xref: /openbmc/linux/fs/nilfs2/segment.c (revision 110e6f26)
1 /*
2  * segment.c - NILFS segment constructor.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  *
22  */
23 
24 #include <linux/pagemap.h>
25 #include <linux/buffer_head.h>
26 #include <linux/writeback.h>
27 #include <linux/bitops.h>
28 #include <linux/bio.h>
29 #include <linux/completion.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/freezer.h>
33 #include <linux/kthread.h>
34 #include <linux/crc32.h>
35 #include <linux/pagevec.h>
36 #include <linux/slab.h>
37 #include "nilfs.h"
38 #include "btnode.h"
39 #include "page.h"
40 #include "segment.h"
41 #include "sufile.h"
42 #include "cpfile.h"
43 #include "ifile.h"
44 #include "segbuf.h"
45 
46 
47 /*
48  * Segment constructor
49  */
50 #define SC_N_INODEVEC	16   /* Size of locally allocated inode vector */
51 
52 #define SC_MAX_SEGDELTA 64   /* Upper limit of the number of segments
53 				appended in collection retry loop */
54 
55 /* Construction mode */
56 enum {
57 	SC_LSEG_SR = 1,	/* Make a logical segment having a super root */
58 	SC_LSEG_DSYNC,	/* Flush data blocks of a given file and make
59 			   a logical segment without a super root */
60 	SC_FLUSH_FILE,	/* Flush data files, leads to segment writes without
61 			   creating a checkpoint */
62 	SC_FLUSH_DAT,	/* Flush DAT file. This also creates segments without
63 			   a checkpoint */
64 };
65 
66 /* Stage numbers of dirty block collection */
67 enum {
68 	NILFS_ST_INIT = 0,
69 	NILFS_ST_GC,		/* Collecting dirty blocks for GC */
70 	NILFS_ST_FILE,
71 	NILFS_ST_IFILE,
72 	NILFS_ST_CPFILE,
73 	NILFS_ST_SUFILE,
74 	NILFS_ST_DAT,
75 	NILFS_ST_SR,		/* Super root */
76 	NILFS_ST_DSYNC,		/* Data sync blocks */
77 	NILFS_ST_DONE,
78 };
79 
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/nilfs2.h>
82 
83 /*
84  * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are
85  * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of
86  * the variable must use them because transition of stage count must involve
87  * trace events (trace_nilfs2_collection_stage_transition).
88  *
89  * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't
90  * produce tracepoint events. It is provided just for making the intention
91  * clear.
92  */
93 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci)
94 {
95 	sci->sc_stage.scnt++;
96 	trace_nilfs2_collection_stage_transition(sci);
97 }
98 
99 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt)
100 {
101 	sci->sc_stage.scnt = next_scnt;
102 	trace_nilfs2_collection_stage_transition(sci);
103 }
104 
105 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci)
106 {
107 	return sci->sc_stage.scnt;
108 }
109 
110 /* State flags of collection */
111 #define NILFS_CF_NODE		0x0001	/* Collecting node blocks */
112 #define NILFS_CF_IFILE_STARTED	0x0002	/* IFILE stage has started */
113 #define NILFS_CF_SUFREED	0x0004	/* segment usages has been freed */
114 #define NILFS_CF_HISTORY_MASK	(NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
115 
116 /* Operations depending on the construction mode and file type */
117 struct nilfs_sc_operations {
118 	int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
119 			    struct inode *);
120 	int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
121 			    struct inode *);
122 	int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
123 			    struct inode *);
124 	void (*write_data_binfo)(struct nilfs_sc_info *,
125 				 struct nilfs_segsum_pointer *,
126 				 union nilfs_binfo *);
127 	void (*write_node_binfo)(struct nilfs_sc_info *,
128 				 struct nilfs_segsum_pointer *,
129 				 union nilfs_binfo *);
130 };
131 
132 /*
133  * Other definitions
134  */
135 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
136 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
137 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
138 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
139 
140 #define nilfs_cnt32_gt(a, b)   \
141 	(typecheck(__u32, a) && typecheck(__u32, b) && \
142 	 ((__s32)(b) - (__s32)(a) < 0))
143 #define nilfs_cnt32_ge(a, b)   \
144 	(typecheck(__u32, a) && typecheck(__u32, b) && \
145 	 ((__s32)(a) - (__s32)(b) >= 0))
146 #define nilfs_cnt32_lt(a, b)  nilfs_cnt32_gt(b, a)
147 #define nilfs_cnt32_le(a, b)  nilfs_cnt32_ge(b, a)
148 
149 static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
150 {
151 	struct nilfs_transaction_info *cur_ti = current->journal_info;
152 	void *save = NULL;
153 
154 	if (cur_ti) {
155 		if (cur_ti->ti_magic == NILFS_TI_MAGIC)
156 			return ++cur_ti->ti_count;
157 		else {
158 			/*
159 			 * If journal_info field is occupied by other FS,
160 			 * it is saved and will be restored on
161 			 * nilfs_transaction_commit().
162 			 */
163 			printk(KERN_WARNING
164 			       "NILFS warning: journal info from a different "
165 			       "FS\n");
166 			save = current->journal_info;
167 		}
168 	}
169 	if (!ti) {
170 		ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
171 		if (!ti)
172 			return -ENOMEM;
173 		ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
174 	} else {
175 		ti->ti_flags = 0;
176 	}
177 	ti->ti_count = 0;
178 	ti->ti_save = save;
179 	ti->ti_magic = NILFS_TI_MAGIC;
180 	current->journal_info = ti;
181 	return 0;
182 }
183 
184 /**
185  * nilfs_transaction_begin - start indivisible file operations.
186  * @sb: super block
187  * @ti: nilfs_transaction_info
188  * @vacancy_check: flags for vacancy rate checks
189  *
190  * nilfs_transaction_begin() acquires a reader/writer semaphore, called
191  * the segment semaphore, to make a segment construction and write tasks
192  * exclusive.  The function is used with nilfs_transaction_commit() in pairs.
193  * The region enclosed by these two functions can be nested.  To avoid a
194  * deadlock, the semaphore is only acquired or released in the outermost call.
195  *
196  * This function allocates a nilfs_transaction_info struct to keep context
197  * information on it.  It is initialized and hooked onto the current task in
198  * the outermost call.  If a pre-allocated struct is given to @ti, it is used
199  * instead; otherwise a new struct is assigned from a slab.
200  *
201  * When @vacancy_check flag is set, this function will check the amount of
202  * free space, and will wait for the GC to reclaim disk space if low capacity.
203  *
204  * Return Value: On success, 0 is returned. On error, one of the following
205  * negative error code is returned.
206  *
207  * %-ENOMEM - Insufficient memory available.
208  *
209  * %-ENOSPC - No space left on device
210  */
211 int nilfs_transaction_begin(struct super_block *sb,
212 			    struct nilfs_transaction_info *ti,
213 			    int vacancy_check)
214 {
215 	struct the_nilfs *nilfs;
216 	int ret = nilfs_prepare_segment_lock(ti);
217 	struct nilfs_transaction_info *trace_ti;
218 
219 	if (unlikely(ret < 0))
220 		return ret;
221 	if (ret > 0) {
222 		trace_ti = current->journal_info;
223 
224 		trace_nilfs2_transaction_transition(sb, trace_ti,
225 				    trace_ti->ti_count, trace_ti->ti_flags,
226 				    TRACE_NILFS2_TRANSACTION_BEGIN);
227 		return 0;
228 	}
229 
230 	sb_start_intwrite(sb);
231 
232 	nilfs = sb->s_fs_info;
233 	down_read(&nilfs->ns_segctor_sem);
234 	if (vacancy_check && nilfs_near_disk_full(nilfs)) {
235 		up_read(&nilfs->ns_segctor_sem);
236 		ret = -ENOSPC;
237 		goto failed;
238 	}
239 
240 	trace_ti = current->journal_info;
241 	trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count,
242 					    trace_ti->ti_flags,
243 					    TRACE_NILFS2_TRANSACTION_BEGIN);
244 	return 0;
245 
246  failed:
247 	ti = current->journal_info;
248 	current->journal_info = ti->ti_save;
249 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
250 		kmem_cache_free(nilfs_transaction_cachep, ti);
251 	sb_end_intwrite(sb);
252 	return ret;
253 }
254 
255 /**
256  * nilfs_transaction_commit - commit indivisible file operations.
257  * @sb: super block
258  *
259  * nilfs_transaction_commit() releases the read semaphore which is
260  * acquired by nilfs_transaction_begin(). This is only performed
261  * in outermost call of this function.  If a commit flag is set,
262  * nilfs_transaction_commit() sets a timer to start the segment
263  * constructor.  If a sync flag is set, it starts construction
264  * directly.
265  */
266 int nilfs_transaction_commit(struct super_block *sb)
267 {
268 	struct nilfs_transaction_info *ti = current->journal_info;
269 	struct the_nilfs *nilfs = sb->s_fs_info;
270 	int err = 0;
271 
272 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
273 	ti->ti_flags |= NILFS_TI_COMMIT;
274 	if (ti->ti_count > 0) {
275 		ti->ti_count--;
276 		trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
277 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
278 		return 0;
279 	}
280 	if (nilfs->ns_writer) {
281 		struct nilfs_sc_info *sci = nilfs->ns_writer;
282 
283 		if (ti->ti_flags & NILFS_TI_COMMIT)
284 			nilfs_segctor_start_timer(sci);
285 		if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
286 			nilfs_segctor_do_flush(sci, 0);
287 	}
288 	up_read(&nilfs->ns_segctor_sem);
289 	trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
290 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
291 
292 	current->journal_info = ti->ti_save;
293 
294 	if (ti->ti_flags & NILFS_TI_SYNC)
295 		err = nilfs_construct_segment(sb);
296 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
297 		kmem_cache_free(nilfs_transaction_cachep, ti);
298 	sb_end_intwrite(sb);
299 	return err;
300 }
301 
302 void nilfs_transaction_abort(struct super_block *sb)
303 {
304 	struct nilfs_transaction_info *ti = current->journal_info;
305 	struct the_nilfs *nilfs = sb->s_fs_info;
306 
307 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
308 	if (ti->ti_count > 0) {
309 		ti->ti_count--;
310 		trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
311 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
312 		return;
313 	}
314 	up_read(&nilfs->ns_segctor_sem);
315 
316 	trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
317 		    ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
318 
319 	current->journal_info = ti->ti_save;
320 	if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
321 		kmem_cache_free(nilfs_transaction_cachep, ti);
322 	sb_end_intwrite(sb);
323 }
324 
325 void nilfs_relax_pressure_in_lock(struct super_block *sb)
326 {
327 	struct the_nilfs *nilfs = sb->s_fs_info;
328 	struct nilfs_sc_info *sci = nilfs->ns_writer;
329 
330 	if (!sci || !sci->sc_flush_request)
331 		return;
332 
333 	set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
334 	up_read(&nilfs->ns_segctor_sem);
335 
336 	down_write(&nilfs->ns_segctor_sem);
337 	if (sci->sc_flush_request &&
338 	    test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
339 		struct nilfs_transaction_info *ti = current->journal_info;
340 
341 		ti->ti_flags |= NILFS_TI_WRITER;
342 		nilfs_segctor_do_immediate_flush(sci);
343 		ti->ti_flags &= ~NILFS_TI_WRITER;
344 	}
345 	downgrade_write(&nilfs->ns_segctor_sem);
346 }
347 
348 static void nilfs_transaction_lock(struct super_block *sb,
349 				   struct nilfs_transaction_info *ti,
350 				   int gcflag)
351 {
352 	struct nilfs_transaction_info *cur_ti = current->journal_info;
353 	struct the_nilfs *nilfs = sb->s_fs_info;
354 	struct nilfs_sc_info *sci = nilfs->ns_writer;
355 
356 	WARN_ON(cur_ti);
357 	ti->ti_flags = NILFS_TI_WRITER;
358 	ti->ti_count = 0;
359 	ti->ti_save = cur_ti;
360 	ti->ti_magic = NILFS_TI_MAGIC;
361 	current->journal_info = ti;
362 
363 	for (;;) {
364 		trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
365 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK);
366 
367 		down_write(&nilfs->ns_segctor_sem);
368 		if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
369 			break;
370 
371 		nilfs_segctor_do_immediate_flush(sci);
372 
373 		up_write(&nilfs->ns_segctor_sem);
374 		yield();
375 	}
376 	if (gcflag)
377 		ti->ti_flags |= NILFS_TI_GC;
378 
379 	trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
380 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK);
381 }
382 
383 static void nilfs_transaction_unlock(struct super_block *sb)
384 {
385 	struct nilfs_transaction_info *ti = current->journal_info;
386 	struct the_nilfs *nilfs = sb->s_fs_info;
387 
388 	BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
389 	BUG_ON(ti->ti_count > 0);
390 
391 	up_write(&nilfs->ns_segctor_sem);
392 	current->journal_info = ti->ti_save;
393 
394 	trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
395 			    ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK);
396 }
397 
398 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
399 					    struct nilfs_segsum_pointer *ssp,
400 					    unsigned bytes)
401 {
402 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
403 	unsigned blocksize = sci->sc_super->s_blocksize;
404 	void *p;
405 
406 	if (unlikely(ssp->offset + bytes > blocksize)) {
407 		ssp->offset = 0;
408 		BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
409 					       &segbuf->sb_segsum_buffers));
410 		ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
411 	}
412 	p = ssp->bh->b_data + ssp->offset;
413 	ssp->offset += bytes;
414 	return p;
415 }
416 
417 /**
418  * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
419  * @sci: nilfs_sc_info
420  */
421 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
422 {
423 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
424 	struct buffer_head *sumbh;
425 	unsigned sumbytes;
426 	unsigned flags = 0;
427 	int err;
428 
429 	if (nilfs_doing_gc())
430 		flags = NILFS_SS_GC;
431 	err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
432 	if (unlikely(err))
433 		return err;
434 
435 	sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
436 	sumbytes = segbuf->sb_sum.sumbytes;
437 	sci->sc_finfo_ptr.bh = sumbh;  sci->sc_finfo_ptr.offset = sumbytes;
438 	sci->sc_binfo_ptr.bh = sumbh;  sci->sc_binfo_ptr.offset = sumbytes;
439 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
440 	return 0;
441 }
442 
443 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
444 {
445 	sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
446 	if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
447 		return -E2BIG; /* The current segment is filled up
448 				  (internal code) */
449 	sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
450 	return nilfs_segctor_reset_segment_buffer(sci);
451 }
452 
453 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
454 {
455 	struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
456 	int err;
457 
458 	if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
459 		err = nilfs_segctor_feed_segment(sci);
460 		if (err)
461 			return err;
462 		segbuf = sci->sc_curseg;
463 	}
464 	err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
465 	if (likely(!err))
466 		segbuf->sb_sum.flags |= NILFS_SS_SR;
467 	return err;
468 }
469 
470 /*
471  * Functions for making segment summary and payloads
472  */
473 static int nilfs_segctor_segsum_block_required(
474 	struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
475 	unsigned binfo_size)
476 {
477 	unsigned blocksize = sci->sc_super->s_blocksize;
478 	/* Size of finfo and binfo is enough small against blocksize */
479 
480 	return ssp->offset + binfo_size +
481 		(!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
482 		blocksize;
483 }
484 
485 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
486 				      struct inode *inode)
487 {
488 	sci->sc_curseg->sb_sum.nfinfo++;
489 	sci->sc_binfo_ptr = sci->sc_finfo_ptr;
490 	nilfs_segctor_map_segsum_entry(
491 		sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
492 
493 	if (NILFS_I(inode)->i_root &&
494 	    !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
495 		set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
496 	/* skip finfo */
497 }
498 
499 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
500 				    struct inode *inode)
501 {
502 	struct nilfs_finfo *finfo;
503 	struct nilfs_inode_info *ii;
504 	struct nilfs_segment_buffer *segbuf;
505 	__u64 cno;
506 
507 	if (sci->sc_blk_cnt == 0)
508 		return;
509 
510 	ii = NILFS_I(inode);
511 
512 	if (test_bit(NILFS_I_GCINODE, &ii->i_state))
513 		cno = ii->i_cno;
514 	else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
515 		cno = 0;
516 	else
517 		cno = sci->sc_cno;
518 
519 	finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
520 						 sizeof(*finfo));
521 	finfo->fi_ino = cpu_to_le64(inode->i_ino);
522 	finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
523 	finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
524 	finfo->fi_cno = cpu_to_le64(cno);
525 
526 	segbuf = sci->sc_curseg;
527 	segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
528 		sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
529 	sci->sc_finfo_ptr = sci->sc_binfo_ptr;
530 	sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
531 }
532 
533 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
534 					struct buffer_head *bh,
535 					struct inode *inode,
536 					unsigned binfo_size)
537 {
538 	struct nilfs_segment_buffer *segbuf;
539 	int required, err = 0;
540 
541  retry:
542 	segbuf = sci->sc_curseg;
543 	required = nilfs_segctor_segsum_block_required(
544 		sci, &sci->sc_binfo_ptr, binfo_size);
545 	if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
546 		nilfs_segctor_end_finfo(sci, inode);
547 		err = nilfs_segctor_feed_segment(sci);
548 		if (err)
549 			return err;
550 		goto retry;
551 	}
552 	if (unlikely(required)) {
553 		err = nilfs_segbuf_extend_segsum(segbuf);
554 		if (unlikely(err))
555 			goto failed;
556 	}
557 	if (sci->sc_blk_cnt == 0)
558 		nilfs_segctor_begin_finfo(sci, inode);
559 
560 	nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
561 	/* Substitution to vblocknr is delayed until update_blocknr() */
562 	nilfs_segbuf_add_file_buffer(segbuf, bh);
563 	sci->sc_blk_cnt++;
564  failed:
565 	return err;
566 }
567 
568 /*
569  * Callback functions that enumerate, mark, and collect dirty blocks
570  */
571 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
572 				   struct buffer_head *bh, struct inode *inode)
573 {
574 	int err;
575 
576 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
577 	if (err < 0)
578 		return err;
579 
580 	err = nilfs_segctor_add_file_block(sci, bh, inode,
581 					   sizeof(struct nilfs_binfo_v));
582 	if (!err)
583 		sci->sc_datablk_cnt++;
584 	return err;
585 }
586 
587 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
588 				   struct buffer_head *bh,
589 				   struct inode *inode)
590 {
591 	return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
592 }
593 
594 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
595 				   struct buffer_head *bh,
596 				   struct inode *inode)
597 {
598 	WARN_ON(!buffer_dirty(bh));
599 	return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
600 }
601 
602 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
603 					struct nilfs_segsum_pointer *ssp,
604 					union nilfs_binfo *binfo)
605 {
606 	struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
607 		sci, ssp, sizeof(*binfo_v));
608 	*binfo_v = binfo->bi_v;
609 }
610 
611 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
612 					struct nilfs_segsum_pointer *ssp,
613 					union nilfs_binfo *binfo)
614 {
615 	__le64 *vblocknr = nilfs_segctor_map_segsum_entry(
616 		sci, ssp, sizeof(*vblocknr));
617 	*vblocknr = binfo->bi_v.bi_vblocknr;
618 }
619 
620 static struct nilfs_sc_operations nilfs_sc_file_ops = {
621 	.collect_data = nilfs_collect_file_data,
622 	.collect_node = nilfs_collect_file_node,
623 	.collect_bmap = nilfs_collect_file_bmap,
624 	.write_data_binfo = nilfs_write_file_data_binfo,
625 	.write_node_binfo = nilfs_write_file_node_binfo,
626 };
627 
628 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
629 				  struct buffer_head *bh, struct inode *inode)
630 {
631 	int err;
632 
633 	err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
634 	if (err < 0)
635 		return err;
636 
637 	err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
638 	if (!err)
639 		sci->sc_datablk_cnt++;
640 	return err;
641 }
642 
643 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
644 				  struct buffer_head *bh, struct inode *inode)
645 {
646 	WARN_ON(!buffer_dirty(bh));
647 	return nilfs_segctor_add_file_block(sci, bh, inode,
648 					    sizeof(struct nilfs_binfo_dat));
649 }
650 
651 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
652 				       struct nilfs_segsum_pointer *ssp,
653 				       union nilfs_binfo *binfo)
654 {
655 	__le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
656 							  sizeof(*blkoff));
657 	*blkoff = binfo->bi_dat.bi_blkoff;
658 }
659 
660 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
661 				       struct nilfs_segsum_pointer *ssp,
662 				       union nilfs_binfo *binfo)
663 {
664 	struct nilfs_binfo_dat *binfo_dat =
665 		nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
666 	*binfo_dat = binfo->bi_dat;
667 }
668 
669 static struct nilfs_sc_operations nilfs_sc_dat_ops = {
670 	.collect_data = nilfs_collect_dat_data,
671 	.collect_node = nilfs_collect_file_node,
672 	.collect_bmap = nilfs_collect_dat_bmap,
673 	.write_data_binfo = nilfs_write_dat_data_binfo,
674 	.write_node_binfo = nilfs_write_dat_node_binfo,
675 };
676 
677 static struct nilfs_sc_operations nilfs_sc_dsync_ops = {
678 	.collect_data = nilfs_collect_file_data,
679 	.collect_node = NULL,
680 	.collect_bmap = NULL,
681 	.write_data_binfo = nilfs_write_file_data_binfo,
682 	.write_node_binfo = NULL,
683 };
684 
685 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
686 					      struct list_head *listp,
687 					      size_t nlimit,
688 					      loff_t start, loff_t end)
689 {
690 	struct address_space *mapping = inode->i_mapping;
691 	struct pagevec pvec;
692 	pgoff_t index = 0, last = ULONG_MAX;
693 	size_t ndirties = 0;
694 	int i;
695 
696 	if (unlikely(start != 0 || end != LLONG_MAX)) {
697 		/*
698 		 * A valid range is given for sync-ing data pages. The
699 		 * range is rounded to per-page; extra dirty buffers
700 		 * may be included if blocksize < pagesize.
701 		 */
702 		index = start >> PAGE_SHIFT;
703 		last = end >> PAGE_SHIFT;
704 	}
705 	pagevec_init(&pvec, 0);
706  repeat:
707 	if (unlikely(index > last) ||
708 	    !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
709 				min_t(pgoff_t, last - index,
710 				      PAGEVEC_SIZE - 1) + 1))
711 		return ndirties;
712 
713 	for (i = 0; i < pagevec_count(&pvec); i++) {
714 		struct buffer_head *bh, *head;
715 		struct page *page = pvec.pages[i];
716 
717 		if (unlikely(page->index > last))
718 			break;
719 
720 		lock_page(page);
721 		if (!page_has_buffers(page))
722 			create_empty_buffers(page, 1 << inode->i_blkbits, 0);
723 		unlock_page(page);
724 
725 		bh = head = page_buffers(page);
726 		do {
727 			if (!buffer_dirty(bh) || buffer_async_write(bh))
728 				continue;
729 			get_bh(bh);
730 			list_add_tail(&bh->b_assoc_buffers, listp);
731 			ndirties++;
732 			if (unlikely(ndirties >= nlimit)) {
733 				pagevec_release(&pvec);
734 				cond_resched();
735 				return ndirties;
736 			}
737 		} while (bh = bh->b_this_page, bh != head);
738 	}
739 	pagevec_release(&pvec);
740 	cond_resched();
741 	goto repeat;
742 }
743 
744 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
745 					    struct list_head *listp)
746 {
747 	struct nilfs_inode_info *ii = NILFS_I(inode);
748 	struct address_space *mapping = &ii->i_btnode_cache;
749 	struct pagevec pvec;
750 	struct buffer_head *bh, *head;
751 	unsigned int i;
752 	pgoff_t index = 0;
753 
754 	pagevec_init(&pvec, 0);
755 
756 	while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
757 				  PAGEVEC_SIZE)) {
758 		for (i = 0; i < pagevec_count(&pvec); i++) {
759 			bh = head = page_buffers(pvec.pages[i]);
760 			do {
761 				if (buffer_dirty(bh) &&
762 						!buffer_async_write(bh)) {
763 					get_bh(bh);
764 					list_add_tail(&bh->b_assoc_buffers,
765 						      listp);
766 				}
767 				bh = bh->b_this_page;
768 			} while (bh != head);
769 		}
770 		pagevec_release(&pvec);
771 		cond_resched();
772 	}
773 }
774 
775 static void nilfs_dispose_list(struct the_nilfs *nilfs,
776 			       struct list_head *head, int force)
777 {
778 	struct nilfs_inode_info *ii, *n;
779 	struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
780 	unsigned nv = 0;
781 
782 	while (!list_empty(head)) {
783 		spin_lock(&nilfs->ns_inode_lock);
784 		list_for_each_entry_safe(ii, n, head, i_dirty) {
785 			list_del_init(&ii->i_dirty);
786 			if (force) {
787 				if (unlikely(ii->i_bh)) {
788 					brelse(ii->i_bh);
789 					ii->i_bh = NULL;
790 				}
791 			} else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
792 				set_bit(NILFS_I_QUEUED, &ii->i_state);
793 				list_add_tail(&ii->i_dirty,
794 					      &nilfs->ns_dirty_files);
795 				continue;
796 			}
797 			ivec[nv++] = ii;
798 			if (nv == SC_N_INODEVEC)
799 				break;
800 		}
801 		spin_unlock(&nilfs->ns_inode_lock);
802 
803 		for (pii = ivec; nv > 0; pii++, nv--)
804 			iput(&(*pii)->vfs_inode);
805 	}
806 }
807 
808 static void nilfs_iput_work_func(struct work_struct *work)
809 {
810 	struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info,
811 						 sc_iput_work);
812 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
813 
814 	nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0);
815 }
816 
817 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
818 				     struct nilfs_root *root)
819 {
820 	int ret = 0;
821 
822 	if (nilfs_mdt_fetch_dirty(root->ifile))
823 		ret++;
824 	if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
825 		ret++;
826 	if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
827 		ret++;
828 	if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
829 		ret++;
830 	return ret;
831 }
832 
833 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
834 {
835 	return list_empty(&sci->sc_dirty_files) &&
836 		!test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
837 		sci->sc_nfreesegs == 0 &&
838 		(!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
839 }
840 
841 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
842 {
843 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
844 	int ret = 0;
845 
846 	if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
847 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
848 
849 	spin_lock(&nilfs->ns_inode_lock);
850 	if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
851 		ret++;
852 
853 	spin_unlock(&nilfs->ns_inode_lock);
854 	return ret;
855 }
856 
857 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
858 {
859 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
860 
861 	nilfs_mdt_clear_dirty(sci->sc_root->ifile);
862 	nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
863 	nilfs_mdt_clear_dirty(nilfs->ns_sufile);
864 	nilfs_mdt_clear_dirty(nilfs->ns_dat);
865 }
866 
867 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
868 {
869 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
870 	struct buffer_head *bh_cp;
871 	struct nilfs_checkpoint *raw_cp;
872 	int err;
873 
874 	/* XXX: this interface will be changed */
875 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
876 					  &raw_cp, &bh_cp);
877 	if (likely(!err)) {
878 		/* The following code is duplicated with cpfile.  But, it is
879 		   needed to collect the checkpoint even if it was not newly
880 		   created */
881 		mark_buffer_dirty(bh_cp);
882 		nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
883 		nilfs_cpfile_put_checkpoint(
884 			nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
885 	} else
886 		WARN_ON(err == -EINVAL || err == -ENOENT);
887 
888 	return err;
889 }
890 
891 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
892 {
893 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
894 	struct buffer_head *bh_cp;
895 	struct nilfs_checkpoint *raw_cp;
896 	int err;
897 
898 	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
899 					  &raw_cp, &bh_cp);
900 	if (unlikely(err)) {
901 		WARN_ON(err == -EINVAL || err == -ENOENT);
902 		goto failed_ibh;
903 	}
904 	raw_cp->cp_snapshot_list.ssl_next = 0;
905 	raw_cp->cp_snapshot_list.ssl_prev = 0;
906 	raw_cp->cp_inodes_count =
907 		cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count));
908 	raw_cp->cp_blocks_count =
909 		cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count));
910 	raw_cp->cp_nblk_inc =
911 		cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
912 	raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
913 	raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
914 
915 	if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
916 		nilfs_checkpoint_clear_minor(raw_cp);
917 	else
918 		nilfs_checkpoint_set_minor(raw_cp);
919 
920 	nilfs_write_inode_common(sci->sc_root->ifile,
921 				 &raw_cp->cp_ifile_inode, 1);
922 	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
923 	return 0;
924 
925  failed_ibh:
926 	return err;
927 }
928 
929 static void nilfs_fill_in_file_bmap(struct inode *ifile,
930 				    struct nilfs_inode_info *ii)
931 
932 {
933 	struct buffer_head *ibh;
934 	struct nilfs_inode *raw_inode;
935 
936 	if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
937 		ibh = ii->i_bh;
938 		BUG_ON(!ibh);
939 		raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
940 						  ibh);
941 		nilfs_bmap_write(ii->i_bmap, raw_inode);
942 		nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
943 	}
944 }
945 
946 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
947 {
948 	struct nilfs_inode_info *ii;
949 
950 	list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
951 		nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
952 		set_bit(NILFS_I_COLLECTED, &ii->i_state);
953 	}
954 }
955 
956 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
957 					     struct the_nilfs *nilfs)
958 {
959 	struct buffer_head *bh_sr;
960 	struct nilfs_super_root *raw_sr;
961 	unsigned isz, srsz;
962 
963 	bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
964 	raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
965 	isz = nilfs->ns_inode_size;
966 	srsz = NILFS_SR_BYTES(isz);
967 
968 	raw_sr->sr_bytes = cpu_to_le16(srsz);
969 	raw_sr->sr_nongc_ctime
970 		= cpu_to_le64(nilfs_doing_gc() ?
971 			      nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
972 	raw_sr->sr_flags = 0;
973 
974 	nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
975 				 NILFS_SR_DAT_OFFSET(isz), 1);
976 	nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
977 				 NILFS_SR_CPFILE_OFFSET(isz), 1);
978 	nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
979 				 NILFS_SR_SUFILE_OFFSET(isz), 1);
980 	memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
981 }
982 
983 static void nilfs_redirty_inodes(struct list_head *head)
984 {
985 	struct nilfs_inode_info *ii;
986 
987 	list_for_each_entry(ii, head, i_dirty) {
988 		if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
989 			clear_bit(NILFS_I_COLLECTED, &ii->i_state);
990 	}
991 }
992 
993 static void nilfs_drop_collected_inodes(struct list_head *head)
994 {
995 	struct nilfs_inode_info *ii;
996 
997 	list_for_each_entry(ii, head, i_dirty) {
998 		if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
999 			continue;
1000 
1001 		clear_bit(NILFS_I_INODE_SYNC, &ii->i_state);
1002 		set_bit(NILFS_I_UPDATED, &ii->i_state);
1003 	}
1004 }
1005 
1006 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
1007 				       struct inode *inode,
1008 				       struct list_head *listp,
1009 				       int (*collect)(struct nilfs_sc_info *,
1010 						      struct buffer_head *,
1011 						      struct inode *))
1012 {
1013 	struct buffer_head *bh, *n;
1014 	int err = 0;
1015 
1016 	if (collect) {
1017 		list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
1018 			list_del_init(&bh->b_assoc_buffers);
1019 			err = collect(sci, bh, inode);
1020 			brelse(bh);
1021 			if (unlikely(err))
1022 				goto dispose_buffers;
1023 		}
1024 		return 0;
1025 	}
1026 
1027  dispose_buffers:
1028 	while (!list_empty(listp)) {
1029 		bh = list_first_entry(listp, struct buffer_head,
1030 				      b_assoc_buffers);
1031 		list_del_init(&bh->b_assoc_buffers);
1032 		brelse(bh);
1033 	}
1034 	return err;
1035 }
1036 
1037 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
1038 {
1039 	/* Remaining number of blocks within segment buffer */
1040 	return sci->sc_segbuf_nblocks -
1041 		(sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
1042 }
1043 
1044 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
1045 				   struct inode *inode,
1046 				   struct nilfs_sc_operations *sc_ops)
1047 {
1048 	LIST_HEAD(data_buffers);
1049 	LIST_HEAD(node_buffers);
1050 	int err;
1051 
1052 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1053 		size_t n, rest = nilfs_segctor_buffer_rest(sci);
1054 
1055 		n = nilfs_lookup_dirty_data_buffers(
1056 			inode, &data_buffers, rest + 1, 0, LLONG_MAX);
1057 		if (n > rest) {
1058 			err = nilfs_segctor_apply_buffers(
1059 				sci, inode, &data_buffers,
1060 				sc_ops->collect_data);
1061 			BUG_ON(!err); /* always receive -E2BIG or true error */
1062 			goto break_or_fail;
1063 		}
1064 	}
1065 	nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
1066 
1067 	if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1068 		err = nilfs_segctor_apply_buffers(
1069 			sci, inode, &data_buffers, sc_ops->collect_data);
1070 		if (unlikely(err)) {
1071 			/* dispose node list */
1072 			nilfs_segctor_apply_buffers(
1073 				sci, inode, &node_buffers, NULL);
1074 			goto break_or_fail;
1075 		}
1076 		sci->sc_stage.flags |= NILFS_CF_NODE;
1077 	}
1078 	/* Collect node */
1079 	err = nilfs_segctor_apply_buffers(
1080 		sci, inode, &node_buffers, sc_ops->collect_node);
1081 	if (unlikely(err))
1082 		goto break_or_fail;
1083 
1084 	nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1085 	err = nilfs_segctor_apply_buffers(
1086 		sci, inode, &node_buffers, sc_ops->collect_bmap);
1087 	if (unlikely(err))
1088 		goto break_or_fail;
1089 
1090 	nilfs_segctor_end_finfo(sci, inode);
1091 	sci->sc_stage.flags &= ~NILFS_CF_NODE;
1092 
1093  break_or_fail:
1094 	return err;
1095 }
1096 
1097 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1098 					 struct inode *inode)
1099 {
1100 	LIST_HEAD(data_buffers);
1101 	size_t n, rest = nilfs_segctor_buffer_rest(sci);
1102 	int err;
1103 
1104 	n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1105 					    sci->sc_dsync_start,
1106 					    sci->sc_dsync_end);
1107 
1108 	err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1109 					  nilfs_collect_file_data);
1110 	if (!err) {
1111 		nilfs_segctor_end_finfo(sci, inode);
1112 		BUG_ON(n > rest);
1113 		/* always receive -E2BIG or true error if n > rest */
1114 	}
1115 	return err;
1116 }
1117 
1118 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1119 {
1120 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1121 	struct list_head *head;
1122 	struct nilfs_inode_info *ii;
1123 	size_t ndone;
1124 	int err = 0;
1125 
1126 	switch (nilfs_sc_cstage_get(sci)) {
1127 	case NILFS_ST_INIT:
1128 		/* Pre-processes */
1129 		sci->sc_stage.flags = 0;
1130 
1131 		if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1132 			sci->sc_nblk_inc = 0;
1133 			sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1134 			if (mode == SC_LSEG_DSYNC) {
1135 				nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC);
1136 				goto dsync_mode;
1137 			}
1138 		}
1139 
1140 		sci->sc_stage.dirty_file_ptr = NULL;
1141 		sci->sc_stage.gc_inode_ptr = NULL;
1142 		if (mode == SC_FLUSH_DAT) {
1143 			nilfs_sc_cstage_set(sci, NILFS_ST_DAT);
1144 			goto dat_stage;
1145 		}
1146 		nilfs_sc_cstage_inc(sci);  /* Fall through */
1147 	case NILFS_ST_GC:
1148 		if (nilfs_doing_gc()) {
1149 			head = &sci->sc_gc_inodes;
1150 			ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1151 						head, i_dirty);
1152 			list_for_each_entry_continue(ii, head, i_dirty) {
1153 				err = nilfs_segctor_scan_file(
1154 					sci, &ii->vfs_inode,
1155 					&nilfs_sc_file_ops);
1156 				if (unlikely(err)) {
1157 					sci->sc_stage.gc_inode_ptr = list_entry(
1158 						ii->i_dirty.prev,
1159 						struct nilfs_inode_info,
1160 						i_dirty);
1161 					goto break_or_fail;
1162 				}
1163 				set_bit(NILFS_I_COLLECTED, &ii->i_state);
1164 			}
1165 			sci->sc_stage.gc_inode_ptr = NULL;
1166 		}
1167 		nilfs_sc_cstage_inc(sci);  /* Fall through */
1168 	case NILFS_ST_FILE:
1169 		head = &sci->sc_dirty_files;
1170 		ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1171 					i_dirty);
1172 		list_for_each_entry_continue(ii, head, i_dirty) {
1173 			clear_bit(NILFS_I_DIRTY, &ii->i_state);
1174 
1175 			err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1176 						      &nilfs_sc_file_ops);
1177 			if (unlikely(err)) {
1178 				sci->sc_stage.dirty_file_ptr =
1179 					list_entry(ii->i_dirty.prev,
1180 						   struct nilfs_inode_info,
1181 						   i_dirty);
1182 				goto break_or_fail;
1183 			}
1184 			/* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1185 			/* XXX: required ? */
1186 		}
1187 		sci->sc_stage.dirty_file_ptr = NULL;
1188 		if (mode == SC_FLUSH_FILE) {
1189 			nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1190 			return 0;
1191 		}
1192 		nilfs_sc_cstage_inc(sci);
1193 		sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1194 		/* Fall through */
1195 	case NILFS_ST_IFILE:
1196 		err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
1197 					      &nilfs_sc_file_ops);
1198 		if (unlikely(err))
1199 			break;
1200 		nilfs_sc_cstage_inc(sci);
1201 		/* Creating a checkpoint */
1202 		err = nilfs_segctor_create_checkpoint(sci);
1203 		if (unlikely(err))
1204 			break;
1205 		/* Fall through */
1206 	case NILFS_ST_CPFILE:
1207 		err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1208 					      &nilfs_sc_file_ops);
1209 		if (unlikely(err))
1210 			break;
1211 		nilfs_sc_cstage_inc(sci);  /* Fall through */
1212 	case NILFS_ST_SUFILE:
1213 		err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
1214 					 sci->sc_nfreesegs, &ndone);
1215 		if (unlikely(err)) {
1216 			nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1217 						  sci->sc_freesegs, ndone,
1218 						  NULL);
1219 			break;
1220 		}
1221 		sci->sc_stage.flags |= NILFS_CF_SUFREED;
1222 
1223 		err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1224 					      &nilfs_sc_file_ops);
1225 		if (unlikely(err))
1226 			break;
1227 		nilfs_sc_cstage_inc(sci);  /* Fall through */
1228 	case NILFS_ST_DAT:
1229  dat_stage:
1230 		err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
1231 					      &nilfs_sc_dat_ops);
1232 		if (unlikely(err))
1233 			break;
1234 		if (mode == SC_FLUSH_DAT) {
1235 			nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1236 			return 0;
1237 		}
1238 		nilfs_sc_cstage_inc(sci);  /* Fall through */
1239 	case NILFS_ST_SR:
1240 		if (mode == SC_LSEG_SR) {
1241 			/* Appending a super root */
1242 			err = nilfs_segctor_add_super_root(sci);
1243 			if (unlikely(err))
1244 				break;
1245 		}
1246 		/* End of a logical segment */
1247 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1248 		nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1249 		return 0;
1250 	case NILFS_ST_DSYNC:
1251  dsync_mode:
1252 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1253 		ii = sci->sc_dsync_inode;
1254 		if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1255 			break;
1256 
1257 		err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1258 		if (unlikely(err))
1259 			break;
1260 		sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1261 		nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1262 		return 0;
1263 	case NILFS_ST_DONE:
1264 		return 0;
1265 	default:
1266 		BUG();
1267 	}
1268 
1269  break_or_fail:
1270 	return err;
1271 }
1272 
1273 /**
1274  * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1275  * @sci: nilfs_sc_info
1276  * @nilfs: nilfs object
1277  */
1278 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1279 					    struct the_nilfs *nilfs)
1280 {
1281 	struct nilfs_segment_buffer *segbuf, *prev;
1282 	__u64 nextnum;
1283 	int err, alloc = 0;
1284 
1285 	segbuf = nilfs_segbuf_new(sci->sc_super);
1286 	if (unlikely(!segbuf))
1287 		return -ENOMEM;
1288 
1289 	if (list_empty(&sci->sc_write_logs)) {
1290 		nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
1291 				 nilfs->ns_pseg_offset, nilfs);
1292 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1293 			nilfs_shift_to_next_segment(nilfs);
1294 			nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1295 		}
1296 
1297 		segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1298 		nextnum = nilfs->ns_nextnum;
1299 
1300 		if (nilfs->ns_segnum == nilfs->ns_nextnum)
1301 			/* Start from the head of a new full segment */
1302 			alloc++;
1303 	} else {
1304 		/* Continue logs */
1305 		prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1306 		nilfs_segbuf_map_cont(segbuf, prev);
1307 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
1308 		nextnum = prev->sb_nextnum;
1309 
1310 		if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1311 			nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1312 			segbuf->sb_sum.seg_seq++;
1313 			alloc++;
1314 		}
1315 	}
1316 
1317 	err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
1318 	if (err)
1319 		goto failed;
1320 
1321 	if (alloc) {
1322 		err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1323 		if (err)
1324 			goto failed;
1325 	}
1326 	nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1327 
1328 	BUG_ON(!list_empty(&sci->sc_segbufs));
1329 	list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
1330 	sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1331 	return 0;
1332 
1333  failed:
1334 	nilfs_segbuf_free(segbuf);
1335 	return err;
1336 }
1337 
1338 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1339 					 struct the_nilfs *nilfs, int nadd)
1340 {
1341 	struct nilfs_segment_buffer *segbuf, *prev;
1342 	struct inode *sufile = nilfs->ns_sufile;
1343 	__u64 nextnextnum;
1344 	LIST_HEAD(list);
1345 	int err, ret, i;
1346 
1347 	prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1348 	/*
1349 	 * Since the segment specified with nextnum might be allocated during
1350 	 * the previous construction, the buffer including its segusage may
1351 	 * not be dirty.  The following call ensures that the buffer is dirty
1352 	 * and will pin the buffer on memory until the sufile is written.
1353 	 */
1354 	err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
1355 	if (unlikely(err))
1356 		return err;
1357 
1358 	for (i = 0; i < nadd; i++) {
1359 		/* extend segment info */
1360 		err = -ENOMEM;
1361 		segbuf = nilfs_segbuf_new(sci->sc_super);
1362 		if (unlikely(!segbuf))
1363 			goto failed;
1364 
1365 		/* map this buffer to region of segment on-disk */
1366 		nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1367 		sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1368 
1369 		/* allocate the next next full segment */
1370 		err = nilfs_sufile_alloc(sufile, &nextnextnum);
1371 		if (unlikely(err))
1372 			goto failed_segbuf;
1373 
1374 		segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1375 		nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1376 
1377 		list_add_tail(&segbuf->sb_list, &list);
1378 		prev = segbuf;
1379 	}
1380 	list_splice_tail(&list, &sci->sc_segbufs);
1381 	return 0;
1382 
1383  failed_segbuf:
1384 	nilfs_segbuf_free(segbuf);
1385  failed:
1386 	list_for_each_entry(segbuf, &list, sb_list) {
1387 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1388 		WARN_ON(ret); /* never fails */
1389 	}
1390 	nilfs_destroy_logs(&list);
1391 	return err;
1392 }
1393 
1394 static void nilfs_free_incomplete_logs(struct list_head *logs,
1395 				       struct the_nilfs *nilfs)
1396 {
1397 	struct nilfs_segment_buffer *segbuf, *prev;
1398 	struct inode *sufile = nilfs->ns_sufile;
1399 	int ret;
1400 
1401 	segbuf = NILFS_FIRST_SEGBUF(logs);
1402 	if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1403 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1404 		WARN_ON(ret); /* never fails */
1405 	}
1406 	if (atomic_read(&segbuf->sb_err)) {
1407 		/* Case 1: The first segment failed */
1408 		if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1409 			/* Case 1a:  Partial segment appended into an existing
1410 			   segment */
1411 			nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1412 						segbuf->sb_fseg_end);
1413 		else /* Case 1b:  New full segment */
1414 			set_nilfs_discontinued(nilfs);
1415 	}
1416 
1417 	prev = segbuf;
1418 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1419 		if (prev->sb_nextnum != segbuf->sb_nextnum) {
1420 			ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1421 			WARN_ON(ret); /* never fails */
1422 		}
1423 		if (atomic_read(&segbuf->sb_err) &&
1424 		    segbuf->sb_segnum != nilfs->ns_nextnum)
1425 			/* Case 2: extended segment (!= next) failed */
1426 			nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
1427 		prev = segbuf;
1428 	}
1429 }
1430 
1431 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1432 					  struct inode *sufile)
1433 {
1434 	struct nilfs_segment_buffer *segbuf;
1435 	unsigned long live_blocks;
1436 	int ret;
1437 
1438 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1439 		live_blocks = segbuf->sb_sum.nblocks +
1440 			(segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1441 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1442 						     live_blocks,
1443 						     sci->sc_seg_ctime);
1444 		WARN_ON(ret); /* always succeed because the segusage is dirty */
1445 	}
1446 }
1447 
1448 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
1449 {
1450 	struct nilfs_segment_buffer *segbuf;
1451 	int ret;
1452 
1453 	segbuf = NILFS_FIRST_SEGBUF(logs);
1454 	ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1455 					     segbuf->sb_pseg_start -
1456 					     segbuf->sb_fseg_start, 0);
1457 	WARN_ON(ret); /* always succeed because the segusage is dirty */
1458 
1459 	list_for_each_entry_continue(segbuf, logs, sb_list) {
1460 		ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1461 						     0, 0);
1462 		WARN_ON(ret); /* always succeed */
1463 	}
1464 }
1465 
1466 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1467 					    struct nilfs_segment_buffer *last,
1468 					    struct inode *sufile)
1469 {
1470 	struct nilfs_segment_buffer *segbuf = last;
1471 	int ret;
1472 
1473 	list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1474 		sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1475 		ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1476 		WARN_ON(ret);
1477 	}
1478 	nilfs_truncate_logs(&sci->sc_segbufs, last);
1479 }
1480 
1481 
1482 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1483 				 struct the_nilfs *nilfs, int mode)
1484 {
1485 	struct nilfs_cstage prev_stage = sci->sc_stage;
1486 	int err, nadd = 1;
1487 
1488 	/* Collection retry loop */
1489 	for (;;) {
1490 		sci->sc_nblk_this_inc = 0;
1491 		sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1492 
1493 		err = nilfs_segctor_reset_segment_buffer(sci);
1494 		if (unlikely(err))
1495 			goto failed;
1496 
1497 		err = nilfs_segctor_collect_blocks(sci, mode);
1498 		sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1499 		if (!err)
1500 			break;
1501 
1502 		if (unlikely(err != -E2BIG))
1503 			goto failed;
1504 
1505 		/* The current segment is filled up */
1506 		if (mode != SC_LSEG_SR ||
1507 		    nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE)
1508 			break;
1509 
1510 		nilfs_clear_logs(&sci->sc_segbufs);
1511 
1512 		if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1513 			err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1514 							sci->sc_freesegs,
1515 							sci->sc_nfreesegs,
1516 							NULL);
1517 			WARN_ON(err); /* do not happen */
1518 			sci->sc_stage.flags &= ~NILFS_CF_SUFREED;
1519 		}
1520 
1521 		err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1522 		if (unlikely(err))
1523 			return err;
1524 
1525 		nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1526 		sci->sc_stage = prev_stage;
1527 	}
1528 	nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1529 	return 0;
1530 
1531  failed:
1532 	return err;
1533 }
1534 
1535 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1536 				      struct buffer_head *new_bh)
1537 {
1538 	BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1539 
1540 	list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1541 	/* The caller must release old_bh */
1542 }
1543 
1544 static int
1545 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1546 				     struct nilfs_segment_buffer *segbuf,
1547 				     int mode)
1548 {
1549 	struct inode *inode = NULL;
1550 	sector_t blocknr;
1551 	unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1552 	unsigned long nblocks = 0, ndatablk = 0;
1553 	struct nilfs_sc_operations *sc_op = NULL;
1554 	struct nilfs_segsum_pointer ssp;
1555 	struct nilfs_finfo *finfo = NULL;
1556 	union nilfs_binfo binfo;
1557 	struct buffer_head *bh, *bh_org;
1558 	ino_t ino = 0;
1559 	int err = 0;
1560 
1561 	if (!nfinfo)
1562 		goto out;
1563 
1564 	blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1565 	ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1566 	ssp.offset = sizeof(struct nilfs_segment_summary);
1567 
1568 	list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1569 		if (bh == segbuf->sb_super_root)
1570 			break;
1571 		if (!finfo) {
1572 			finfo =	nilfs_segctor_map_segsum_entry(
1573 				sci, &ssp, sizeof(*finfo));
1574 			ino = le64_to_cpu(finfo->fi_ino);
1575 			nblocks = le32_to_cpu(finfo->fi_nblocks);
1576 			ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1577 
1578 			inode = bh->b_page->mapping->host;
1579 
1580 			if (mode == SC_LSEG_DSYNC)
1581 				sc_op = &nilfs_sc_dsync_ops;
1582 			else if (ino == NILFS_DAT_INO)
1583 				sc_op = &nilfs_sc_dat_ops;
1584 			else /* file blocks */
1585 				sc_op = &nilfs_sc_file_ops;
1586 		}
1587 		bh_org = bh;
1588 		get_bh(bh_org);
1589 		err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1590 					&binfo);
1591 		if (bh != bh_org)
1592 			nilfs_list_replace_buffer(bh_org, bh);
1593 		brelse(bh_org);
1594 		if (unlikely(err))
1595 			goto failed_bmap;
1596 
1597 		if (ndatablk > 0)
1598 			sc_op->write_data_binfo(sci, &ssp, &binfo);
1599 		else
1600 			sc_op->write_node_binfo(sci, &ssp, &binfo);
1601 
1602 		blocknr++;
1603 		if (--nblocks == 0) {
1604 			finfo = NULL;
1605 			if (--nfinfo == 0)
1606 				break;
1607 		} else if (ndatablk > 0)
1608 			ndatablk--;
1609 	}
1610  out:
1611 	return 0;
1612 
1613  failed_bmap:
1614 	return err;
1615 }
1616 
1617 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1618 {
1619 	struct nilfs_segment_buffer *segbuf;
1620 	int err;
1621 
1622 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1623 		err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1624 		if (unlikely(err))
1625 			return err;
1626 		nilfs_segbuf_fill_in_segsum(segbuf);
1627 	}
1628 	return 0;
1629 }
1630 
1631 static void nilfs_begin_page_io(struct page *page)
1632 {
1633 	if (!page || PageWriteback(page))
1634 		/* For split b-tree node pages, this function may be called
1635 		   twice.  We ignore the 2nd or later calls by this check. */
1636 		return;
1637 
1638 	lock_page(page);
1639 	clear_page_dirty_for_io(page);
1640 	set_page_writeback(page);
1641 	unlock_page(page);
1642 }
1643 
1644 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci)
1645 {
1646 	struct nilfs_segment_buffer *segbuf;
1647 	struct page *bd_page = NULL, *fs_page = NULL;
1648 
1649 	list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1650 		struct buffer_head *bh;
1651 
1652 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1653 				    b_assoc_buffers) {
1654 			if (bh->b_page != bd_page) {
1655 				if (bd_page) {
1656 					lock_page(bd_page);
1657 					clear_page_dirty_for_io(bd_page);
1658 					set_page_writeback(bd_page);
1659 					unlock_page(bd_page);
1660 				}
1661 				bd_page = bh->b_page;
1662 			}
1663 		}
1664 
1665 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1666 				    b_assoc_buffers) {
1667 			set_buffer_async_write(bh);
1668 			if (bh == segbuf->sb_super_root) {
1669 				if (bh->b_page != bd_page) {
1670 					lock_page(bd_page);
1671 					clear_page_dirty_for_io(bd_page);
1672 					set_page_writeback(bd_page);
1673 					unlock_page(bd_page);
1674 					bd_page = bh->b_page;
1675 				}
1676 				break;
1677 			}
1678 			if (bh->b_page != fs_page) {
1679 				nilfs_begin_page_io(fs_page);
1680 				fs_page = bh->b_page;
1681 			}
1682 		}
1683 	}
1684 	if (bd_page) {
1685 		lock_page(bd_page);
1686 		clear_page_dirty_for_io(bd_page);
1687 		set_page_writeback(bd_page);
1688 		unlock_page(bd_page);
1689 	}
1690 	nilfs_begin_page_io(fs_page);
1691 }
1692 
1693 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1694 			       struct the_nilfs *nilfs)
1695 {
1696 	int ret;
1697 
1698 	ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
1699 	list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
1700 	return ret;
1701 }
1702 
1703 static void nilfs_end_page_io(struct page *page, int err)
1704 {
1705 	if (!page)
1706 		return;
1707 
1708 	if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
1709 		/*
1710 		 * For b-tree node pages, this function may be called twice
1711 		 * or more because they might be split in a segment.
1712 		 */
1713 		if (PageDirty(page)) {
1714 			/*
1715 			 * For pages holding split b-tree node buffers, dirty
1716 			 * flag on the buffers may be cleared discretely.
1717 			 * In that case, the page is once redirtied for
1718 			 * remaining buffers, and it must be cancelled if
1719 			 * all the buffers get cleaned later.
1720 			 */
1721 			lock_page(page);
1722 			if (nilfs_page_buffers_clean(page))
1723 				__nilfs_clear_page_dirty(page);
1724 			unlock_page(page);
1725 		}
1726 		return;
1727 	}
1728 
1729 	if (!err) {
1730 		if (!nilfs_page_buffers_clean(page))
1731 			__set_page_dirty_nobuffers(page);
1732 		ClearPageError(page);
1733 	} else {
1734 		__set_page_dirty_nobuffers(page);
1735 		SetPageError(page);
1736 	}
1737 
1738 	end_page_writeback(page);
1739 }
1740 
1741 static void nilfs_abort_logs(struct list_head *logs, int err)
1742 {
1743 	struct nilfs_segment_buffer *segbuf;
1744 	struct page *bd_page = NULL, *fs_page = NULL;
1745 	struct buffer_head *bh;
1746 
1747 	if (list_empty(logs))
1748 		return;
1749 
1750 	list_for_each_entry(segbuf, logs, sb_list) {
1751 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1752 				    b_assoc_buffers) {
1753 			if (bh->b_page != bd_page) {
1754 				if (bd_page)
1755 					end_page_writeback(bd_page);
1756 				bd_page = bh->b_page;
1757 			}
1758 		}
1759 
1760 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1761 				    b_assoc_buffers) {
1762 			clear_buffer_async_write(bh);
1763 			if (bh == segbuf->sb_super_root) {
1764 				if (bh->b_page != bd_page) {
1765 					end_page_writeback(bd_page);
1766 					bd_page = bh->b_page;
1767 				}
1768 				break;
1769 			}
1770 			if (bh->b_page != fs_page) {
1771 				nilfs_end_page_io(fs_page, err);
1772 				fs_page = bh->b_page;
1773 			}
1774 		}
1775 	}
1776 	if (bd_page)
1777 		end_page_writeback(bd_page);
1778 
1779 	nilfs_end_page_io(fs_page, err);
1780 }
1781 
1782 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
1783 					     struct the_nilfs *nilfs, int err)
1784 {
1785 	LIST_HEAD(logs);
1786 	int ret;
1787 
1788 	list_splice_tail_init(&sci->sc_write_logs, &logs);
1789 	ret = nilfs_wait_on_logs(&logs);
1790 	nilfs_abort_logs(&logs, ret ? : err);
1791 
1792 	list_splice_tail_init(&sci->sc_segbufs, &logs);
1793 	nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
1794 	nilfs_free_incomplete_logs(&logs, nilfs);
1795 
1796 	if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1797 		ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1798 						sci->sc_freesegs,
1799 						sci->sc_nfreesegs,
1800 						NULL);
1801 		WARN_ON(ret); /* do not happen */
1802 	}
1803 
1804 	nilfs_destroy_logs(&logs);
1805 }
1806 
1807 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1808 				   struct nilfs_segment_buffer *segbuf)
1809 {
1810 	nilfs->ns_segnum = segbuf->sb_segnum;
1811 	nilfs->ns_nextnum = segbuf->sb_nextnum;
1812 	nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1813 		+ segbuf->sb_sum.nblocks;
1814 	nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1815 	nilfs->ns_ctime = segbuf->sb_sum.ctime;
1816 }
1817 
1818 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1819 {
1820 	struct nilfs_segment_buffer *segbuf;
1821 	struct page *bd_page = NULL, *fs_page = NULL;
1822 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1823 	int update_sr = false;
1824 
1825 	list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
1826 		struct buffer_head *bh;
1827 
1828 		list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1829 				    b_assoc_buffers) {
1830 			set_buffer_uptodate(bh);
1831 			clear_buffer_dirty(bh);
1832 			if (bh->b_page != bd_page) {
1833 				if (bd_page)
1834 					end_page_writeback(bd_page);
1835 				bd_page = bh->b_page;
1836 			}
1837 		}
1838 		/*
1839 		 * We assume that the buffers which belong to the same page
1840 		 * continue over the buffer list.
1841 		 * Under this assumption, the last BHs of pages is
1842 		 * identifiable by the discontinuity of bh->b_page
1843 		 * (page != fs_page).
1844 		 *
1845 		 * For B-tree node blocks, however, this assumption is not
1846 		 * guaranteed.  The cleanup code of B-tree node pages needs
1847 		 * special care.
1848 		 */
1849 		list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1850 				    b_assoc_buffers) {
1851 			const unsigned long set_bits = (1 << BH_Uptodate);
1852 			const unsigned long clear_bits =
1853 				(1 << BH_Dirty | 1 << BH_Async_Write |
1854 				 1 << BH_Delay | 1 << BH_NILFS_Volatile |
1855 				 1 << BH_NILFS_Redirected);
1856 
1857 			set_mask_bits(&bh->b_state, clear_bits, set_bits);
1858 			if (bh == segbuf->sb_super_root) {
1859 				if (bh->b_page != bd_page) {
1860 					end_page_writeback(bd_page);
1861 					bd_page = bh->b_page;
1862 				}
1863 				update_sr = true;
1864 				break;
1865 			}
1866 			if (bh->b_page != fs_page) {
1867 				nilfs_end_page_io(fs_page, 0);
1868 				fs_page = bh->b_page;
1869 			}
1870 		}
1871 
1872 		if (!nilfs_segbuf_simplex(segbuf)) {
1873 			if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
1874 				set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1875 				sci->sc_lseg_stime = jiffies;
1876 			}
1877 			if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
1878 				clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1879 		}
1880 	}
1881 	/*
1882 	 * Since pages may continue over multiple segment buffers,
1883 	 * end of the last page must be checked outside of the loop.
1884 	 */
1885 	if (bd_page)
1886 		end_page_writeback(bd_page);
1887 
1888 	nilfs_end_page_io(fs_page, 0);
1889 
1890 	nilfs_drop_collected_inodes(&sci->sc_dirty_files);
1891 
1892 	if (nilfs_doing_gc())
1893 		nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
1894 	else
1895 		nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
1896 
1897 	sci->sc_nblk_inc += sci->sc_nblk_this_inc;
1898 
1899 	segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1900 	nilfs_set_next_segment(nilfs, segbuf);
1901 
1902 	if (update_sr) {
1903 		nilfs->ns_flushed_device = 0;
1904 		nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
1905 				       segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
1906 
1907 		clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
1908 		clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
1909 		set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1910 		nilfs_segctor_clear_metadata_dirty(sci);
1911 	} else
1912 		clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1913 }
1914 
1915 static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
1916 {
1917 	int ret;
1918 
1919 	ret = nilfs_wait_on_logs(&sci->sc_write_logs);
1920 	if (!ret) {
1921 		nilfs_segctor_complete_write(sci);
1922 		nilfs_destroy_logs(&sci->sc_write_logs);
1923 	}
1924 	return ret;
1925 }
1926 
1927 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
1928 					     struct the_nilfs *nilfs)
1929 {
1930 	struct nilfs_inode_info *ii, *n;
1931 	struct inode *ifile = sci->sc_root->ifile;
1932 
1933 	spin_lock(&nilfs->ns_inode_lock);
1934  retry:
1935 	list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
1936 		if (!ii->i_bh) {
1937 			struct buffer_head *ibh;
1938 			int err;
1939 
1940 			spin_unlock(&nilfs->ns_inode_lock);
1941 			err = nilfs_ifile_get_inode_block(
1942 				ifile, ii->vfs_inode.i_ino, &ibh);
1943 			if (unlikely(err)) {
1944 				nilfs_warning(sci->sc_super, __func__,
1945 					      "failed to get inode block.\n");
1946 				return err;
1947 			}
1948 			mark_buffer_dirty(ibh);
1949 			nilfs_mdt_mark_dirty(ifile);
1950 			spin_lock(&nilfs->ns_inode_lock);
1951 			if (likely(!ii->i_bh))
1952 				ii->i_bh = ibh;
1953 			else
1954 				brelse(ibh);
1955 			goto retry;
1956 		}
1957 
1958 		clear_bit(NILFS_I_QUEUED, &ii->i_state);
1959 		set_bit(NILFS_I_BUSY, &ii->i_state);
1960 		list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
1961 	}
1962 	spin_unlock(&nilfs->ns_inode_lock);
1963 
1964 	return 0;
1965 }
1966 
1967 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
1968 					     struct the_nilfs *nilfs)
1969 {
1970 	struct nilfs_inode_info *ii, *n;
1971 	int during_mount = !(sci->sc_super->s_flags & MS_ACTIVE);
1972 	int defer_iput = false;
1973 
1974 	spin_lock(&nilfs->ns_inode_lock);
1975 	list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
1976 		if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
1977 		    test_bit(NILFS_I_DIRTY, &ii->i_state))
1978 			continue;
1979 
1980 		clear_bit(NILFS_I_BUSY, &ii->i_state);
1981 		brelse(ii->i_bh);
1982 		ii->i_bh = NULL;
1983 		list_del_init(&ii->i_dirty);
1984 		if (!ii->vfs_inode.i_nlink || during_mount) {
1985 			/*
1986 			 * Defer calling iput() to avoid deadlocks if
1987 			 * i_nlink == 0 or mount is not yet finished.
1988 			 */
1989 			list_add_tail(&ii->i_dirty, &sci->sc_iput_queue);
1990 			defer_iput = true;
1991 		} else {
1992 			spin_unlock(&nilfs->ns_inode_lock);
1993 			iput(&ii->vfs_inode);
1994 			spin_lock(&nilfs->ns_inode_lock);
1995 		}
1996 	}
1997 	spin_unlock(&nilfs->ns_inode_lock);
1998 
1999 	if (defer_iput)
2000 		schedule_work(&sci->sc_iput_work);
2001 }
2002 
2003 /*
2004  * Main procedure of segment constructor
2005  */
2006 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
2007 {
2008 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2009 	int err;
2010 
2011 	nilfs_sc_cstage_set(sci, NILFS_ST_INIT);
2012 	sci->sc_cno = nilfs->ns_cno;
2013 
2014 	err = nilfs_segctor_collect_dirty_files(sci, nilfs);
2015 	if (unlikely(err))
2016 		goto out;
2017 
2018 	if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
2019 		set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2020 
2021 	if (nilfs_segctor_clean(sci))
2022 		goto out;
2023 
2024 	do {
2025 		sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
2026 
2027 		err = nilfs_segctor_begin_construction(sci, nilfs);
2028 		if (unlikely(err))
2029 			goto out;
2030 
2031 		/* Update time stamp */
2032 		sci->sc_seg_ctime = get_seconds();
2033 
2034 		err = nilfs_segctor_collect(sci, nilfs, mode);
2035 		if (unlikely(err))
2036 			goto failed;
2037 
2038 		/* Avoid empty segment */
2039 		if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE &&
2040 		    nilfs_segbuf_empty(sci->sc_curseg)) {
2041 			nilfs_segctor_abort_construction(sci, nilfs, 1);
2042 			goto out;
2043 		}
2044 
2045 		err = nilfs_segctor_assign(sci, mode);
2046 		if (unlikely(err))
2047 			goto failed;
2048 
2049 		if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2050 			nilfs_segctor_fill_in_file_bmap(sci);
2051 
2052 		if (mode == SC_LSEG_SR &&
2053 		    nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) {
2054 			err = nilfs_segctor_fill_in_checkpoint(sci);
2055 			if (unlikely(err))
2056 				goto failed_to_write;
2057 
2058 			nilfs_segctor_fill_in_super_root(sci, nilfs);
2059 		}
2060 		nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
2061 
2062 		/* Write partial segments */
2063 		nilfs_segctor_prepare_write(sci);
2064 
2065 		nilfs_add_checksums_on_logs(&sci->sc_segbufs,
2066 					    nilfs->ns_crc_seed);
2067 
2068 		err = nilfs_segctor_write(sci, nilfs);
2069 		if (unlikely(err))
2070 			goto failed_to_write;
2071 
2072 		if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE ||
2073 		    nilfs->ns_blocksize_bits != PAGE_SHIFT) {
2074 			/*
2075 			 * At this point, we avoid double buffering
2076 			 * for blocksize < pagesize because page dirty
2077 			 * flag is turned off during write and dirty
2078 			 * buffers are not properly collected for
2079 			 * pages crossing over segments.
2080 			 */
2081 			err = nilfs_segctor_wait(sci);
2082 			if (err)
2083 				goto failed_to_write;
2084 		}
2085 	} while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE);
2086 
2087  out:
2088 	nilfs_segctor_drop_written_files(sci, nilfs);
2089 	return err;
2090 
2091  failed_to_write:
2092 	if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2093 		nilfs_redirty_inodes(&sci->sc_dirty_files);
2094 
2095  failed:
2096 	if (nilfs_doing_gc())
2097 		nilfs_redirty_inodes(&sci->sc_gc_inodes);
2098 	nilfs_segctor_abort_construction(sci, nilfs, err);
2099 	goto out;
2100 }
2101 
2102 /**
2103  * nilfs_segctor_start_timer - set timer of background write
2104  * @sci: nilfs_sc_info
2105  *
2106  * If the timer has already been set, it ignores the new request.
2107  * This function MUST be called within a section locking the segment
2108  * semaphore.
2109  */
2110 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2111 {
2112 	spin_lock(&sci->sc_state_lock);
2113 	if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2114 		sci->sc_timer.expires = jiffies + sci->sc_interval;
2115 		add_timer(&sci->sc_timer);
2116 		sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2117 	}
2118 	spin_unlock(&sci->sc_state_lock);
2119 }
2120 
2121 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2122 {
2123 	spin_lock(&sci->sc_state_lock);
2124 	if (!(sci->sc_flush_request & (1 << bn))) {
2125 		unsigned long prev_req = sci->sc_flush_request;
2126 
2127 		sci->sc_flush_request |= (1 << bn);
2128 		if (!prev_req)
2129 			wake_up(&sci->sc_wait_daemon);
2130 	}
2131 	spin_unlock(&sci->sc_state_lock);
2132 }
2133 
2134 /**
2135  * nilfs_flush_segment - trigger a segment construction for resource control
2136  * @sb: super block
2137  * @ino: inode number of the file to be flushed out.
2138  */
2139 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2140 {
2141 	struct the_nilfs *nilfs = sb->s_fs_info;
2142 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2143 
2144 	if (!sci || nilfs_doing_construction())
2145 		return;
2146 	nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2147 					/* assign bit 0 to data files */
2148 }
2149 
2150 struct nilfs_segctor_wait_request {
2151 	wait_queue_t	wq;
2152 	__u32		seq;
2153 	int		err;
2154 	atomic_t	done;
2155 };
2156 
2157 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2158 {
2159 	struct nilfs_segctor_wait_request wait_req;
2160 	int err = 0;
2161 
2162 	spin_lock(&sci->sc_state_lock);
2163 	init_wait(&wait_req.wq);
2164 	wait_req.err = 0;
2165 	atomic_set(&wait_req.done, 0);
2166 	wait_req.seq = ++sci->sc_seq_request;
2167 	spin_unlock(&sci->sc_state_lock);
2168 
2169 	init_waitqueue_entry(&wait_req.wq, current);
2170 	add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2171 	set_current_state(TASK_INTERRUPTIBLE);
2172 	wake_up(&sci->sc_wait_daemon);
2173 
2174 	for (;;) {
2175 		if (atomic_read(&wait_req.done)) {
2176 			err = wait_req.err;
2177 			break;
2178 		}
2179 		if (!signal_pending(current)) {
2180 			schedule();
2181 			continue;
2182 		}
2183 		err = -ERESTARTSYS;
2184 		break;
2185 	}
2186 	finish_wait(&sci->sc_wait_request, &wait_req.wq);
2187 	return err;
2188 }
2189 
2190 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
2191 {
2192 	struct nilfs_segctor_wait_request *wrq, *n;
2193 	unsigned long flags;
2194 
2195 	spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2196 	list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
2197 				 wq.task_list) {
2198 		if (!atomic_read(&wrq->done) &&
2199 		    nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
2200 			wrq->err = err;
2201 			atomic_set(&wrq->done, 1);
2202 		}
2203 		if (atomic_read(&wrq->done)) {
2204 			wrq->wq.func(&wrq->wq,
2205 				     TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2206 				     0, NULL);
2207 		}
2208 	}
2209 	spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2210 }
2211 
2212 /**
2213  * nilfs_construct_segment - construct a logical segment
2214  * @sb: super block
2215  *
2216  * Return Value: On success, 0 is retured. On errors, one of the following
2217  * negative error code is returned.
2218  *
2219  * %-EROFS - Read only filesystem.
2220  *
2221  * %-EIO - I/O error
2222  *
2223  * %-ENOSPC - No space left on device (only in a panic state).
2224  *
2225  * %-ERESTARTSYS - Interrupted.
2226  *
2227  * %-ENOMEM - Insufficient memory available.
2228  */
2229 int nilfs_construct_segment(struct super_block *sb)
2230 {
2231 	struct the_nilfs *nilfs = sb->s_fs_info;
2232 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2233 	struct nilfs_transaction_info *ti;
2234 	int err;
2235 
2236 	if (!sci)
2237 		return -EROFS;
2238 
2239 	/* A call inside transactions causes a deadlock. */
2240 	BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2241 
2242 	err = nilfs_segctor_sync(sci);
2243 	return err;
2244 }
2245 
2246 /**
2247  * nilfs_construct_dsync_segment - construct a data-only logical segment
2248  * @sb: super block
2249  * @inode: inode whose data blocks should be written out
2250  * @start: start byte offset
2251  * @end: end byte offset (inclusive)
2252  *
2253  * Return Value: On success, 0 is retured. On errors, one of the following
2254  * negative error code is returned.
2255  *
2256  * %-EROFS - Read only filesystem.
2257  *
2258  * %-EIO - I/O error
2259  *
2260  * %-ENOSPC - No space left on device (only in a panic state).
2261  *
2262  * %-ERESTARTSYS - Interrupted.
2263  *
2264  * %-ENOMEM - Insufficient memory available.
2265  */
2266 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2267 				  loff_t start, loff_t end)
2268 {
2269 	struct the_nilfs *nilfs = sb->s_fs_info;
2270 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2271 	struct nilfs_inode_info *ii;
2272 	struct nilfs_transaction_info ti;
2273 	int err = 0;
2274 
2275 	if (!sci)
2276 		return -EROFS;
2277 
2278 	nilfs_transaction_lock(sb, &ti, 0);
2279 
2280 	ii = NILFS_I(inode);
2281 	if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) ||
2282 	    nilfs_test_opt(nilfs, STRICT_ORDER) ||
2283 	    test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2284 	    nilfs_discontinued(nilfs)) {
2285 		nilfs_transaction_unlock(sb);
2286 		err = nilfs_segctor_sync(sci);
2287 		return err;
2288 	}
2289 
2290 	spin_lock(&nilfs->ns_inode_lock);
2291 	if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2292 	    !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2293 		spin_unlock(&nilfs->ns_inode_lock);
2294 		nilfs_transaction_unlock(sb);
2295 		return 0;
2296 	}
2297 	spin_unlock(&nilfs->ns_inode_lock);
2298 	sci->sc_dsync_inode = ii;
2299 	sci->sc_dsync_start = start;
2300 	sci->sc_dsync_end = end;
2301 
2302 	err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2303 	if (!err)
2304 		nilfs->ns_flushed_device = 0;
2305 
2306 	nilfs_transaction_unlock(sb);
2307 	return err;
2308 }
2309 
2310 #define FLUSH_FILE_BIT	(0x1) /* data file only */
2311 #define FLUSH_DAT_BIT	(1 << NILFS_DAT_INO) /* DAT only */
2312 
2313 /**
2314  * nilfs_segctor_accept - record accepted sequence count of log-write requests
2315  * @sci: segment constructor object
2316  */
2317 static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
2318 {
2319 	spin_lock(&sci->sc_state_lock);
2320 	sci->sc_seq_accepted = sci->sc_seq_request;
2321 	spin_unlock(&sci->sc_state_lock);
2322 	del_timer_sync(&sci->sc_timer);
2323 }
2324 
2325 /**
2326  * nilfs_segctor_notify - notify the result of request to caller threads
2327  * @sci: segment constructor object
2328  * @mode: mode of log forming
2329  * @err: error code to be notified
2330  */
2331 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
2332 {
2333 	/* Clear requests (even when the construction failed) */
2334 	spin_lock(&sci->sc_state_lock);
2335 
2336 	if (mode == SC_LSEG_SR) {
2337 		sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2338 		sci->sc_seq_done = sci->sc_seq_accepted;
2339 		nilfs_segctor_wakeup(sci, err);
2340 		sci->sc_flush_request = 0;
2341 	} else {
2342 		if (mode == SC_FLUSH_FILE)
2343 			sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2344 		else if (mode == SC_FLUSH_DAT)
2345 			sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2346 
2347 		/* re-enable timer if checkpoint creation was not done */
2348 		if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2349 		    time_before(jiffies, sci->sc_timer.expires))
2350 			add_timer(&sci->sc_timer);
2351 	}
2352 	spin_unlock(&sci->sc_state_lock);
2353 }
2354 
2355 /**
2356  * nilfs_segctor_construct - form logs and write them to disk
2357  * @sci: segment constructor object
2358  * @mode: mode of log forming
2359  */
2360 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
2361 {
2362 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2363 	struct nilfs_super_block **sbp;
2364 	int err = 0;
2365 
2366 	nilfs_segctor_accept(sci);
2367 
2368 	if (nilfs_discontinued(nilfs))
2369 		mode = SC_LSEG_SR;
2370 	if (!nilfs_segctor_confirm(sci))
2371 		err = nilfs_segctor_do_construct(sci, mode);
2372 
2373 	if (likely(!err)) {
2374 		if (mode != SC_FLUSH_DAT)
2375 			atomic_set(&nilfs->ns_ndirtyblks, 0);
2376 		if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2377 		    nilfs_discontinued(nilfs)) {
2378 			down_write(&nilfs->ns_sem);
2379 			err = -EIO;
2380 			sbp = nilfs_prepare_super(sci->sc_super,
2381 						  nilfs_sb_will_flip(nilfs));
2382 			if (likely(sbp)) {
2383 				nilfs_set_log_cursor(sbp[0], nilfs);
2384 				err = nilfs_commit_super(sci->sc_super,
2385 							 NILFS_SB_COMMIT);
2386 			}
2387 			up_write(&nilfs->ns_sem);
2388 		}
2389 	}
2390 
2391 	nilfs_segctor_notify(sci, mode, err);
2392 	return err;
2393 }
2394 
2395 static void nilfs_construction_timeout(unsigned long data)
2396 {
2397 	struct task_struct *p = (struct task_struct *)data;
2398 	wake_up_process(p);
2399 }
2400 
2401 static void
2402 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2403 {
2404 	struct nilfs_inode_info *ii, *n;
2405 
2406 	list_for_each_entry_safe(ii, n, head, i_dirty) {
2407 		if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2408 			continue;
2409 		list_del_init(&ii->i_dirty);
2410 		truncate_inode_pages(&ii->vfs_inode.i_data, 0);
2411 		nilfs_btnode_cache_clear(&ii->i_btnode_cache);
2412 		iput(&ii->vfs_inode);
2413 	}
2414 }
2415 
2416 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2417 			 void **kbufs)
2418 {
2419 	struct the_nilfs *nilfs = sb->s_fs_info;
2420 	struct nilfs_sc_info *sci = nilfs->ns_writer;
2421 	struct nilfs_transaction_info ti;
2422 	int err;
2423 
2424 	if (unlikely(!sci))
2425 		return -EROFS;
2426 
2427 	nilfs_transaction_lock(sb, &ti, 1);
2428 
2429 	err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
2430 	if (unlikely(err))
2431 		goto out_unlock;
2432 
2433 	err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2434 	if (unlikely(err)) {
2435 		nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
2436 		goto out_unlock;
2437 	}
2438 
2439 	sci->sc_freesegs = kbufs[4];
2440 	sci->sc_nfreesegs = argv[4].v_nmembs;
2441 	list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
2442 
2443 	for (;;) {
2444 		err = nilfs_segctor_construct(sci, SC_LSEG_SR);
2445 		nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2446 
2447 		if (likely(!err))
2448 			break;
2449 
2450 		nilfs_warning(sb, __func__,
2451 			      "segment construction failed. (err=%d)", err);
2452 		set_current_state(TASK_INTERRUPTIBLE);
2453 		schedule_timeout(sci->sc_interval);
2454 	}
2455 	if (nilfs_test_opt(nilfs, DISCARD)) {
2456 		int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
2457 						 sci->sc_nfreesegs);
2458 		if (ret) {
2459 			printk(KERN_WARNING
2460 			       "NILFS warning: error %d on discard request, "
2461 			       "turning discards off for the device\n", ret);
2462 			nilfs_clear_opt(nilfs, DISCARD);
2463 		}
2464 	}
2465 
2466  out_unlock:
2467 	sci->sc_freesegs = NULL;
2468 	sci->sc_nfreesegs = 0;
2469 	nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
2470 	nilfs_transaction_unlock(sb);
2471 	return err;
2472 }
2473 
2474 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2475 {
2476 	struct nilfs_transaction_info ti;
2477 
2478 	nilfs_transaction_lock(sci->sc_super, &ti, 0);
2479 	nilfs_segctor_construct(sci, mode);
2480 
2481 	/*
2482 	 * Unclosed segment should be retried.  We do this using sc_timer.
2483 	 * Timeout of sc_timer will invoke complete construction which leads
2484 	 * to close the current logical segment.
2485 	 */
2486 	if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2487 		nilfs_segctor_start_timer(sci);
2488 
2489 	nilfs_transaction_unlock(sci->sc_super);
2490 }
2491 
2492 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2493 {
2494 	int mode = 0;
2495 
2496 	spin_lock(&sci->sc_state_lock);
2497 	mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2498 		SC_FLUSH_DAT : SC_FLUSH_FILE;
2499 	spin_unlock(&sci->sc_state_lock);
2500 
2501 	if (mode) {
2502 		nilfs_segctor_do_construct(sci, mode);
2503 
2504 		spin_lock(&sci->sc_state_lock);
2505 		sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2506 			~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2507 		spin_unlock(&sci->sc_state_lock);
2508 	}
2509 	clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2510 }
2511 
2512 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2513 {
2514 	if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2515 	    time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2516 		if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2517 			return SC_FLUSH_FILE;
2518 		else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2519 			return SC_FLUSH_DAT;
2520 	}
2521 	return SC_LSEG_SR;
2522 }
2523 
2524 /**
2525  * nilfs_segctor_thread - main loop of the segment constructor thread.
2526  * @arg: pointer to a struct nilfs_sc_info.
2527  *
2528  * nilfs_segctor_thread() initializes a timer and serves as a daemon
2529  * to execute segment constructions.
2530  */
2531 static int nilfs_segctor_thread(void *arg)
2532 {
2533 	struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2534 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2535 	int timeout = 0;
2536 
2537 	sci->sc_timer.data = (unsigned long)current;
2538 	sci->sc_timer.function = nilfs_construction_timeout;
2539 
2540 	/* start sync. */
2541 	sci->sc_task = current;
2542 	wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
2543 	printk(KERN_INFO
2544 	       "segctord starting. Construction interval = %lu seconds, "
2545 	       "CP frequency < %lu seconds\n",
2546 	       sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2547 
2548 	spin_lock(&sci->sc_state_lock);
2549  loop:
2550 	for (;;) {
2551 		int mode;
2552 
2553 		if (sci->sc_state & NILFS_SEGCTOR_QUIT)
2554 			goto end_thread;
2555 
2556 		if (timeout || sci->sc_seq_request != sci->sc_seq_done)
2557 			mode = SC_LSEG_SR;
2558 		else if (!sci->sc_flush_request)
2559 			break;
2560 		else
2561 			mode = nilfs_segctor_flush_mode(sci);
2562 
2563 		spin_unlock(&sci->sc_state_lock);
2564 		nilfs_segctor_thread_construct(sci, mode);
2565 		spin_lock(&sci->sc_state_lock);
2566 		timeout = 0;
2567 	}
2568 
2569 
2570 	if (freezing(current)) {
2571 		spin_unlock(&sci->sc_state_lock);
2572 		try_to_freeze();
2573 		spin_lock(&sci->sc_state_lock);
2574 	} else {
2575 		DEFINE_WAIT(wait);
2576 		int should_sleep = 1;
2577 
2578 		prepare_to_wait(&sci->sc_wait_daemon, &wait,
2579 				TASK_INTERRUPTIBLE);
2580 
2581 		if (sci->sc_seq_request != sci->sc_seq_done)
2582 			should_sleep = 0;
2583 		else if (sci->sc_flush_request)
2584 			should_sleep = 0;
2585 		else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
2586 			should_sleep = time_before(jiffies,
2587 					sci->sc_timer.expires);
2588 
2589 		if (should_sleep) {
2590 			spin_unlock(&sci->sc_state_lock);
2591 			schedule();
2592 			spin_lock(&sci->sc_state_lock);
2593 		}
2594 		finish_wait(&sci->sc_wait_daemon, &wait);
2595 		timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2596 			   time_after_eq(jiffies, sci->sc_timer.expires));
2597 
2598 		if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
2599 			set_nilfs_discontinued(nilfs);
2600 	}
2601 	goto loop;
2602 
2603  end_thread:
2604 	spin_unlock(&sci->sc_state_lock);
2605 
2606 	/* end sync. */
2607 	sci->sc_task = NULL;
2608 	wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
2609 	return 0;
2610 }
2611 
2612 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
2613 {
2614 	struct task_struct *t;
2615 
2616 	t = kthread_run(nilfs_segctor_thread, sci, "segctord");
2617 	if (IS_ERR(t)) {
2618 		int err = PTR_ERR(t);
2619 
2620 		printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
2621 		       err);
2622 		return err;
2623 	}
2624 	wait_event(sci->sc_wait_task, sci->sc_task != NULL);
2625 	return 0;
2626 }
2627 
2628 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
2629 	__acquires(&sci->sc_state_lock)
2630 	__releases(&sci->sc_state_lock)
2631 {
2632 	sci->sc_state |= NILFS_SEGCTOR_QUIT;
2633 
2634 	while (sci->sc_task) {
2635 		wake_up(&sci->sc_wait_daemon);
2636 		spin_unlock(&sci->sc_state_lock);
2637 		wait_event(sci->sc_wait_task, sci->sc_task == NULL);
2638 		spin_lock(&sci->sc_state_lock);
2639 	}
2640 }
2641 
2642 /*
2643  * Setup & clean-up functions
2644  */
2645 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
2646 					       struct nilfs_root *root)
2647 {
2648 	struct the_nilfs *nilfs = sb->s_fs_info;
2649 	struct nilfs_sc_info *sci;
2650 
2651 	sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2652 	if (!sci)
2653 		return NULL;
2654 
2655 	sci->sc_super = sb;
2656 
2657 	nilfs_get_root(root);
2658 	sci->sc_root = root;
2659 
2660 	init_waitqueue_head(&sci->sc_wait_request);
2661 	init_waitqueue_head(&sci->sc_wait_daemon);
2662 	init_waitqueue_head(&sci->sc_wait_task);
2663 	spin_lock_init(&sci->sc_state_lock);
2664 	INIT_LIST_HEAD(&sci->sc_dirty_files);
2665 	INIT_LIST_HEAD(&sci->sc_segbufs);
2666 	INIT_LIST_HEAD(&sci->sc_write_logs);
2667 	INIT_LIST_HEAD(&sci->sc_gc_inodes);
2668 	INIT_LIST_HEAD(&sci->sc_iput_queue);
2669 	INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func);
2670 	init_timer(&sci->sc_timer);
2671 
2672 	sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2673 	sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2674 	sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2675 
2676 	if (nilfs->ns_interval)
2677 		sci->sc_interval = HZ * nilfs->ns_interval;
2678 	if (nilfs->ns_watermark)
2679 		sci->sc_watermark = nilfs->ns_watermark;
2680 	return sci;
2681 }
2682 
2683 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2684 {
2685 	int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2686 
2687 	/* The segctord thread was stopped and its timer was removed.
2688 	   But some tasks remain. */
2689 	do {
2690 		struct nilfs_transaction_info ti;
2691 
2692 		nilfs_transaction_lock(sci->sc_super, &ti, 0);
2693 		ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
2694 		nilfs_transaction_unlock(sci->sc_super);
2695 
2696 		flush_work(&sci->sc_iput_work);
2697 
2698 	} while (ret && retrycount-- > 0);
2699 }
2700 
2701 /**
2702  * nilfs_segctor_destroy - destroy the segment constructor.
2703  * @sci: nilfs_sc_info
2704  *
2705  * nilfs_segctor_destroy() kills the segctord thread and frees
2706  * the nilfs_sc_info struct.
2707  * Caller must hold the segment semaphore.
2708  */
2709 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2710 {
2711 	struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2712 	int flag;
2713 
2714 	up_write(&nilfs->ns_segctor_sem);
2715 
2716 	spin_lock(&sci->sc_state_lock);
2717 	nilfs_segctor_kill_thread(sci);
2718 	flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2719 		|| sci->sc_seq_request != sci->sc_seq_done);
2720 	spin_unlock(&sci->sc_state_lock);
2721 
2722 	if (flush_work(&sci->sc_iput_work))
2723 		flag = true;
2724 
2725 	if (flag || !nilfs_segctor_confirm(sci))
2726 		nilfs_segctor_write_out(sci);
2727 
2728 	if (!list_empty(&sci->sc_dirty_files)) {
2729 		nilfs_warning(sci->sc_super, __func__,
2730 			      "dirty file(s) after the final construction\n");
2731 		nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
2732 	}
2733 
2734 	if (!list_empty(&sci->sc_iput_queue)) {
2735 		nilfs_warning(sci->sc_super, __func__,
2736 			      "iput queue is not empty\n");
2737 		nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1);
2738 	}
2739 
2740 	WARN_ON(!list_empty(&sci->sc_segbufs));
2741 	WARN_ON(!list_empty(&sci->sc_write_logs));
2742 
2743 	nilfs_put_root(sci->sc_root);
2744 
2745 	down_write(&nilfs->ns_segctor_sem);
2746 
2747 	del_timer_sync(&sci->sc_timer);
2748 	kfree(sci);
2749 }
2750 
2751 /**
2752  * nilfs_attach_log_writer - attach log writer
2753  * @sb: super block instance
2754  * @root: root object of the current filesystem tree
2755  *
2756  * This allocates a log writer object, initializes it, and starts the
2757  * log writer.
2758  *
2759  * Return Value: On success, 0 is returned. On error, one of the following
2760  * negative error code is returned.
2761  *
2762  * %-ENOMEM - Insufficient memory available.
2763  */
2764 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
2765 {
2766 	struct the_nilfs *nilfs = sb->s_fs_info;
2767 	int err;
2768 
2769 	if (nilfs->ns_writer) {
2770 		/*
2771 		 * This happens if the filesystem was remounted
2772 		 * read/write after nilfs_error degenerated it into a
2773 		 * read-only mount.
2774 		 */
2775 		nilfs_detach_log_writer(sb);
2776 	}
2777 
2778 	nilfs->ns_writer = nilfs_segctor_new(sb, root);
2779 	if (!nilfs->ns_writer)
2780 		return -ENOMEM;
2781 
2782 	err = nilfs_segctor_start_thread(nilfs->ns_writer);
2783 	if (err) {
2784 		kfree(nilfs->ns_writer);
2785 		nilfs->ns_writer = NULL;
2786 	}
2787 	return err;
2788 }
2789 
2790 /**
2791  * nilfs_detach_log_writer - destroy log writer
2792  * @sb: super block instance
2793  *
2794  * This kills log writer daemon, frees the log writer object, and
2795  * destroys list of dirty files.
2796  */
2797 void nilfs_detach_log_writer(struct super_block *sb)
2798 {
2799 	struct the_nilfs *nilfs = sb->s_fs_info;
2800 	LIST_HEAD(garbage_list);
2801 
2802 	down_write(&nilfs->ns_segctor_sem);
2803 	if (nilfs->ns_writer) {
2804 		nilfs_segctor_destroy(nilfs->ns_writer);
2805 		nilfs->ns_writer = NULL;
2806 	}
2807 
2808 	/* Force to free the list of dirty files */
2809 	spin_lock(&nilfs->ns_inode_lock);
2810 	if (!list_empty(&nilfs->ns_dirty_files)) {
2811 		list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
2812 		nilfs_warning(sb, __func__,
2813 			      "Hit dirty file after stopped log writer\n");
2814 	}
2815 	spin_unlock(&nilfs->ns_inode_lock);
2816 	up_write(&nilfs->ns_segctor_sem);
2817 
2818 	nilfs_dispose_list(nilfs, &garbage_list, 1);
2819 }
2820