xref: /openbmc/linux/fs/nilfs2/segment.c (revision 1ab142d4)
1 /*
2  * segment.c - NILFS segment constructor.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  *
22  */
23 
24 #include <linux/pagemap.h>
25 #include <linux/buffer_head.h>
26 #include <linux/writeback.h>
27 #include <linux/bio.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/freezer.h>
32 #include <linux/kthread.h>
33 #include <linux/crc32.h>
34 #include <linux/pagevec.h>
35 #include <linux/slab.h>
36 #include "nilfs.h"
37 #include "btnode.h"
38 #include "page.h"
39 #include "segment.h"
40 #include "sufile.h"
41 #include "cpfile.h"
42 #include "ifile.h"
43 #include "segbuf.h"
44 
45 
46 /*
47  * Segment constructor
48  */
49 #define SC_N_INODEVEC	16   /* Size of locally allocated inode vector */
50 
51 #define SC_MAX_SEGDELTA 64   /* Upper limit of the number of segments
52 				appended in collection retry loop */
53 
54 /* Construction mode */
55 enum {
56 	SC_LSEG_SR = 1,	/* Make a logical segment having a super root */
57 	SC_LSEG_DSYNC,	/* Flush data blocks of a given file and make
58 			   a logical segment without a super root */
59 	SC_FLUSH_FILE,	/* Flush data files, leads to segment writes without
60 			   creating a checkpoint */
61 	SC_FLUSH_DAT,	/* Flush DAT file. This also creates segments without
62 			   a checkpoint */
63 };
64 
65 /* Stage numbers of dirty block collection */
66 enum {
67 	NILFS_ST_INIT = 0,
68 	NILFS_ST_GC,		/* Collecting dirty blocks for GC */
69 	NILFS_ST_FILE,
70 	NILFS_ST_IFILE,
71 	NILFS_ST_CPFILE,
72 	NILFS_ST_SUFILE,
73 	NILFS_ST_DAT,
74 	NILFS_ST_SR,		/* Super root */
75 	NILFS_ST_DSYNC,		/* Data sync blocks */
76 	NILFS_ST_DONE,
77 };
78 
79 /* State flags of collection */
80 #define NILFS_CF_NODE		0x0001	/* Collecting node blocks */
81 #define NILFS_CF_IFILE_STARTED	0x0002	/* IFILE stage has started */
82 #define NILFS_CF_SUFREED	0x0004	/* segment usages has been freed */
83 #define NILFS_CF_HISTORY_MASK	(NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
84 
85 /* Operations depending on the construction mode and file type */
86 struct nilfs_sc_operations {
87 	int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
88 			    struct inode *);
89 	int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
90 			    struct inode *);
91 	int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
92 			    struct inode *);
93 	void (*write_data_binfo)(struct nilfs_sc_info *,
94 				 struct nilfs_segsum_pointer *,
95 				 union nilfs_binfo *);
96 	void (*write_node_binfo)(struct nilfs_sc_info *,
97 				 struct nilfs_segsum_pointer *,
98 				 union nilfs_binfo *);
99 };
100 
101 /*
102  * Other definitions
103  */
104 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
105 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
106 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
107 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
108 
109 #define nilfs_cnt32_gt(a, b)   \
110 	(typecheck(__u32, a) && typecheck(__u32, b) && \
111 	 ((__s32)(b) - (__s32)(a) < 0))
112 #define nilfs_cnt32_ge(a, b)   \
113 	(typecheck(__u32, a) && typecheck(__u32, b) && \
114 	 ((__s32)(a) - (__s32)(b) >= 0))
115 #define nilfs_cnt32_lt(a, b)  nilfs_cnt32_gt(b, a)
116 #define nilfs_cnt32_le(a, b)  nilfs_cnt32_ge(b, a)
117 
118 static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
119 {
120 	struct nilfs_transaction_info *cur_ti = current->journal_info;
121 	void *save = NULL;
122 
123 	if (cur_ti) {
124 		if (cur_ti->ti_magic == NILFS_TI_MAGIC)
125 			return ++cur_ti->ti_count;
126 		else {
127 			/*
128 			 * If journal_info field is occupied by other FS,
129 			 * it is saved and will be restored on
130 			 * nilfs_transaction_commit().
131 			 */
132 			printk(KERN_WARNING
133 			       "NILFS warning: journal info from a different "
134 			       "FS\n");
135 			save = current->journal_info;
136 		}
137 	}
138 	if (!ti) {
139 		ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
140 		if (!ti)
141 			return -ENOMEM;
142 		ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
143 	} else {
144 		ti->ti_flags = 0;
145 	}
146 	ti->ti_count = 0;
147 	ti->ti_save = save;
148 	ti->ti_magic = NILFS_TI_MAGIC;
149 	current->journal_info = ti;
150 	return 0;
151 }
152 
153 /**
154  * nilfs_transaction_begin - start indivisible file operations.
155  * @sb: super block
156  * @ti: nilfs_transaction_info
157  * @vacancy_check: flags for vacancy rate checks
158  *
159  * nilfs_transaction_begin() acquires a reader/writer semaphore, called
160  * the segment semaphore, to make a segment construction and write tasks
161  * exclusive.  The function is used with nilfs_transaction_commit() in pairs.
162  * The region enclosed by these two functions can be nested.  To avoid a
163  * deadlock, the semaphore is only acquired or released in the outermost call.
164  *
165  * This function allocates a nilfs_transaction_info struct to keep context
166  * information on it.  It is initialized and hooked onto the current task in
167  * the outermost call.  If a pre-allocated struct is given to @ti, it is used
168  * instead; otherwise a new struct is assigned from a slab.
169  *
170  * When @vacancy_check flag is set, this function will check the amount of
171  * free space, and will wait for the GC to reclaim disk space if low capacity.
172  *
173  * Return Value: On success, 0 is returned. On error, one of the following
174  * negative error code is returned.
175  *
176  * %-ENOMEM - Insufficient memory available.
177  *
178  * %-ENOSPC - No space left on device
179  */
180 int nilfs_transaction_begin(struct super_block *sb,
181 			    struct nilfs_transaction_info *ti,
182 			    int vacancy_check)
183 {
184 	struct the_nilfs *nilfs;
185 	int ret = nilfs_prepare_segment_lock(ti);
186 
187 	if (unlikely(ret < 0))
188 		return ret;
189 	if (ret > 0)
190 		return 0;
191 
192 	vfs_check_frozen(sb, SB_FREEZE_WRITE);
193 
194 	nilfs = sb->s_fs_info;
195 	down_read(&nilfs->ns_segctor_sem);
196 	if (vacancy_check && nilfs_near_disk_full(nilfs)) {
197 		up_read(&nilfs->ns_segctor_sem);
198 		ret = -ENOSPC;
199 		goto failed;
200 	}
201 	return 0;
202 
203  failed:
204 	ti = current->journal_info;
205 	current->journal_info = ti->ti_save;
206 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
207 		kmem_cache_free(nilfs_transaction_cachep, ti);
208 	return ret;
209 }
210 
211 /**
212  * nilfs_transaction_commit - commit indivisible file operations.
213  * @sb: super block
214  *
215  * nilfs_transaction_commit() releases the read semaphore which is
216  * acquired by nilfs_transaction_begin(). This is only performed
217  * in outermost call of this function.  If a commit flag is set,
218  * nilfs_transaction_commit() sets a timer to start the segment
219  * constructor.  If a sync flag is set, it starts construction
220  * directly.
221  */
222 int nilfs_transaction_commit(struct super_block *sb)
223 {
224 	struct nilfs_transaction_info *ti = current->journal_info;
225 	struct the_nilfs *nilfs = sb->s_fs_info;
226 	int err = 0;
227 
228 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
229 	ti->ti_flags |= NILFS_TI_COMMIT;
230 	if (ti->ti_count > 0) {
231 		ti->ti_count--;
232 		return 0;
233 	}
234 	if (nilfs->ns_writer) {
235 		struct nilfs_sc_info *sci = nilfs->ns_writer;
236 
237 		if (ti->ti_flags & NILFS_TI_COMMIT)
238 			nilfs_segctor_start_timer(sci);
239 		if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
240 			nilfs_segctor_do_flush(sci, 0);
241 	}
242 	up_read(&nilfs->ns_segctor_sem);
243 	current->journal_info = ti->ti_save;
244 
245 	if (ti->ti_flags & NILFS_TI_SYNC)
246 		err = nilfs_construct_segment(sb);
247 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
248 		kmem_cache_free(nilfs_transaction_cachep, ti);
249 	return err;
250 }
251 
252 void nilfs_transaction_abort(struct super_block *sb)
253 {
254 	struct nilfs_transaction_info *ti = current->journal_info;
255 	struct the_nilfs *nilfs = sb->s_fs_info;
256 
257 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
258 	if (ti->ti_count > 0) {
259 		ti->ti_count--;
260 		return;
261 	}
262 	up_read(&nilfs->ns_segctor_sem);
263 
264 	current->journal_info = ti->ti_save;
265 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
266 		kmem_cache_free(nilfs_transaction_cachep, ti);
267 }
268 
269 void nilfs_relax_pressure_in_lock(struct super_block *sb)
270 {
271 	struct the_nilfs *nilfs = sb->s_fs_info;
272 	struct nilfs_sc_info *sci = nilfs->ns_writer;
273 
274 	if (!sci || !sci->sc_flush_request)
275 		return;
276 
277 	set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
278 	up_read(&nilfs->ns_segctor_sem);
279 
280 	down_write(&nilfs->ns_segctor_sem);
281 	if (sci->sc_flush_request &&
282 	    test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
283 		struct nilfs_transaction_info *ti = current->journal_info;
284 
285 		ti->ti_flags |= NILFS_TI_WRITER;
286 		nilfs_segctor_do_immediate_flush(sci);
287 		ti->ti_flags &= ~NILFS_TI_WRITER;
288 	}
289 	downgrade_write(&nilfs->ns_segctor_sem);
290 }
291 
292 static void nilfs_transaction_lock(struct super_block *sb,
293 				   struct nilfs_transaction_info *ti,
294 				   int gcflag)
295 {
296 	struct nilfs_transaction_info *cur_ti = current->journal_info;
297 	struct the_nilfs *nilfs = sb->s_fs_info;
298 	struct nilfs_sc_info *sci = nilfs->ns_writer;
299 
300 	WARN_ON(cur_ti);
301 	ti->ti_flags = NILFS_TI_WRITER;
302 	ti->ti_count = 0;
303 	ti->ti_save = cur_ti;
304 	ti->ti_magic = NILFS_TI_MAGIC;
305 	INIT_LIST_HEAD(&ti->ti_garbage);
306 	current->journal_info = ti;
307 
308 	for (;;) {
309 		down_write(&nilfs->ns_segctor_sem);
310 		if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
311 			break;
312 
313 		nilfs_segctor_do_immediate_flush(sci);
314 
315 		up_write(&nilfs->ns_segctor_sem);
316 		yield();
317 	}
318 	if (gcflag)
319 		ti->ti_flags |= NILFS_TI_GC;
320 }
321 
322 static void nilfs_transaction_unlock(struct super_block *sb)
323 {
324 	struct nilfs_transaction_info *ti = current->journal_info;
325 	struct the_nilfs *nilfs = sb->s_fs_info;
326 
327 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
328 	BUG_ON(ti->ti_count > 0);
329 
330 	up_write(&nilfs->ns_segctor_sem);
331 	current->journal_info = ti->ti_save;
332 	if (!list_empty(&ti->ti_garbage))
333 		nilfs_dispose_list(nilfs, &ti->ti_garbage, 0);
334 }
335 
336 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
337 					    struct nilfs_segsum_pointer *ssp,
338 					    unsigned bytes)
339 {
340 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
341 	unsigned blocksize = sci->sc_super->s_blocksize;
342 	void *p;
343 
344 	if (unlikely(ssp->offset + bytes > blocksize)) {
345 		ssp->offset = 0;
346 		BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
347 					       &segbuf->sb_segsum_buffers));
348 		ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
349 	}
350 	p = ssp->bh->b_data + ssp->offset;
351 	ssp->offset += bytes;
352 	return p;
353 }
354 
355 /**
356  * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
357  * @sci: nilfs_sc_info
358  */
359 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
360 {
361 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
362 	struct buffer_head *sumbh;
363 	unsigned sumbytes;
364 	unsigned flags = 0;
365 	int err;
366 
367 	if (nilfs_doing_gc())
368 		flags = NILFS_SS_GC;
369 	err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
370 	if (unlikely(err))
371 		return err;
372 
373 	sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
374 	sumbytes = segbuf->sb_sum.sumbytes;
375 	sci->sc_finfo_ptr.bh = sumbh;  sci->sc_finfo_ptr.offset = sumbytes;
376 	sci->sc_binfo_ptr.bh = sumbh;  sci->sc_binfo_ptr.offset = sumbytes;
377 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
378 	return 0;
379 }
380 
381 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
382 {
383 	sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
384 	if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
385 		return -E2BIG; /* The current segment is filled up
386 				  (internal code) */
387 	sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
388 	return nilfs_segctor_reset_segment_buffer(sci);
389 }
390 
391 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
392 {
393 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
394 	int err;
395 
396 	if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
397 		err = nilfs_segctor_feed_segment(sci);
398 		if (err)
399 			return err;
400 		segbuf = sci->sc_curseg;
401 	}
402 	err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
403 	if (likely(!err))
404 		segbuf->sb_sum.flags |= NILFS_SS_SR;
405 	return err;
406 }
407 
408 /*
409  * Functions for making segment summary and payloads
410  */
411 static int nilfs_segctor_segsum_block_required(
412 	struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
413 	unsigned binfo_size)
414 {
415 	unsigned blocksize = sci->sc_super->s_blocksize;
416 	/* Size of finfo and binfo is enough small against blocksize */
417 
418 	return ssp->offset + binfo_size +
419 		(!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
420 		blocksize;
421 }
422 
423 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
424 				      struct inode *inode)
425 {
426 	sci->sc_curseg->sb_sum.nfinfo++;
427 	sci->sc_binfo_ptr = sci->sc_finfo_ptr;
428 	nilfs_segctor_map_segsum_entry(
429 		sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
430 
431 	if (NILFS_I(inode)->i_root &&
432 	    !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
433 		set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
434 	/* skip finfo */
435 }
436 
437 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
438 				    struct inode *inode)
439 {
440 	struct nilfs_finfo *finfo;
441 	struct nilfs_inode_info *ii;
442 	struct nilfs_segment_buffer *segbuf;
443 	__u64 cno;
444 
445 	if (sci->sc_blk_cnt == 0)
446 		return;
447 
448 	ii = NILFS_I(inode);
449 
450 	if (test_bit(NILFS_I_GCINODE, &ii->i_state))
451 		cno = ii->i_cno;
452 	else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
453 		cno = 0;
454 	else
455 		cno = sci->sc_cno;
456 
457 	finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
458 						 sizeof(*finfo));
459 	finfo->fi_ino = cpu_to_le64(inode->i_ino);
460 	finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
461 	finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
462 	finfo->fi_cno = cpu_to_le64(cno);
463 
464 	segbuf = sci->sc_curseg;
465 	segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
466 		sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
467 	sci->sc_finfo_ptr = sci->sc_binfo_ptr;
468 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
469 }
470 
471 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
472 					struct buffer_head *bh,
473 					struct inode *inode,
474 					unsigned binfo_size)
475 {
476 	struct nilfs_segment_buffer *segbuf;
477 	int required, err = 0;
478 
479  retry:
480 	segbuf = sci->sc_curseg;
481 	required = nilfs_segctor_segsum_block_required(
482 		sci, &sci->sc_binfo_ptr, binfo_size);
483 	if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
484 		nilfs_segctor_end_finfo(sci, inode);
485 		err = nilfs_segctor_feed_segment(sci);
486 		if (err)
487 			return err;
488 		goto retry;
489 	}
490 	if (unlikely(required)) {
491 		err = nilfs_segbuf_extend_segsum(segbuf);
492 		if (unlikely(err))
493 			goto failed;
494 	}
495 	if (sci->sc_blk_cnt == 0)
496 		nilfs_segctor_begin_finfo(sci, inode);
497 
498 	nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
499 	/* Substitution to vblocknr is delayed until update_blocknr() */
500 	nilfs_segbuf_add_file_buffer(segbuf, bh);
501 	sci->sc_blk_cnt++;
502  failed:
503 	return err;
504 }
505 
506 /*
507  * Callback functions that enumerate, mark, and collect dirty blocks
508  */
509 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
510 				   struct buffer_head *bh, struct inode *inode)
511 {
512 	int err;
513 
514 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
515 	if (err < 0)
516 		return err;
517 
518 	err = nilfs_segctor_add_file_block(sci, bh, inode,
519 					   sizeof(struct nilfs_binfo_v));
520 	if (!err)
521 		sci->sc_datablk_cnt++;
522 	return err;
523 }
524 
525 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
526 				   struct buffer_head *bh,
527 				   struct inode *inode)
528 {
529 	return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
530 }
531 
532 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
533 				   struct buffer_head *bh,
534 				   struct inode *inode)
535 {
536 	WARN_ON(!buffer_dirty(bh));
537 	return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
538 }
539 
540 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
541 					struct nilfs_segsum_pointer *ssp,
542 					union nilfs_binfo *binfo)
543 {
544 	struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
545 		sci, ssp, sizeof(*binfo_v));
546 	*binfo_v = binfo->bi_v;
547 }
548 
549 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
550 					struct nilfs_segsum_pointer *ssp,
551 					union nilfs_binfo *binfo)
552 {
553 	__le64 *vblocknr = nilfs_segctor_map_segsum_entry(
554 		sci, ssp, sizeof(*vblocknr));
555 	*vblocknr = binfo->bi_v.bi_vblocknr;
556 }
557 
558 static struct nilfs_sc_operations nilfs_sc_file_ops = {
559 	.collect_data = nilfs_collect_file_data,
560 	.collect_node = nilfs_collect_file_node,
561 	.collect_bmap = nilfs_collect_file_bmap,
562 	.write_data_binfo = nilfs_write_file_data_binfo,
563 	.write_node_binfo = nilfs_write_file_node_binfo,
564 };
565 
566 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
567 				  struct buffer_head *bh, struct inode *inode)
568 {
569 	int err;
570 
571 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
572 	if (err < 0)
573 		return err;
574 
575 	err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
576 	if (!err)
577 		sci->sc_datablk_cnt++;
578 	return err;
579 }
580 
581 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
582 				  struct buffer_head *bh, struct inode *inode)
583 {
584 	WARN_ON(!buffer_dirty(bh));
585 	return nilfs_segctor_add_file_block(sci, bh, inode,
586 					    sizeof(struct nilfs_binfo_dat));
587 }
588 
589 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
590 				       struct nilfs_segsum_pointer *ssp,
591 				       union nilfs_binfo *binfo)
592 {
593 	__le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
594 							  sizeof(*blkoff));
595 	*blkoff = binfo->bi_dat.bi_blkoff;
596 }
597 
598 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
599 				       struct nilfs_segsum_pointer *ssp,
600 				       union nilfs_binfo *binfo)
601 {
602 	struct nilfs_binfo_dat *binfo_dat =
603 		nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
604 	*binfo_dat = binfo->bi_dat;
605 }
606 
607 static struct nilfs_sc_operations nilfs_sc_dat_ops = {
608 	.collect_data = nilfs_collect_dat_data,
609 	.collect_node = nilfs_collect_file_node,
610 	.collect_bmap = nilfs_collect_dat_bmap,
611 	.write_data_binfo = nilfs_write_dat_data_binfo,
612 	.write_node_binfo = nilfs_write_dat_node_binfo,
613 };
614 
615 static struct nilfs_sc_operations nilfs_sc_dsync_ops = {
616 	.collect_data = nilfs_collect_file_data,
617 	.collect_node = NULL,
618 	.collect_bmap = NULL,
619 	.write_data_binfo = nilfs_write_file_data_binfo,
620 	.write_node_binfo = NULL,
621 };
622 
623 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
624 					      struct list_head *listp,
625 					      size_t nlimit,
626 					      loff_t start, loff_t end)
627 {
628 	struct address_space *mapping = inode->i_mapping;
629 	struct pagevec pvec;
630 	pgoff_t index = 0, last = ULONG_MAX;
631 	size_t ndirties = 0;
632 	int i;
633 
634 	if (unlikely(start != 0 || end != LLONG_MAX)) {
635 		/*
636 		 * A valid range is given for sync-ing data pages. The
637 		 * range is rounded to per-page; extra dirty buffers
638 		 * may be included if blocksize < pagesize.
639 		 */
640 		index = start >> PAGE_SHIFT;
641 		last = end >> PAGE_SHIFT;
642 	}
643 	pagevec_init(&pvec, 0);
644  repeat:
645 	if (unlikely(index > last) ||
646 	    !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
647 				min_t(pgoff_t, last - index,
648 				      PAGEVEC_SIZE - 1) + 1))
649 		return ndirties;
650 
651 	for (i = 0; i < pagevec_count(&pvec); i++) {
652 		struct buffer_head *bh, *head;
653 		struct page *page = pvec.pages[i];
654 
655 		if (unlikely(page->index > last))
656 			break;
657 
658 		lock_page(page);
659 		if (!page_has_buffers(page))
660 			create_empty_buffers(page, 1 << inode->i_blkbits, 0);
661 		unlock_page(page);
662 
663 		bh = head = page_buffers(page);
664 		do {
665 			if (!buffer_dirty(bh))
666 				continue;
667 			get_bh(bh);
668 			list_add_tail(&bh->b_assoc_buffers, listp);
669 			ndirties++;
670 			if (unlikely(ndirties >= nlimit)) {
671 				pagevec_release(&pvec);
672 				cond_resched();
673 				return ndirties;
674 			}
675 		} while (bh = bh->b_this_page, bh != head);
676 	}
677 	pagevec_release(&pvec);
678 	cond_resched();
679 	goto repeat;
680 }
681 
682 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
683 					    struct list_head *listp)
684 {
685 	struct nilfs_inode_info *ii = NILFS_I(inode);
686 	struct address_space *mapping = &ii->i_btnode_cache;
687 	struct pagevec pvec;
688 	struct buffer_head *bh, *head;
689 	unsigned int i;
690 	pgoff_t index = 0;
691 
692 	pagevec_init(&pvec, 0);
693 
694 	while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
695 				  PAGEVEC_SIZE)) {
696 		for (i = 0; i < pagevec_count(&pvec); i++) {
697 			bh = head = page_buffers(pvec.pages[i]);
698 			do {
699 				if (buffer_dirty(bh)) {
700 					get_bh(bh);
701 					list_add_tail(&bh->b_assoc_buffers,
702 						      listp);
703 				}
704 				bh = bh->b_this_page;
705 			} while (bh != head);
706 		}
707 		pagevec_release(&pvec);
708 		cond_resched();
709 	}
710 }
711 
712 static void nilfs_dispose_list(struct the_nilfs *nilfs,
713 			       struct list_head *head, int force)
714 {
715 	struct nilfs_inode_info *ii, *n;
716 	struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
717 	unsigned nv = 0;
718 
719 	while (!list_empty(head)) {
720 		spin_lock(&nilfs->ns_inode_lock);
721 		list_for_each_entry_safe(ii, n, head, i_dirty) {
722 			list_del_init(&ii->i_dirty);
723 			if (force) {
724 				if (unlikely(ii->i_bh)) {
725 					brelse(ii->i_bh);
726 					ii->i_bh = NULL;
727 				}
728 			} else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
729 				set_bit(NILFS_I_QUEUED, &ii->i_state);
730 				list_add_tail(&ii->i_dirty,
731 					      &nilfs->ns_dirty_files);
732 				continue;
733 			}
734 			ivec[nv++] = ii;
735 			if (nv == SC_N_INODEVEC)
736 				break;
737 		}
738 		spin_unlock(&nilfs->ns_inode_lock);
739 
740 		for (pii = ivec; nv > 0; pii++, nv--)
741 			iput(&(*pii)->vfs_inode);
742 	}
743 }
744 
745 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
746 				     struct nilfs_root *root)
747 {
748 	int ret = 0;
749 
750 	if (nilfs_mdt_fetch_dirty(root->ifile))
751 		ret++;
752 	if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
753 		ret++;
754 	if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
755 		ret++;
756 	if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
757 		ret++;
758 	return ret;
759 }
760 
761 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
762 {
763 	return list_empty(&sci->sc_dirty_files) &&
764 		!test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
765 		sci->sc_nfreesegs == 0 &&
766 		(!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
767 }
768 
769 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
770 {
771 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
772 	int ret = 0;
773 
774 	if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
775 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
776 
777 	spin_lock(&nilfs->ns_inode_lock);
778 	if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
779 		ret++;
780 
781 	spin_unlock(&nilfs->ns_inode_lock);
782 	return ret;
783 }
784 
785 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
786 {
787 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
788 
789 	nilfs_mdt_clear_dirty(sci->sc_root->ifile);
790 	nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
791 	nilfs_mdt_clear_dirty(nilfs->ns_sufile);
792 	nilfs_mdt_clear_dirty(nilfs->ns_dat);
793 }
794 
795 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
796 {
797 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
798 	struct buffer_head *bh_cp;
799 	struct nilfs_checkpoint *raw_cp;
800 	int err;
801 
802 	/* XXX: this interface will be changed */
803 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
804 					  &raw_cp, &bh_cp);
805 	if (likely(!err)) {
806 		/* The following code is duplicated with cpfile.  But, it is
807 		   needed to collect the checkpoint even if it was not newly
808 		   created */
809 		mark_buffer_dirty(bh_cp);
810 		nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
811 		nilfs_cpfile_put_checkpoint(
812 			nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
813 	} else
814 		WARN_ON(err == -EINVAL || err == -ENOENT);
815 
816 	return err;
817 }
818 
819 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
820 {
821 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
822 	struct buffer_head *bh_cp;
823 	struct nilfs_checkpoint *raw_cp;
824 	int err;
825 
826 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
827 					  &raw_cp, &bh_cp);
828 	if (unlikely(err)) {
829 		WARN_ON(err == -EINVAL || err == -ENOENT);
830 		goto failed_ibh;
831 	}
832 	raw_cp->cp_snapshot_list.ssl_next = 0;
833 	raw_cp->cp_snapshot_list.ssl_prev = 0;
834 	raw_cp->cp_inodes_count =
835 		cpu_to_le64(atomic_read(&sci->sc_root->inodes_count));
836 	raw_cp->cp_blocks_count =
837 		cpu_to_le64(atomic_read(&sci->sc_root->blocks_count));
838 	raw_cp->cp_nblk_inc =
839 		cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
840 	raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
841 	raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
842 
843 	if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
844 		nilfs_checkpoint_clear_minor(raw_cp);
845 	else
846 		nilfs_checkpoint_set_minor(raw_cp);
847 
848 	nilfs_write_inode_common(sci->sc_root->ifile,
849 				 &raw_cp->cp_ifile_inode, 1);
850 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
851 	return 0;
852 
853  failed_ibh:
854 	return err;
855 }
856 
857 static void nilfs_fill_in_file_bmap(struct inode *ifile,
858 				    struct nilfs_inode_info *ii)
859 
860 {
861 	struct buffer_head *ibh;
862 	struct nilfs_inode *raw_inode;
863 
864 	if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
865 		ibh = ii->i_bh;
866 		BUG_ON(!ibh);
867 		raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
868 						  ibh);
869 		nilfs_bmap_write(ii->i_bmap, raw_inode);
870 		nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
871 	}
872 }
873 
874 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
875 {
876 	struct nilfs_inode_info *ii;
877 
878 	list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
879 		nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
880 		set_bit(NILFS_I_COLLECTED, &ii->i_state);
881 	}
882 }
883 
884 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
885 					     struct the_nilfs *nilfs)
886 {
887 	struct buffer_head *bh_sr;
888 	struct nilfs_super_root *raw_sr;
889 	unsigned isz, srsz;
890 
891 	bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
892 	raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
893 	isz = nilfs->ns_inode_size;
894 	srsz = NILFS_SR_BYTES(isz);
895 
896 	raw_sr->sr_bytes = cpu_to_le16(srsz);
897 	raw_sr->sr_nongc_ctime
898 		= cpu_to_le64(nilfs_doing_gc() ?
899 			      nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
900 	raw_sr->sr_flags = 0;
901 
902 	nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
903 				 NILFS_SR_DAT_OFFSET(isz), 1);
904 	nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
905 				 NILFS_SR_CPFILE_OFFSET(isz), 1);
906 	nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
907 				 NILFS_SR_SUFILE_OFFSET(isz), 1);
908 	memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
909 }
910 
911 static void nilfs_redirty_inodes(struct list_head *head)
912 {
913 	struct nilfs_inode_info *ii;
914 
915 	list_for_each_entry(ii, head, i_dirty) {
916 		if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
917 			clear_bit(NILFS_I_COLLECTED, &ii->i_state);
918 	}
919 }
920 
921 static void nilfs_drop_collected_inodes(struct list_head *head)
922 {
923 	struct nilfs_inode_info *ii;
924 
925 	list_for_each_entry(ii, head, i_dirty) {
926 		if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
927 			continue;
928 
929 		clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
930 		set_bit(NILFS_I_UPDATED, &ii->i_state);
931 	}
932 }
933 
934 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
935 				       struct inode *inode,
936 				       struct list_head *listp,
937 				       int (*collect)(struct nilfs_sc_info *,
938 						      struct buffer_head *,
939 						      struct inode *))
940 {
941 	struct buffer_head *bh, *n;
942 	int err = 0;
943 
944 	if (collect) {
945 		list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
946 			list_del_init(&bh->b_assoc_buffers);
947 			err = collect(sci, bh, inode);
948 			brelse(bh);
949 			if (unlikely(err))
950 				goto dispose_buffers;
951 		}
952 		return 0;
953 	}
954 
955  dispose_buffers:
956 	while (!list_empty(listp)) {
957 		bh = list_first_entry(listp, struct buffer_head,
958 				      b_assoc_buffers);
959 		list_del_init(&bh->b_assoc_buffers);
960 		brelse(bh);
961 	}
962 	return err;
963 }
964 
965 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
966 {
967 	/* Remaining number of blocks within segment buffer */
968 	return sci->sc_segbuf_nblocks -
969 		(sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
970 }
971 
972 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
973 				   struct inode *inode,
974 				   struct nilfs_sc_operations *sc_ops)
975 {
976 	LIST_HEAD(data_buffers);
977 	LIST_HEAD(node_buffers);
978 	int err;
979 
980 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
981 		size_t n, rest = nilfs_segctor_buffer_rest(sci);
982 
983 		n = nilfs_lookup_dirty_data_buffers(
984 			inode, &data_buffers, rest + 1, 0, LLONG_MAX);
985 		if (n > rest) {
986 			err = nilfs_segctor_apply_buffers(
987 				sci, inode, &data_buffers,
988 				sc_ops->collect_data);
989 			BUG_ON(!err); /* always receive -E2BIG or true error */
990 			goto break_or_fail;
991 		}
992 	}
993 	nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
994 
995 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
996 		err = nilfs_segctor_apply_buffers(
997 			sci, inode, &data_buffers, sc_ops->collect_data);
998 		if (unlikely(err)) {
999 			/* dispose node list */
1000 			nilfs_segctor_apply_buffers(
1001 				sci, inode, &node_buffers, NULL);
1002 			goto break_or_fail;
1003 		}
1004 		sci->sc_stage.flags |= NILFS_CF_NODE;
1005 	}
1006 	/* Collect node */
1007 	err = nilfs_segctor_apply_buffers(
1008 		sci, inode, &node_buffers, sc_ops->collect_node);
1009 	if (unlikely(err))
1010 		goto break_or_fail;
1011 
1012 	nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1013 	err = nilfs_segctor_apply_buffers(
1014 		sci, inode, &node_buffers, sc_ops->collect_bmap);
1015 	if (unlikely(err))
1016 		goto break_or_fail;
1017 
1018 	nilfs_segctor_end_finfo(sci, inode);
1019 	sci->sc_stage.flags &= ~NILFS_CF_NODE;
1020 
1021  break_or_fail:
1022 	return err;
1023 }
1024 
1025 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1026 					 struct inode *inode)
1027 {
1028 	LIST_HEAD(data_buffers);
1029 	size_t n, rest = nilfs_segctor_buffer_rest(sci);
1030 	int err;
1031 
1032 	n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1033 					    sci->sc_dsync_start,
1034 					    sci->sc_dsync_end);
1035 
1036 	err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1037 					  nilfs_collect_file_data);
1038 	if (!err) {
1039 		nilfs_segctor_end_finfo(sci, inode);
1040 		BUG_ON(n > rest);
1041 		/* always receive -E2BIG or true error if n > rest */
1042 	}
1043 	return err;
1044 }
1045 
1046 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1047 {
1048 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1049 	struct list_head *head;
1050 	struct nilfs_inode_info *ii;
1051 	size_t ndone;
1052 	int err = 0;
1053 
1054 	switch (sci->sc_stage.scnt) {
1055 	case NILFS_ST_INIT:
1056 		/* Pre-processes */
1057 		sci->sc_stage.flags = 0;
1058 
1059 		if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1060 			sci->sc_nblk_inc = 0;
1061 			sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1062 			if (mode == SC_LSEG_DSYNC) {
1063 				sci->sc_stage.scnt = NILFS_ST_DSYNC;
1064 				goto dsync_mode;
1065 			}
1066 		}
1067 
1068 		sci->sc_stage.dirty_file_ptr = NULL;
1069 		sci->sc_stage.gc_inode_ptr = NULL;
1070 		if (mode == SC_FLUSH_DAT) {
1071 			sci->sc_stage.scnt = NILFS_ST_DAT;
1072 			goto dat_stage;
1073 		}
1074 		sci->sc_stage.scnt++;  /* Fall through */
1075 	case NILFS_ST_GC:
1076 		if (nilfs_doing_gc()) {
1077 			head = &sci->sc_gc_inodes;
1078 			ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1079 						head, i_dirty);
1080 			list_for_each_entry_continue(ii, head, i_dirty) {
1081 				err = nilfs_segctor_scan_file(
1082 					sci, &ii->vfs_inode,
1083 					&nilfs_sc_file_ops);
1084 				if (unlikely(err)) {
1085 					sci->sc_stage.gc_inode_ptr = list_entry(
1086 						ii->i_dirty.prev,
1087 						struct nilfs_inode_info,
1088 						i_dirty);
1089 					goto break_or_fail;
1090 				}
1091 				set_bit(NILFS_I_COLLECTED, &ii->i_state);
1092 			}
1093 			sci->sc_stage.gc_inode_ptr = NULL;
1094 		}
1095 		sci->sc_stage.scnt++;  /* Fall through */
1096 	case NILFS_ST_FILE:
1097 		head = &sci->sc_dirty_files;
1098 		ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1099 					i_dirty);
1100 		list_for_each_entry_continue(ii, head, i_dirty) {
1101 			clear_bit(NILFS_I_DIRTY, &ii->i_state);
1102 
1103 			err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1104 						      &nilfs_sc_file_ops);
1105 			if (unlikely(err)) {
1106 				sci->sc_stage.dirty_file_ptr =
1107 					list_entry(ii->i_dirty.prev,
1108 						   struct nilfs_inode_info,
1109 						   i_dirty);
1110 				goto break_or_fail;
1111 			}
1112 			/* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1113 			/* XXX: required ? */
1114 		}
1115 		sci->sc_stage.dirty_file_ptr = NULL;
1116 		if (mode == SC_FLUSH_FILE) {
1117 			sci->sc_stage.scnt = NILFS_ST_DONE;
1118 			return 0;
1119 		}
1120 		sci->sc_stage.scnt++;
1121 		sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1122 		/* Fall through */
1123 	case NILFS_ST_IFILE:
1124 		err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
1125 					      &nilfs_sc_file_ops);
1126 		if (unlikely(err))
1127 			break;
1128 		sci->sc_stage.scnt++;
1129 		/* Creating a checkpoint */
1130 		err = nilfs_segctor_create_checkpoint(sci);
1131 		if (unlikely(err))
1132 			break;
1133 		/* Fall through */
1134 	case NILFS_ST_CPFILE:
1135 		err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1136 					      &nilfs_sc_file_ops);
1137 		if (unlikely(err))
1138 			break;
1139 		sci->sc_stage.scnt++;  /* Fall through */
1140 	case NILFS_ST_SUFILE:
1141 		err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
1142 					 sci->sc_nfreesegs, &ndone);
1143 		if (unlikely(err)) {
1144 			nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1145 						  sci->sc_freesegs, ndone,
1146 						  NULL);
1147 			break;
1148 		}
1149 		sci->sc_stage.flags |= NILFS_CF_SUFREED;
1150 
1151 		err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1152 					      &nilfs_sc_file_ops);
1153 		if (unlikely(err))
1154 			break;
1155 		sci->sc_stage.scnt++;  /* Fall through */
1156 	case NILFS_ST_DAT:
1157  dat_stage:
1158 		err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
1159 					      &nilfs_sc_dat_ops);
1160 		if (unlikely(err))
1161 			break;
1162 		if (mode == SC_FLUSH_DAT) {
1163 			sci->sc_stage.scnt = NILFS_ST_DONE;
1164 			return 0;
1165 		}
1166 		sci->sc_stage.scnt++;  /* Fall through */
1167 	case NILFS_ST_SR:
1168 		if (mode == SC_LSEG_SR) {
1169 			/* Appending a super root */
1170 			err = nilfs_segctor_add_super_root(sci);
1171 			if (unlikely(err))
1172 				break;
1173 		}
1174 		/* End of a logical segment */
1175 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1176 		sci->sc_stage.scnt = NILFS_ST_DONE;
1177 		return 0;
1178 	case NILFS_ST_DSYNC:
1179  dsync_mode:
1180 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1181 		ii = sci->sc_dsync_inode;
1182 		if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1183 			break;
1184 
1185 		err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1186 		if (unlikely(err))
1187 			break;
1188 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1189 		sci->sc_stage.scnt = NILFS_ST_DONE;
1190 		return 0;
1191 	case NILFS_ST_DONE:
1192 		return 0;
1193 	default:
1194 		BUG();
1195 	}
1196 
1197  break_or_fail:
1198 	return err;
1199 }
1200 
1201 /**
1202  * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1203  * @sci: nilfs_sc_info
1204  * @nilfs: nilfs object
1205  */
1206 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1207 					    struct the_nilfs *nilfs)
1208 {
1209 	struct nilfs_segment_buffer *segbuf, *prev;
1210 	__u64 nextnum;
1211 	int err, alloc = 0;
1212 
1213 	segbuf = nilfs_segbuf_new(sci->sc_super);
1214 	if (unlikely(!segbuf))
1215 		return -ENOMEM;
1216 
1217 	if (list_empty(&sci->sc_write_logs)) {
1218 		nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
1219 				 nilfs->ns_pseg_offset, nilfs);
1220 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1221 			nilfs_shift_to_next_segment(nilfs);
1222 			nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1223 		}
1224 
1225 		segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1226 		nextnum = nilfs->ns_nextnum;
1227 
1228 		if (nilfs->ns_segnum == nilfs->ns_nextnum)
1229 			/* Start from the head of a new full segment */
1230 			alloc++;
1231 	} else {
1232 		/* Continue logs */
1233 		prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1234 		nilfs_segbuf_map_cont(segbuf, prev);
1235 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
1236 		nextnum = prev->sb_nextnum;
1237 
1238 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1239 			nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1240 			segbuf->sb_sum.seg_seq++;
1241 			alloc++;
1242 		}
1243 	}
1244 
1245 	err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
1246 	if (err)
1247 		goto failed;
1248 
1249 	if (alloc) {
1250 		err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1251 		if (err)
1252 			goto failed;
1253 	}
1254 	nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1255 
1256 	BUG_ON(!list_empty(&sci->sc_segbufs));
1257 	list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
1258 	sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1259 	return 0;
1260 
1261  failed:
1262 	nilfs_segbuf_free(segbuf);
1263 	return err;
1264 }
1265 
1266 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1267 					 struct the_nilfs *nilfs, int nadd)
1268 {
1269 	struct nilfs_segment_buffer *segbuf, *prev;
1270 	struct inode *sufile = nilfs->ns_sufile;
1271 	__u64 nextnextnum;
1272 	LIST_HEAD(list);
1273 	int err, ret, i;
1274 
1275 	prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1276 	/*
1277 	 * Since the segment specified with nextnum might be allocated during
1278 	 * the previous construction, the buffer including its segusage may
1279 	 * not be dirty.  The following call ensures that the buffer is dirty
1280 	 * and will pin the buffer on memory until the sufile is written.
1281 	 */
1282 	err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
1283 	if (unlikely(err))
1284 		return err;
1285 
1286 	for (i = 0; i < nadd; i++) {
1287 		/* extend segment info */
1288 		err = -ENOMEM;
1289 		segbuf = nilfs_segbuf_new(sci->sc_super);
1290 		if (unlikely(!segbuf))
1291 			goto failed;
1292 
1293 		/* map this buffer to region of segment on-disk */
1294 		nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1295 		sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1296 
1297 		/* allocate the next next full segment */
1298 		err = nilfs_sufile_alloc(sufile, &nextnextnum);
1299 		if (unlikely(err))
1300 			goto failed_segbuf;
1301 
1302 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1303 		nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1304 
1305 		list_add_tail(&segbuf->sb_list, &list);
1306 		prev = segbuf;
1307 	}
1308 	list_splice_tail(&list, &sci->sc_segbufs);
1309 	return 0;
1310 
1311  failed_segbuf:
1312 	nilfs_segbuf_free(segbuf);
1313  failed:
1314 	list_for_each_entry(segbuf, &list, sb_list) {
1315 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1316 		WARN_ON(ret); /* never fails */
1317 	}
1318 	nilfs_destroy_logs(&list);
1319 	return err;
1320 }
1321 
1322 static void nilfs_free_incomplete_logs(struct list_head *logs,
1323 				       struct the_nilfs *nilfs)
1324 {
1325 	struct nilfs_segment_buffer *segbuf, *prev;
1326 	struct inode *sufile = nilfs->ns_sufile;
1327 	int ret;
1328 
1329 	segbuf = NILFS_FIRST_SEGBUF(logs);
1330 	if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1331 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1332 		WARN_ON(ret); /* never fails */
1333 	}
1334 	if (atomic_read(&segbuf->sb_err)) {
1335 		/* Case 1: The first segment failed */
1336 		if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1337 			/* Case 1a:  Partial segment appended into an existing
1338 			   segment */
1339 			nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1340 						segbuf->sb_fseg_end);
1341 		else /* Case 1b:  New full segment */
1342 			set_nilfs_discontinued(nilfs);
1343 	}
1344 
1345 	prev = segbuf;
1346 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1347 		if (prev->sb_nextnum != segbuf->sb_nextnum) {
1348 			ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1349 			WARN_ON(ret); /* never fails */
1350 		}
1351 		if (atomic_read(&segbuf->sb_err) &&
1352 		    segbuf->sb_segnum != nilfs->ns_nextnum)
1353 			/* Case 2: extended segment (!= next) failed */
1354 			nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
1355 		prev = segbuf;
1356 	}
1357 }
1358 
1359 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1360 					  struct inode *sufile)
1361 {
1362 	struct nilfs_segment_buffer *segbuf;
1363 	unsigned long live_blocks;
1364 	int ret;
1365 
1366 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1367 		live_blocks = segbuf->sb_sum.nblocks +
1368 			(segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1369 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1370 						     live_blocks,
1371 						     sci->sc_seg_ctime);
1372 		WARN_ON(ret); /* always succeed because the segusage is dirty */
1373 	}
1374 }
1375 
1376 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
1377 {
1378 	struct nilfs_segment_buffer *segbuf;
1379 	int ret;
1380 
1381 	segbuf = NILFS_FIRST_SEGBUF(logs);
1382 	ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1383 					     segbuf->sb_pseg_start -
1384 					     segbuf->sb_fseg_start, 0);
1385 	WARN_ON(ret); /* always succeed because the segusage is dirty */
1386 
1387 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1388 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1389 						     0, 0);
1390 		WARN_ON(ret); /* always succeed */
1391 	}
1392 }
1393 
1394 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1395 					    struct nilfs_segment_buffer *last,
1396 					    struct inode *sufile)
1397 {
1398 	struct nilfs_segment_buffer *segbuf = last;
1399 	int ret;
1400 
1401 	list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1402 		sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1403 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1404 		WARN_ON(ret);
1405 	}
1406 	nilfs_truncate_logs(&sci->sc_segbufs, last);
1407 }
1408 
1409 
1410 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1411 				 struct the_nilfs *nilfs, int mode)
1412 {
1413 	struct nilfs_cstage prev_stage = sci->sc_stage;
1414 	int err, nadd = 1;
1415 
1416 	/* Collection retry loop */
1417 	for (;;) {
1418 		sci->sc_nblk_this_inc = 0;
1419 		sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1420 
1421 		err = nilfs_segctor_reset_segment_buffer(sci);
1422 		if (unlikely(err))
1423 			goto failed;
1424 
1425 		err = nilfs_segctor_collect_blocks(sci, mode);
1426 		sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1427 		if (!err)
1428 			break;
1429 
1430 		if (unlikely(err != -E2BIG))
1431 			goto failed;
1432 
1433 		/* The current segment is filled up */
1434 		if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
1435 			break;
1436 
1437 		nilfs_clear_logs(&sci->sc_segbufs);
1438 
1439 		err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1440 		if (unlikely(err))
1441 			return err;
1442 
1443 		if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1444 			err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1445 							sci->sc_freesegs,
1446 							sci->sc_nfreesegs,
1447 							NULL);
1448 			WARN_ON(err); /* do not happen */
1449 		}
1450 		nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1451 		sci->sc_stage = prev_stage;
1452 	}
1453 	nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1454 	return 0;
1455 
1456  failed:
1457 	return err;
1458 }
1459 
1460 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1461 				      struct buffer_head *new_bh)
1462 {
1463 	BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1464 
1465 	list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1466 	/* The caller must release old_bh */
1467 }
1468 
1469 static int
1470 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1471 				     struct nilfs_segment_buffer *segbuf,
1472 				     int mode)
1473 {
1474 	struct inode *inode = NULL;
1475 	sector_t blocknr;
1476 	unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1477 	unsigned long nblocks = 0, ndatablk = 0;
1478 	struct nilfs_sc_operations *sc_op = NULL;
1479 	struct nilfs_segsum_pointer ssp;
1480 	struct nilfs_finfo *finfo = NULL;
1481 	union nilfs_binfo binfo;
1482 	struct buffer_head *bh, *bh_org;
1483 	ino_t ino = 0;
1484 	int err = 0;
1485 
1486 	if (!nfinfo)
1487 		goto out;
1488 
1489 	blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1490 	ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1491 	ssp.offset = sizeof(struct nilfs_segment_summary);
1492 
1493 	list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1494 		if (bh == segbuf->sb_super_root)
1495 			break;
1496 		if (!finfo) {
1497 			finfo =	nilfs_segctor_map_segsum_entry(
1498 				sci, &ssp, sizeof(*finfo));
1499 			ino = le64_to_cpu(finfo->fi_ino);
1500 			nblocks = le32_to_cpu(finfo->fi_nblocks);
1501 			ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1502 
1503 			inode = bh->b_page->mapping->host;
1504 
1505 			if (mode == SC_LSEG_DSYNC)
1506 				sc_op = &nilfs_sc_dsync_ops;
1507 			else if (ino == NILFS_DAT_INO)
1508 				sc_op = &nilfs_sc_dat_ops;
1509 			else /* file blocks */
1510 				sc_op = &nilfs_sc_file_ops;
1511 		}
1512 		bh_org = bh;
1513 		get_bh(bh_org);
1514 		err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1515 					&binfo);
1516 		if (bh != bh_org)
1517 			nilfs_list_replace_buffer(bh_org, bh);
1518 		brelse(bh_org);
1519 		if (unlikely(err))
1520 			goto failed_bmap;
1521 
1522 		if (ndatablk > 0)
1523 			sc_op->write_data_binfo(sci, &ssp, &binfo);
1524 		else
1525 			sc_op->write_node_binfo(sci, &ssp, &binfo);
1526 
1527 		blocknr++;
1528 		if (--nblocks == 0) {
1529 			finfo = NULL;
1530 			if (--nfinfo == 0)
1531 				break;
1532 		} else if (ndatablk > 0)
1533 			ndatablk--;
1534 	}
1535  out:
1536 	return 0;
1537 
1538  failed_bmap:
1539 	return err;
1540 }
1541 
1542 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1543 {
1544 	struct nilfs_segment_buffer *segbuf;
1545 	int err;
1546 
1547 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1548 		err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1549 		if (unlikely(err))
1550 			return err;
1551 		nilfs_segbuf_fill_in_segsum(segbuf);
1552 	}
1553 	return 0;
1554 }
1555 
1556 static void nilfs_begin_page_io(struct page *page)
1557 {
1558 	if (!page || PageWriteback(page))
1559 		/* For split b-tree node pages, this function may be called
1560 		   twice.  We ignore the 2nd or later calls by this check. */
1561 		return;
1562 
1563 	lock_page(page);
1564 	clear_page_dirty_for_io(page);
1565 	set_page_writeback(page);
1566 	unlock_page(page);
1567 }
1568 
1569 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci)
1570 {
1571 	struct nilfs_segment_buffer *segbuf;
1572 	struct page *bd_page = NULL, *fs_page = NULL;
1573 
1574 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1575 		struct buffer_head *bh;
1576 
1577 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1578 				    b_assoc_buffers) {
1579 			if (bh->b_page != bd_page) {
1580 				if (bd_page) {
1581 					lock_page(bd_page);
1582 					clear_page_dirty_for_io(bd_page);
1583 					set_page_writeback(bd_page);
1584 					unlock_page(bd_page);
1585 				}
1586 				bd_page = bh->b_page;
1587 			}
1588 		}
1589 
1590 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1591 				    b_assoc_buffers) {
1592 			if (bh == segbuf->sb_super_root) {
1593 				if (bh->b_page != bd_page) {
1594 					lock_page(bd_page);
1595 					clear_page_dirty_for_io(bd_page);
1596 					set_page_writeback(bd_page);
1597 					unlock_page(bd_page);
1598 					bd_page = bh->b_page;
1599 				}
1600 				break;
1601 			}
1602 			if (bh->b_page != fs_page) {
1603 				nilfs_begin_page_io(fs_page);
1604 				fs_page = bh->b_page;
1605 			}
1606 		}
1607 	}
1608 	if (bd_page) {
1609 		lock_page(bd_page);
1610 		clear_page_dirty_for_io(bd_page);
1611 		set_page_writeback(bd_page);
1612 		unlock_page(bd_page);
1613 	}
1614 	nilfs_begin_page_io(fs_page);
1615 }
1616 
1617 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1618 			       struct the_nilfs *nilfs)
1619 {
1620 	int ret;
1621 
1622 	ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
1623 	list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
1624 	return ret;
1625 }
1626 
1627 static void nilfs_end_page_io(struct page *page, int err)
1628 {
1629 	if (!page)
1630 		return;
1631 
1632 	if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
1633 		/*
1634 		 * For b-tree node pages, this function may be called twice
1635 		 * or more because they might be split in a segment.
1636 		 */
1637 		if (PageDirty(page)) {
1638 			/*
1639 			 * For pages holding split b-tree node buffers, dirty
1640 			 * flag on the buffers may be cleared discretely.
1641 			 * In that case, the page is once redirtied for
1642 			 * remaining buffers, and it must be cancelled if
1643 			 * all the buffers get cleaned later.
1644 			 */
1645 			lock_page(page);
1646 			if (nilfs_page_buffers_clean(page))
1647 				__nilfs_clear_page_dirty(page);
1648 			unlock_page(page);
1649 		}
1650 		return;
1651 	}
1652 
1653 	if (!err) {
1654 		if (!nilfs_page_buffers_clean(page))
1655 			__set_page_dirty_nobuffers(page);
1656 		ClearPageError(page);
1657 	} else {
1658 		__set_page_dirty_nobuffers(page);
1659 		SetPageError(page);
1660 	}
1661 
1662 	end_page_writeback(page);
1663 }
1664 
1665 static void nilfs_abort_logs(struct list_head *logs, int err)
1666 {
1667 	struct nilfs_segment_buffer *segbuf;
1668 	struct page *bd_page = NULL, *fs_page = NULL;
1669 	struct buffer_head *bh;
1670 
1671 	if (list_empty(logs))
1672 		return;
1673 
1674 	list_for_each_entry(segbuf, logs, sb_list) {
1675 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1676 				    b_assoc_buffers) {
1677 			if (bh->b_page != bd_page) {
1678 				if (bd_page)
1679 					end_page_writeback(bd_page);
1680 				bd_page = bh->b_page;
1681 			}
1682 		}
1683 
1684 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1685 				    b_assoc_buffers) {
1686 			if (bh == segbuf->sb_super_root) {
1687 				if (bh->b_page != bd_page) {
1688 					end_page_writeback(bd_page);
1689 					bd_page = bh->b_page;
1690 				}
1691 				break;
1692 			}
1693 			if (bh->b_page != fs_page) {
1694 				nilfs_end_page_io(fs_page, err);
1695 				fs_page = bh->b_page;
1696 			}
1697 		}
1698 	}
1699 	if (bd_page)
1700 		end_page_writeback(bd_page);
1701 
1702 	nilfs_end_page_io(fs_page, err);
1703 }
1704 
1705 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
1706 					     struct the_nilfs *nilfs, int err)
1707 {
1708 	LIST_HEAD(logs);
1709 	int ret;
1710 
1711 	list_splice_tail_init(&sci->sc_write_logs, &logs);
1712 	ret = nilfs_wait_on_logs(&logs);
1713 	nilfs_abort_logs(&logs, ret ? : err);
1714 
1715 	list_splice_tail_init(&sci->sc_segbufs, &logs);
1716 	nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
1717 	nilfs_free_incomplete_logs(&logs, nilfs);
1718 
1719 	if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1720 		ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1721 						sci->sc_freesegs,
1722 						sci->sc_nfreesegs,
1723 						NULL);
1724 		WARN_ON(ret); /* do not happen */
1725 	}
1726 
1727 	nilfs_destroy_logs(&logs);
1728 }
1729 
1730 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1731 				   struct nilfs_segment_buffer *segbuf)
1732 {
1733 	nilfs->ns_segnum = segbuf->sb_segnum;
1734 	nilfs->ns_nextnum = segbuf->sb_nextnum;
1735 	nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1736 		+ segbuf->sb_sum.nblocks;
1737 	nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1738 	nilfs->ns_ctime = segbuf->sb_sum.ctime;
1739 }
1740 
1741 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1742 {
1743 	struct nilfs_segment_buffer *segbuf;
1744 	struct page *bd_page = NULL, *fs_page = NULL;
1745 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1746 	int update_sr = false;
1747 
1748 	list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
1749 		struct buffer_head *bh;
1750 
1751 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1752 				    b_assoc_buffers) {
1753 			set_buffer_uptodate(bh);
1754 			clear_buffer_dirty(bh);
1755 			if (bh->b_page != bd_page) {
1756 				if (bd_page)
1757 					end_page_writeback(bd_page);
1758 				bd_page = bh->b_page;
1759 			}
1760 		}
1761 		/*
1762 		 * We assume that the buffers which belong to the same page
1763 		 * continue over the buffer list.
1764 		 * Under this assumption, the last BHs of pages is
1765 		 * identifiable by the discontinuity of bh->b_page
1766 		 * (page != fs_page).
1767 		 *
1768 		 * For B-tree node blocks, however, this assumption is not
1769 		 * guaranteed.  The cleanup code of B-tree node pages needs
1770 		 * special care.
1771 		 */
1772 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1773 				    b_assoc_buffers) {
1774 			set_buffer_uptodate(bh);
1775 			clear_buffer_dirty(bh);
1776 			clear_buffer_delay(bh);
1777 			clear_buffer_nilfs_volatile(bh);
1778 			clear_buffer_nilfs_redirected(bh);
1779 			if (bh == segbuf->sb_super_root) {
1780 				if (bh->b_page != bd_page) {
1781 					end_page_writeback(bd_page);
1782 					bd_page = bh->b_page;
1783 				}
1784 				update_sr = true;
1785 				break;
1786 			}
1787 			if (bh->b_page != fs_page) {
1788 				nilfs_end_page_io(fs_page, 0);
1789 				fs_page = bh->b_page;
1790 			}
1791 		}
1792 
1793 		if (!nilfs_segbuf_simplex(segbuf)) {
1794 			if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
1795 				set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1796 				sci->sc_lseg_stime = jiffies;
1797 			}
1798 			if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
1799 				clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1800 		}
1801 	}
1802 	/*
1803 	 * Since pages may continue over multiple segment buffers,
1804 	 * end of the last page must be checked outside of the loop.
1805 	 */
1806 	if (bd_page)
1807 		end_page_writeback(bd_page);
1808 
1809 	nilfs_end_page_io(fs_page, 0);
1810 
1811 	nilfs_drop_collected_inodes(&sci->sc_dirty_files);
1812 
1813 	if (nilfs_doing_gc())
1814 		nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
1815 	else
1816 		nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
1817 
1818 	sci->sc_nblk_inc += sci->sc_nblk_this_inc;
1819 
1820 	segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1821 	nilfs_set_next_segment(nilfs, segbuf);
1822 
1823 	if (update_sr) {
1824 		nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
1825 				       segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
1826 
1827 		clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
1828 		clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
1829 		set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1830 		nilfs_segctor_clear_metadata_dirty(sci);
1831 	} else
1832 		clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1833 }
1834 
1835 static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
1836 {
1837 	int ret;
1838 
1839 	ret = nilfs_wait_on_logs(&sci->sc_write_logs);
1840 	if (!ret) {
1841 		nilfs_segctor_complete_write(sci);
1842 		nilfs_destroy_logs(&sci->sc_write_logs);
1843 	}
1844 	return ret;
1845 }
1846 
1847 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
1848 					     struct the_nilfs *nilfs)
1849 {
1850 	struct nilfs_inode_info *ii, *n;
1851 	struct inode *ifile = sci->sc_root->ifile;
1852 
1853 	spin_lock(&nilfs->ns_inode_lock);
1854  retry:
1855 	list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
1856 		if (!ii->i_bh) {
1857 			struct buffer_head *ibh;
1858 			int err;
1859 
1860 			spin_unlock(&nilfs->ns_inode_lock);
1861 			err = nilfs_ifile_get_inode_block(
1862 				ifile, ii->vfs_inode.i_ino, &ibh);
1863 			if (unlikely(err)) {
1864 				nilfs_warning(sci->sc_super, __func__,
1865 					      "failed to get inode block.\n");
1866 				return err;
1867 			}
1868 			mark_buffer_dirty(ibh);
1869 			nilfs_mdt_mark_dirty(ifile);
1870 			spin_lock(&nilfs->ns_inode_lock);
1871 			if (likely(!ii->i_bh))
1872 				ii->i_bh = ibh;
1873 			else
1874 				brelse(ibh);
1875 			goto retry;
1876 		}
1877 
1878 		clear_bit(NILFS_I_QUEUED, &ii->i_state);
1879 		set_bit(NILFS_I_BUSY, &ii->i_state);
1880 		list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
1881 	}
1882 	spin_unlock(&nilfs->ns_inode_lock);
1883 
1884 	return 0;
1885 }
1886 
1887 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
1888 					     struct the_nilfs *nilfs)
1889 {
1890 	struct nilfs_transaction_info *ti = current->journal_info;
1891 	struct nilfs_inode_info *ii, *n;
1892 
1893 	spin_lock(&nilfs->ns_inode_lock);
1894 	list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
1895 		if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
1896 		    test_bit(NILFS_I_DIRTY, &ii->i_state))
1897 			continue;
1898 
1899 		clear_bit(NILFS_I_BUSY, &ii->i_state);
1900 		brelse(ii->i_bh);
1901 		ii->i_bh = NULL;
1902 		list_move_tail(&ii->i_dirty, &ti->ti_garbage);
1903 	}
1904 	spin_unlock(&nilfs->ns_inode_lock);
1905 }
1906 
1907 /*
1908  * Main procedure of segment constructor
1909  */
1910 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
1911 {
1912 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1913 	int err;
1914 
1915 	sci->sc_stage.scnt = NILFS_ST_INIT;
1916 	sci->sc_cno = nilfs->ns_cno;
1917 
1918 	err = nilfs_segctor_collect_dirty_files(sci, nilfs);
1919 	if (unlikely(err))
1920 		goto out;
1921 
1922 	if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
1923 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
1924 
1925 	if (nilfs_segctor_clean(sci))
1926 		goto out;
1927 
1928 	do {
1929 		sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
1930 
1931 		err = nilfs_segctor_begin_construction(sci, nilfs);
1932 		if (unlikely(err))
1933 			goto out;
1934 
1935 		/* Update time stamp */
1936 		sci->sc_seg_ctime = get_seconds();
1937 
1938 		err = nilfs_segctor_collect(sci, nilfs, mode);
1939 		if (unlikely(err))
1940 			goto failed;
1941 
1942 		/* Avoid empty segment */
1943 		if (sci->sc_stage.scnt == NILFS_ST_DONE &&
1944 		    nilfs_segbuf_empty(sci->sc_curseg)) {
1945 			nilfs_segctor_abort_construction(sci, nilfs, 1);
1946 			goto out;
1947 		}
1948 
1949 		err = nilfs_segctor_assign(sci, mode);
1950 		if (unlikely(err))
1951 			goto failed;
1952 
1953 		if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
1954 			nilfs_segctor_fill_in_file_bmap(sci);
1955 
1956 		if (mode == SC_LSEG_SR &&
1957 		    sci->sc_stage.scnt >= NILFS_ST_CPFILE) {
1958 			err = nilfs_segctor_fill_in_checkpoint(sci);
1959 			if (unlikely(err))
1960 				goto failed_to_write;
1961 
1962 			nilfs_segctor_fill_in_super_root(sci, nilfs);
1963 		}
1964 		nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
1965 
1966 		/* Write partial segments */
1967 		nilfs_segctor_prepare_write(sci);
1968 
1969 		nilfs_add_checksums_on_logs(&sci->sc_segbufs,
1970 					    nilfs->ns_crc_seed);
1971 
1972 		err = nilfs_segctor_write(sci, nilfs);
1973 		if (unlikely(err))
1974 			goto failed_to_write;
1975 
1976 		if (sci->sc_stage.scnt == NILFS_ST_DONE ||
1977 		    nilfs->ns_blocksize_bits != PAGE_CACHE_SHIFT) {
1978 			/*
1979 			 * At this point, we avoid double buffering
1980 			 * for blocksize < pagesize because page dirty
1981 			 * flag is turned off during write and dirty
1982 			 * buffers are not properly collected for
1983 			 * pages crossing over segments.
1984 			 */
1985 			err = nilfs_segctor_wait(sci);
1986 			if (err)
1987 				goto failed_to_write;
1988 		}
1989 	} while (sci->sc_stage.scnt != NILFS_ST_DONE);
1990 
1991  out:
1992 	nilfs_segctor_drop_written_files(sci, nilfs);
1993 	return err;
1994 
1995  failed_to_write:
1996 	if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
1997 		nilfs_redirty_inodes(&sci->sc_dirty_files);
1998 
1999  failed:
2000 	if (nilfs_doing_gc())
2001 		nilfs_redirty_inodes(&sci->sc_gc_inodes);
2002 	nilfs_segctor_abort_construction(sci, nilfs, err);
2003 	goto out;
2004 }
2005 
2006 /**
2007  * nilfs_segctor_start_timer - set timer of background write
2008  * @sci: nilfs_sc_info
2009  *
2010  * If the timer has already been set, it ignores the new request.
2011  * This function MUST be called within a section locking the segment
2012  * semaphore.
2013  */
2014 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2015 {
2016 	spin_lock(&sci->sc_state_lock);
2017 	if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2018 		sci->sc_timer.expires = jiffies + sci->sc_interval;
2019 		add_timer(&sci->sc_timer);
2020 		sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2021 	}
2022 	spin_unlock(&sci->sc_state_lock);
2023 }
2024 
2025 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2026 {
2027 	spin_lock(&sci->sc_state_lock);
2028 	if (!(sci->sc_flush_request & (1 << bn))) {
2029 		unsigned long prev_req = sci->sc_flush_request;
2030 
2031 		sci->sc_flush_request |= (1 << bn);
2032 		if (!prev_req)
2033 			wake_up(&sci->sc_wait_daemon);
2034 	}
2035 	spin_unlock(&sci->sc_state_lock);
2036 }
2037 
2038 /**
2039  * nilfs_flush_segment - trigger a segment construction for resource control
2040  * @sb: super block
2041  * @ino: inode number of the file to be flushed out.
2042  */
2043 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2044 {
2045 	struct the_nilfs *nilfs = sb->s_fs_info;
2046 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2047 
2048 	if (!sci || nilfs_doing_construction())
2049 		return;
2050 	nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2051 					/* assign bit 0 to data files */
2052 }
2053 
2054 struct nilfs_segctor_wait_request {
2055 	wait_queue_t	wq;
2056 	__u32		seq;
2057 	int		err;
2058 	atomic_t	done;
2059 };
2060 
2061 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2062 {
2063 	struct nilfs_segctor_wait_request wait_req;
2064 	int err = 0;
2065 
2066 	spin_lock(&sci->sc_state_lock);
2067 	init_wait(&wait_req.wq);
2068 	wait_req.err = 0;
2069 	atomic_set(&wait_req.done, 0);
2070 	wait_req.seq = ++sci->sc_seq_request;
2071 	spin_unlock(&sci->sc_state_lock);
2072 
2073 	init_waitqueue_entry(&wait_req.wq, current);
2074 	add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2075 	set_current_state(TASK_INTERRUPTIBLE);
2076 	wake_up(&sci->sc_wait_daemon);
2077 
2078 	for (;;) {
2079 		if (atomic_read(&wait_req.done)) {
2080 			err = wait_req.err;
2081 			break;
2082 		}
2083 		if (!signal_pending(current)) {
2084 			schedule();
2085 			continue;
2086 		}
2087 		err = -ERESTARTSYS;
2088 		break;
2089 	}
2090 	finish_wait(&sci->sc_wait_request, &wait_req.wq);
2091 	return err;
2092 }
2093 
2094 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
2095 {
2096 	struct nilfs_segctor_wait_request *wrq, *n;
2097 	unsigned long flags;
2098 
2099 	spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2100 	list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
2101 				 wq.task_list) {
2102 		if (!atomic_read(&wrq->done) &&
2103 		    nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
2104 			wrq->err = err;
2105 			atomic_set(&wrq->done, 1);
2106 		}
2107 		if (atomic_read(&wrq->done)) {
2108 			wrq->wq.func(&wrq->wq,
2109 				     TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2110 				     0, NULL);
2111 		}
2112 	}
2113 	spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2114 }
2115 
2116 /**
2117  * nilfs_construct_segment - construct a logical segment
2118  * @sb: super block
2119  *
2120  * Return Value: On success, 0 is retured. On errors, one of the following
2121  * negative error code is returned.
2122  *
2123  * %-EROFS - Read only filesystem.
2124  *
2125  * %-EIO - I/O error
2126  *
2127  * %-ENOSPC - No space left on device (only in a panic state).
2128  *
2129  * %-ERESTARTSYS - Interrupted.
2130  *
2131  * %-ENOMEM - Insufficient memory available.
2132  */
2133 int nilfs_construct_segment(struct super_block *sb)
2134 {
2135 	struct the_nilfs *nilfs = sb->s_fs_info;
2136 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2137 	struct nilfs_transaction_info *ti;
2138 	int err;
2139 
2140 	if (!sci)
2141 		return -EROFS;
2142 
2143 	/* A call inside transactions causes a deadlock. */
2144 	BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2145 
2146 	err = nilfs_segctor_sync(sci);
2147 	return err;
2148 }
2149 
2150 /**
2151  * nilfs_construct_dsync_segment - construct a data-only logical segment
2152  * @sb: super block
2153  * @inode: inode whose data blocks should be written out
2154  * @start: start byte offset
2155  * @end: end byte offset (inclusive)
2156  *
2157  * Return Value: On success, 0 is retured. On errors, one of the following
2158  * negative error code is returned.
2159  *
2160  * %-EROFS - Read only filesystem.
2161  *
2162  * %-EIO - I/O error
2163  *
2164  * %-ENOSPC - No space left on device (only in a panic state).
2165  *
2166  * %-ERESTARTSYS - Interrupted.
2167  *
2168  * %-ENOMEM - Insufficient memory available.
2169  */
2170 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2171 				  loff_t start, loff_t end)
2172 {
2173 	struct the_nilfs *nilfs = sb->s_fs_info;
2174 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2175 	struct nilfs_inode_info *ii;
2176 	struct nilfs_transaction_info ti;
2177 	int err = 0;
2178 
2179 	if (!sci)
2180 		return -EROFS;
2181 
2182 	nilfs_transaction_lock(sb, &ti, 0);
2183 
2184 	ii = NILFS_I(inode);
2185 	if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
2186 	    nilfs_test_opt(nilfs, STRICT_ORDER) ||
2187 	    test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2188 	    nilfs_discontinued(nilfs)) {
2189 		nilfs_transaction_unlock(sb);
2190 		err = nilfs_segctor_sync(sci);
2191 		return err;
2192 	}
2193 
2194 	spin_lock(&nilfs->ns_inode_lock);
2195 	if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2196 	    !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2197 		spin_unlock(&nilfs->ns_inode_lock);
2198 		nilfs_transaction_unlock(sb);
2199 		return 0;
2200 	}
2201 	spin_unlock(&nilfs->ns_inode_lock);
2202 	sci->sc_dsync_inode = ii;
2203 	sci->sc_dsync_start = start;
2204 	sci->sc_dsync_end = end;
2205 
2206 	err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2207 
2208 	nilfs_transaction_unlock(sb);
2209 	return err;
2210 }
2211 
2212 #define FLUSH_FILE_BIT	(0x1) /* data file only */
2213 #define FLUSH_DAT_BIT	(1 << NILFS_DAT_INO) /* DAT only */
2214 
2215 /**
2216  * nilfs_segctor_accept - record accepted sequence count of log-write requests
2217  * @sci: segment constructor object
2218  */
2219 static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
2220 {
2221 	spin_lock(&sci->sc_state_lock);
2222 	sci->sc_seq_accepted = sci->sc_seq_request;
2223 	spin_unlock(&sci->sc_state_lock);
2224 	del_timer_sync(&sci->sc_timer);
2225 }
2226 
2227 /**
2228  * nilfs_segctor_notify - notify the result of request to caller threads
2229  * @sci: segment constructor object
2230  * @mode: mode of log forming
2231  * @err: error code to be notified
2232  */
2233 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
2234 {
2235 	/* Clear requests (even when the construction failed) */
2236 	spin_lock(&sci->sc_state_lock);
2237 
2238 	if (mode == SC_LSEG_SR) {
2239 		sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2240 		sci->sc_seq_done = sci->sc_seq_accepted;
2241 		nilfs_segctor_wakeup(sci, err);
2242 		sci->sc_flush_request = 0;
2243 	} else {
2244 		if (mode == SC_FLUSH_FILE)
2245 			sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2246 		else if (mode == SC_FLUSH_DAT)
2247 			sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2248 
2249 		/* re-enable timer if checkpoint creation was not done */
2250 		if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2251 		    time_before(jiffies, sci->sc_timer.expires))
2252 			add_timer(&sci->sc_timer);
2253 	}
2254 	spin_unlock(&sci->sc_state_lock);
2255 }
2256 
2257 /**
2258  * nilfs_segctor_construct - form logs and write them to disk
2259  * @sci: segment constructor object
2260  * @mode: mode of log forming
2261  */
2262 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
2263 {
2264 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2265 	struct nilfs_super_block **sbp;
2266 	int err = 0;
2267 
2268 	nilfs_segctor_accept(sci);
2269 
2270 	if (nilfs_discontinued(nilfs))
2271 		mode = SC_LSEG_SR;
2272 	if (!nilfs_segctor_confirm(sci))
2273 		err = nilfs_segctor_do_construct(sci, mode);
2274 
2275 	if (likely(!err)) {
2276 		if (mode != SC_FLUSH_DAT)
2277 			atomic_set(&nilfs->ns_ndirtyblks, 0);
2278 		if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2279 		    nilfs_discontinued(nilfs)) {
2280 			down_write(&nilfs->ns_sem);
2281 			err = -EIO;
2282 			sbp = nilfs_prepare_super(sci->sc_super,
2283 						  nilfs_sb_will_flip(nilfs));
2284 			if (likely(sbp)) {
2285 				nilfs_set_log_cursor(sbp[0], nilfs);
2286 				err = nilfs_commit_super(sci->sc_super,
2287 							 NILFS_SB_COMMIT);
2288 			}
2289 			up_write(&nilfs->ns_sem);
2290 		}
2291 	}
2292 
2293 	nilfs_segctor_notify(sci, mode, err);
2294 	return err;
2295 }
2296 
2297 static void nilfs_construction_timeout(unsigned long data)
2298 {
2299 	struct task_struct *p = (struct task_struct *)data;
2300 	wake_up_process(p);
2301 }
2302 
2303 static void
2304 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2305 {
2306 	struct nilfs_inode_info *ii, *n;
2307 
2308 	list_for_each_entry_safe(ii, n, head, i_dirty) {
2309 		if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2310 			continue;
2311 		list_del_init(&ii->i_dirty);
2312 		iput(&ii->vfs_inode);
2313 	}
2314 }
2315 
2316 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2317 			 void **kbufs)
2318 {
2319 	struct the_nilfs *nilfs = sb->s_fs_info;
2320 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2321 	struct nilfs_transaction_info ti;
2322 	int err;
2323 
2324 	if (unlikely(!sci))
2325 		return -EROFS;
2326 
2327 	nilfs_transaction_lock(sb, &ti, 1);
2328 
2329 	err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
2330 	if (unlikely(err))
2331 		goto out_unlock;
2332 
2333 	err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2334 	if (unlikely(err)) {
2335 		nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
2336 		goto out_unlock;
2337 	}
2338 
2339 	sci->sc_freesegs = kbufs[4];
2340 	sci->sc_nfreesegs = argv[4].v_nmembs;
2341 	list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
2342 
2343 	for (;;) {
2344 		err = nilfs_segctor_construct(sci, SC_LSEG_SR);
2345 		nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2346 
2347 		if (likely(!err))
2348 			break;
2349 
2350 		nilfs_warning(sb, __func__,
2351 			      "segment construction failed. (err=%d)", err);
2352 		set_current_state(TASK_INTERRUPTIBLE);
2353 		schedule_timeout(sci->sc_interval);
2354 	}
2355 	if (nilfs_test_opt(nilfs, DISCARD)) {
2356 		int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
2357 						 sci->sc_nfreesegs);
2358 		if (ret) {
2359 			printk(KERN_WARNING
2360 			       "NILFS warning: error %d on discard request, "
2361 			       "turning discards off for the device\n", ret);
2362 			nilfs_clear_opt(nilfs, DISCARD);
2363 		}
2364 	}
2365 
2366  out_unlock:
2367 	sci->sc_freesegs = NULL;
2368 	sci->sc_nfreesegs = 0;
2369 	nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
2370 	nilfs_transaction_unlock(sb);
2371 	return err;
2372 }
2373 
2374 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2375 {
2376 	struct nilfs_transaction_info ti;
2377 
2378 	nilfs_transaction_lock(sci->sc_super, &ti, 0);
2379 	nilfs_segctor_construct(sci, mode);
2380 
2381 	/*
2382 	 * Unclosed segment should be retried.  We do this using sc_timer.
2383 	 * Timeout of sc_timer will invoke complete construction which leads
2384 	 * to close the current logical segment.
2385 	 */
2386 	if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2387 		nilfs_segctor_start_timer(sci);
2388 
2389 	nilfs_transaction_unlock(sci->sc_super);
2390 }
2391 
2392 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2393 {
2394 	int mode = 0;
2395 	int err;
2396 
2397 	spin_lock(&sci->sc_state_lock);
2398 	mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2399 		SC_FLUSH_DAT : SC_FLUSH_FILE;
2400 	spin_unlock(&sci->sc_state_lock);
2401 
2402 	if (mode) {
2403 		err = nilfs_segctor_do_construct(sci, mode);
2404 
2405 		spin_lock(&sci->sc_state_lock);
2406 		sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2407 			~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2408 		spin_unlock(&sci->sc_state_lock);
2409 	}
2410 	clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2411 }
2412 
2413 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2414 {
2415 	if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2416 	    time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2417 		if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2418 			return SC_FLUSH_FILE;
2419 		else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2420 			return SC_FLUSH_DAT;
2421 	}
2422 	return SC_LSEG_SR;
2423 }
2424 
2425 /**
2426  * nilfs_segctor_thread - main loop of the segment constructor thread.
2427  * @arg: pointer to a struct nilfs_sc_info.
2428  *
2429  * nilfs_segctor_thread() initializes a timer and serves as a daemon
2430  * to execute segment constructions.
2431  */
2432 static int nilfs_segctor_thread(void *arg)
2433 {
2434 	struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2435 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2436 	int timeout = 0;
2437 
2438 	sci->sc_timer.data = (unsigned long)current;
2439 	sci->sc_timer.function = nilfs_construction_timeout;
2440 
2441 	/* start sync. */
2442 	sci->sc_task = current;
2443 	wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
2444 	printk(KERN_INFO
2445 	       "segctord starting. Construction interval = %lu seconds, "
2446 	       "CP frequency < %lu seconds\n",
2447 	       sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2448 
2449 	spin_lock(&sci->sc_state_lock);
2450  loop:
2451 	for (;;) {
2452 		int mode;
2453 
2454 		if (sci->sc_state & NILFS_SEGCTOR_QUIT)
2455 			goto end_thread;
2456 
2457 		if (timeout || sci->sc_seq_request != sci->sc_seq_done)
2458 			mode = SC_LSEG_SR;
2459 		else if (!sci->sc_flush_request)
2460 			break;
2461 		else
2462 			mode = nilfs_segctor_flush_mode(sci);
2463 
2464 		spin_unlock(&sci->sc_state_lock);
2465 		nilfs_segctor_thread_construct(sci, mode);
2466 		spin_lock(&sci->sc_state_lock);
2467 		timeout = 0;
2468 	}
2469 
2470 
2471 	if (freezing(current)) {
2472 		spin_unlock(&sci->sc_state_lock);
2473 		try_to_freeze();
2474 		spin_lock(&sci->sc_state_lock);
2475 	} else {
2476 		DEFINE_WAIT(wait);
2477 		int should_sleep = 1;
2478 
2479 		prepare_to_wait(&sci->sc_wait_daemon, &wait,
2480 				TASK_INTERRUPTIBLE);
2481 
2482 		if (sci->sc_seq_request != sci->sc_seq_done)
2483 			should_sleep = 0;
2484 		else if (sci->sc_flush_request)
2485 			should_sleep = 0;
2486 		else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
2487 			should_sleep = time_before(jiffies,
2488 					sci->sc_timer.expires);
2489 
2490 		if (should_sleep) {
2491 			spin_unlock(&sci->sc_state_lock);
2492 			schedule();
2493 			spin_lock(&sci->sc_state_lock);
2494 		}
2495 		finish_wait(&sci->sc_wait_daemon, &wait);
2496 		timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2497 			   time_after_eq(jiffies, sci->sc_timer.expires));
2498 
2499 		if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
2500 			set_nilfs_discontinued(nilfs);
2501 	}
2502 	goto loop;
2503 
2504  end_thread:
2505 	spin_unlock(&sci->sc_state_lock);
2506 
2507 	/* end sync. */
2508 	sci->sc_task = NULL;
2509 	wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
2510 	return 0;
2511 }
2512 
2513 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
2514 {
2515 	struct task_struct *t;
2516 
2517 	t = kthread_run(nilfs_segctor_thread, sci, "segctord");
2518 	if (IS_ERR(t)) {
2519 		int err = PTR_ERR(t);
2520 
2521 		printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
2522 		       err);
2523 		return err;
2524 	}
2525 	wait_event(sci->sc_wait_task, sci->sc_task != NULL);
2526 	return 0;
2527 }
2528 
2529 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
2530 	__acquires(&sci->sc_state_lock)
2531 	__releases(&sci->sc_state_lock)
2532 {
2533 	sci->sc_state |= NILFS_SEGCTOR_QUIT;
2534 
2535 	while (sci->sc_task) {
2536 		wake_up(&sci->sc_wait_daemon);
2537 		spin_unlock(&sci->sc_state_lock);
2538 		wait_event(sci->sc_wait_task, sci->sc_task == NULL);
2539 		spin_lock(&sci->sc_state_lock);
2540 	}
2541 }
2542 
2543 /*
2544  * Setup & clean-up functions
2545  */
2546 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
2547 					       struct nilfs_root *root)
2548 {
2549 	struct the_nilfs *nilfs = sb->s_fs_info;
2550 	struct nilfs_sc_info *sci;
2551 
2552 	sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2553 	if (!sci)
2554 		return NULL;
2555 
2556 	sci->sc_super = sb;
2557 
2558 	nilfs_get_root(root);
2559 	sci->sc_root = root;
2560 
2561 	init_waitqueue_head(&sci->sc_wait_request);
2562 	init_waitqueue_head(&sci->sc_wait_daemon);
2563 	init_waitqueue_head(&sci->sc_wait_task);
2564 	spin_lock_init(&sci->sc_state_lock);
2565 	INIT_LIST_HEAD(&sci->sc_dirty_files);
2566 	INIT_LIST_HEAD(&sci->sc_segbufs);
2567 	INIT_LIST_HEAD(&sci->sc_write_logs);
2568 	INIT_LIST_HEAD(&sci->sc_gc_inodes);
2569 	init_timer(&sci->sc_timer);
2570 
2571 	sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2572 	sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2573 	sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2574 
2575 	if (nilfs->ns_interval)
2576 		sci->sc_interval = HZ * nilfs->ns_interval;
2577 	if (nilfs->ns_watermark)
2578 		sci->sc_watermark = nilfs->ns_watermark;
2579 	return sci;
2580 }
2581 
2582 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2583 {
2584 	int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2585 
2586 	/* The segctord thread was stopped and its timer was removed.
2587 	   But some tasks remain. */
2588 	do {
2589 		struct nilfs_transaction_info ti;
2590 
2591 		nilfs_transaction_lock(sci->sc_super, &ti, 0);
2592 		ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
2593 		nilfs_transaction_unlock(sci->sc_super);
2594 
2595 	} while (ret && retrycount-- > 0);
2596 }
2597 
2598 /**
2599  * nilfs_segctor_destroy - destroy the segment constructor.
2600  * @sci: nilfs_sc_info
2601  *
2602  * nilfs_segctor_destroy() kills the segctord thread and frees
2603  * the nilfs_sc_info struct.
2604  * Caller must hold the segment semaphore.
2605  */
2606 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2607 {
2608 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2609 	int flag;
2610 
2611 	up_write(&nilfs->ns_segctor_sem);
2612 
2613 	spin_lock(&sci->sc_state_lock);
2614 	nilfs_segctor_kill_thread(sci);
2615 	flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2616 		|| sci->sc_seq_request != sci->sc_seq_done);
2617 	spin_unlock(&sci->sc_state_lock);
2618 
2619 	if (flag || !nilfs_segctor_confirm(sci))
2620 		nilfs_segctor_write_out(sci);
2621 
2622 	if (!list_empty(&sci->sc_dirty_files)) {
2623 		nilfs_warning(sci->sc_super, __func__,
2624 			      "dirty file(s) after the final construction\n");
2625 		nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
2626 	}
2627 
2628 	WARN_ON(!list_empty(&sci->sc_segbufs));
2629 	WARN_ON(!list_empty(&sci->sc_write_logs));
2630 
2631 	nilfs_put_root(sci->sc_root);
2632 
2633 	down_write(&nilfs->ns_segctor_sem);
2634 
2635 	del_timer_sync(&sci->sc_timer);
2636 	kfree(sci);
2637 }
2638 
2639 /**
2640  * nilfs_attach_log_writer - attach log writer
2641  * @sb: super block instance
2642  * @root: root object of the current filesystem tree
2643  *
2644  * This allocates a log writer object, initializes it, and starts the
2645  * log writer.
2646  *
2647  * Return Value: On success, 0 is returned. On error, one of the following
2648  * negative error code is returned.
2649  *
2650  * %-ENOMEM - Insufficient memory available.
2651  */
2652 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
2653 {
2654 	struct the_nilfs *nilfs = sb->s_fs_info;
2655 	int err;
2656 
2657 	if (nilfs->ns_writer) {
2658 		/*
2659 		 * This happens if the filesystem was remounted
2660 		 * read/write after nilfs_error degenerated it into a
2661 		 * read-only mount.
2662 		 */
2663 		nilfs_detach_log_writer(sb);
2664 	}
2665 
2666 	nilfs->ns_writer = nilfs_segctor_new(sb, root);
2667 	if (!nilfs->ns_writer)
2668 		return -ENOMEM;
2669 
2670 	err = nilfs_segctor_start_thread(nilfs->ns_writer);
2671 	if (err) {
2672 		kfree(nilfs->ns_writer);
2673 		nilfs->ns_writer = NULL;
2674 	}
2675 	return err;
2676 }
2677 
2678 /**
2679  * nilfs_detach_log_writer - destroy log writer
2680  * @sb: super block instance
2681  *
2682  * This kills log writer daemon, frees the log writer object, and
2683  * destroys list of dirty files.
2684  */
2685 void nilfs_detach_log_writer(struct super_block *sb)
2686 {
2687 	struct the_nilfs *nilfs = sb->s_fs_info;
2688 	LIST_HEAD(garbage_list);
2689 
2690 	down_write(&nilfs->ns_segctor_sem);
2691 	if (nilfs->ns_writer) {
2692 		nilfs_segctor_destroy(nilfs->ns_writer);
2693 		nilfs->ns_writer = NULL;
2694 	}
2695 
2696 	/* Force to free the list of dirty files */
2697 	spin_lock(&nilfs->ns_inode_lock);
2698 	if (!list_empty(&nilfs->ns_dirty_files)) {
2699 		list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
2700 		nilfs_warning(sb, __func__,
2701 			      "Hit dirty file after stopped log writer\n");
2702 	}
2703 	spin_unlock(&nilfs->ns_inode_lock);
2704 	up_write(&nilfs->ns_segctor_sem);
2705 
2706 	nilfs_dispose_list(nilfs, &garbage_list, 1);
2707 }
2708