xref: /openbmc/linux/fs/nilfs2/segment.c (revision 1c2dd16a)
1 /*
2  * segment.c - NILFS segment constructor.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * Written by Ryusuke Konishi.
17  *
18  */
19 
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/bitops.h>
24 #include <linux/bio.h>
25 #include <linux/completion.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/freezer.h>
29 #include <linux/kthread.h>
30 #include <linux/crc32.h>
31 #include <linux/pagevec.h>
32 #include <linux/slab.h>
33 #include <linux/sched/signal.h>
34 
35 #include "nilfs.h"
36 #include "btnode.h"
37 #include "page.h"
38 #include "segment.h"
39 #include "sufile.h"
40 #include "cpfile.h"
41 #include "ifile.h"
42 #include "segbuf.h"
43 
44 
45 /*
46  * Segment constructor
47  */
48 #define SC_N_INODEVEC	16   /* Size of locally allocated inode vector */
49 
50 #define SC_MAX_SEGDELTA 64   /*
51 			      * Upper limit of the number of segments
52 			      * appended in collection retry loop
53 			      */
54 
55 /* Construction mode */
56 enum {
57 	SC_LSEG_SR = 1,	/* Make a logical segment having a super root */
58 	SC_LSEG_DSYNC,	/*
59 			 * Flush data blocks of a given file and make
60 			 * a logical segment without a super root.
61 			 */
62 	SC_FLUSH_FILE,	/*
63 			 * Flush data files, leads to segment writes without
64 			 * creating a checkpoint.
65 			 */
66 	SC_FLUSH_DAT,	/*
67 			 * Flush DAT file.  This also creates segments
68 			 * without a checkpoint.
69 			 */
70 };
71 
72 /* Stage numbers of dirty block collection */
73 enum {
74 	NILFS_ST_INIT = 0,
75 	NILFS_ST_GC,		/* Collecting dirty blocks for GC */
76 	NILFS_ST_FILE,
77 	NILFS_ST_IFILE,
78 	NILFS_ST_CPFILE,
79 	NILFS_ST_SUFILE,
80 	NILFS_ST_DAT,
81 	NILFS_ST_SR,		/* Super root */
82 	NILFS_ST_DSYNC,		/* Data sync blocks */
83 	NILFS_ST_DONE,
84 };
85 
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/nilfs2.h>
88 
89 /*
90  * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are
91  * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of
92  * the variable must use them because transition of stage count must involve
93  * trace events (trace_nilfs2_collection_stage_transition).
94  *
95  * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't
96  * produce tracepoint events. It is provided just for making the intention
97  * clear.
98  */
99 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci)
100 {
101 	sci->sc_stage.scnt++;
102 	trace_nilfs2_collection_stage_transition(sci);
103 }
104 
105 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt)
106 {
107 	sci->sc_stage.scnt = next_scnt;
108 	trace_nilfs2_collection_stage_transition(sci);
109 }
110 
111 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci)
112 {
113 	return sci->sc_stage.scnt;
114 }
115 
116 /* State flags of collection */
117 #define NILFS_CF_NODE		0x0001	/* Collecting node blocks */
118 #define NILFS_CF_IFILE_STARTED	0x0002	/* IFILE stage has started */
119 #define NILFS_CF_SUFREED	0x0004	/* segment usages has been freed */
120 #define NILFS_CF_HISTORY_MASK	(NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
121 
122 /* Operations depending on the construction mode and file type */
123 struct nilfs_sc_operations {
124 	int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
125 			    struct inode *);
126 	int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
127 			    struct inode *);
128 	int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
129 			    struct inode *);
130 	void (*write_data_binfo)(struct nilfs_sc_info *,
131 				 struct nilfs_segsum_pointer *,
132 				 union nilfs_binfo *);
133 	void (*write_node_binfo)(struct nilfs_sc_info *,
134 				 struct nilfs_segsum_pointer *,
135 				 union nilfs_binfo *);
136 };
137 
138 /*
139  * Other definitions
140  */
141 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
142 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
143 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
144 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
145 
146 #define nilfs_cnt32_gt(a, b)   \
147 	(typecheck(__u32, a) && typecheck(__u32, b) && \
148 	 ((__s32)(b) - (__s32)(a) < 0))
149 #define nilfs_cnt32_ge(a, b)   \
150 	(typecheck(__u32, a) && typecheck(__u32, b) && \
151 	 ((__s32)(a) - (__s32)(b) >= 0))
152 #define nilfs_cnt32_lt(a, b)  nilfs_cnt32_gt(b, a)
153 #define nilfs_cnt32_le(a, b)  nilfs_cnt32_ge(b, a)
154 
155 static int nilfs_prepare_segment_lock(struct super_block *sb,
156 				      struct nilfs_transaction_info *ti)
157 {
158 	struct nilfs_transaction_info *cur_ti = current->journal_info;
159 	void *save = NULL;
160 
161 	if (cur_ti) {
162 		if (cur_ti->ti_magic == NILFS_TI_MAGIC)
163 			return ++cur_ti->ti_count;
164 
165 		/*
166 		 * If journal_info field is occupied by other FS,
167 		 * it is saved and will be restored on
168 		 * nilfs_transaction_commit().
169 		 */
170 		nilfs_msg(sb, KERN_WARNING, "journal info from a different FS");
171 		save = current->journal_info;
172 	}
173 	if (!ti) {
174 		ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
175 		if (!ti)
176 			return -ENOMEM;
177 		ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
178 	} else {
179 		ti->ti_flags = 0;
180 	}
181 	ti->ti_count = 0;
182 	ti->ti_save = save;
183 	ti->ti_magic = NILFS_TI_MAGIC;
184 	current->journal_info = ti;
185 	return 0;
186 }
187 
188 /**
189  * nilfs_transaction_begin - start indivisible file operations.
190  * @sb: super block
191  * @ti: nilfs_transaction_info
192  * @vacancy_check: flags for vacancy rate checks
193  *
194  * nilfs_transaction_begin() acquires a reader/writer semaphore, called
195  * the segment semaphore, to make a segment construction and write tasks
196  * exclusive.  The function is used with nilfs_transaction_commit() in pairs.
197  * The region enclosed by these two functions can be nested.  To avoid a
198  * deadlock, the semaphore is only acquired or released in the outermost call.
199  *
200  * This function allocates a nilfs_transaction_info struct to keep context
201  * information on it.  It is initialized and hooked onto the current task in
202  * the outermost call.  If a pre-allocated struct is given to @ti, it is used
203  * instead; otherwise a new struct is assigned from a slab.
204  *
205  * When @vacancy_check flag is set, this function will check the amount of
206  * free space, and will wait for the GC to reclaim disk space if low capacity.
207  *
208  * Return Value: On success, 0 is returned. On error, one of the following
209  * negative error code is returned.
210  *
211  * %-ENOMEM - Insufficient memory available.
212  *
213  * %-ENOSPC - No space left on device
214  */
215 int nilfs_transaction_begin(struct super_block *sb,
216 			    struct nilfs_transaction_info *ti,
217 			    int vacancy_check)
218 {
219 	struct the_nilfs *nilfs;
220 	int ret = nilfs_prepare_segment_lock(sb, ti);
221 	struct nilfs_transaction_info *trace_ti;
222 
223 	if (unlikely(ret < 0))
224 		return ret;
225 	if (ret > 0) {
226 		trace_ti = current->journal_info;
227 
228 		trace_nilfs2_transaction_transition(sb, trace_ti,
229 				    trace_ti->ti_count, trace_ti->ti_flags,
230 				    TRACE_NILFS2_TRANSACTION_BEGIN);
231 		return 0;
232 	}
233 
234 	sb_start_intwrite(sb);
235 
236 	nilfs = sb->s_fs_info;
237 	down_read(&nilfs->ns_segctor_sem);
238 	if (vacancy_check && nilfs_near_disk_full(nilfs)) {
239 		up_read(&nilfs->ns_segctor_sem);
240 		ret = -ENOSPC;
241 		goto failed;
242 	}
243 
244 	trace_ti = current->journal_info;
245 	trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count,
246 					    trace_ti->ti_flags,
247 					    TRACE_NILFS2_TRANSACTION_BEGIN);
248 	return 0;
249 
250  failed:
251 	ti = current->journal_info;
252 	current->journal_info = ti->ti_save;
253 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
254 		kmem_cache_free(nilfs_transaction_cachep, ti);
255 	sb_end_intwrite(sb);
256 	return ret;
257 }
258 
259 /**
260  * nilfs_transaction_commit - commit indivisible file operations.
261  * @sb: super block
262  *
263  * nilfs_transaction_commit() releases the read semaphore which is
264  * acquired by nilfs_transaction_begin(). This is only performed
265  * in outermost call of this function.  If a commit flag is set,
266  * nilfs_transaction_commit() sets a timer to start the segment
267  * constructor.  If a sync flag is set, it starts construction
268  * directly.
269  */
270 int nilfs_transaction_commit(struct super_block *sb)
271 {
272 	struct nilfs_transaction_info *ti = current->journal_info;
273 	struct the_nilfs *nilfs = sb->s_fs_info;
274 	int err = 0;
275 
276 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
277 	ti->ti_flags |= NILFS_TI_COMMIT;
278 	if (ti->ti_count > 0) {
279 		ti->ti_count--;
280 		trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
281 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
282 		return 0;
283 	}
284 	if (nilfs->ns_writer) {
285 		struct nilfs_sc_info *sci = nilfs->ns_writer;
286 
287 		if (ti->ti_flags & NILFS_TI_COMMIT)
288 			nilfs_segctor_start_timer(sci);
289 		if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
290 			nilfs_segctor_do_flush(sci, 0);
291 	}
292 	up_read(&nilfs->ns_segctor_sem);
293 	trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
294 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
295 
296 	current->journal_info = ti->ti_save;
297 
298 	if (ti->ti_flags & NILFS_TI_SYNC)
299 		err = nilfs_construct_segment(sb);
300 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
301 		kmem_cache_free(nilfs_transaction_cachep, ti);
302 	sb_end_intwrite(sb);
303 	return err;
304 }
305 
306 void nilfs_transaction_abort(struct super_block *sb)
307 {
308 	struct nilfs_transaction_info *ti = current->journal_info;
309 	struct the_nilfs *nilfs = sb->s_fs_info;
310 
311 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
312 	if (ti->ti_count > 0) {
313 		ti->ti_count--;
314 		trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
315 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
316 		return;
317 	}
318 	up_read(&nilfs->ns_segctor_sem);
319 
320 	trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
321 		    ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
322 
323 	current->journal_info = ti->ti_save;
324 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
325 		kmem_cache_free(nilfs_transaction_cachep, ti);
326 	sb_end_intwrite(sb);
327 }
328 
329 void nilfs_relax_pressure_in_lock(struct super_block *sb)
330 {
331 	struct the_nilfs *nilfs = sb->s_fs_info;
332 	struct nilfs_sc_info *sci = nilfs->ns_writer;
333 
334 	if (!sci || !sci->sc_flush_request)
335 		return;
336 
337 	set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
338 	up_read(&nilfs->ns_segctor_sem);
339 
340 	down_write(&nilfs->ns_segctor_sem);
341 	if (sci->sc_flush_request &&
342 	    test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
343 		struct nilfs_transaction_info *ti = current->journal_info;
344 
345 		ti->ti_flags |= NILFS_TI_WRITER;
346 		nilfs_segctor_do_immediate_flush(sci);
347 		ti->ti_flags &= ~NILFS_TI_WRITER;
348 	}
349 	downgrade_write(&nilfs->ns_segctor_sem);
350 }
351 
352 static void nilfs_transaction_lock(struct super_block *sb,
353 				   struct nilfs_transaction_info *ti,
354 				   int gcflag)
355 {
356 	struct nilfs_transaction_info *cur_ti = current->journal_info;
357 	struct the_nilfs *nilfs = sb->s_fs_info;
358 	struct nilfs_sc_info *sci = nilfs->ns_writer;
359 
360 	WARN_ON(cur_ti);
361 	ti->ti_flags = NILFS_TI_WRITER;
362 	ti->ti_count = 0;
363 	ti->ti_save = cur_ti;
364 	ti->ti_magic = NILFS_TI_MAGIC;
365 	current->journal_info = ti;
366 
367 	for (;;) {
368 		trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
369 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK);
370 
371 		down_write(&nilfs->ns_segctor_sem);
372 		if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
373 			break;
374 
375 		nilfs_segctor_do_immediate_flush(sci);
376 
377 		up_write(&nilfs->ns_segctor_sem);
378 		cond_resched();
379 	}
380 	if (gcflag)
381 		ti->ti_flags |= NILFS_TI_GC;
382 
383 	trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
384 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK);
385 }
386 
387 static void nilfs_transaction_unlock(struct super_block *sb)
388 {
389 	struct nilfs_transaction_info *ti = current->journal_info;
390 	struct the_nilfs *nilfs = sb->s_fs_info;
391 
392 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
393 	BUG_ON(ti->ti_count > 0);
394 
395 	up_write(&nilfs->ns_segctor_sem);
396 	current->journal_info = ti->ti_save;
397 
398 	trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
399 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK);
400 }
401 
402 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
403 					    struct nilfs_segsum_pointer *ssp,
404 					    unsigned int bytes)
405 {
406 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
407 	unsigned int blocksize = sci->sc_super->s_blocksize;
408 	void *p;
409 
410 	if (unlikely(ssp->offset + bytes > blocksize)) {
411 		ssp->offset = 0;
412 		BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
413 					       &segbuf->sb_segsum_buffers));
414 		ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
415 	}
416 	p = ssp->bh->b_data + ssp->offset;
417 	ssp->offset += bytes;
418 	return p;
419 }
420 
421 /**
422  * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
423  * @sci: nilfs_sc_info
424  */
425 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
426 {
427 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
428 	struct buffer_head *sumbh;
429 	unsigned int sumbytes;
430 	unsigned int flags = 0;
431 	int err;
432 
433 	if (nilfs_doing_gc())
434 		flags = NILFS_SS_GC;
435 	err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
436 	if (unlikely(err))
437 		return err;
438 
439 	sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
440 	sumbytes = segbuf->sb_sum.sumbytes;
441 	sci->sc_finfo_ptr.bh = sumbh;  sci->sc_finfo_ptr.offset = sumbytes;
442 	sci->sc_binfo_ptr.bh = sumbh;  sci->sc_binfo_ptr.offset = sumbytes;
443 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
444 	return 0;
445 }
446 
447 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
448 {
449 	sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
450 	if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
451 		return -E2BIG; /*
452 				* The current segment is filled up
453 				* (internal code)
454 				*/
455 	sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
456 	return nilfs_segctor_reset_segment_buffer(sci);
457 }
458 
459 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
460 {
461 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
462 	int err;
463 
464 	if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
465 		err = nilfs_segctor_feed_segment(sci);
466 		if (err)
467 			return err;
468 		segbuf = sci->sc_curseg;
469 	}
470 	err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
471 	if (likely(!err))
472 		segbuf->sb_sum.flags |= NILFS_SS_SR;
473 	return err;
474 }
475 
476 /*
477  * Functions for making segment summary and payloads
478  */
479 static int nilfs_segctor_segsum_block_required(
480 	struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
481 	unsigned int binfo_size)
482 {
483 	unsigned int blocksize = sci->sc_super->s_blocksize;
484 	/* Size of finfo and binfo is enough small against blocksize */
485 
486 	return ssp->offset + binfo_size +
487 		(!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
488 		blocksize;
489 }
490 
491 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
492 				      struct inode *inode)
493 {
494 	sci->sc_curseg->sb_sum.nfinfo++;
495 	sci->sc_binfo_ptr = sci->sc_finfo_ptr;
496 	nilfs_segctor_map_segsum_entry(
497 		sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
498 
499 	if (NILFS_I(inode)->i_root &&
500 	    !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
501 		set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
502 	/* skip finfo */
503 }
504 
505 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
506 				    struct inode *inode)
507 {
508 	struct nilfs_finfo *finfo;
509 	struct nilfs_inode_info *ii;
510 	struct nilfs_segment_buffer *segbuf;
511 	__u64 cno;
512 
513 	if (sci->sc_blk_cnt == 0)
514 		return;
515 
516 	ii = NILFS_I(inode);
517 
518 	if (test_bit(NILFS_I_GCINODE, &ii->i_state))
519 		cno = ii->i_cno;
520 	else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
521 		cno = 0;
522 	else
523 		cno = sci->sc_cno;
524 
525 	finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
526 						 sizeof(*finfo));
527 	finfo->fi_ino = cpu_to_le64(inode->i_ino);
528 	finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
529 	finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
530 	finfo->fi_cno = cpu_to_le64(cno);
531 
532 	segbuf = sci->sc_curseg;
533 	segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
534 		sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
535 	sci->sc_finfo_ptr = sci->sc_binfo_ptr;
536 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
537 }
538 
539 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
540 					struct buffer_head *bh,
541 					struct inode *inode,
542 					unsigned int binfo_size)
543 {
544 	struct nilfs_segment_buffer *segbuf;
545 	int required, err = 0;
546 
547  retry:
548 	segbuf = sci->sc_curseg;
549 	required = nilfs_segctor_segsum_block_required(
550 		sci, &sci->sc_binfo_ptr, binfo_size);
551 	if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
552 		nilfs_segctor_end_finfo(sci, inode);
553 		err = nilfs_segctor_feed_segment(sci);
554 		if (err)
555 			return err;
556 		goto retry;
557 	}
558 	if (unlikely(required)) {
559 		err = nilfs_segbuf_extend_segsum(segbuf);
560 		if (unlikely(err))
561 			goto failed;
562 	}
563 	if (sci->sc_blk_cnt == 0)
564 		nilfs_segctor_begin_finfo(sci, inode);
565 
566 	nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
567 	/* Substitution to vblocknr is delayed until update_blocknr() */
568 	nilfs_segbuf_add_file_buffer(segbuf, bh);
569 	sci->sc_blk_cnt++;
570  failed:
571 	return err;
572 }
573 
574 /*
575  * Callback functions that enumerate, mark, and collect dirty blocks
576  */
577 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
578 				   struct buffer_head *bh, struct inode *inode)
579 {
580 	int err;
581 
582 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
583 	if (err < 0)
584 		return err;
585 
586 	err = nilfs_segctor_add_file_block(sci, bh, inode,
587 					   sizeof(struct nilfs_binfo_v));
588 	if (!err)
589 		sci->sc_datablk_cnt++;
590 	return err;
591 }
592 
593 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
594 				   struct buffer_head *bh,
595 				   struct inode *inode)
596 {
597 	return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
598 }
599 
600 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
601 				   struct buffer_head *bh,
602 				   struct inode *inode)
603 {
604 	WARN_ON(!buffer_dirty(bh));
605 	return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
606 }
607 
608 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
609 					struct nilfs_segsum_pointer *ssp,
610 					union nilfs_binfo *binfo)
611 {
612 	struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
613 		sci, ssp, sizeof(*binfo_v));
614 	*binfo_v = binfo->bi_v;
615 }
616 
617 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
618 					struct nilfs_segsum_pointer *ssp,
619 					union nilfs_binfo *binfo)
620 {
621 	__le64 *vblocknr = nilfs_segctor_map_segsum_entry(
622 		sci, ssp, sizeof(*vblocknr));
623 	*vblocknr = binfo->bi_v.bi_vblocknr;
624 }
625 
626 static const struct nilfs_sc_operations nilfs_sc_file_ops = {
627 	.collect_data = nilfs_collect_file_data,
628 	.collect_node = nilfs_collect_file_node,
629 	.collect_bmap = nilfs_collect_file_bmap,
630 	.write_data_binfo = nilfs_write_file_data_binfo,
631 	.write_node_binfo = nilfs_write_file_node_binfo,
632 };
633 
634 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
635 				  struct buffer_head *bh, struct inode *inode)
636 {
637 	int err;
638 
639 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
640 	if (err < 0)
641 		return err;
642 
643 	err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
644 	if (!err)
645 		sci->sc_datablk_cnt++;
646 	return err;
647 }
648 
649 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
650 				  struct buffer_head *bh, struct inode *inode)
651 {
652 	WARN_ON(!buffer_dirty(bh));
653 	return nilfs_segctor_add_file_block(sci, bh, inode,
654 					    sizeof(struct nilfs_binfo_dat));
655 }
656 
657 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
658 				       struct nilfs_segsum_pointer *ssp,
659 				       union nilfs_binfo *binfo)
660 {
661 	__le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
662 							  sizeof(*blkoff));
663 	*blkoff = binfo->bi_dat.bi_blkoff;
664 }
665 
666 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
667 				       struct nilfs_segsum_pointer *ssp,
668 				       union nilfs_binfo *binfo)
669 {
670 	struct nilfs_binfo_dat *binfo_dat =
671 		nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
672 	*binfo_dat = binfo->bi_dat;
673 }
674 
675 static const struct nilfs_sc_operations nilfs_sc_dat_ops = {
676 	.collect_data = nilfs_collect_dat_data,
677 	.collect_node = nilfs_collect_file_node,
678 	.collect_bmap = nilfs_collect_dat_bmap,
679 	.write_data_binfo = nilfs_write_dat_data_binfo,
680 	.write_node_binfo = nilfs_write_dat_node_binfo,
681 };
682 
683 static const struct nilfs_sc_operations nilfs_sc_dsync_ops = {
684 	.collect_data = nilfs_collect_file_data,
685 	.collect_node = NULL,
686 	.collect_bmap = NULL,
687 	.write_data_binfo = nilfs_write_file_data_binfo,
688 	.write_node_binfo = NULL,
689 };
690 
691 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
692 					      struct list_head *listp,
693 					      size_t nlimit,
694 					      loff_t start, loff_t end)
695 {
696 	struct address_space *mapping = inode->i_mapping;
697 	struct pagevec pvec;
698 	pgoff_t index = 0, last = ULONG_MAX;
699 	size_t ndirties = 0;
700 	int i;
701 
702 	if (unlikely(start != 0 || end != LLONG_MAX)) {
703 		/*
704 		 * A valid range is given for sync-ing data pages. The
705 		 * range is rounded to per-page; extra dirty buffers
706 		 * may be included if blocksize < pagesize.
707 		 */
708 		index = start >> PAGE_SHIFT;
709 		last = end >> PAGE_SHIFT;
710 	}
711 	pagevec_init(&pvec, 0);
712  repeat:
713 	if (unlikely(index > last) ||
714 	    !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
715 				min_t(pgoff_t, last - index,
716 				      PAGEVEC_SIZE - 1) + 1))
717 		return ndirties;
718 
719 	for (i = 0; i < pagevec_count(&pvec); i++) {
720 		struct buffer_head *bh, *head;
721 		struct page *page = pvec.pages[i];
722 
723 		if (unlikely(page->index > last))
724 			break;
725 
726 		lock_page(page);
727 		if (!page_has_buffers(page))
728 			create_empty_buffers(page, i_blocksize(inode), 0);
729 		unlock_page(page);
730 
731 		bh = head = page_buffers(page);
732 		do {
733 			if (!buffer_dirty(bh) || buffer_async_write(bh))
734 				continue;
735 			get_bh(bh);
736 			list_add_tail(&bh->b_assoc_buffers, listp);
737 			ndirties++;
738 			if (unlikely(ndirties >= nlimit)) {
739 				pagevec_release(&pvec);
740 				cond_resched();
741 				return ndirties;
742 			}
743 		} while (bh = bh->b_this_page, bh != head);
744 	}
745 	pagevec_release(&pvec);
746 	cond_resched();
747 	goto repeat;
748 }
749 
750 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
751 					    struct list_head *listp)
752 {
753 	struct nilfs_inode_info *ii = NILFS_I(inode);
754 	struct address_space *mapping = &ii->i_btnode_cache;
755 	struct pagevec pvec;
756 	struct buffer_head *bh, *head;
757 	unsigned int i;
758 	pgoff_t index = 0;
759 
760 	pagevec_init(&pvec, 0);
761 
762 	while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
763 				  PAGEVEC_SIZE)) {
764 		for (i = 0; i < pagevec_count(&pvec); i++) {
765 			bh = head = page_buffers(pvec.pages[i]);
766 			do {
767 				if (buffer_dirty(bh) &&
768 						!buffer_async_write(bh)) {
769 					get_bh(bh);
770 					list_add_tail(&bh->b_assoc_buffers,
771 						      listp);
772 				}
773 				bh = bh->b_this_page;
774 			} while (bh != head);
775 		}
776 		pagevec_release(&pvec);
777 		cond_resched();
778 	}
779 }
780 
781 static void nilfs_dispose_list(struct the_nilfs *nilfs,
782 			       struct list_head *head, int force)
783 {
784 	struct nilfs_inode_info *ii, *n;
785 	struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
786 	unsigned int nv = 0;
787 
788 	while (!list_empty(head)) {
789 		spin_lock(&nilfs->ns_inode_lock);
790 		list_for_each_entry_safe(ii, n, head, i_dirty) {
791 			list_del_init(&ii->i_dirty);
792 			if (force) {
793 				if (unlikely(ii->i_bh)) {
794 					brelse(ii->i_bh);
795 					ii->i_bh = NULL;
796 				}
797 			} else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
798 				set_bit(NILFS_I_QUEUED, &ii->i_state);
799 				list_add_tail(&ii->i_dirty,
800 					      &nilfs->ns_dirty_files);
801 				continue;
802 			}
803 			ivec[nv++] = ii;
804 			if (nv == SC_N_INODEVEC)
805 				break;
806 		}
807 		spin_unlock(&nilfs->ns_inode_lock);
808 
809 		for (pii = ivec; nv > 0; pii++, nv--)
810 			iput(&(*pii)->vfs_inode);
811 	}
812 }
813 
814 static void nilfs_iput_work_func(struct work_struct *work)
815 {
816 	struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info,
817 						 sc_iput_work);
818 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
819 
820 	nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0);
821 }
822 
823 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
824 				     struct nilfs_root *root)
825 {
826 	int ret = 0;
827 
828 	if (nilfs_mdt_fetch_dirty(root->ifile))
829 		ret++;
830 	if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
831 		ret++;
832 	if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
833 		ret++;
834 	if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
835 		ret++;
836 	return ret;
837 }
838 
839 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
840 {
841 	return list_empty(&sci->sc_dirty_files) &&
842 		!test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
843 		sci->sc_nfreesegs == 0 &&
844 		(!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
845 }
846 
847 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
848 {
849 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
850 	int ret = 0;
851 
852 	if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
853 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
854 
855 	spin_lock(&nilfs->ns_inode_lock);
856 	if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
857 		ret++;
858 
859 	spin_unlock(&nilfs->ns_inode_lock);
860 	return ret;
861 }
862 
863 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
864 {
865 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
866 
867 	nilfs_mdt_clear_dirty(sci->sc_root->ifile);
868 	nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
869 	nilfs_mdt_clear_dirty(nilfs->ns_sufile);
870 	nilfs_mdt_clear_dirty(nilfs->ns_dat);
871 }
872 
873 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
874 {
875 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
876 	struct buffer_head *bh_cp;
877 	struct nilfs_checkpoint *raw_cp;
878 	int err;
879 
880 	/* XXX: this interface will be changed */
881 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
882 					  &raw_cp, &bh_cp);
883 	if (likely(!err)) {
884 		/*
885 		 * The following code is duplicated with cpfile.  But, it is
886 		 * needed to collect the checkpoint even if it was not newly
887 		 * created.
888 		 */
889 		mark_buffer_dirty(bh_cp);
890 		nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
891 		nilfs_cpfile_put_checkpoint(
892 			nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
893 	} else
894 		WARN_ON(err == -EINVAL || err == -ENOENT);
895 
896 	return err;
897 }
898 
899 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
900 {
901 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
902 	struct buffer_head *bh_cp;
903 	struct nilfs_checkpoint *raw_cp;
904 	int err;
905 
906 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
907 					  &raw_cp, &bh_cp);
908 	if (unlikely(err)) {
909 		WARN_ON(err == -EINVAL || err == -ENOENT);
910 		goto failed_ibh;
911 	}
912 	raw_cp->cp_snapshot_list.ssl_next = 0;
913 	raw_cp->cp_snapshot_list.ssl_prev = 0;
914 	raw_cp->cp_inodes_count =
915 		cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count));
916 	raw_cp->cp_blocks_count =
917 		cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count));
918 	raw_cp->cp_nblk_inc =
919 		cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
920 	raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
921 	raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
922 
923 	if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
924 		nilfs_checkpoint_clear_minor(raw_cp);
925 	else
926 		nilfs_checkpoint_set_minor(raw_cp);
927 
928 	nilfs_write_inode_common(sci->sc_root->ifile,
929 				 &raw_cp->cp_ifile_inode, 1);
930 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
931 	return 0;
932 
933  failed_ibh:
934 	return err;
935 }
936 
937 static void nilfs_fill_in_file_bmap(struct inode *ifile,
938 				    struct nilfs_inode_info *ii)
939 
940 {
941 	struct buffer_head *ibh;
942 	struct nilfs_inode *raw_inode;
943 
944 	if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
945 		ibh = ii->i_bh;
946 		BUG_ON(!ibh);
947 		raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
948 						  ibh);
949 		nilfs_bmap_write(ii->i_bmap, raw_inode);
950 		nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
951 	}
952 }
953 
954 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
955 {
956 	struct nilfs_inode_info *ii;
957 
958 	list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
959 		nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
960 		set_bit(NILFS_I_COLLECTED, &ii->i_state);
961 	}
962 }
963 
964 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
965 					     struct the_nilfs *nilfs)
966 {
967 	struct buffer_head *bh_sr;
968 	struct nilfs_super_root *raw_sr;
969 	unsigned int isz, srsz;
970 
971 	bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
972 	raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
973 	isz = nilfs->ns_inode_size;
974 	srsz = NILFS_SR_BYTES(isz);
975 
976 	raw_sr->sr_bytes = cpu_to_le16(srsz);
977 	raw_sr->sr_nongc_ctime
978 		= cpu_to_le64(nilfs_doing_gc() ?
979 			      nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
980 	raw_sr->sr_flags = 0;
981 
982 	nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
983 				 NILFS_SR_DAT_OFFSET(isz), 1);
984 	nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
985 				 NILFS_SR_CPFILE_OFFSET(isz), 1);
986 	nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
987 				 NILFS_SR_SUFILE_OFFSET(isz), 1);
988 	memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
989 }
990 
991 static void nilfs_redirty_inodes(struct list_head *head)
992 {
993 	struct nilfs_inode_info *ii;
994 
995 	list_for_each_entry(ii, head, i_dirty) {
996 		if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
997 			clear_bit(NILFS_I_COLLECTED, &ii->i_state);
998 	}
999 }
1000 
1001 static void nilfs_drop_collected_inodes(struct list_head *head)
1002 {
1003 	struct nilfs_inode_info *ii;
1004 
1005 	list_for_each_entry(ii, head, i_dirty) {
1006 		if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
1007 			continue;
1008 
1009 		clear_bit(NILFS_I_INODE_SYNC, &ii->i_state);
1010 		set_bit(NILFS_I_UPDATED, &ii->i_state);
1011 	}
1012 }
1013 
1014 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
1015 				       struct inode *inode,
1016 				       struct list_head *listp,
1017 				       int (*collect)(struct nilfs_sc_info *,
1018 						      struct buffer_head *,
1019 						      struct inode *))
1020 {
1021 	struct buffer_head *bh, *n;
1022 	int err = 0;
1023 
1024 	if (collect) {
1025 		list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
1026 			list_del_init(&bh->b_assoc_buffers);
1027 			err = collect(sci, bh, inode);
1028 			brelse(bh);
1029 			if (unlikely(err))
1030 				goto dispose_buffers;
1031 		}
1032 		return 0;
1033 	}
1034 
1035  dispose_buffers:
1036 	while (!list_empty(listp)) {
1037 		bh = list_first_entry(listp, struct buffer_head,
1038 				      b_assoc_buffers);
1039 		list_del_init(&bh->b_assoc_buffers);
1040 		brelse(bh);
1041 	}
1042 	return err;
1043 }
1044 
1045 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
1046 {
1047 	/* Remaining number of blocks within segment buffer */
1048 	return sci->sc_segbuf_nblocks -
1049 		(sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
1050 }
1051 
1052 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
1053 				   struct inode *inode,
1054 				   const struct nilfs_sc_operations *sc_ops)
1055 {
1056 	LIST_HEAD(data_buffers);
1057 	LIST_HEAD(node_buffers);
1058 	int err;
1059 
1060 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1061 		size_t n, rest = nilfs_segctor_buffer_rest(sci);
1062 
1063 		n = nilfs_lookup_dirty_data_buffers(
1064 			inode, &data_buffers, rest + 1, 0, LLONG_MAX);
1065 		if (n > rest) {
1066 			err = nilfs_segctor_apply_buffers(
1067 				sci, inode, &data_buffers,
1068 				sc_ops->collect_data);
1069 			BUG_ON(!err); /* always receive -E2BIG or true error */
1070 			goto break_or_fail;
1071 		}
1072 	}
1073 	nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
1074 
1075 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1076 		err = nilfs_segctor_apply_buffers(
1077 			sci, inode, &data_buffers, sc_ops->collect_data);
1078 		if (unlikely(err)) {
1079 			/* dispose node list */
1080 			nilfs_segctor_apply_buffers(
1081 				sci, inode, &node_buffers, NULL);
1082 			goto break_or_fail;
1083 		}
1084 		sci->sc_stage.flags |= NILFS_CF_NODE;
1085 	}
1086 	/* Collect node */
1087 	err = nilfs_segctor_apply_buffers(
1088 		sci, inode, &node_buffers, sc_ops->collect_node);
1089 	if (unlikely(err))
1090 		goto break_or_fail;
1091 
1092 	nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1093 	err = nilfs_segctor_apply_buffers(
1094 		sci, inode, &node_buffers, sc_ops->collect_bmap);
1095 	if (unlikely(err))
1096 		goto break_or_fail;
1097 
1098 	nilfs_segctor_end_finfo(sci, inode);
1099 	sci->sc_stage.flags &= ~NILFS_CF_NODE;
1100 
1101  break_or_fail:
1102 	return err;
1103 }
1104 
1105 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1106 					 struct inode *inode)
1107 {
1108 	LIST_HEAD(data_buffers);
1109 	size_t n, rest = nilfs_segctor_buffer_rest(sci);
1110 	int err;
1111 
1112 	n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1113 					    sci->sc_dsync_start,
1114 					    sci->sc_dsync_end);
1115 
1116 	err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1117 					  nilfs_collect_file_data);
1118 	if (!err) {
1119 		nilfs_segctor_end_finfo(sci, inode);
1120 		BUG_ON(n > rest);
1121 		/* always receive -E2BIG or true error if n > rest */
1122 	}
1123 	return err;
1124 }
1125 
1126 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1127 {
1128 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1129 	struct list_head *head;
1130 	struct nilfs_inode_info *ii;
1131 	size_t ndone;
1132 	int err = 0;
1133 
1134 	switch (nilfs_sc_cstage_get(sci)) {
1135 	case NILFS_ST_INIT:
1136 		/* Pre-processes */
1137 		sci->sc_stage.flags = 0;
1138 
1139 		if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1140 			sci->sc_nblk_inc = 0;
1141 			sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1142 			if (mode == SC_LSEG_DSYNC) {
1143 				nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC);
1144 				goto dsync_mode;
1145 			}
1146 		}
1147 
1148 		sci->sc_stage.dirty_file_ptr = NULL;
1149 		sci->sc_stage.gc_inode_ptr = NULL;
1150 		if (mode == SC_FLUSH_DAT) {
1151 			nilfs_sc_cstage_set(sci, NILFS_ST_DAT);
1152 			goto dat_stage;
1153 		}
1154 		nilfs_sc_cstage_inc(sci);  /* Fall through */
1155 	case NILFS_ST_GC:
1156 		if (nilfs_doing_gc()) {
1157 			head = &sci->sc_gc_inodes;
1158 			ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1159 						head, i_dirty);
1160 			list_for_each_entry_continue(ii, head, i_dirty) {
1161 				err = nilfs_segctor_scan_file(
1162 					sci, &ii->vfs_inode,
1163 					&nilfs_sc_file_ops);
1164 				if (unlikely(err)) {
1165 					sci->sc_stage.gc_inode_ptr = list_entry(
1166 						ii->i_dirty.prev,
1167 						struct nilfs_inode_info,
1168 						i_dirty);
1169 					goto break_or_fail;
1170 				}
1171 				set_bit(NILFS_I_COLLECTED, &ii->i_state);
1172 			}
1173 			sci->sc_stage.gc_inode_ptr = NULL;
1174 		}
1175 		nilfs_sc_cstage_inc(sci);  /* Fall through */
1176 	case NILFS_ST_FILE:
1177 		head = &sci->sc_dirty_files;
1178 		ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1179 					i_dirty);
1180 		list_for_each_entry_continue(ii, head, i_dirty) {
1181 			clear_bit(NILFS_I_DIRTY, &ii->i_state);
1182 
1183 			err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1184 						      &nilfs_sc_file_ops);
1185 			if (unlikely(err)) {
1186 				sci->sc_stage.dirty_file_ptr =
1187 					list_entry(ii->i_dirty.prev,
1188 						   struct nilfs_inode_info,
1189 						   i_dirty);
1190 				goto break_or_fail;
1191 			}
1192 			/* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1193 			/* XXX: required ? */
1194 		}
1195 		sci->sc_stage.dirty_file_ptr = NULL;
1196 		if (mode == SC_FLUSH_FILE) {
1197 			nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1198 			return 0;
1199 		}
1200 		nilfs_sc_cstage_inc(sci);
1201 		sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1202 		/* Fall through */
1203 	case NILFS_ST_IFILE:
1204 		err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
1205 					      &nilfs_sc_file_ops);
1206 		if (unlikely(err))
1207 			break;
1208 		nilfs_sc_cstage_inc(sci);
1209 		/* Creating a checkpoint */
1210 		err = nilfs_segctor_create_checkpoint(sci);
1211 		if (unlikely(err))
1212 			break;
1213 		/* Fall through */
1214 	case NILFS_ST_CPFILE:
1215 		err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1216 					      &nilfs_sc_file_ops);
1217 		if (unlikely(err))
1218 			break;
1219 		nilfs_sc_cstage_inc(sci);  /* Fall through */
1220 	case NILFS_ST_SUFILE:
1221 		err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
1222 					 sci->sc_nfreesegs, &ndone);
1223 		if (unlikely(err)) {
1224 			nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1225 						  sci->sc_freesegs, ndone,
1226 						  NULL);
1227 			break;
1228 		}
1229 		sci->sc_stage.flags |= NILFS_CF_SUFREED;
1230 
1231 		err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1232 					      &nilfs_sc_file_ops);
1233 		if (unlikely(err))
1234 			break;
1235 		nilfs_sc_cstage_inc(sci);  /* Fall through */
1236 	case NILFS_ST_DAT:
1237  dat_stage:
1238 		err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
1239 					      &nilfs_sc_dat_ops);
1240 		if (unlikely(err))
1241 			break;
1242 		if (mode == SC_FLUSH_DAT) {
1243 			nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1244 			return 0;
1245 		}
1246 		nilfs_sc_cstage_inc(sci);  /* Fall through */
1247 	case NILFS_ST_SR:
1248 		if (mode == SC_LSEG_SR) {
1249 			/* Appending a super root */
1250 			err = nilfs_segctor_add_super_root(sci);
1251 			if (unlikely(err))
1252 				break;
1253 		}
1254 		/* End of a logical segment */
1255 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1256 		nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1257 		return 0;
1258 	case NILFS_ST_DSYNC:
1259  dsync_mode:
1260 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1261 		ii = sci->sc_dsync_inode;
1262 		if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1263 			break;
1264 
1265 		err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1266 		if (unlikely(err))
1267 			break;
1268 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1269 		nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1270 		return 0;
1271 	case NILFS_ST_DONE:
1272 		return 0;
1273 	default:
1274 		BUG();
1275 	}
1276 
1277  break_or_fail:
1278 	return err;
1279 }
1280 
1281 /**
1282  * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1283  * @sci: nilfs_sc_info
1284  * @nilfs: nilfs object
1285  */
1286 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1287 					    struct the_nilfs *nilfs)
1288 {
1289 	struct nilfs_segment_buffer *segbuf, *prev;
1290 	__u64 nextnum;
1291 	int err, alloc = 0;
1292 
1293 	segbuf = nilfs_segbuf_new(sci->sc_super);
1294 	if (unlikely(!segbuf))
1295 		return -ENOMEM;
1296 
1297 	if (list_empty(&sci->sc_write_logs)) {
1298 		nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
1299 				 nilfs->ns_pseg_offset, nilfs);
1300 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1301 			nilfs_shift_to_next_segment(nilfs);
1302 			nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1303 		}
1304 
1305 		segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1306 		nextnum = nilfs->ns_nextnum;
1307 
1308 		if (nilfs->ns_segnum == nilfs->ns_nextnum)
1309 			/* Start from the head of a new full segment */
1310 			alloc++;
1311 	} else {
1312 		/* Continue logs */
1313 		prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1314 		nilfs_segbuf_map_cont(segbuf, prev);
1315 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
1316 		nextnum = prev->sb_nextnum;
1317 
1318 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1319 			nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1320 			segbuf->sb_sum.seg_seq++;
1321 			alloc++;
1322 		}
1323 	}
1324 
1325 	err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
1326 	if (err)
1327 		goto failed;
1328 
1329 	if (alloc) {
1330 		err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1331 		if (err)
1332 			goto failed;
1333 	}
1334 	nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1335 
1336 	BUG_ON(!list_empty(&sci->sc_segbufs));
1337 	list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
1338 	sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1339 	return 0;
1340 
1341  failed:
1342 	nilfs_segbuf_free(segbuf);
1343 	return err;
1344 }
1345 
1346 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1347 					 struct the_nilfs *nilfs, int nadd)
1348 {
1349 	struct nilfs_segment_buffer *segbuf, *prev;
1350 	struct inode *sufile = nilfs->ns_sufile;
1351 	__u64 nextnextnum;
1352 	LIST_HEAD(list);
1353 	int err, ret, i;
1354 
1355 	prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1356 	/*
1357 	 * Since the segment specified with nextnum might be allocated during
1358 	 * the previous construction, the buffer including its segusage may
1359 	 * not be dirty.  The following call ensures that the buffer is dirty
1360 	 * and will pin the buffer on memory until the sufile is written.
1361 	 */
1362 	err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
1363 	if (unlikely(err))
1364 		return err;
1365 
1366 	for (i = 0; i < nadd; i++) {
1367 		/* extend segment info */
1368 		err = -ENOMEM;
1369 		segbuf = nilfs_segbuf_new(sci->sc_super);
1370 		if (unlikely(!segbuf))
1371 			goto failed;
1372 
1373 		/* map this buffer to region of segment on-disk */
1374 		nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1375 		sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1376 
1377 		/* allocate the next next full segment */
1378 		err = nilfs_sufile_alloc(sufile, &nextnextnum);
1379 		if (unlikely(err))
1380 			goto failed_segbuf;
1381 
1382 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1383 		nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1384 
1385 		list_add_tail(&segbuf->sb_list, &list);
1386 		prev = segbuf;
1387 	}
1388 	list_splice_tail(&list, &sci->sc_segbufs);
1389 	return 0;
1390 
1391  failed_segbuf:
1392 	nilfs_segbuf_free(segbuf);
1393  failed:
1394 	list_for_each_entry(segbuf, &list, sb_list) {
1395 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1396 		WARN_ON(ret); /* never fails */
1397 	}
1398 	nilfs_destroy_logs(&list);
1399 	return err;
1400 }
1401 
1402 static void nilfs_free_incomplete_logs(struct list_head *logs,
1403 				       struct the_nilfs *nilfs)
1404 {
1405 	struct nilfs_segment_buffer *segbuf, *prev;
1406 	struct inode *sufile = nilfs->ns_sufile;
1407 	int ret;
1408 
1409 	segbuf = NILFS_FIRST_SEGBUF(logs);
1410 	if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1411 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1412 		WARN_ON(ret); /* never fails */
1413 	}
1414 	if (atomic_read(&segbuf->sb_err)) {
1415 		/* Case 1: The first segment failed */
1416 		if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1417 			/*
1418 			 * Case 1a:  Partial segment appended into an existing
1419 			 * segment
1420 			 */
1421 			nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1422 						segbuf->sb_fseg_end);
1423 		else /* Case 1b:  New full segment */
1424 			set_nilfs_discontinued(nilfs);
1425 	}
1426 
1427 	prev = segbuf;
1428 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1429 		if (prev->sb_nextnum != segbuf->sb_nextnum) {
1430 			ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1431 			WARN_ON(ret); /* never fails */
1432 		}
1433 		if (atomic_read(&segbuf->sb_err) &&
1434 		    segbuf->sb_segnum != nilfs->ns_nextnum)
1435 			/* Case 2: extended segment (!= next) failed */
1436 			nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
1437 		prev = segbuf;
1438 	}
1439 }
1440 
1441 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1442 					  struct inode *sufile)
1443 {
1444 	struct nilfs_segment_buffer *segbuf;
1445 	unsigned long live_blocks;
1446 	int ret;
1447 
1448 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1449 		live_blocks = segbuf->sb_sum.nblocks +
1450 			(segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1451 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1452 						     live_blocks,
1453 						     sci->sc_seg_ctime);
1454 		WARN_ON(ret); /* always succeed because the segusage is dirty */
1455 	}
1456 }
1457 
1458 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
1459 {
1460 	struct nilfs_segment_buffer *segbuf;
1461 	int ret;
1462 
1463 	segbuf = NILFS_FIRST_SEGBUF(logs);
1464 	ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1465 					     segbuf->sb_pseg_start -
1466 					     segbuf->sb_fseg_start, 0);
1467 	WARN_ON(ret); /* always succeed because the segusage is dirty */
1468 
1469 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1470 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1471 						     0, 0);
1472 		WARN_ON(ret); /* always succeed */
1473 	}
1474 }
1475 
1476 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1477 					    struct nilfs_segment_buffer *last,
1478 					    struct inode *sufile)
1479 {
1480 	struct nilfs_segment_buffer *segbuf = last;
1481 	int ret;
1482 
1483 	list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1484 		sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1485 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1486 		WARN_ON(ret);
1487 	}
1488 	nilfs_truncate_logs(&sci->sc_segbufs, last);
1489 }
1490 
1491 
1492 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1493 				 struct the_nilfs *nilfs, int mode)
1494 {
1495 	struct nilfs_cstage prev_stage = sci->sc_stage;
1496 	int err, nadd = 1;
1497 
1498 	/* Collection retry loop */
1499 	for (;;) {
1500 		sci->sc_nblk_this_inc = 0;
1501 		sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1502 
1503 		err = nilfs_segctor_reset_segment_buffer(sci);
1504 		if (unlikely(err))
1505 			goto failed;
1506 
1507 		err = nilfs_segctor_collect_blocks(sci, mode);
1508 		sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1509 		if (!err)
1510 			break;
1511 
1512 		if (unlikely(err != -E2BIG))
1513 			goto failed;
1514 
1515 		/* The current segment is filled up */
1516 		if (mode != SC_LSEG_SR ||
1517 		    nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE)
1518 			break;
1519 
1520 		nilfs_clear_logs(&sci->sc_segbufs);
1521 
1522 		if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1523 			err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1524 							sci->sc_freesegs,
1525 							sci->sc_nfreesegs,
1526 							NULL);
1527 			WARN_ON(err); /* do not happen */
1528 			sci->sc_stage.flags &= ~NILFS_CF_SUFREED;
1529 		}
1530 
1531 		err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1532 		if (unlikely(err))
1533 			return err;
1534 
1535 		nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1536 		sci->sc_stage = prev_stage;
1537 	}
1538 	nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1539 	return 0;
1540 
1541  failed:
1542 	return err;
1543 }
1544 
1545 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1546 				      struct buffer_head *new_bh)
1547 {
1548 	BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1549 
1550 	list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1551 	/* The caller must release old_bh */
1552 }
1553 
1554 static int
1555 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1556 				     struct nilfs_segment_buffer *segbuf,
1557 				     int mode)
1558 {
1559 	struct inode *inode = NULL;
1560 	sector_t blocknr;
1561 	unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1562 	unsigned long nblocks = 0, ndatablk = 0;
1563 	const struct nilfs_sc_operations *sc_op = NULL;
1564 	struct nilfs_segsum_pointer ssp;
1565 	struct nilfs_finfo *finfo = NULL;
1566 	union nilfs_binfo binfo;
1567 	struct buffer_head *bh, *bh_org;
1568 	ino_t ino = 0;
1569 	int err = 0;
1570 
1571 	if (!nfinfo)
1572 		goto out;
1573 
1574 	blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1575 	ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1576 	ssp.offset = sizeof(struct nilfs_segment_summary);
1577 
1578 	list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1579 		if (bh == segbuf->sb_super_root)
1580 			break;
1581 		if (!finfo) {
1582 			finfo =	nilfs_segctor_map_segsum_entry(
1583 				sci, &ssp, sizeof(*finfo));
1584 			ino = le64_to_cpu(finfo->fi_ino);
1585 			nblocks = le32_to_cpu(finfo->fi_nblocks);
1586 			ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1587 
1588 			inode = bh->b_page->mapping->host;
1589 
1590 			if (mode == SC_LSEG_DSYNC)
1591 				sc_op = &nilfs_sc_dsync_ops;
1592 			else if (ino == NILFS_DAT_INO)
1593 				sc_op = &nilfs_sc_dat_ops;
1594 			else /* file blocks */
1595 				sc_op = &nilfs_sc_file_ops;
1596 		}
1597 		bh_org = bh;
1598 		get_bh(bh_org);
1599 		err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1600 					&binfo);
1601 		if (bh != bh_org)
1602 			nilfs_list_replace_buffer(bh_org, bh);
1603 		brelse(bh_org);
1604 		if (unlikely(err))
1605 			goto failed_bmap;
1606 
1607 		if (ndatablk > 0)
1608 			sc_op->write_data_binfo(sci, &ssp, &binfo);
1609 		else
1610 			sc_op->write_node_binfo(sci, &ssp, &binfo);
1611 
1612 		blocknr++;
1613 		if (--nblocks == 0) {
1614 			finfo = NULL;
1615 			if (--nfinfo == 0)
1616 				break;
1617 		} else if (ndatablk > 0)
1618 			ndatablk--;
1619 	}
1620  out:
1621 	return 0;
1622 
1623  failed_bmap:
1624 	return err;
1625 }
1626 
1627 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1628 {
1629 	struct nilfs_segment_buffer *segbuf;
1630 	int err;
1631 
1632 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1633 		err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1634 		if (unlikely(err))
1635 			return err;
1636 		nilfs_segbuf_fill_in_segsum(segbuf);
1637 	}
1638 	return 0;
1639 }
1640 
1641 static void nilfs_begin_page_io(struct page *page)
1642 {
1643 	if (!page || PageWriteback(page))
1644 		/*
1645 		 * For split b-tree node pages, this function may be called
1646 		 * twice.  We ignore the 2nd or later calls by this check.
1647 		 */
1648 		return;
1649 
1650 	lock_page(page);
1651 	clear_page_dirty_for_io(page);
1652 	set_page_writeback(page);
1653 	unlock_page(page);
1654 }
1655 
1656 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci)
1657 {
1658 	struct nilfs_segment_buffer *segbuf;
1659 	struct page *bd_page = NULL, *fs_page = NULL;
1660 
1661 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1662 		struct buffer_head *bh;
1663 
1664 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1665 				    b_assoc_buffers) {
1666 			if (bh->b_page != bd_page) {
1667 				if (bd_page) {
1668 					lock_page(bd_page);
1669 					clear_page_dirty_for_io(bd_page);
1670 					set_page_writeback(bd_page);
1671 					unlock_page(bd_page);
1672 				}
1673 				bd_page = bh->b_page;
1674 			}
1675 		}
1676 
1677 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1678 				    b_assoc_buffers) {
1679 			set_buffer_async_write(bh);
1680 			if (bh == segbuf->sb_super_root) {
1681 				if (bh->b_page != bd_page) {
1682 					lock_page(bd_page);
1683 					clear_page_dirty_for_io(bd_page);
1684 					set_page_writeback(bd_page);
1685 					unlock_page(bd_page);
1686 					bd_page = bh->b_page;
1687 				}
1688 				break;
1689 			}
1690 			if (bh->b_page != fs_page) {
1691 				nilfs_begin_page_io(fs_page);
1692 				fs_page = bh->b_page;
1693 			}
1694 		}
1695 	}
1696 	if (bd_page) {
1697 		lock_page(bd_page);
1698 		clear_page_dirty_for_io(bd_page);
1699 		set_page_writeback(bd_page);
1700 		unlock_page(bd_page);
1701 	}
1702 	nilfs_begin_page_io(fs_page);
1703 }
1704 
1705 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1706 			       struct the_nilfs *nilfs)
1707 {
1708 	int ret;
1709 
1710 	ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
1711 	list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
1712 	return ret;
1713 }
1714 
1715 static void nilfs_end_page_io(struct page *page, int err)
1716 {
1717 	if (!page)
1718 		return;
1719 
1720 	if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
1721 		/*
1722 		 * For b-tree node pages, this function may be called twice
1723 		 * or more because they might be split in a segment.
1724 		 */
1725 		if (PageDirty(page)) {
1726 			/*
1727 			 * For pages holding split b-tree node buffers, dirty
1728 			 * flag on the buffers may be cleared discretely.
1729 			 * In that case, the page is once redirtied for
1730 			 * remaining buffers, and it must be cancelled if
1731 			 * all the buffers get cleaned later.
1732 			 */
1733 			lock_page(page);
1734 			if (nilfs_page_buffers_clean(page))
1735 				__nilfs_clear_page_dirty(page);
1736 			unlock_page(page);
1737 		}
1738 		return;
1739 	}
1740 
1741 	if (!err) {
1742 		if (!nilfs_page_buffers_clean(page))
1743 			__set_page_dirty_nobuffers(page);
1744 		ClearPageError(page);
1745 	} else {
1746 		__set_page_dirty_nobuffers(page);
1747 		SetPageError(page);
1748 	}
1749 
1750 	end_page_writeback(page);
1751 }
1752 
1753 static void nilfs_abort_logs(struct list_head *logs, int err)
1754 {
1755 	struct nilfs_segment_buffer *segbuf;
1756 	struct page *bd_page = NULL, *fs_page = NULL;
1757 	struct buffer_head *bh;
1758 
1759 	if (list_empty(logs))
1760 		return;
1761 
1762 	list_for_each_entry(segbuf, logs, sb_list) {
1763 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1764 				    b_assoc_buffers) {
1765 			if (bh->b_page != bd_page) {
1766 				if (bd_page)
1767 					end_page_writeback(bd_page);
1768 				bd_page = bh->b_page;
1769 			}
1770 		}
1771 
1772 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1773 				    b_assoc_buffers) {
1774 			clear_buffer_async_write(bh);
1775 			if (bh == segbuf->sb_super_root) {
1776 				if (bh->b_page != bd_page) {
1777 					end_page_writeback(bd_page);
1778 					bd_page = bh->b_page;
1779 				}
1780 				break;
1781 			}
1782 			if (bh->b_page != fs_page) {
1783 				nilfs_end_page_io(fs_page, err);
1784 				fs_page = bh->b_page;
1785 			}
1786 		}
1787 	}
1788 	if (bd_page)
1789 		end_page_writeback(bd_page);
1790 
1791 	nilfs_end_page_io(fs_page, err);
1792 }
1793 
1794 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
1795 					     struct the_nilfs *nilfs, int err)
1796 {
1797 	LIST_HEAD(logs);
1798 	int ret;
1799 
1800 	list_splice_tail_init(&sci->sc_write_logs, &logs);
1801 	ret = nilfs_wait_on_logs(&logs);
1802 	nilfs_abort_logs(&logs, ret ? : err);
1803 
1804 	list_splice_tail_init(&sci->sc_segbufs, &logs);
1805 	nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
1806 	nilfs_free_incomplete_logs(&logs, nilfs);
1807 
1808 	if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1809 		ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1810 						sci->sc_freesegs,
1811 						sci->sc_nfreesegs,
1812 						NULL);
1813 		WARN_ON(ret); /* do not happen */
1814 	}
1815 
1816 	nilfs_destroy_logs(&logs);
1817 }
1818 
1819 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1820 				   struct nilfs_segment_buffer *segbuf)
1821 {
1822 	nilfs->ns_segnum = segbuf->sb_segnum;
1823 	nilfs->ns_nextnum = segbuf->sb_nextnum;
1824 	nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1825 		+ segbuf->sb_sum.nblocks;
1826 	nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1827 	nilfs->ns_ctime = segbuf->sb_sum.ctime;
1828 }
1829 
1830 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1831 {
1832 	struct nilfs_segment_buffer *segbuf;
1833 	struct page *bd_page = NULL, *fs_page = NULL;
1834 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1835 	int update_sr = false;
1836 
1837 	list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
1838 		struct buffer_head *bh;
1839 
1840 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1841 				    b_assoc_buffers) {
1842 			set_buffer_uptodate(bh);
1843 			clear_buffer_dirty(bh);
1844 			if (bh->b_page != bd_page) {
1845 				if (bd_page)
1846 					end_page_writeback(bd_page);
1847 				bd_page = bh->b_page;
1848 			}
1849 		}
1850 		/*
1851 		 * We assume that the buffers which belong to the same page
1852 		 * continue over the buffer list.
1853 		 * Under this assumption, the last BHs of pages is
1854 		 * identifiable by the discontinuity of bh->b_page
1855 		 * (page != fs_page).
1856 		 *
1857 		 * For B-tree node blocks, however, this assumption is not
1858 		 * guaranteed.  The cleanup code of B-tree node pages needs
1859 		 * special care.
1860 		 */
1861 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1862 				    b_assoc_buffers) {
1863 			const unsigned long set_bits = BIT(BH_Uptodate);
1864 			const unsigned long clear_bits =
1865 				(BIT(BH_Dirty) | BIT(BH_Async_Write) |
1866 				 BIT(BH_Delay) | BIT(BH_NILFS_Volatile) |
1867 				 BIT(BH_NILFS_Redirected));
1868 
1869 			set_mask_bits(&bh->b_state, clear_bits, set_bits);
1870 			if (bh == segbuf->sb_super_root) {
1871 				if (bh->b_page != bd_page) {
1872 					end_page_writeback(bd_page);
1873 					bd_page = bh->b_page;
1874 				}
1875 				update_sr = true;
1876 				break;
1877 			}
1878 			if (bh->b_page != fs_page) {
1879 				nilfs_end_page_io(fs_page, 0);
1880 				fs_page = bh->b_page;
1881 			}
1882 		}
1883 
1884 		if (!nilfs_segbuf_simplex(segbuf)) {
1885 			if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
1886 				set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1887 				sci->sc_lseg_stime = jiffies;
1888 			}
1889 			if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
1890 				clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1891 		}
1892 	}
1893 	/*
1894 	 * Since pages may continue over multiple segment buffers,
1895 	 * end of the last page must be checked outside of the loop.
1896 	 */
1897 	if (bd_page)
1898 		end_page_writeback(bd_page);
1899 
1900 	nilfs_end_page_io(fs_page, 0);
1901 
1902 	nilfs_drop_collected_inodes(&sci->sc_dirty_files);
1903 
1904 	if (nilfs_doing_gc())
1905 		nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
1906 	else
1907 		nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
1908 
1909 	sci->sc_nblk_inc += sci->sc_nblk_this_inc;
1910 
1911 	segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1912 	nilfs_set_next_segment(nilfs, segbuf);
1913 
1914 	if (update_sr) {
1915 		nilfs->ns_flushed_device = 0;
1916 		nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
1917 				       segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
1918 
1919 		clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
1920 		clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
1921 		set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1922 		nilfs_segctor_clear_metadata_dirty(sci);
1923 	} else
1924 		clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1925 }
1926 
1927 static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
1928 {
1929 	int ret;
1930 
1931 	ret = nilfs_wait_on_logs(&sci->sc_write_logs);
1932 	if (!ret) {
1933 		nilfs_segctor_complete_write(sci);
1934 		nilfs_destroy_logs(&sci->sc_write_logs);
1935 	}
1936 	return ret;
1937 }
1938 
1939 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
1940 					     struct the_nilfs *nilfs)
1941 {
1942 	struct nilfs_inode_info *ii, *n;
1943 	struct inode *ifile = sci->sc_root->ifile;
1944 
1945 	spin_lock(&nilfs->ns_inode_lock);
1946  retry:
1947 	list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
1948 		if (!ii->i_bh) {
1949 			struct buffer_head *ibh;
1950 			int err;
1951 
1952 			spin_unlock(&nilfs->ns_inode_lock);
1953 			err = nilfs_ifile_get_inode_block(
1954 				ifile, ii->vfs_inode.i_ino, &ibh);
1955 			if (unlikely(err)) {
1956 				nilfs_msg(sci->sc_super, KERN_WARNING,
1957 					  "log writer: error %d getting inode block (ino=%lu)",
1958 					  err, ii->vfs_inode.i_ino);
1959 				return err;
1960 			}
1961 			mark_buffer_dirty(ibh);
1962 			nilfs_mdt_mark_dirty(ifile);
1963 			spin_lock(&nilfs->ns_inode_lock);
1964 			if (likely(!ii->i_bh))
1965 				ii->i_bh = ibh;
1966 			else
1967 				brelse(ibh);
1968 			goto retry;
1969 		}
1970 
1971 		clear_bit(NILFS_I_QUEUED, &ii->i_state);
1972 		set_bit(NILFS_I_BUSY, &ii->i_state);
1973 		list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
1974 	}
1975 	spin_unlock(&nilfs->ns_inode_lock);
1976 
1977 	return 0;
1978 }
1979 
1980 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
1981 					     struct the_nilfs *nilfs)
1982 {
1983 	struct nilfs_inode_info *ii, *n;
1984 	int during_mount = !(sci->sc_super->s_flags & MS_ACTIVE);
1985 	int defer_iput = false;
1986 
1987 	spin_lock(&nilfs->ns_inode_lock);
1988 	list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
1989 		if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
1990 		    test_bit(NILFS_I_DIRTY, &ii->i_state))
1991 			continue;
1992 
1993 		clear_bit(NILFS_I_BUSY, &ii->i_state);
1994 		brelse(ii->i_bh);
1995 		ii->i_bh = NULL;
1996 		list_del_init(&ii->i_dirty);
1997 		if (!ii->vfs_inode.i_nlink || during_mount) {
1998 			/*
1999 			 * Defer calling iput() to avoid deadlocks if
2000 			 * i_nlink == 0 or mount is not yet finished.
2001 			 */
2002 			list_add_tail(&ii->i_dirty, &sci->sc_iput_queue);
2003 			defer_iput = true;
2004 		} else {
2005 			spin_unlock(&nilfs->ns_inode_lock);
2006 			iput(&ii->vfs_inode);
2007 			spin_lock(&nilfs->ns_inode_lock);
2008 		}
2009 	}
2010 	spin_unlock(&nilfs->ns_inode_lock);
2011 
2012 	if (defer_iput)
2013 		schedule_work(&sci->sc_iput_work);
2014 }
2015 
2016 /*
2017  * Main procedure of segment constructor
2018  */
2019 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
2020 {
2021 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2022 	int err;
2023 
2024 	nilfs_sc_cstage_set(sci, NILFS_ST_INIT);
2025 	sci->sc_cno = nilfs->ns_cno;
2026 
2027 	err = nilfs_segctor_collect_dirty_files(sci, nilfs);
2028 	if (unlikely(err))
2029 		goto out;
2030 
2031 	if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
2032 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2033 
2034 	if (nilfs_segctor_clean(sci))
2035 		goto out;
2036 
2037 	do {
2038 		sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
2039 
2040 		err = nilfs_segctor_begin_construction(sci, nilfs);
2041 		if (unlikely(err))
2042 			goto out;
2043 
2044 		/* Update time stamp */
2045 		sci->sc_seg_ctime = get_seconds();
2046 
2047 		err = nilfs_segctor_collect(sci, nilfs, mode);
2048 		if (unlikely(err))
2049 			goto failed;
2050 
2051 		/* Avoid empty segment */
2052 		if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE &&
2053 		    nilfs_segbuf_empty(sci->sc_curseg)) {
2054 			nilfs_segctor_abort_construction(sci, nilfs, 1);
2055 			goto out;
2056 		}
2057 
2058 		err = nilfs_segctor_assign(sci, mode);
2059 		if (unlikely(err))
2060 			goto failed;
2061 
2062 		if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2063 			nilfs_segctor_fill_in_file_bmap(sci);
2064 
2065 		if (mode == SC_LSEG_SR &&
2066 		    nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) {
2067 			err = nilfs_segctor_fill_in_checkpoint(sci);
2068 			if (unlikely(err))
2069 				goto failed_to_write;
2070 
2071 			nilfs_segctor_fill_in_super_root(sci, nilfs);
2072 		}
2073 		nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
2074 
2075 		/* Write partial segments */
2076 		nilfs_segctor_prepare_write(sci);
2077 
2078 		nilfs_add_checksums_on_logs(&sci->sc_segbufs,
2079 					    nilfs->ns_crc_seed);
2080 
2081 		err = nilfs_segctor_write(sci, nilfs);
2082 		if (unlikely(err))
2083 			goto failed_to_write;
2084 
2085 		if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE ||
2086 		    nilfs->ns_blocksize_bits != PAGE_SHIFT) {
2087 			/*
2088 			 * At this point, we avoid double buffering
2089 			 * for blocksize < pagesize because page dirty
2090 			 * flag is turned off during write and dirty
2091 			 * buffers are not properly collected for
2092 			 * pages crossing over segments.
2093 			 */
2094 			err = nilfs_segctor_wait(sci);
2095 			if (err)
2096 				goto failed_to_write;
2097 		}
2098 	} while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE);
2099 
2100  out:
2101 	nilfs_segctor_drop_written_files(sci, nilfs);
2102 	return err;
2103 
2104  failed_to_write:
2105 	if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2106 		nilfs_redirty_inodes(&sci->sc_dirty_files);
2107 
2108  failed:
2109 	if (nilfs_doing_gc())
2110 		nilfs_redirty_inodes(&sci->sc_gc_inodes);
2111 	nilfs_segctor_abort_construction(sci, nilfs, err);
2112 	goto out;
2113 }
2114 
2115 /**
2116  * nilfs_segctor_start_timer - set timer of background write
2117  * @sci: nilfs_sc_info
2118  *
2119  * If the timer has already been set, it ignores the new request.
2120  * This function MUST be called within a section locking the segment
2121  * semaphore.
2122  */
2123 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2124 {
2125 	spin_lock(&sci->sc_state_lock);
2126 	if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2127 		sci->sc_timer.expires = jiffies + sci->sc_interval;
2128 		add_timer(&sci->sc_timer);
2129 		sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2130 	}
2131 	spin_unlock(&sci->sc_state_lock);
2132 }
2133 
2134 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2135 {
2136 	spin_lock(&sci->sc_state_lock);
2137 	if (!(sci->sc_flush_request & BIT(bn))) {
2138 		unsigned long prev_req = sci->sc_flush_request;
2139 
2140 		sci->sc_flush_request |= BIT(bn);
2141 		if (!prev_req)
2142 			wake_up(&sci->sc_wait_daemon);
2143 	}
2144 	spin_unlock(&sci->sc_state_lock);
2145 }
2146 
2147 /**
2148  * nilfs_flush_segment - trigger a segment construction for resource control
2149  * @sb: super block
2150  * @ino: inode number of the file to be flushed out.
2151  */
2152 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2153 {
2154 	struct the_nilfs *nilfs = sb->s_fs_info;
2155 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2156 
2157 	if (!sci || nilfs_doing_construction())
2158 		return;
2159 	nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2160 					/* assign bit 0 to data files */
2161 }
2162 
2163 struct nilfs_segctor_wait_request {
2164 	wait_queue_t	wq;
2165 	__u32		seq;
2166 	int		err;
2167 	atomic_t	done;
2168 };
2169 
2170 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2171 {
2172 	struct nilfs_segctor_wait_request wait_req;
2173 	int err = 0;
2174 
2175 	spin_lock(&sci->sc_state_lock);
2176 	init_wait(&wait_req.wq);
2177 	wait_req.err = 0;
2178 	atomic_set(&wait_req.done, 0);
2179 	wait_req.seq = ++sci->sc_seq_request;
2180 	spin_unlock(&sci->sc_state_lock);
2181 
2182 	init_waitqueue_entry(&wait_req.wq, current);
2183 	add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2184 	set_current_state(TASK_INTERRUPTIBLE);
2185 	wake_up(&sci->sc_wait_daemon);
2186 
2187 	for (;;) {
2188 		if (atomic_read(&wait_req.done)) {
2189 			err = wait_req.err;
2190 			break;
2191 		}
2192 		if (!signal_pending(current)) {
2193 			schedule();
2194 			continue;
2195 		}
2196 		err = -ERESTARTSYS;
2197 		break;
2198 	}
2199 	finish_wait(&sci->sc_wait_request, &wait_req.wq);
2200 	return err;
2201 }
2202 
2203 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
2204 {
2205 	struct nilfs_segctor_wait_request *wrq, *n;
2206 	unsigned long flags;
2207 
2208 	spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2209 	list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
2210 				 wq.task_list) {
2211 		if (!atomic_read(&wrq->done) &&
2212 		    nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
2213 			wrq->err = err;
2214 			atomic_set(&wrq->done, 1);
2215 		}
2216 		if (atomic_read(&wrq->done)) {
2217 			wrq->wq.func(&wrq->wq,
2218 				     TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2219 				     0, NULL);
2220 		}
2221 	}
2222 	spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2223 }
2224 
2225 /**
2226  * nilfs_construct_segment - construct a logical segment
2227  * @sb: super block
2228  *
2229  * Return Value: On success, 0 is retured. On errors, one of the following
2230  * negative error code is returned.
2231  *
2232  * %-EROFS - Read only filesystem.
2233  *
2234  * %-EIO - I/O error
2235  *
2236  * %-ENOSPC - No space left on device (only in a panic state).
2237  *
2238  * %-ERESTARTSYS - Interrupted.
2239  *
2240  * %-ENOMEM - Insufficient memory available.
2241  */
2242 int nilfs_construct_segment(struct super_block *sb)
2243 {
2244 	struct the_nilfs *nilfs = sb->s_fs_info;
2245 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2246 	struct nilfs_transaction_info *ti;
2247 	int err;
2248 
2249 	if (!sci)
2250 		return -EROFS;
2251 
2252 	/* A call inside transactions causes a deadlock. */
2253 	BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2254 
2255 	err = nilfs_segctor_sync(sci);
2256 	return err;
2257 }
2258 
2259 /**
2260  * nilfs_construct_dsync_segment - construct a data-only logical segment
2261  * @sb: super block
2262  * @inode: inode whose data blocks should be written out
2263  * @start: start byte offset
2264  * @end: end byte offset (inclusive)
2265  *
2266  * Return Value: On success, 0 is retured. On errors, one of the following
2267  * negative error code is returned.
2268  *
2269  * %-EROFS - Read only filesystem.
2270  *
2271  * %-EIO - I/O error
2272  *
2273  * %-ENOSPC - No space left on device (only in a panic state).
2274  *
2275  * %-ERESTARTSYS - Interrupted.
2276  *
2277  * %-ENOMEM - Insufficient memory available.
2278  */
2279 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2280 				  loff_t start, loff_t end)
2281 {
2282 	struct the_nilfs *nilfs = sb->s_fs_info;
2283 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2284 	struct nilfs_inode_info *ii;
2285 	struct nilfs_transaction_info ti;
2286 	int err = 0;
2287 
2288 	if (!sci)
2289 		return -EROFS;
2290 
2291 	nilfs_transaction_lock(sb, &ti, 0);
2292 
2293 	ii = NILFS_I(inode);
2294 	if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) ||
2295 	    nilfs_test_opt(nilfs, STRICT_ORDER) ||
2296 	    test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2297 	    nilfs_discontinued(nilfs)) {
2298 		nilfs_transaction_unlock(sb);
2299 		err = nilfs_segctor_sync(sci);
2300 		return err;
2301 	}
2302 
2303 	spin_lock(&nilfs->ns_inode_lock);
2304 	if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2305 	    !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2306 		spin_unlock(&nilfs->ns_inode_lock);
2307 		nilfs_transaction_unlock(sb);
2308 		return 0;
2309 	}
2310 	spin_unlock(&nilfs->ns_inode_lock);
2311 	sci->sc_dsync_inode = ii;
2312 	sci->sc_dsync_start = start;
2313 	sci->sc_dsync_end = end;
2314 
2315 	err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2316 	if (!err)
2317 		nilfs->ns_flushed_device = 0;
2318 
2319 	nilfs_transaction_unlock(sb);
2320 	return err;
2321 }
2322 
2323 #define FLUSH_FILE_BIT	(0x1) /* data file only */
2324 #define FLUSH_DAT_BIT	BIT(NILFS_DAT_INO) /* DAT only */
2325 
2326 /**
2327  * nilfs_segctor_accept - record accepted sequence count of log-write requests
2328  * @sci: segment constructor object
2329  */
2330 static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
2331 {
2332 	spin_lock(&sci->sc_state_lock);
2333 	sci->sc_seq_accepted = sci->sc_seq_request;
2334 	spin_unlock(&sci->sc_state_lock);
2335 	del_timer_sync(&sci->sc_timer);
2336 }
2337 
2338 /**
2339  * nilfs_segctor_notify - notify the result of request to caller threads
2340  * @sci: segment constructor object
2341  * @mode: mode of log forming
2342  * @err: error code to be notified
2343  */
2344 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
2345 {
2346 	/* Clear requests (even when the construction failed) */
2347 	spin_lock(&sci->sc_state_lock);
2348 
2349 	if (mode == SC_LSEG_SR) {
2350 		sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2351 		sci->sc_seq_done = sci->sc_seq_accepted;
2352 		nilfs_segctor_wakeup(sci, err);
2353 		sci->sc_flush_request = 0;
2354 	} else {
2355 		if (mode == SC_FLUSH_FILE)
2356 			sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2357 		else if (mode == SC_FLUSH_DAT)
2358 			sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2359 
2360 		/* re-enable timer if checkpoint creation was not done */
2361 		if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2362 		    time_before(jiffies, sci->sc_timer.expires))
2363 			add_timer(&sci->sc_timer);
2364 	}
2365 	spin_unlock(&sci->sc_state_lock);
2366 }
2367 
2368 /**
2369  * nilfs_segctor_construct - form logs and write them to disk
2370  * @sci: segment constructor object
2371  * @mode: mode of log forming
2372  */
2373 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
2374 {
2375 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2376 	struct nilfs_super_block **sbp;
2377 	int err = 0;
2378 
2379 	nilfs_segctor_accept(sci);
2380 
2381 	if (nilfs_discontinued(nilfs))
2382 		mode = SC_LSEG_SR;
2383 	if (!nilfs_segctor_confirm(sci))
2384 		err = nilfs_segctor_do_construct(sci, mode);
2385 
2386 	if (likely(!err)) {
2387 		if (mode != SC_FLUSH_DAT)
2388 			atomic_set(&nilfs->ns_ndirtyblks, 0);
2389 		if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2390 		    nilfs_discontinued(nilfs)) {
2391 			down_write(&nilfs->ns_sem);
2392 			err = -EIO;
2393 			sbp = nilfs_prepare_super(sci->sc_super,
2394 						  nilfs_sb_will_flip(nilfs));
2395 			if (likely(sbp)) {
2396 				nilfs_set_log_cursor(sbp[0], nilfs);
2397 				err = nilfs_commit_super(sci->sc_super,
2398 							 NILFS_SB_COMMIT);
2399 			}
2400 			up_write(&nilfs->ns_sem);
2401 		}
2402 	}
2403 
2404 	nilfs_segctor_notify(sci, mode, err);
2405 	return err;
2406 }
2407 
2408 static void nilfs_construction_timeout(unsigned long data)
2409 {
2410 	struct task_struct *p = (struct task_struct *)data;
2411 
2412 	wake_up_process(p);
2413 }
2414 
2415 static void
2416 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2417 {
2418 	struct nilfs_inode_info *ii, *n;
2419 
2420 	list_for_each_entry_safe(ii, n, head, i_dirty) {
2421 		if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2422 			continue;
2423 		list_del_init(&ii->i_dirty);
2424 		truncate_inode_pages(&ii->vfs_inode.i_data, 0);
2425 		nilfs_btnode_cache_clear(&ii->i_btnode_cache);
2426 		iput(&ii->vfs_inode);
2427 	}
2428 }
2429 
2430 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2431 			 void **kbufs)
2432 {
2433 	struct the_nilfs *nilfs = sb->s_fs_info;
2434 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2435 	struct nilfs_transaction_info ti;
2436 	int err;
2437 
2438 	if (unlikely(!sci))
2439 		return -EROFS;
2440 
2441 	nilfs_transaction_lock(sb, &ti, 1);
2442 
2443 	err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
2444 	if (unlikely(err))
2445 		goto out_unlock;
2446 
2447 	err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2448 	if (unlikely(err)) {
2449 		nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
2450 		goto out_unlock;
2451 	}
2452 
2453 	sci->sc_freesegs = kbufs[4];
2454 	sci->sc_nfreesegs = argv[4].v_nmembs;
2455 	list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
2456 
2457 	for (;;) {
2458 		err = nilfs_segctor_construct(sci, SC_LSEG_SR);
2459 		nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2460 
2461 		if (likely(!err))
2462 			break;
2463 
2464 		nilfs_msg(sb, KERN_WARNING, "error %d cleaning segments", err);
2465 		set_current_state(TASK_INTERRUPTIBLE);
2466 		schedule_timeout(sci->sc_interval);
2467 	}
2468 	if (nilfs_test_opt(nilfs, DISCARD)) {
2469 		int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
2470 						 sci->sc_nfreesegs);
2471 		if (ret) {
2472 			nilfs_msg(sb, KERN_WARNING,
2473 				  "error %d on discard request, turning discards off for the device",
2474 				  ret);
2475 			nilfs_clear_opt(nilfs, DISCARD);
2476 		}
2477 	}
2478 
2479  out_unlock:
2480 	sci->sc_freesegs = NULL;
2481 	sci->sc_nfreesegs = 0;
2482 	nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
2483 	nilfs_transaction_unlock(sb);
2484 	return err;
2485 }
2486 
2487 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2488 {
2489 	struct nilfs_transaction_info ti;
2490 
2491 	nilfs_transaction_lock(sci->sc_super, &ti, 0);
2492 	nilfs_segctor_construct(sci, mode);
2493 
2494 	/*
2495 	 * Unclosed segment should be retried.  We do this using sc_timer.
2496 	 * Timeout of sc_timer will invoke complete construction which leads
2497 	 * to close the current logical segment.
2498 	 */
2499 	if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2500 		nilfs_segctor_start_timer(sci);
2501 
2502 	nilfs_transaction_unlock(sci->sc_super);
2503 }
2504 
2505 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2506 {
2507 	int mode = 0;
2508 
2509 	spin_lock(&sci->sc_state_lock);
2510 	mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2511 		SC_FLUSH_DAT : SC_FLUSH_FILE;
2512 	spin_unlock(&sci->sc_state_lock);
2513 
2514 	if (mode) {
2515 		nilfs_segctor_do_construct(sci, mode);
2516 
2517 		spin_lock(&sci->sc_state_lock);
2518 		sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2519 			~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2520 		spin_unlock(&sci->sc_state_lock);
2521 	}
2522 	clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2523 }
2524 
2525 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2526 {
2527 	if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2528 	    time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2529 		if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2530 			return SC_FLUSH_FILE;
2531 		else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2532 			return SC_FLUSH_DAT;
2533 	}
2534 	return SC_LSEG_SR;
2535 }
2536 
2537 /**
2538  * nilfs_segctor_thread - main loop of the segment constructor thread.
2539  * @arg: pointer to a struct nilfs_sc_info.
2540  *
2541  * nilfs_segctor_thread() initializes a timer and serves as a daemon
2542  * to execute segment constructions.
2543  */
2544 static int nilfs_segctor_thread(void *arg)
2545 {
2546 	struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2547 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2548 	int timeout = 0;
2549 
2550 	sci->sc_timer.data = (unsigned long)current;
2551 	sci->sc_timer.function = nilfs_construction_timeout;
2552 
2553 	/* start sync. */
2554 	sci->sc_task = current;
2555 	wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
2556 	nilfs_msg(sci->sc_super, KERN_INFO,
2557 		  "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds",
2558 		  sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2559 
2560 	spin_lock(&sci->sc_state_lock);
2561  loop:
2562 	for (;;) {
2563 		int mode;
2564 
2565 		if (sci->sc_state & NILFS_SEGCTOR_QUIT)
2566 			goto end_thread;
2567 
2568 		if (timeout || sci->sc_seq_request != sci->sc_seq_done)
2569 			mode = SC_LSEG_SR;
2570 		else if (sci->sc_flush_request)
2571 			mode = nilfs_segctor_flush_mode(sci);
2572 		else
2573 			break;
2574 
2575 		spin_unlock(&sci->sc_state_lock);
2576 		nilfs_segctor_thread_construct(sci, mode);
2577 		spin_lock(&sci->sc_state_lock);
2578 		timeout = 0;
2579 	}
2580 
2581 
2582 	if (freezing(current)) {
2583 		spin_unlock(&sci->sc_state_lock);
2584 		try_to_freeze();
2585 		spin_lock(&sci->sc_state_lock);
2586 	} else {
2587 		DEFINE_WAIT(wait);
2588 		int should_sleep = 1;
2589 
2590 		prepare_to_wait(&sci->sc_wait_daemon, &wait,
2591 				TASK_INTERRUPTIBLE);
2592 
2593 		if (sci->sc_seq_request != sci->sc_seq_done)
2594 			should_sleep = 0;
2595 		else if (sci->sc_flush_request)
2596 			should_sleep = 0;
2597 		else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
2598 			should_sleep = time_before(jiffies,
2599 					sci->sc_timer.expires);
2600 
2601 		if (should_sleep) {
2602 			spin_unlock(&sci->sc_state_lock);
2603 			schedule();
2604 			spin_lock(&sci->sc_state_lock);
2605 		}
2606 		finish_wait(&sci->sc_wait_daemon, &wait);
2607 		timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2608 			   time_after_eq(jiffies, sci->sc_timer.expires));
2609 
2610 		if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
2611 			set_nilfs_discontinued(nilfs);
2612 	}
2613 	goto loop;
2614 
2615  end_thread:
2616 	spin_unlock(&sci->sc_state_lock);
2617 
2618 	/* end sync. */
2619 	sci->sc_task = NULL;
2620 	wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
2621 	return 0;
2622 }
2623 
2624 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
2625 {
2626 	struct task_struct *t;
2627 
2628 	t = kthread_run(nilfs_segctor_thread, sci, "segctord");
2629 	if (IS_ERR(t)) {
2630 		int err = PTR_ERR(t);
2631 
2632 		nilfs_msg(sci->sc_super, KERN_ERR,
2633 			  "error %d creating segctord thread", err);
2634 		return err;
2635 	}
2636 	wait_event(sci->sc_wait_task, sci->sc_task != NULL);
2637 	return 0;
2638 }
2639 
2640 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
2641 	__acquires(&sci->sc_state_lock)
2642 	__releases(&sci->sc_state_lock)
2643 {
2644 	sci->sc_state |= NILFS_SEGCTOR_QUIT;
2645 
2646 	while (sci->sc_task) {
2647 		wake_up(&sci->sc_wait_daemon);
2648 		spin_unlock(&sci->sc_state_lock);
2649 		wait_event(sci->sc_wait_task, sci->sc_task == NULL);
2650 		spin_lock(&sci->sc_state_lock);
2651 	}
2652 }
2653 
2654 /*
2655  * Setup & clean-up functions
2656  */
2657 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
2658 					       struct nilfs_root *root)
2659 {
2660 	struct the_nilfs *nilfs = sb->s_fs_info;
2661 	struct nilfs_sc_info *sci;
2662 
2663 	sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2664 	if (!sci)
2665 		return NULL;
2666 
2667 	sci->sc_super = sb;
2668 
2669 	nilfs_get_root(root);
2670 	sci->sc_root = root;
2671 
2672 	init_waitqueue_head(&sci->sc_wait_request);
2673 	init_waitqueue_head(&sci->sc_wait_daemon);
2674 	init_waitqueue_head(&sci->sc_wait_task);
2675 	spin_lock_init(&sci->sc_state_lock);
2676 	INIT_LIST_HEAD(&sci->sc_dirty_files);
2677 	INIT_LIST_HEAD(&sci->sc_segbufs);
2678 	INIT_LIST_HEAD(&sci->sc_write_logs);
2679 	INIT_LIST_HEAD(&sci->sc_gc_inodes);
2680 	INIT_LIST_HEAD(&sci->sc_iput_queue);
2681 	INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func);
2682 	init_timer(&sci->sc_timer);
2683 
2684 	sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2685 	sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2686 	sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2687 
2688 	if (nilfs->ns_interval)
2689 		sci->sc_interval = HZ * nilfs->ns_interval;
2690 	if (nilfs->ns_watermark)
2691 		sci->sc_watermark = nilfs->ns_watermark;
2692 	return sci;
2693 }
2694 
2695 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2696 {
2697 	int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2698 
2699 	/*
2700 	 * The segctord thread was stopped and its timer was removed.
2701 	 * But some tasks remain.
2702 	 */
2703 	do {
2704 		struct nilfs_transaction_info ti;
2705 
2706 		nilfs_transaction_lock(sci->sc_super, &ti, 0);
2707 		ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
2708 		nilfs_transaction_unlock(sci->sc_super);
2709 
2710 		flush_work(&sci->sc_iput_work);
2711 
2712 	} while (ret && retrycount-- > 0);
2713 }
2714 
2715 /**
2716  * nilfs_segctor_destroy - destroy the segment constructor.
2717  * @sci: nilfs_sc_info
2718  *
2719  * nilfs_segctor_destroy() kills the segctord thread and frees
2720  * the nilfs_sc_info struct.
2721  * Caller must hold the segment semaphore.
2722  */
2723 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2724 {
2725 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2726 	int flag;
2727 
2728 	up_write(&nilfs->ns_segctor_sem);
2729 
2730 	spin_lock(&sci->sc_state_lock);
2731 	nilfs_segctor_kill_thread(sci);
2732 	flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2733 		|| sci->sc_seq_request != sci->sc_seq_done);
2734 	spin_unlock(&sci->sc_state_lock);
2735 
2736 	if (flush_work(&sci->sc_iput_work))
2737 		flag = true;
2738 
2739 	if (flag || !nilfs_segctor_confirm(sci))
2740 		nilfs_segctor_write_out(sci);
2741 
2742 	if (!list_empty(&sci->sc_dirty_files)) {
2743 		nilfs_msg(sci->sc_super, KERN_WARNING,
2744 			  "disposed unprocessed dirty file(s) when stopping log writer");
2745 		nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
2746 	}
2747 
2748 	if (!list_empty(&sci->sc_iput_queue)) {
2749 		nilfs_msg(sci->sc_super, KERN_WARNING,
2750 			  "disposed unprocessed inode(s) in iput queue when stopping log writer");
2751 		nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1);
2752 	}
2753 
2754 	WARN_ON(!list_empty(&sci->sc_segbufs));
2755 	WARN_ON(!list_empty(&sci->sc_write_logs));
2756 
2757 	nilfs_put_root(sci->sc_root);
2758 
2759 	down_write(&nilfs->ns_segctor_sem);
2760 
2761 	del_timer_sync(&sci->sc_timer);
2762 	kfree(sci);
2763 }
2764 
2765 /**
2766  * nilfs_attach_log_writer - attach log writer
2767  * @sb: super block instance
2768  * @root: root object of the current filesystem tree
2769  *
2770  * This allocates a log writer object, initializes it, and starts the
2771  * log writer.
2772  *
2773  * Return Value: On success, 0 is returned. On error, one of the following
2774  * negative error code is returned.
2775  *
2776  * %-ENOMEM - Insufficient memory available.
2777  */
2778 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
2779 {
2780 	struct the_nilfs *nilfs = sb->s_fs_info;
2781 	int err;
2782 
2783 	if (nilfs->ns_writer) {
2784 		/*
2785 		 * This happens if the filesystem was remounted
2786 		 * read/write after nilfs_error degenerated it into a
2787 		 * read-only mount.
2788 		 */
2789 		nilfs_detach_log_writer(sb);
2790 	}
2791 
2792 	nilfs->ns_writer = nilfs_segctor_new(sb, root);
2793 	if (!nilfs->ns_writer)
2794 		return -ENOMEM;
2795 
2796 	err = nilfs_segctor_start_thread(nilfs->ns_writer);
2797 	if (err) {
2798 		kfree(nilfs->ns_writer);
2799 		nilfs->ns_writer = NULL;
2800 	}
2801 	return err;
2802 }
2803 
2804 /**
2805  * nilfs_detach_log_writer - destroy log writer
2806  * @sb: super block instance
2807  *
2808  * This kills log writer daemon, frees the log writer object, and
2809  * destroys list of dirty files.
2810  */
2811 void nilfs_detach_log_writer(struct super_block *sb)
2812 {
2813 	struct the_nilfs *nilfs = sb->s_fs_info;
2814 	LIST_HEAD(garbage_list);
2815 
2816 	down_write(&nilfs->ns_segctor_sem);
2817 	if (nilfs->ns_writer) {
2818 		nilfs_segctor_destroy(nilfs->ns_writer);
2819 		nilfs->ns_writer = NULL;
2820 	}
2821 
2822 	/* Force to free the list of dirty files */
2823 	spin_lock(&nilfs->ns_inode_lock);
2824 	if (!list_empty(&nilfs->ns_dirty_files)) {
2825 		list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
2826 		nilfs_msg(sb, KERN_WARNING,
2827 			  "disposed unprocessed dirty file(s) when detaching log writer");
2828 	}
2829 	spin_unlock(&nilfs->ns_inode_lock);
2830 	up_write(&nilfs->ns_segctor_sem);
2831 
2832 	nilfs_dispose_list(nilfs, &garbage_list, 1);
2833 }
2834