nilfs);
1220 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1221 			nilfs_shift_to_next_segment(nilfs);
1222 			nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1223 		}
1224 
1225 		segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1226 		nextnum = nilfs->ns_nextnum;
1227 
1228 		if (nilfs->ns_segnum == nilfs->ns_nextnum)
1229 			/* Start from the head of a new full segment */
1230 			alloc++;
1231 	} else {
1232 		/* Continue logs */
1233 		prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1234 		nilfs_segbuf_map_cont(segbuf, prev);
1235 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
1236 		nextnum = prev->sb_nextnum;
1237 
1238 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1239 			nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1240 			segbuf->sb_sum.seg_seq++;
1241 			alloc++;
1242 		}
1243 	}
1244 
1245 	err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
1246 	if (err)
1247 		goto failed;
1248 
1249 	if (alloc) {
1250 		err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1251 		if (err)
1252 			goto failed;
1253 	}
1254 	nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1255 
1256 	BUG_ON(!list_empty(&sci->sc_segbufs));
1257 	list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
1258 	sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1259 	return 0;
1260 
1261  failed:
1262 	nilfs_segbuf_free(segbuf);
1263 	return err;
1264 }
1265 
1266 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1267 					 struct the_nilfs *nilfs, int nadd)
1268 {
1269 	struct nilfs_segment_buffer *segbuf, *prev;
1270 	struct inode *sufile = nilfs->ns_sufile;
1271 	__u64 nextnextnum;
1272 	LIST_HEAD(list);
1273 	int err, ret, i;
1274 
1275 	prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1276 	/*
1277 	 * Since the segment specified with nextnum might be allocated during
1278 	 * the previous construction, the buffer including its segusage may
1279 	 * not be dirty.  The following call ensures that the buffer is dirty
1280 	 * and will pin the buffer on memory until the sufile is written.
1281 	 */
1282 	err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
1283 	if (unlikely(err))
1284 		return err;
1285 
1286 	for (i = 0; i < nadd; i++) {
1287 		/* extend segment info */
1288 		err = -ENOMEM;
1289 		segbuf = nilfs_segbuf_new(sci->sc_super);
1290 		if (unlikely(!segbuf))
1291 			goto failed;
1292 
1293 		/* map this buffer to region of segment on-disk */
1294 		nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1295 		sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1296 
1297 		/* allocate the next next full segment */
1298 		err = nilfs_sufile_alloc(sufile, &nextnextnum);
1299 		if (unlikely(err))
1300 			goto failed_segbuf;
1301 
1302 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1303 		nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1304 
1305 		list_add_tail(&segbuf->sb_list, &list);
1306 		prev = segbuf;
1307 	}
1308 	list_splice_tail(&list, &sci->sc_segbufs);
1309 	return 0;
1310 
1311  failed_segbuf:
1312 	nilfs_segbuf_free(segbuf);
1313  failed:
1314 	list_for_each_entry(segbuf, &list, sb_list) {
1315 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1316 		WARN_ON(ret); /* never fails */
1317 	}
1318 	nilfs_destroy_logs(&list);
1319 	return err;
1320 }
1321 
1322 static void nilfs_free_incomplete_logs(struct list_head *logs,
1323 				       struct the_nilfs *nilfs)
1324 {
1325 	struct nilfs_segment_buffer *segbuf, *prev;
1326 	struct inode *sufile = nilfs->ns_sufile;
1327 	int ret;
1328 
1329 	segbuf = NILFS_FIRST_SEGBUF(logs);
1330 	if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1331 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1332 		WARN_ON(ret); /* never fails */
1333 	}
1334 	if (atomic_read(&segbuf->sb_err)) {
1335 		/* Case 1: The first segment failed */
1336 		if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1337 			/* Case 1a:  Partial segment appended into an existing
1338 			   segment */
1339 			nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1340 						segbuf->sb_fseg_end);
1341 		else /* Case 1b:  New full segment */
1342 			set_nilfs_discontinued(nilfs);
1343 	}
1344 
1345 	prev = segbuf;
1346 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1347 		if (prev->sb_nextnum != segbuf->sb_nextnum) {
1348 			ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1349 			WARN_ON(ret); /* never fails */
1350 		}
1351 		if (atomic_read(&segbuf->sb_err) &&
1352 		    segbuf->sb_segnum != nilfs->ns_nextnum)
1353 			/* Case 2: extended segment (!= next) failed */
1354 			nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
1355 		prev = segbuf;
1356 	}
1357 }
1358 
1359 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1360 					  struct inode *sufile)
1361 {
1362 	struct nilfs_segment_buffer *segbuf;
1363 	unsigned long live_blocks;
1364 	int ret;
1365 
1366 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1367 		live_blocks = segbuf->sb_sum.nblocks +
1368 			(segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1369 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1370 						     live_blocks,
1371 						     sci->sc_seg_ctime);
1372 		WARN_ON(ret); /* always succeed because the segusage is dirty */
1373 	}
1374 }
1375 
1376 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
1377 {
1378 	struct nilfs_segment_buffer *segbuf;
1379 	int ret;
1380 
1381 	segbuf = NILFS_FIRST_SEGBUF(logs);
1382 	ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1383 					     segbuf->sb_pseg_start -
1384 					     segbuf->sb_fseg_start, 0);
1385 	WARN_ON(ret); /* always succeed because the segusage is dirty */
1386 
1387 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1388 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1389 						     0, 0);
1390 		WARN_ON(ret); /* always succeed */
1391 	}
1392 }
1393 
1394 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1395 					    struct nilfs_segment_buffer *last,
1396 					    struct inode *sufile)
1397 {
1398 	struct nilfs_segment_buffer *segbuf = last;
1399 	int ret;
1400 
1401 	list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1402 		sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1403 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1404 		WARN_ON(ret);
1405 	}
1406 	nilfs_truncate_logs(&sci->sc_segbufs, last);
1407 }
1408 
1409 
1410 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1411 				 struct the_nilfs *nilfs, int mode)
1412 {
1413 	struct nilfs_cstage prev_stage = sci->sc_stage;
1414 	int err, nadd = 1;
1415 
1416 	/* Collection retry loop */
1417 	for (;;) {
1418 		sci->sc_nblk_this_inc = 0;
1419 		sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1420 
1421 		err = nilfs_segctor_reset_segment_buffer(sci);
1422 		if (unlikely(err))
1423 			goto failed;
1424 
1425 		err = nilfs_segctor_collect_blocks(sci, mode);
1426 		sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1427 		if (!err)
1428 			break;
1429 
1430 		if (unlikely(err != -E2BIG))
1431 			goto failed;
1432 
1433 		/* The current segment is filled up */
1434 		if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
1435 			break;
1436 
1437 		nilfs_clear_logs(&sci->sc_segbufs);
1438 
1439 		err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1440 		if (unlikely(err))
1441 			return err;
1442 
1443 		if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1444 			err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1445 							sci->sc_freesegs,
1446 							sci->sc_nfreesegs,
1447 							NULL);
1448 			WARN_ON(err); /* do not happen */
1449 		}
1450 		nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1451 		sci->sc_stage = prev_stage;
1452 	}
1453 	nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1454 	return 0;
1455 
1456  failed:
1457 	return err;
1458 }
1459 
1460 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1461 				      struct buffer_head *new_bh)
1462 {
1463 	BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1464 
1465 	list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1466 	/* The caller must release old_bh */
1467 }
1468 
1469 static int
1470 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1471 				     struct nilfs_segment_buffer *segbuf,
1472 				     int mode)
1473 {
1474 	struct inode *inode = NULL;
1475 	sector_t blocknr;
1476 	unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1477 	unsigned long nblocks = 0, ndatablk = 0;
1478 	struct nilfs_sc_operations *sc_op = NULL;
1479 	struct nilfs_segsum_pointer ssp;
1480 	struct nilfs_finfo *finfo = NULL;
1481 	union nilfs_binfo binfo;
1482 	struct buffer_head *bh, *bh_org;
1483 	ino_t ino = 0;
1484 	int err = 0;
1485 
1486 	if (!nfinfo)
1487 		goto out;
1488 
1489 	blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1490 	ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1491 	ssp.offset = sizeof(struct nilfs_segment_summary);
1492 
1493 	list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1494 		if (bh == segbuf->sb_super_root)
1495 			break;
1496 		if (!finfo) {
1497 			finfo =	nilfs_segctor_map_segsum_entry(
1498 				sci, &ssp, sizeof(*finfo));
1499 			ino = le64_to_cpu(finfo->fi_ino);
1500 			nblocks = le32_to_cpu(finfo->fi_nblocks);
1501 			ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1502 
1503 			if (buffer_nilfs_node(bh))
1504 				inode = NILFS_BTNC_I(bh->b_page->mapping);
1505 			else
1506 				inode = NILFS_AS_I(bh->b_page->mapping);
1507 
1508 			if (mode == SC_LSEG_DSYNC)
1509 				sc_op = &nilfs_sc_dsync_ops;
1510 			else if (ino == NILFS_DAT_INO)
1511 				sc_op = &nilfs_sc_dat_ops;
1512 			else /* file blocks */
1513 				sc_op = &nilfs_sc_file_ops;
1514 		}
1515 		bh_org = bh;
1516 		get_bh(bh_org);
1517 		err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1518 					&binfo);
1519 		if (bh != bh_org)
1520 			nilfs_list_replace_buffer(bh_org, bh);
1521 		brelse(bh_org);
1522 		if (unlikely(err))
1523 			goto failed_bmap;
1524 
1525 		if (ndatablk > 0)
1526 			sc_op->write_data_binfo(sci, &ssp, &binfo);
1527 		else
1528 			sc_op->write_node_binfo(sci, &ssp, &binfo);
1529 
1530 		blocknr++;
1531 		if (--nblocks == 0) {
1532 			finfo = NULL;
1533 			if (--nfinfo == 0)
1534 				break;
1535 		} else if (ndatablk > 0)
1536 			ndatablk--;
1537 	}
1538  out:
1539 	return 0;
1540 
1541  failed_bmap:
1542 	return err;
1543 }
1544 
1545 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1546 {
1547 	struct nilfs_segment_buffer *segbuf;
1548 	int err;
1549 
1550 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1551 		err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1552 		if (unlikely(err))
1553 			return err;
1554 		nilfs_segbuf_fill_in_segsum(segbuf);
1555 	}
1556 	return 0;
1557 }
1558 
1559 static int
1560 nilfs_copy_replace_page_buffers(struct page *page, struct list_head *out)
1561 {
1562 	struct page *clone_page;
1563 	struct buffer_head *bh, *head, *bh2;
1564 	void *kaddr;
1565 
1566 	bh = head = page_buffers(page);
1567 
1568 	clone_page = nilfs_alloc_private_page(bh->b_bdev, bh->b_size, 0);
1569 	if (unlikely(!clone_page))
1570 		return -ENOMEM;
1571 
1572 	bh2 = page_buffers(clone_page);
1573 	kaddr = kmap_atomic(page, KM_USER0);
1574 	do {
1575 		if (list_empty(&bh->b_assoc_buffers))
1576 			continue;
1577 		get_bh(bh2);
1578 		page_cache_get(clone_page); /* for each bh */
1579 		memcpy(bh2->b_data, kaddr + bh_offset(bh), bh2->b_size);
1580 		bh2->b_blocknr = bh->b_blocknr;
1581 		list_replace(&bh->b_assoc_buffers, &bh2->b_assoc_buffers);
1582 		list_add_tail(&bh->b_assoc_buffers, out);
1583 	} while (bh = bh->b_this_page, bh2 = bh2->b_this_page, bh != head);
1584 	kunmap_atomic(kaddr, KM_USER0);
1585 
1586 	if (!TestSetPageWriteback(clone_page))
1587 		account_page_writeback(clone_page);
1588 	unlock_page(clone_page);
1589 
1590 	return 0;
1591 }
1592 
1593 static int nilfs_test_page_to_be_frozen(struct page *page)
1594 {
1595 	struct address_space *mapping = page->mapping;
1596 
1597 	if (!mapping || !mapping->host || S_ISDIR(mapping->host->i_mode))
1598 		return 0;
1599 
1600 	if (page_mapped(page)) {
1601 		ClearPageChecked(page);
1602 		return 1;
1603 	}
1604 	return PageChecked(page);
1605 }
1606 
1607 static int nilfs_begin_page_io(struct page *page, struct list_head *out)
1608 {
1609 	if (!page || PageWriteback(page))
1610 		/* For split b-tree node pages, this function may be called
1611 		   twice.  We ignore the 2nd or later calls by this check. */
1612 		return 0;
1613 
1614 	lock_page(page);
1615 	clear_page_dirty_for_io(page);
1616 	set_page_writeback(page);
1617 	unlock_page(page);
1618 
1619 	if (nilfs_test_page_to_be_frozen(page)) {
1620 		int err = nilfs_copy_replace_page_buffers(page, out);
1621 		if (unlikely(err))
1622 			return err;
1623 	}
1624 	return 0;
1625 }
1626 
1627 static int nilfs_segctor_prepare_write(struct nilfs_sc_info *sci,
1628 				       struct page **failed_page)
1629 {
1630 	struct nilfs_segment_buffer *segbuf;
1631 	struct page *bd_page = NULL, *fs_page = NULL;
1632 	struct list_head *list = &sci->sc_copied_buffers;
1633 	int err;
1634 
1635 	*failed_page = NULL;
1636 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1637 		struct buffer_head *bh;
1638 
1639 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1640 				    b_assoc_buffers) {
1641 			if (bh->b_page != bd_page) {
1642 				if (bd_page) {
1643 					lock_page(bd_page);
1644 					clear_page_dirty_for_io(bd_page);
1645 					set_page_writeback(bd_page);
1646 					unlock_page(bd_page);
1647 				}
1648 				bd_page = bh->b_page;
1649 			}
1650 		}
1651 
1652 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1653 				    b_assoc_buffers) {
1654 			if (bh == segbuf->sb_super_root) {
1655 				if (bh->b_page != bd_page) {
1656 					lock_page(bd_page);
1657 					clear_page_dirty_for_io(bd_page);
1658 					set_page_writeback(bd_page);
1659 					unlock_page(bd_page);
1660 					bd_page = bh->b_page;
1661 				}
1662 				break;
1663 			}
1664 			if (bh->b_page != fs_page) {
1665 				err = nilfs_begin_page_io(fs_page, list);
1666 				if (unlikely(err)) {
1667 					*failed_page = fs_page;
1668 					goto out;
1669 				}
1670 				fs_page = bh->b_page;
1671 			}
1672 		}
1673 	}
1674 	if (bd_page) {
1675 		lock_page(bd_page);
1676 		clear_page_dirty_for_io(bd_page);
1677 		set_page_writeback(bd_page);
1678 		unlock_page(bd_page);
1679 	}
1680 	err = nilfs_begin_page_io(fs_page, list);
1681 	if (unlikely(err))
1682 		*failed_page = fs_page;
1683  out:
1684 	return err;
1685 }
1686 
1687 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1688 			       struct the_nilfs *nilfs)
1689 {
1690 	int ret;
1691 
1692 	ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
1693 	list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
1694 	return ret;
1695 }
1696 
1697 static void __nilfs_end_page_io(struct page *page, int err)
1698 {
1699 	if (!err) {
1700 		if (!nilfs_page_buffers_clean(page))
1701 			__set_page_dirty_nobuffers(page);
1702 		ClearPageError(page);
1703 	} else {
1704 		__set_page_dirty_nobuffers(page);
1705 		SetPageError(page);
1706 	}
1707 
1708 	if (buffer_nilfs_allocated(page_buffers(page))) {
1709 		if (TestClearPageWriteback(page))
1710 			dec_zone_page_state(page, NR_WRITEBACK);
1711 	} else
1712 		end_page_writeback(page);
1713 }
1714 
1715 static void nilfs_end_page_io(struct page *page, int err)
1716 {
1717 	if (!page)
1718 		return;
1719 
1720 	if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
1721 		/*
1722 		 * For b-tree node pages, this function may be called twice
1723 		 * or more because they might be split in a segment.
1724 		 */
1725 		if (PageDirty(page)) {
1726 			/*
1727 			 * For pages holding split b-tree node buffers, dirty
1728 			 * flag on the buffers may be cleared discretely.
1729 			 * In that case, the page is once redirtied for
1730 			 * remaining buffers, and it must be cancelled if
1731 			 * all the buffers get cleaned later.
1732 			 */
1733 			lock_page(page);
1734 			if (nilfs_page_buffers_clean(page))
1735 				__nilfs_clear_page_dirty(page);
1736 			unlock_page(page);
1737 		}
1738 		return;
1739 	}
1740 
1741 	__nilfs_end_page_io(page, err);
1742 }
1743 
1744 static void nilfs_clear_copied_buffers(struct list_head *list, int err)
1745 {
1746 	struct buffer_head *bh, *head;
1747 	struct page *page;
1748 
1749 	while (!list_empty(list)) {
1750 		bh = list_entry(list->next, struct buffer_head,
1751 				b_assoc_buffers);
1752 		page = bh->b_page;
1753 		page_cache_get(page);
1754 		head = bh = page_buffers(page);
1755 		do {
1756 			if (!list_empty(&bh->b_assoc_buffers)) {
1757 				list_del_init(&bh->b_assoc_buffers);
1758 				if (!err) {
1759 					set_buffer_uptodate(bh);
1760 					clear_buffer_dirty(bh);
1761 					clear_buffer_delay(bh);
1762 					clear_buffer_nilfs_volatile(bh);
1763 				}
1764 				brelse(bh); /* for b_assoc_buffers */
1765 			}
1766 		} while ((bh = bh->b_this_page) != head);
1767 
1768 		__nilfs_end_page_io(page, err);
1769 		page_cache_release(page);
1770 	}
1771 }
1772 
1773 static void nilfs_abort_logs(struct list_head *logs, struct page *failed_page,
1774 			     int err)
1775 {
1776 	struct nilfs_segment_buffer *segbuf;
1777 	struct page *bd_page = NULL, *fs_page = NULL;
1778 	struct buffer_head *bh;
1779 
1780 	if (list_empty(logs))
1781 		return;
1782 
1783 	list_for_each_entry(segbuf, logs, sb_list) {
1784 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1785 				    b_assoc_buffers) {
1786 			if (bh->b_page != bd_page) {
1787 				if (bd_page)
1788 					end_page_writeback(bd_page);
1789 				bd_page = bh->b_page;
1790 			}
1791 		}
1792 
1793 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1794 				    b_assoc_buffers) {
1795 			if (bh == segbuf->sb_super_root) {
1796 				if (bh->b_page != bd_page) {
1797 					end_page_writeback(bd_page);
1798 					bd_page = bh->b_page;
1799 				}
1800 				break;
1801 			}
1802 			if (bh->b_page != fs_page) {
1803 				nilfs_end_page_io(fs_page, err);
1804 				if (fs_page && fs_page == failed_page)
1805 					return;
1806 				fs_page = bh->b_page;
1807 			}
1808 		}
1809 	}
1810 	if (bd_page)
1811 		end_page_writeback(bd_page);
1812 
1813 	nilfs_end_page_io(fs_page, err);
1814 }
1815 
1816 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
1817 					     struct the_nilfs *nilfs, int err)
1818 {
1819 	LIST_HEAD(logs);
1820 	int ret;
1821 
1822 	list_splice_tail_init(&sci->sc_write_logs, &logs);
1823 	ret = nilfs_wait_on_logs(&logs);
1824 	nilfs_abort_logs(&logs, NULL, ret ? : err);
1825 
1826 	list_splice_tail_init(&sci->sc_segbufs, &logs);
1827 	nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
1828 	nilfs_free_incomplete_logs(&logs, nilfs);
1829 	nilfs_clear_copied_buffers(&sci->sc_copied_buffers, err);
1830 
1831 	if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1832 		ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1833 						sci->sc_freesegs,
1834 						sci->sc_nfreesegs,
1835 						NULL);
1836 		WARN_ON(ret); /* do not happen */
1837 	}
1838 
1839 	nilfs_destroy_logs(&logs);
1840 }
1841 
1842 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1843 				   struct nilfs_segment_buffer *segbuf)
1844 {
1845 	nilfs->ns_segnum = segbuf->sb_segnum;
1846 	nilfs->ns_nextnum = segbuf->sb_nextnum;
1847 	nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1848 		+ segbuf->sb_sum.nblocks;
1849 	nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1850 	nilfs->ns_ctime = segbuf->sb_sum.ctime;
1851 }
1852 
1853 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1854 {
1855 	struct nilfs_segment_buffer *segbuf;
1856 	struct page *bd_page = NULL, *fs_page = NULL;
1857 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1858 	int update_sr = false;
1859 
1860 	list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
1861 		struct buffer_head *bh;
1862 
1863 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1864 				    b_assoc_buffers) {
1865 			set_buffer_uptodate(bh);
1866 			clear_buffer_dirty(bh);
1867 			if (bh->b_page != bd_page) {
1868 				if (bd_page)
1869 					end_page_writeback(bd_page);
1870 				bd_page = bh->b_page;
1871 			}
1872 		}
1873 		/*
1874 		 * We assume that the buffers which belong to the same page
1875 		 * continue over the buffer list.
1876 		 * Under this assumption, the last BHs of pages is
1877 		 * identifiable by the discontinuity of bh->b_page
1878 		 * (page != fs_page).
1879 		 *
1880 		 * For B-tree node blocks, however, this assumption is not
1881 		 * guaranteed.  The cleanup code of B-tree node pages needs
1882 		 * special care.
1883 		 */
1884 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1885 				    b_assoc_buffers) {
1886 			set_buffer_uptodate(bh);
1887 			clear_buffer_dirty(bh);
1888 			clear_buffer_delay(bh);
1889 			clear_buffer_nilfs_volatile(bh);
1890 			clear_buffer_nilfs_redirected(bh);
1891 			if (bh == segbuf->sb_super_root) {
1892 				if (bh->b_page != bd_page) {
1893 					end_page_writeback(bd_page);
1894 					bd_page = bh->b_page;
1895 				}
1896 				update_sr = true;
1897 				break;
1898 			}
1899 			if (bh->b_page != fs_page) {
1900 				nilfs_end_page_io(fs_page, 0);
1901 				fs_page = bh->b_page;
1902 			}
1903 		}
1904 
1905 		if (!nilfs_segbuf_simplex(segbuf)) {
1906 			if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
1907 				set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1908 				sci->sc_lseg_stime = jiffies;
1909 			}
1910 			if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
1911 				clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1912 		}
1913 	}
1914 	/*
1915 	 * Since pages may continue over multiple segment buffers,
1916 	 * end of the last page must be checked outside of the loop.
1917 	 */
1918 	if (bd_page)
1919 		end_page_writeback(bd_page);
1920 
1921 	nilfs_end_page_io(fs_page, 0);
1922 
1923 	nilfs_clear_copied_buffers(&sci->sc_copied_buffers, 0);
1924 
1925 	nilfs_drop_collected_inodes(&sci->sc_dirty_files);
1926 
1927 	if (nilfs_doing_gc())
1928 		nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
1929 	else
1930 		nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
1931 
1932 	sci->sc_nblk_inc += sci->sc_nblk_this_inc;
1933 
1934 	segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1935 	nilfs_set_next_segment(nilfs, segbuf);
1936 
1937 	if (update_sr) {
1938 		nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
1939 				       segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
1940 
1941 		clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
1942 		clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
1943 		set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1944 		nilfs_segctor_clear_metadata_dirty(sci);
1945 	} else
1946 		clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1947 }
1948 
1949 static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
1950 {
1951 	int ret;
1952 
1953 	ret = nilfs_wait_on_logs(&sci->sc_write_logs);
1954 	if (!ret) {
1955 		nilfs_segctor_complete_write(sci);
1956 		nilfs_destroy_logs(&sci->sc_write_logs);
1957 	}
1958 	return ret;
1959 }
1960 
1961 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
1962 					     struct the_nilfs *nilfs)
1963 {
1964 	struct nilfs_inode_info *ii, *n;
1965 	struct inode *ifile = sci->sc_root->ifile;
1966 
1967 	spin_lock(&nilfs->ns_inode_lock);
1968  retry:
1969 	list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
1970 		if (!ii->i_bh) {
1971 			struct buffer_head *ibh;
1972 			int err;
1973 
1974 			spin_unlock(&nilfs->ns_inode_lock);
1975 			err = nilfs_ifile_get_inode_block(
1976 				ifile, ii->vfs_inode.i_ino, &ibh);
1977 			if (unlikely(err)) {
1978 				nilfs_warning(sci->sc_super, __func__,
1979 					      "failed to get inode block.\n");
1980 				return err;
1981 			}
1982 			nilfs_mdt_mark_buffer_dirty(ibh);
1983 			nilfs_mdt_mark_dirty(ifile);
1984 			spin_lock(&nilfs->ns_inode_lock);
1985 			if (likely(!ii->i_bh))
1986 				ii->i_bh = ibh;
1987 			else
1988 				brelse(ibh);
1989 			goto retry;
1990 		}
1991 
1992 		clear_bit(NILFS_I_QUEUED, &ii->i_state);
1993 		set_bit(NILFS_I_BUSY, &ii->i_state);
1994 		list_del(&ii->i_dirty);
1995 		list_add_tail(&ii->i_dirty, &sci->sc_dirty_files);
1996 	}
1997 	spin_unlock(&nilfs->ns_inode_lock);
1998 
1999 	return 0;
2000 }
2001 
2002 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
2003 					     struct the_nilfs *nilfs)
2004 {
2005 	struct nilfs_transaction_info *ti = current->journal_info;
2006 	struct nilfs_inode_info *ii, *n;
2007 
2008 	spin_lock(&nilfs->ns_inode_lock);
2009 	list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
2010 		if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
2011 		    test_bit(NILFS_I_DIRTY, &ii->i_state))
2012 			continue;
2013 
2014 		clear_bit(NILFS_I_BUSY, &ii->i_state);
2015 		brelse(ii->i_bh);
2016 		ii->i_bh = NULL;
2017 		list_del(&ii->i_dirty);
2018 		list_add_tail(&ii->i_dirty, &ti->ti_garbage);
2019 	}
2020 	spin_unlock(&nilfs->ns_inode_lock);
2021 }
2022 
2023 /*
2024  * Main procedure of segment constructor
2025  */
2026 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
2027 {
2028 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2029 	struct page *failed_page;
2030 	int err;
2031 
2032 	sci->sc_stage.scnt = NILFS_ST_INIT;
2033 	sci->sc_cno = nilfs->ns_cno;
2034 
2035 	err = nilfs_segctor_collect_dirty_files(sci, nilfs);
2036 	if (unlikely(err))
2037 		goto out;
2038 
2039 	if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
2040 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2041 
2042 	if (nilfs_segctor_clean(sci))
2043 		goto out;
2044 
2045 	do {
2046 		sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
2047 
2048 		err = nilfs_segctor_begin_construction(sci, nilfs);
2049 		if (unlikely(err))
2050 			goto out;
2051 
2052 		/* Update time stamp */
2053 		sci->sc_seg_ctime = get_seconds();
2054 
2055 		err = nilfs_segctor_collect(sci, nilfs, mode);
2056 		if (unlikely(err))
2057 			goto failed;
2058 
2059 		/* Avoid empty segment */
2060 		if (sci->sc_stage.scnt == NILFS_ST_DONE &&
2061 		    nilfs_segbuf_empty(sci->sc_curseg)) {
2062 			nilfs_segctor_abort_construction(sci, nilfs, 1);
2063 			goto out;
2064 		}
2065 
2066 		err = nilfs_segctor_assign(sci, mode);
2067 		if (unlikely(err))
2068 			goto failed;
2069 
2070 		if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2071 			nilfs_segctor_fill_in_file_bmap(sci);
2072 
2073 		if (mode == SC_LSEG_SR &&
2074 		    sci->sc_stage.scnt >= NILFS_ST_CPFILE) {
2075 			err = nilfs_segctor_fill_in_checkpoint(sci);
2076 			if (unlikely(err))
2077 				goto failed_to_write;
2078 
2079 			nilfs_segctor_fill_in_super_root(sci, nilfs);
2080 		}
2081 		nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
2082 
2083 		/* Write partial segments */
2084 		err = nilfs_segctor_prepare_write(sci, &failed_page);
2085 		if (err) {
2086 			nilfs_abort_logs(&sci->sc_segbufs, failed_page, err);
2087 			goto failed_to_write;
2088 		}
2089 
2090 		nilfs_add_checksums_on_logs(&sci->sc_segbufs,
2091 					    nilfs->ns_crc_seed);
2092 
2093 		err = nilfs_segctor_write(sci, nilfs);
2094 		if (unlikely(err))
2095 			goto failed_to_write;
2096 
2097 		if (sci->sc_stage.scnt == NILFS_ST_DONE ||
2098 		    nilfs->ns_blocksize_bits != PAGE_CACHE_SHIFT) {
2099 			/*
2100 			 * At this point, we avoid double buffering
2101 			 * for blocksize < pagesize because page dirty
2102 			 * flag is turned off during write and dirty
2103 			 * buffers are not properly collected for
2104 			 * pages crossing over segments.
2105 			 */
2106 			err = nilfs_segctor_wait(sci);
2107 			if (err)
2108 				goto failed_to_write;
2109 		}
2110 	} while (sci->sc_stage.scnt != NILFS_ST_DONE);
2111 
2112  out:
2113 	nilfs_segctor_drop_written_files(sci, nilfs);
2114 	return err;
2115 
2116  failed_to_write:
2117 	if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2118 		nilfs_redirty_inodes(&sci->sc_dirty_files);
2119 
2120  failed:
2121 	if (nilfs_doing_gc())
2122 		nilfs_redirty_inodes(&sci->sc_gc_inodes);
2123 	nilfs_segctor_abort_construction(sci, nilfs, err);
2124 	goto out;
2125 }
2126 
2127 /**
2128  * nilfs_segctor_start_timer - set timer of background write
2129  * @sci: nilfs_sc_info
2130  *
2131  * If the timer has already been set, it ignores the new request.
2132  * This function MUST be called within a section locking the segment
2133  * semaphore.
2134  */
2135 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2136 {
2137 	spin_lock(&sci->sc_state_lock);
2138 	if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2139 		sci->sc_timer.expires = jiffies + sci->sc_interval;
2140 		add_timer(&sci->sc_timer);
2141 		sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2142 	}
2143 	spin_unlock(&sci->sc_state_lock);
2144 }
2145 
2146 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2147 {
2148 	spin_lock(&sci->sc_state_lock);
2149 	if (!(sci->sc_flush_request & (1 << bn))) {
2150 		unsigned long prev_req = sci->sc_flush_request;
2151 
2152 		sci->sc_flush_request |= (1 << bn);
2153 		if (!prev_req)
2154 			wake_up(&sci->sc_wait_daemon);
2155 	}
2156 	spin_unlock(&sci->sc_state_lock);
2157 }
2158 
2159 /**
2160  * nilfs_flush_segment - trigger a segment construction for resource control
2161  * @sb: super block
2162  * @ino: inode number of the file to be flushed out.
2163  */
2164 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2165 {
2166 	struct the_nilfs *nilfs = sb->s_fs_info;
2167 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2168 
2169 	if (!sci || nilfs_doing_construction())
2170 		return;
2171 	nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2172 					/* assign bit 0 to data files */
2173 }
2174 
2175 struct nilfs_segctor_wait_request {
2176 	wait_queue_t	wq;
2177 	__u32		seq;
2178 	int		err;
2179 	atomic_t	done;
2180 };
2181 
2182 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2183 {
2184 	struct nilfs_segctor_wait_request wait_req;
2185 	int err = 0;
2186 
2187 	spin_lock(&sci->sc_state_lock);
2188 	init_wait(&wait_req.wq);
2189 	wait_req.err = 0;
2190 	atomic_set(&wait_req.done, 0);
2191 	wait_req.seq = ++sci->sc_seq_request;
2192 	spin_unlock(&sci->sc_state_lock);
2193 
2194 	init_waitqueue_entry(&wait_req.wq, current);
2195 	add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2196 	set_current_state(TASK_INTERRUPTIBLE);
2197 	wake_up(&sci->sc_wait_daemon);
2198 
2199 	for (;;) {
2200 		if (atomic_read(&wait_req.done)) {
2201 			err = wait_req.err;
2202 			break;
2203 		}
2204 		if (!signal_pending(current)) {
2205 			schedule();
2206 			continue;
2207 		}
2208 		err = -ERESTARTSYS;
2209 		break;
2210 	}
2211 	finish_wait(&sci->sc_wait_request, &wait_req.wq);
2212 	return err;
2213 }
2214 
2215 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
2216 {
2217 	struct nilfs_segctor_wait_request *wrq, *n;
2218 	unsigned long flags;
2219 
2220 	spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2221 	list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
2222 				 wq.task_list) {
2223 		if (!atomic_read(&wrq->done) &&
2224 		    nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
2225 			wrq->err = err;
2226 			atomic_set(&wrq->done, 1);
2227 		}
2228 		if (atomic_read(&wrq->done)) {
2229 			wrq->wq.func(&wrq->wq,
2230 				     TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2231 				     0, NULL);
2232 		}
2233 	}
2234 	spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2235 }
2236 
2237 /**
2238  * nilfs_construct_segment - construct a logical segment
2239  * @sb: super block
2240  *
2241  * Return Value: On success, 0 is retured. On errors, one of the following
2242  * negative error code is returned.
2243  *
2244  * %-EROFS - Read only filesystem.
2245  *
2246  * %-EIO - I/O error
2247  *
2248  * %-ENOSPC - No space left on device (only in a panic state).
2249  *
2250  * %-ERESTARTSYS - Interrupted.
2251  *
2252  * %-ENOMEM - Insufficient memory available.
2253  */
2254 int nilfs_construct_segment(struct super_block *sb)
2255 {
2256 	struct the_nilfs *nilfs = sb->s_fs_info;
2257 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2258 	struct nilfs_transaction_info *ti;
2259 	int err;
2260 
2261 	if (!sci)
2262 		return -EROFS;
2263 
2264 	/* A call inside transactions causes a deadlock. */
2265 	BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2266 
2267 	err = nilfs_segctor_sync(sci);
2268 	return err;
2269 }
2270 
2271 /**
2272  * nilfs_construct_dsync_segment - construct a data-only logical segment
2273  * @sb: super block
2274  * @inode: inode whose data blocks should be written out
2275  * @start: start byte offset
2276  * @end: end byte offset (inclusive)
2277  *
2278  * Return Value: On success, 0 is retured. On errors, one of the following
2279  * negative error code is returned.
2280  *
2281  * %-EROFS - Read only filesystem.
2282  *
2283  * %-EIO - I/O error
2284  *
2285  * %-ENOSPC - No space left on device (only in a panic state).
2286  *
2287  * %-ERESTARTSYS - Interrupted.
2288  *
2289  * %-ENOMEM - Insufficient memory available.
2290  */
2291 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2292 				  loff_t start, loff_t end)
2293 {
2294 	struct the_nilfs *nilfs = sb->s_fs_info;
2295 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2296 	struct nilfs_inode_info *ii;
2297 	struct nilfs_transaction_info ti;
2298 	int err = 0;
2299 
2300 	if (!sci)
2301 		return -EROFS;
2302 
2303 	nilfs_transaction_lock(sb, &ti, 0);
2304 
2305 	ii = NILFS_I(inode);
2306 	if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
2307 	    nilfs_test_opt(nilfs, STRICT_ORDER) ||
2308 	    test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2309 	    nilfs_discontinued(nilfs)) {
2310 		nilfs_transaction_unlock(sb);
2311 		err = nilfs_segctor_sync(sci);
2312 		return err;
2313 	}
2314 
2315 	spin_lock(&nilfs->ns_inode_lock);
2316 	if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2317 	    !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2318 		spin_unlock(&nilfs->ns_inode_lock);
2319 		nilfs_transaction_unlock(sb);
2320 		return 0;
2321 	}
2322 	spin_unlock(&nilfs->ns_inode_lock);
2323 	sci->sc_dsync_inode = ii;
2324 	sci->sc_dsync_start = start;
2325 	sci->sc_dsync_end = end;
2326 
2327 	err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2328 
2329 	nilfs_transaction_unlock(sb);
2330 	return err;
2331 }
2332 
2333 #define FLUSH_FILE_BIT	(0x1) /* data file only */
2334 #define FLUSH_DAT_BIT	(1 << NILFS_DAT_INO) /* DAT only */
2335 
2336 /**
2337  * nilfs_segctor_accept - record accepted sequence count of log-write requests
2338  * @sci: segment constructor object
2339  */
2340 static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
2341 {
2342 	spin_lock(&sci->sc_state_lock);
2343 	sci->sc_seq_accepted = sci->sc_seq_request;
2344 	spin_unlock(&sci->sc_state_lock);
2345 	del_timer_sync(&sci->sc_timer);
2346 }
2347 
2348 /**
2349  * nilfs_segctor_notify - notify the result of request to caller threads
2350  * @sci: segment constructor object
2351  * @mode: mode of log forming
2352  * @err: error code to be notified
2353  */
2354 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
2355 {
2356 	/* Clear requests (even when the construction failed) */
2357 	spin_lock(&sci->sc_state_lock);
2358 
2359 	if (mode == SC_LSEG_SR) {
2360 		sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2361 		sci->sc_seq_done = sci->sc_seq_accepted;
2362 		nilfs_segctor_wakeup(sci, err);
2363 		sci->sc_flush_request = 0;
2364 	} else {
2365 		if (mode == SC_FLUSH_FILE)
2366 			sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2367 		else if (mode == SC_FLUSH_DAT)
2368 			sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2369 
2370 		/* re-enable timer if checkpoint creation was not done */
2371 		if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2372 		    time_before(jiffies, sci->sc_timer.expires))
2373 			add_timer(&sci->sc_timer);
2374 	}
2375 	spin_unlock(&sci->sc_state_lock);
2376 }
2377 
2378 /**
2379  * nilfs_segctor_construct - form logs and write them to disk
2380  * @sci: segment constructor object
2381  * @mode: mode of log forming
2382  */
2383 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
2384 {
2385 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2386 	struct nilfs_super_block **sbp;
2387 	int err = 0;
2388 
2389 	nilfs_segctor_accept(sci);
2390 
2391 	if (nilfs_discontinued(nilfs))
2392 		mode = SC_LSEG_SR;
2393 	if (!nilfs_segctor_confirm(sci))
2394 		err = nilfs_segctor_do_construct(sci, mode);
2395 
2396 	if (likely(!err)) {
2397 		if (mode != SC_FLUSH_DAT)
2398 			atomic_set(&nilfs->ns_ndirtyblks, 0);
2399 		if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2400 		    nilfs_discontinued(nilfs)) {
2401 			down_write(&nilfs->ns_sem);
2402 			err = -EIO;
2403 			sbp = nilfs_prepare_super(sci->sc_super,
2404 						  nilfs_sb_will_flip(nilfs));
2405 			if (likely(sbp)) {
2406 				nilfs_set_log_cursor(sbp[0], nilfs);
2407 				err = nilfs_commit_super(sci->sc_super,
2408 							 NILFS_SB_COMMIT);
2409 			}
2410 			up_write(&nilfs->ns_sem);
2411 		}
2412 	}
2413 
2414 	nilfs_segctor_notify(sci, mode, err);
2415 	return err;
2416 }
2417 
2418 static void nilfs_construction_timeout(unsigned long data)
2419 {
2420 	struct task_struct *p = (struct task_struct *)data;
2421 	wake_up_process(p);
2422 }
2423 
2424 static void
2425 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2426 {
2427 	struct nilfs_inode_info *ii, *n;
2428 
2429 	list_for_each_entry_safe(ii, n, head, i_dirty) {
2430 		if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2431 			continue;
2432 		list_del_init(&ii->i_dirty);
2433 		iput(&ii->vfs_inode);
2434 	}
2435 }
2436 
2437 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2438 			 void **kbufs)
2439 {
2440 	struct the_nilfs *nilfs = sb->s_fs_info;
2441 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2442 	struct nilfs_transaction_info ti;
2443 	int err;
2444 
2445 	if (unlikely(!sci))
2446 		return -EROFS;
2447 
2448 	nilfs_transaction_lock(sb, &ti, 1);
2449 
2450 	err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
2451 	if (unlikely(err))
2452 		goto out_unlock;
2453 
2454 	err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2455 	if (unlikely(err)) {
2456 		nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
2457 		goto out_unlock;
2458 	}
2459 
2460 	sci->sc_freesegs = kbufs[4];
2461 	sci->sc_nfreesegs = argv[4].v_nmembs;
2462 	list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
2463 
2464 	for (;;) {
2465 		err = nilfs_segctor_construct(sci, SC_LSEG_SR);
2466 		nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2467 
2468 		if (likely(!err))
2469 			break;
2470 
2471 		nilfs_warning(sb, __func__,
2472 			      "segment construction failed. (err=%d)", err);
2473 		set_current_state(TASK_INTERRUPTIBLE);
2474 		schedule_timeout(sci->sc_interval);
2475 	}
2476 	if (nilfs_test_opt(nilfs, DISCARD)) {
2477 		int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
2478 						 sci->sc_nfreesegs);
2479 		if (ret) {
2480 			printk(KERN_WARNING
2481 			       "NILFS warning: error %d on discard request, "
2482 			       "turning discards off for the device\n", ret);
2483 			nilfs_clear_opt(nilfs, DISCARD);
2484 		}
2485 	}
2486 
2487  out_unlock:
2488 	sci->sc_freesegs = NULL;
2489 	sci->sc_nfreesegs = 0;
2490 	nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
2491 	nilfs_transaction_unlock(sb);
2492 	return err;
2493 }
2494 
2495 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2496 {
2497 	struct nilfs_transaction_info ti;
2498 
2499 	nilfs_transaction_lock(sci->sc_super, &ti, 0);
2500 	nilfs_segctor_construct(sci, mode);
2501 
2502 	/*
2503 	 * Unclosed segment should be retried.  We do this using sc_timer.
2504 	 * Timeout of sc_timer will invoke complete construction which leads
2505 	 * to close the current logical segment.
2506 	 */
2507 	if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2508 		nilfs_segctor_start_timer(sci);
2509 
2510 	nilfs_transaction_unlock(sci->sc_super);
2511 }
2512 
2513 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2514 {
2515 	int mode = 0;
2516 	int err;
2517 
2518 	spin_lock(&sci->sc_state_lock);
2519 	mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2520 		SC_FLUSH_DAT : SC_FLUSH_FILE;
2521 	spin_unlock(&sci->sc_state_lock);
2522 
2523 	if (mode) {
2524 		err = nilfs_segctor_do_construct(sci, mode);
2525 
2526 		spin_lock(&sci->sc_state_lock);
2527 		sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2528 			~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2529 		spin_unlock(&sci->sc_state_lock);
2530 	}
2531 	clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2532 }
2533 
2534 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2535 {
2536 	if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2537 	    time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2538 		if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2539 			return SC_FLUSH_FILE;
2540 		else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2541 			return SC_FLUSH_DAT;
2542 	}
2543 	return SC_LSEG_SR;
2544 }
2545 
2546 /**
2547  * nilfs_segctor_thread - main loop of the segment constructor thread.
2548  * @arg: pointer to a struct nilfs_sc_info.
2549  *
2550  * nilfs_segctor_thread() initializes a timer and serves as a daemon
2551  * to execute segment constructions.
2552  */
2553 static int nilfs_segctor_thread(void *arg)
2554 {
2555 	struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2556 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2557 	int timeout = 0;
2558 
2559 	sci->sc_timer.data = (unsigned long)current;
2560 	sci->sc_timer.function = nilfs_construction_timeout;
2561 
2562 	/* start sync. */
2563 	sci->sc_task = current;
2564 	wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
2565 	printk(KERN_INFO
2566 	       "segctord starting. Construction interval = %lu seconds, "
2567 	       "CP frequency < %lu seconds\n",
2568 	       sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2569 
2570 	spin_lock(&sci->sc_state_lock);
2571  loop:
2572 	for (;;) {
2573 		int mode;
2574 
2575 		if (sci->sc_state & NILFS_SEGCTOR_QUIT)
2576 			goto end_thread;
2577 
2578 		if (timeout || sci->sc_seq_request != sci->sc_seq_done)
2579 			mode = SC_LSEG_SR;
2580 		else if (!sci->sc_flush_request)
2581 			break;
2582 		else
2583 			mode = nilfs_segctor_flush_mode(sci);
2584 
2585 		spin_unlock(&sci->sc_state_lock);
2586 		nilfs_segctor_thread_construct(sci, mode);
2587 		spin_lock(&sci->sc_state_lock);
2588 		timeout = 0;
2589 	}
2590 
2591 
2592 	if (freezing(current)) {
2593 		spin_unlock(&sci->sc_state_lock);
2594 		refrigerator();
2595 		spin_lock(&sci->sc_state_lock);
2596 	} else {
2597 		DEFINE_WAIT(wait);
2598 		int should_sleep = 1;
2599 
2600 		prepare_to_wait(&sci->sc_wait_daemon, &wait,
2601 				TASK_INTERRUPTIBLE);
2602 
2603 		if (sci->sc_seq_request != sci->sc_seq_done)
2604 			should_sleep = 0;
2605 		else if (sci->sc_flush_request)
2606 			should_sleep = 0;
2607 		else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
2608 			should_sleep = time_before(jiffies,
2609 					sci->sc_timer.expires);
2610 
2611 		if (should_sleep) {
2612 			spin_unlock(&sci->sc_state_lock);
2613 			schedule();
2614 			spin_lock(&sci->sc_state_lock);
2615 		}
2616 		finish_wait(&sci->sc_wait_daemon, &wait);
2617 		timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2618 			   time_after_eq(jiffies, sci->sc_timer.expires));
2619 
2620 		if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
2621 			set_nilfs_discontinued(nilfs);
2622 	}
2623 	goto loop;
2624 
2625  end_thread:
2626 	spin_unlock(&sci->sc_state_lock);
2627 
2628 	/* end sync. */
2629 	sci->sc_task = NULL;
2630 	wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
2631 	return 0;
2632 }
2633 
2634 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
2635 {
2636 	struct task_struct *t;
2637 
2638 	t = kthread_run(nilfs_segctor_thread, sci, "segctord");
2639 	if (IS_ERR(t)) {
2640 		int err = PTR_ERR(t);
2641 
2642 		printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
2643 		       err);
2644 		return err;
2645 	}
2646 	wait_event(sci->sc_wait_task, sci->sc_task != NULL);
2647 	return 0;
2648 }
2649 
2650 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
2651 	__acquires(&sci->sc_state_lock)
2652 	__releases(&sci->sc_state_lock)
2653 {
2654 	sci->sc_state |= NILFS_SEGCTOR_QUIT;
2655 
2656 	while (sci->sc_task) {
2657 		wake_up(&sci->sc_wait_daemon);
2658 		spin_unlock(&sci->sc_state_lock);
2659 		wait_event(sci->sc_wait_task, sci->sc_task == NULL);
2660 		spin_lock(&sci->sc_state_lock);
2661 	}
2662 }
2663 
2664 /*
2665  * Setup & clean-up functions
2666  */
2667 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
2668 					       struct nilfs_root *root)
2669 {
2670 	struct the_nilfs *nilfs = sb->s_fs_info;
2671 	struct nilfs_sc_info *sci;
2672 
2673 	sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2674 	if (!sci)
2675 		return NULL;
2676 
2677 	sci->sc_super = sb;
2678 
2679 	nilfs_get_root(root);
2680 	sci->sc_root = root;
2681 
2682 	init_waitqueue_head(&sci->sc_wait_request);
2683 	init_waitqueue_head(&sci->sc_wait_daemon);
2684 	init_waitqueue_head(&sci->sc_wait_task);
2685 	spin_lock_init(&sci->sc_state_lock);
2686 	INIT_LIST_HEAD(&sci->sc_dirty_files);
2687 	INIT_LIST_HEAD(&sci->sc_segbufs);
2688 	INIT_LIST_HEAD(&sci->sc_write_logs);
2689 	INIT_LIST_HEAD(&sci->sc_gc_inodes);
2690 	INIT_LIST_HEAD(&sci->sc_copied_buffers);
2691 	init_timer(&sci->sc_timer);
2692 
2693 	sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2694 	sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2695 	sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2696 
2697 	if (nilfs->ns_interval)
2698 		sci->sc_interval = nilfs->ns_interval;
2699 	if (nilfs->ns_watermark)
2700 		sci->sc_watermark = nilfs->ns_watermark;
2701 	return sci;
2702 }
2703 
2704 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2705 {
2706 	int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2707 
2708 	/* The segctord thread was stopped and its timer was removed.
2709 	   But some tasks remain. */
2710 	do {
2711 		struct nilfs_transaction_info ti;
2712 
2713 		nilfs_transaction_lock(sci->sc_super, &ti, 0);
2714 		ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
2715 		nilfs_transaction_unlock(sci->sc_super);
2716 
2717 	} while (ret && retrycount-- > 0);
2718 }
2719 
2720 /**
2721  * nilfs_segctor_destroy - destroy the segment constructor.
2722  * @sci: nilfs_sc_info
2723  *
2724  * nilfs_segctor_destroy() kills the segctord thread and frees
2725  * the nilfs_sc_info struct.
2726  * Caller must hold the segment semaphore.
2727  */
2728 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2729 {
2730 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2731 	int flag;
2732 
2733 	up_write(&nilfs->ns_segctor_sem);
2734 
2735 	spin_lock(&sci->sc_state_lock);
2736 	nilfs_segctor_kill_thread(sci);
2737 	flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2738 		|| sci->sc_seq_request != sci->sc_seq_done);
2739 	spin_unlock(&sci->sc_state_lock);
2740 
2741 	if (flag || !nilfs_segctor_confirm(sci))
2742 		nilfs_segctor_write_out(sci);
2743 
2744 	WARN_ON(!list_empty(&sci->sc_copied_buffers));
2745 
2746 	if (!list_empty(&sci->sc_dirty_files)) {
2747 		nilfs_warning(sci->sc_super, __func__,
2748 			      "dirty file(s) after the final construction\n");
2749 		nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
2750 	}
2751 
2752 	WARN_ON(!list_empty(&sci->sc_segbufs));
2753 	WARN_ON(!list_empty(&sci->sc_write_logs));
2754 
2755 	nilfs_put_root(sci->sc_root);
2756 
2757 	down_write(&nilfs->ns_segctor_sem);
2758 
2759 	del_timer_sync(&sci->sc_timer);
2760 	kfree(sci);
2761 }
2762 
2763 /**
2764  * nilfs_attach_log_writer - attach log writer
2765  * @sb: super block instance
2766  * @root: root object of the current filesystem tree
2767  *
2768  * This allocates a log writer object, initializes it, and starts the
2769  * log writer.
2770  *
2771  * Return Value: On success, 0 is returned. On error, one of the following
2772  * negative error code is returned.
2773  *
2774  * %-ENOMEM - Insufficient memory available.
2775  */
2776 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
2777 {
2778 	struct the_nilfs *nilfs = sb->s_fs_info;
2779 	int err;
2780 
2781 	if (nilfs->ns_writer) {
2782 		/*
2783 		 * This happens if the filesystem was remounted
2784 		 * read/write after nilfs_error degenerated it into a
2785 		 * read-only mount.
2786 		 */
2787 		nilfs_detach_log_writer(sb);
2788 	}
2789 
2790 	nilfs->ns_writer = nilfs_segctor_new(sb, root);
2791 	if (!nilfs->ns_writer)
2792 		return -ENOMEM;
2793 
2794 	err = nilfs_segctor_start_thread(nilfs->ns_writer);
2795 	if (err) {
2796 		kfree(nilfs->ns_writer);
2797 		nilfs->ns_writer = NULL;
2798 	}
2799 	return err;
2800 }
2801 
2802 /**
2803  * nilfs_detach_log_writer - destroy log writer
2804  * @sb: super block instance
2805  *
2806  * This kills log writer daemon, frees the log writer object, and
2807  * destroys list of dirty files.
2808  */
2809 void nilfs_detach_log_writer(struct super_block *sb)
2810 {
2811 	struct the_nilfs *nilfs = sb->s_fs_info;
2812 	LIST_HEAD(garbage_list);
2813 
2814 	down_write(&nilfs->ns_segctor_sem);
2815 	if (nilfs->ns_writer) {
2816 		nilfs_segctor_destroy(nilfs->ns_writer);
2817 		nilfs->ns_writer = NULL;
2818 	}
2819 
2820 	/* Force to free the list of dirty files */
2821 	spin_lock(&nilfs->ns_inode_lock);
2822 	if (!list_empty(&nilfs->ns_dirty_files)) {
2823 		list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
2824 		nilfs_warning(sb, __func__,
2825 			      "Hit dirty file after stopped log writer\n");
2826 	}
2827 	spin_unlock(&nilfs->ns_inode_lock);
2828 	up_write(&nilfs->ns_segctor_sem);
2829 
2830 	nilfs_dispose_list(nilfs, &garbage_list, 1);
2831 }
2832