1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * NILFS segment constructor. 4 * 5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 6 * 7 * Written by Ryusuke Konishi. 8 * 9 */ 10 11 #include <linux/pagemap.h> 12 #include <linux/buffer_head.h> 13 #include <linux/writeback.h> 14 #include <linux/bitops.h> 15 #include <linux/bio.h> 16 #include <linux/completion.h> 17 #include <linux/blkdev.h> 18 #include <linux/backing-dev.h> 19 #include <linux/freezer.h> 20 #include <linux/kthread.h> 21 #include <linux/crc32.h> 22 #include <linux/pagevec.h> 23 #include <linux/slab.h> 24 #include <linux/sched/signal.h> 25 26 #include "nilfs.h" 27 #include "btnode.h" 28 #include "page.h" 29 #include "segment.h" 30 #include "sufile.h" 31 #include "cpfile.h" 32 #include "ifile.h" 33 #include "segbuf.h" 34 35 36 /* 37 * Segment constructor 38 */ 39 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */ 40 41 #define SC_MAX_SEGDELTA 64 /* 42 * Upper limit of the number of segments 43 * appended in collection retry loop 44 */ 45 46 /* Construction mode */ 47 enum { 48 SC_LSEG_SR = 1, /* Make a logical segment having a super root */ 49 SC_LSEG_DSYNC, /* 50 * Flush data blocks of a given file and make 51 * a logical segment without a super root. 52 */ 53 SC_FLUSH_FILE, /* 54 * Flush data files, leads to segment writes without 55 * creating a checkpoint. 56 */ 57 SC_FLUSH_DAT, /* 58 * Flush DAT file. This also creates segments 59 * without a checkpoint. 60 */ 61 }; 62 63 /* Stage numbers of dirty block collection */ 64 enum { 65 NILFS_ST_INIT = 0, 66 NILFS_ST_GC, /* Collecting dirty blocks for GC */ 67 NILFS_ST_FILE, 68 NILFS_ST_IFILE, 69 NILFS_ST_CPFILE, 70 NILFS_ST_SUFILE, 71 NILFS_ST_DAT, 72 NILFS_ST_SR, /* Super root */ 73 NILFS_ST_DSYNC, /* Data sync blocks */ 74 NILFS_ST_DONE, 75 }; 76 77 #define CREATE_TRACE_POINTS 78 #include <trace/events/nilfs2.h> 79 80 /* 81 * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are 82 * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of 83 * the variable must use them because transition of stage count must involve 84 * trace events (trace_nilfs2_collection_stage_transition). 85 * 86 * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't 87 * produce tracepoint events. It is provided just for making the intention 88 * clear. 89 */ 90 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci) 91 { 92 sci->sc_stage.scnt++; 93 trace_nilfs2_collection_stage_transition(sci); 94 } 95 96 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt) 97 { 98 sci->sc_stage.scnt = next_scnt; 99 trace_nilfs2_collection_stage_transition(sci); 100 } 101 102 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci) 103 { 104 return sci->sc_stage.scnt; 105 } 106 107 /* State flags of collection */ 108 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */ 109 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */ 110 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */ 111 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED) 112 113 /* Operations depending on the construction mode and file type */ 114 struct nilfs_sc_operations { 115 int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *, 116 struct inode *); 117 int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *, 118 struct inode *); 119 int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *, 120 struct inode *); 121 void (*write_data_binfo)(struct nilfs_sc_info *, 122 struct nilfs_segsum_pointer *, 123 union nilfs_binfo *); 124 void (*write_node_binfo)(struct nilfs_sc_info *, 125 struct nilfs_segsum_pointer *, 126 union nilfs_binfo *); 127 }; 128 129 /* 130 * Other definitions 131 */ 132 static void nilfs_segctor_start_timer(struct nilfs_sc_info *); 133 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int); 134 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *); 135 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int); 136 137 #define nilfs_cnt32_ge(a, b) \ 138 (typecheck(__u32, a) && typecheck(__u32, b) && \ 139 ((__s32)(a) - (__s32)(b) >= 0)) 140 141 static int nilfs_prepare_segment_lock(struct super_block *sb, 142 struct nilfs_transaction_info *ti) 143 { 144 struct nilfs_transaction_info *cur_ti = current->journal_info; 145 void *save = NULL; 146 147 if (cur_ti) { 148 if (cur_ti->ti_magic == NILFS_TI_MAGIC) 149 return ++cur_ti->ti_count; 150 151 /* 152 * If journal_info field is occupied by other FS, 153 * it is saved and will be restored on 154 * nilfs_transaction_commit(). 155 */ 156 nilfs_warn(sb, "journal info from a different FS"); 157 save = current->journal_info; 158 } 159 if (!ti) { 160 ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS); 161 if (!ti) 162 return -ENOMEM; 163 ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC; 164 } else { 165 ti->ti_flags = 0; 166 } 167 ti->ti_count = 0; 168 ti->ti_save = save; 169 ti->ti_magic = NILFS_TI_MAGIC; 170 current->journal_info = ti; 171 return 0; 172 } 173 174 /** 175 * nilfs_transaction_begin - start indivisible file operations. 176 * @sb: super block 177 * @ti: nilfs_transaction_info 178 * @vacancy_check: flags for vacancy rate checks 179 * 180 * nilfs_transaction_begin() acquires a reader/writer semaphore, called 181 * the segment semaphore, to make a segment construction and write tasks 182 * exclusive. The function is used with nilfs_transaction_commit() in pairs. 183 * The region enclosed by these two functions can be nested. To avoid a 184 * deadlock, the semaphore is only acquired or released in the outermost call. 185 * 186 * This function allocates a nilfs_transaction_info struct to keep context 187 * information on it. It is initialized and hooked onto the current task in 188 * the outermost call. If a pre-allocated struct is given to @ti, it is used 189 * instead; otherwise a new struct is assigned from a slab. 190 * 191 * When @vacancy_check flag is set, this function will check the amount of 192 * free space, and will wait for the GC to reclaim disk space if low capacity. 193 * 194 * Return Value: On success, 0 is returned. On error, one of the following 195 * negative error code is returned. 196 * 197 * %-ENOMEM - Insufficient memory available. 198 * 199 * %-ENOSPC - No space left on device 200 */ 201 int nilfs_transaction_begin(struct super_block *sb, 202 struct nilfs_transaction_info *ti, 203 int vacancy_check) 204 { 205 struct the_nilfs *nilfs; 206 int ret = nilfs_prepare_segment_lock(sb, ti); 207 struct nilfs_transaction_info *trace_ti; 208 209 if (unlikely(ret < 0)) 210 return ret; 211 if (ret > 0) { 212 trace_ti = current->journal_info; 213 214 trace_nilfs2_transaction_transition(sb, trace_ti, 215 trace_ti->ti_count, trace_ti->ti_flags, 216 TRACE_NILFS2_TRANSACTION_BEGIN); 217 return 0; 218 } 219 220 sb_start_intwrite(sb); 221 222 nilfs = sb->s_fs_info; 223 down_read(&nilfs->ns_segctor_sem); 224 if (vacancy_check && nilfs_near_disk_full(nilfs)) { 225 up_read(&nilfs->ns_segctor_sem); 226 ret = -ENOSPC; 227 goto failed; 228 } 229 230 trace_ti = current->journal_info; 231 trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count, 232 trace_ti->ti_flags, 233 TRACE_NILFS2_TRANSACTION_BEGIN); 234 return 0; 235 236 failed: 237 ti = current->journal_info; 238 current->journal_info = ti->ti_save; 239 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 240 kmem_cache_free(nilfs_transaction_cachep, ti); 241 sb_end_intwrite(sb); 242 return ret; 243 } 244 245 /** 246 * nilfs_transaction_commit - commit indivisible file operations. 247 * @sb: super block 248 * 249 * nilfs_transaction_commit() releases the read semaphore which is 250 * acquired by nilfs_transaction_begin(). This is only performed 251 * in outermost call of this function. If a commit flag is set, 252 * nilfs_transaction_commit() sets a timer to start the segment 253 * constructor. If a sync flag is set, it starts construction 254 * directly. 255 */ 256 int nilfs_transaction_commit(struct super_block *sb) 257 { 258 struct nilfs_transaction_info *ti = current->journal_info; 259 struct the_nilfs *nilfs = sb->s_fs_info; 260 int err = 0; 261 262 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 263 ti->ti_flags |= NILFS_TI_COMMIT; 264 if (ti->ti_count > 0) { 265 ti->ti_count--; 266 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 267 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT); 268 return 0; 269 } 270 if (nilfs->ns_writer) { 271 struct nilfs_sc_info *sci = nilfs->ns_writer; 272 273 if (ti->ti_flags & NILFS_TI_COMMIT) 274 nilfs_segctor_start_timer(sci); 275 if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark) 276 nilfs_segctor_do_flush(sci, 0); 277 } 278 up_read(&nilfs->ns_segctor_sem); 279 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 280 ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT); 281 282 current->journal_info = ti->ti_save; 283 284 if (ti->ti_flags & NILFS_TI_SYNC) 285 err = nilfs_construct_segment(sb); 286 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 287 kmem_cache_free(nilfs_transaction_cachep, ti); 288 sb_end_intwrite(sb); 289 return err; 290 } 291 292 void nilfs_transaction_abort(struct super_block *sb) 293 { 294 struct nilfs_transaction_info *ti = current->journal_info; 295 struct the_nilfs *nilfs = sb->s_fs_info; 296 297 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 298 if (ti->ti_count > 0) { 299 ti->ti_count--; 300 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 301 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT); 302 return; 303 } 304 up_read(&nilfs->ns_segctor_sem); 305 306 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 307 ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT); 308 309 current->journal_info = ti->ti_save; 310 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) 311 kmem_cache_free(nilfs_transaction_cachep, ti); 312 sb_end_intwrite(sb); 313 } 314 315 void nilfs_relax_pressure_in_lock(struct super_block *sb) 316 { 317 struct the_nilfs *nilfs = sb->s_fs_info; 318 struct nilfs_sc_info *sci = nilfs->ns_writer; 319 320 if (sb_rdonly(sb) || unlikely(!sci) || !sci->sc_flush_request) 321 return; 322 323 set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); 324 up_read(&nilfs->ns_segctor_sem); 325 326 down_write(&nilfs->ns_segctor_sem); 327 if (sci->sc_flush_request && 328 test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) { 329 struct nilfs_transaction_info *ti = current->journal_info; 330 331 ti->ti_flags |= NILFS_TI_WRITER; 332 nilfs_segctor_do_immediate_flush(sci); 333 ti->ti_flags &= ~NILFS_TI_WRITER; 334 } 335 downgrade_write(&nilfs->ns_segctor_sem); 336 } 337 338 static void nilfs_transaction_lock(struct super_block *sb, 339 struct nilfs_transaction_info *ti, 340 int gcflag) 341 { 342 struct nilfs_transaction_info *cur_ti = current->journal_info; 343 struct the_nilfs *nilfs = sb->s_fs_info; 344 struct nilfs_sc_info *sci = nilfs->ns_writer; 345 346 WARN_ON(cur_ti); 347 ti->ti_flags = NILFS_TI_WRITER; 348 ti->ti_count = 0; 349 ti->ti_save = cur_ti; 350 ti->ti_magic = NILFS_TI_MAGIC; 351 current->journal_info = ti; 352 353 for (;;) { 354 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 355 ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK); 356 357 down_write(&nilfs->ns_segctor_sem); 358 if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) 359 break; 360 361 nilfs_segctor_do_immediate_flush(sci); 362 363 up_write(&nilfs->ns_segctor_sem); 364 cond_resched(); 365 } 366 if (gcflag) 367 ti->ti_flags |= NILFS_TI_GC; 368 369 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 370 ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK); 371 } 372 373 static void nilfs_transaction_unlock(struct super_block *sb) 374 { 375 struct nilfs_transaction_info *ti = current->journal_info; 376 struct the_nilfs *nilfs = sb->s_fs_info; 377 378 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); 379 BUG_ON(ti->ti_count > 0); 380 381 up_write(&nilfs->ns_segctor_sem); 382 current->journal_info = ti->ti_save; 383 384 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, 385 ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK); 386 } 387 388 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci, 389 struct nilfs_segsum_pointer *ssp, 390 unsigned int bytes) 391 { 392 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 393 unsigned int blocksize = sci->sc_super->s_blocksize; 394 void *p; 395 396 if (unlikely(ssp->offset + bytes > blocksize)) { 397 ssp->offset = 0; 398 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh, 399 &segbuf->sb_segsum_buffers)); 400 ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh); 401 } 402 p = ssp->bh->b_data + ssp->offset; 403 ssp->offset += bytes; 404 return p; 405 } 406 407 /** 408 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer 409 * @sci: nilfs_sc_info 410 */ 411 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci) 412 { 413 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 414 struct buffer_head *sumbh; 415 unsigned int sumbytes; 416 unsigned int flags = 0; 417 int err; 418 419 if (nilfs_doing_gc()) 420 flags = NILFS_SS_GC; 421 err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno); 422 if (unlikely(err)) 423 return err; 424 425 sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); 426 sumbytes = segbuf->sb_sum.sumbytes; 427 sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes; 428 sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes; 429 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; 430 return 0; 431 } 432 433 /** 434 * nilfs_segctor_zeropad_segsum - zero pad the rest of the segment summary area 435 * @sci: segment constructor object 436 * 437 * nilfs_segctor_zeropad_segsum() zero-fills unallocated space at the end of 438 * the current segment summary block. 439 */ 440 static void nilfs_segctor_zeropad_segsum(struct nilfs_sc_info *sci) 441 { 442 struct nilfs_segsum_pointer *ssp; 443 444 ssp = sci->sc_blk_cnt > 0 ? &sci->sc_binfo_ptr : &sci->sc_finfo_ptr; 445 if (ssp->offset < ssp->bh->b_size) 446 memset(ssp->bh->b_data + ssp->offset, 0, 447 ssp->bh->b_size - ssp->offset); 448 } 449 450 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci) 451 { 452 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; 453 if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs)) 454 return -E2BIG; /* 455 * The current segment is filled up 456 * (internal code) 457 */ 458 nilfs_segctor_zeropad_segsum(sci); 459 sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg); 460 return nilfs_segctor_reset_segment_buffer(sci); 461 } 462 463 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci) 464 { 465 struct nilfs_segment_buffer *segbuf = sci->sc_curseg; 466 int err; 467 468 if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) { 469 err = nilfs_segctor_feed_segment(sci); 470 if (err) 471 return err; 472 segbuf = sci->sc_curseg; 473 } 474 err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root); 475 if (likely(!err)) 476 segbuf->sb_sum.flags |= NILFS_SS_SR; 477 return err; 478 } 479 480 /* 481 * Functions for making segment summary and payloads 482 */ 483 static int nilfs_segctor_segsum_block_required( 484 struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp, 485 unsigned int binfo_size) 486 { 487 unsigned int blocksize = sci->sc_super->s_blocksize; 488 /* Size of finfo and binfo is enough small against blocksize */ 489 490 return ssp->offset + binfo_size + 491 (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) > 492 blocksize; 493 } 494 495 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci, 496 struct inode *inode) 497 { 498 sci->sc_curseg->sb_sum.nfinfo++; 499 sci->sc_binfo_ptr = sci->sc_finfo_ptr; 500 nilfs_segctor_map_segsum_entry( 501 sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo)); 502 503 if (NILFS_I(inode)->i_root && 504 !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)) 505 set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); 506 /* skip finfo */ 507 } 508 509 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci, 510 struct inode *inode) 511 { 512 struct nilfs_finfo *finfo; 513 struct nilfs_inode_info *ii; 514 struct nilfs_segment_buffer *segbuf; 515 __u64 cno; 516 517 if (sci->sc_blk_cnt == 0) 518 return; 519 520 ii = NILFS_I(inode); 521 522 if (test_bit(NILFS_I_GCINODE, &ii->i_state)) 523 cno = ii->i_cno; 524 else if (NILFS_ROOT_METADATA_FILE(inode->i_ino)) 525 cno = 0; 526 else 527 cno = sci->sc_cno; 528 529 finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr, 530 sizeof(*finfo)); 531 finfo->fi_ino = cpu_to_le64(inode->i_ino); 532 finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt); 533 finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt); 534 finfo->fi_cno = cpu_to_le64(cno); 535 536 segbuf = sci->sc_curseg; 537 segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset + 538 sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1); 539 sci->sc_finfo_ptr = sci->sc_binfo_ptr; 540 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; 541 } 542 543 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci, 544 struct buffer_head *bh, 545 struct inode *inode, 546 unsigned int binfo_size) 547 { 548 struct nilfs_segment_buffer *segbuf; 549 int required, err = 0; 550 551 retry: 552 segbuf = sci->sc_curseg; 553 required = nilfs_segctor_segsum_block_required( 554 sci, &sci->sc_binfo_ptr, binfo_size); 555 if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) { 556 nilfs_segctor_end_finfo(sci, inode); 557 err = nilfs_segctor_feed_segment(sci); 558 if (err) 559 return err; 560 goto retry; 561 } 562 if (unlikely(required)) { 563 nilfs_segctor_zeropad_segsum(sci); 564 err = nilfs_segbuf_extend_segsum(segbuf); 565 if (unlikely(err)) 566 goto failed; 567 } 568 if (sci->sc_blk_cnt == 0) 569 nilfs_segctor_begin_finfo(sci, inode); 570 571 nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size); 572 /* Substitution to vblocknr is delayed until update_blocknr() */ 573 nilfs_segbuf_add_file_buffer(segbuf, bh); 574 sci->sc_blk_cnt++; 575 failed: 576 return err; 577 } 578 579 /* 580 * Callback functions that enumerate, mark, and collect dirty blocks 581 */ 582 static int nilfs_collect_file_data(struct nilfs_sc_info *sci, 583 struct buffer_head *bh, struct inode *inode) 584 { 585 int err; 586 587 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 588 if (err < 0) 589 return err; 590 591 err = nilfs_segctor_add_file_block(sci, bh, inode, 592 sizeof(struct nilfs_binfo_v)); 593 if (!err) 594 sci->sc_datablk_cnt++; 595 return err; 596 } 597 598 static int nilfs_collect_file_node(struct nilfs_sc_info *sci, 599 struct buffer_head *bh, 600 struct inode *inode) 601 { 602 return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 603 } 604 605 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci, 606 struct buffer_head *bh, 607 struct inode *inode) 608 { 609 WARN_ON(!buffer_dirty(bh)); 610 return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); 611 } 612 613 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci, 614 struct nilfs_segsum_pointer *ssp, 615 union nilfs_binfo *binfo) 616 { 617 struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry( 618 sci, ssp, sizeof(*binfo_v)); 619 *binfo_v = binfo->bi_v; 620 } 621 622 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci, 623 struct nilfs_segsum_pointer *ssp, 624 union nilfs_binfo *binfo) 625 { 626 __le64 *vblocknr = nilfs_segctor_map_segsum_entry( 627 sci, ssp, sizeof(*vblocknr)); 628 *vblocknr = binfo->bi_v.bi_vblocknr; 629 } 630 631 static const struct nilfs_sc_operations nilfs_sc_file_ops = { 632 .collect_data = nilfs_collect_file_data, 633 .collect_node = nilfs_collect_file_node, 634 .collect_bmap = nilfs_collect_file_bmap, 635 .write_data_binfo = nilfs_write_file_data_binfo, 636 .write_node_binfo = nilfs_write_file_node_binfo, 637 }; 638 639 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci, 640 struct buffer_head *bh, struct inode *inode) 641 { 642 int err; 643 644 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); 645 if (err < 0) 646 return err; 647 648 err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); 649 if (!err) 650 sci->sc_datablk_cnt++; 651 return err; 652 } 653 654 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci, 655 struct buffer_head *bh, struct inode *inode) 656 { 657 WARN_ON(!buffer_dirty(bh)); 658 return nilfs_segctor_add_file_block(sci, bh, inode, 659 sizeof(struct nilfs_binfo_dat)); 660 } 661 662 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci, 663 struct nilfs_segsum_pointer *ssp, 664 union nilfs_binfo *binfo) 665 { 666 __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp, 667 sizeof(*blkoff)); 668 *blkoff = binfo->bi_dat.bi_blkoff; 669 } 670 671 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci, 672 struct nilfs_segsum_pointer *ssp, 673 union nilfs_binfo *binfo) 674 { 675 struct nilfs_binfo_dat *binfo_dat = 676 nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat)); 677 *binfo_dat = binfo->bi_dat; 678 } 679 680 static const struct nilfs_sc_operations nilfs_sc_dat_ops = { 681 .collect_data = nilfs_collect_dat_data, 682 .collect_node = nilfs_collect_file_node, 683 .collect_bmap = nilfs_collect_dat_bmap, 684 .write_data_binfo = nilfs_write_dat_data_binfo, 685 .write_node_binfo = nilfs_write_dat_node_binfo, 686 }; 687 688 static const struct nilfs_sc_operations nilfs_sc_dsync_ops = { 689 .collect_data = nilfs_collect_file_data, 690 .collect_node = NULL, 691 .collect_bmap = NULL, 692 .write_data_binfo = nilfs_write_file_data_binfo, 693 .write_node_binfo = NULL, 694 }; 695 696 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode, 697 struct list_head *listp, 698 size_t nlimit, 699 loff_t start, loff_t end) 700 { 701 struct address_space *mapping = inode->i_mapping; 702 struct folio_batch fbatch; 703 pgoff_t index = 0, last = ULONG_MAX; 704 size_t ndirties = 0; 705 int i; 706 707 if (unlikely(start != 0 || end != LLONG_MAX)) { 708 /* 709 * A valid range is given for sync-ing data pages. The 710 * range is rounded to per-page; extra dirty buffers 711 * may be included if blocksize < pagesize. 712 */ 713 index = start >> PAGE_SHIFT; 714 last = end >> PAGE_SHIFT; 715 } 716 folio_batch_init(&fbatch); 717 repeat: 718 if (unlikely(index > last) || 719 !filemap_get_folios_tag(mapping, &index, last, 720 PAGECACHE_TAG_DIRTY, &fbatch)) 721 return ndirties; 722 723 for (i = 0; i < folio_batch_count(&fbatch); i++) { 724 struct buffer_head *bh, *head; 725 struct folio *folio = fbatch.folios[i]; 726 727 folio_lock(folio); 728 head = folio_buffers(folio); 729 if (!head) { 730 create_empty_buffers(&folio->page, i_blocksize(inode), 0); 731 head = folio_buffers(folio); 732 } 733 folio_unlock(folio); 734 735 bh = head; 736 do { 737 if (!buffer_dirty(bh) || buffer_async_write(bh)) 738 continue; 739 get_bh(bh); 740 list_add_tail(&bh->b_assoc_buffers, listp); 741 ndirties++; 742 if (unlikely(ndirties >= nlimit)) { 743 folio_batch_release(&fbatch); 744 cond_resched(); 745 return ndirties; 746 } 747 } while (bh = bh->b_this_page, bh != head); 748 } 749 folio_batch_release(&fbatch); 750 cond_resched(); 751 goto repeat; 752 } 753 754 static void nilfs_lookup_dirty_node_buffers(struct inode *inode, 755 struct list_head *listp) 756 { 757 struct nilfs_inode_info *ii = NILFS_I(inode); 758 struct inode *btnc_inode = ii->i_assoc_inode; 759 struct folio_batch fbatch; 760 struct buffer_head *bh, *head; 761 unsigned int i; 762 pgoff_t index = 0; 763 764 if (!btnc_inode) 765 return; 766 folio_batch_init(&fbatch); 767 768 while (filemap_get_folios_tag(btnc_inode->i_mapping, &index, 769 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, &fbatch)) { 770 for (i = 0; i < folio_batch_count(&fbatch); i++) { 771 bh = head = folio_buffers(fbatch.folios[i]); 772 do { 773 if (buffer_dirty(bh) && 774 !buffer_async_write(bh)) { 775 get_bh(bh); 776 list_add_tail(&bh->b_assoc_buffers, 777 listp); 778 } 779 bh = bh->b_this_page; 780 } while (bh != head); 781 } 782 folio_batch_release(&fbatch); 783 cond_resched(); 784 } 785 } 786 787 static void nilfs_dispose_list(struct the_nilfs *nilfs, 788 struct list_head *head, int force) 789 { 790 struct nilfs_inode_info *ii, *n; 791 struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii; 792 unsigned int nv = 0; 793 794 while (!list_empty(head)) { 795 spin_lock(&nilfs->ns_inode_lock); 796 list_for_each_entry_safe(ii, n, head, i_dirty) { 797 list_del_init(&ii->i_dirty); 798 if (force) { 799 if (unlikely(ii->i_bh)) { 800 brelse(ii->i_bh); 801 ii->i_bh = NULL; 802 } 803 } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) { 804 set_bit(NILFS_I_QUEUED, &ii->i_state); 805 list_add_tail(&ii->i_dirty, 806 &nilfs->ns_dirty_files); 807 continue; 808 } 809 ivec[nv++] = ii; 810 if (nv == SC_N_INODEVEC) 811 break; 812 } 813 spin_unlock(&nilfs->ns_inode_lock); 814 815 for (pii = ivec; nv > 0; pii++, nv--) 816 iput(&(*pii)->vfs_inode); 817 } 818 } 819 820 static void nilfs_iput_work_func(struct work_struct *work) 821 { 822 struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info, 823 sc_iput_work); 824 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 825 826 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0); 827 } 828 829 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs, 830 struct nilfs_root *root) 831 { 832 int ret = 0; 833 834 if (nilfs_mdt_fetch_dirty(root->ifile)) 835 ret++; 836 if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile)) 837 ret++; 838 if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile)) 839 ret++; 840 if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat)) 841 ret++; 842 return ret; 843 } 844 845 static int nilfs_segctor_clean(struct nilfs_sc_info *sci) 846 { 847 return list_empty(&sci->sc_dirty_files) && 848 !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) && 849 sci->sc_nfreesegs == 0 && 850 (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes)); 851 } 852 853 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci) 854 { 855 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 856 int ret = 0; 857 858 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) 859 set_bit(NILFS_SC_DIRTY, &sci->sc_flags); 860 861 spin_lock(&nilfs->ns_inode_lock); 862 if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci)) 863 ret++; 864 865 spin_unlock(&nilfs->ns_inode_lock); 866 return ret; 867 } 868 869 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci) 870 { 871 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 872 873 nilfs_mdt_clear_dirty(sci->sc_root->ifile); 874 nilfs_mdt_clear_dirty(nilfs->ns_cpfile); 875 nilfs_mdt_clear_dirty(nilfs->ns_sufile); 876 nilfs_mdt_clear_dirty(nilfs->ns_dat); 877 } 878 879 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci) 880 { 881 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 882 struct buffer_head *bh_cp; 883 struct nilfs_checkpoint *raw_cp; 884 int err; 885 886 /* XXX: this interface will be changed */ 887 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1, 888 &raw_cp, &bh_cp); 889 if (likely(!err)) { 890 /* 891 * The following code is duplicated with cpfile. But, it is 892 * needed to collect the checkpoint even if it was not newly 893 * created. 894 */ 895 mark_buffer_dirty(bh_cp); 896 nilfs_mdt_mark_dirty(nilfs->ns_cpfile); 897 nilfs_cpfile_put_checkpoint( 898 nilfs->ns_cpfile, nilfs->ns_cno, bh_cp); 899 } else if (err == -EINVAL || err == -ENOENT) { 900 nilfs_error(sci->sc_super, 901 "checkpoint creation failed due to metadata corruption."); 902 err = -EIO; 903 } 904 return err; 905 } 906 907 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci) 908 { 909 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 910 struct buffer_head *bh_cp; 911 struct nilfs_checkpoint *raw_cp; 912 int err; 913 914 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0, 915 &raw_cp, &bh_cp); 916 if (unlikely(err)) { 917 if (err == -EINVAL || err == -ENOENT) { 918 nilfs_error(sci->sc_super, 919 "checkpoint finalization failed due to metadata corruption."); 920 err = -EIO; 921 } 922 goto failed_ibh; 923 } 924 raw_cp->cp_snapshot_list.ssl_next = 0; 925 raw_cp->cp_snapshot_list.ssl_prev = 0; 926 raw_cp->cp_inodes_count = 927 cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count)); 928 raw_cp->cp_blocks_count = 929 cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count)); 930 raw_cp->cp_nblk_inc = 931 cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc); 932 raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime); 933 raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno); 934 935 if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)) 936 nilfs_checkpoint_clear_minor(raw_cp); 937 else 938 nilfs_checkpoint_set_minor(raw_cp); 939 940 nilfs_write_inode_common(sci->sc_root->ifile, 941 &raw_cp->cp_ifile_inode, 1); 942 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp); 943 return 0; 944 945 failed_ibh: 946 return err; 947 } 948 949 static void nilfs_fill_in_file_bmap(struct inode *ifile, 950 struct nilfs_inode_info *ii) 951 952 { 953 struct buffer_head *ibh; 954 struct nilfs_inode *raw_inode; 955 956 if (test_bit(NILFS_I_BMAP, &ii->i_state)) { 957 ibh = ii->i_bh; 958 BUG_ON(!ibh); 959 raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino, 960 ibh); 961 nilfs_bmap_write(ii->i_bmap, raw_inode); 962 nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh); 963 } 964 } 965 966 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci) 967 { 968 struct nilfs_inode_info *ii; 969 970 list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) { 971 nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii); 972 set_bit(NILFS_I_COLLECTED, &ii->i_state); 973 } 974 } 975 976 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci, 977 struct the_nilfs *nilfs) 978 { 979 struct buffer_head *bh_sr; 980 struct nilfs_super_root *raw_sr; 981 unsigned int isz, srsz; 982 983 bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root; 984 raw_sr = (struct nilfs_super_root *)bh_sr->b_data; 985 isz = nilfs->ns_inode_size; 986 srsz = NILFS_SR_BYTES(isz); 987 988 raw_sr->sr_bytes = cpu_to_le16(srsz); 989 raw_sr->sr_nongc_ctime 990 = cpu_to_le64(nilfs_doing_gc() ? 991 nilfs->ns_nongc_ctime : sci->sc_seg_ctime); 992 raw_sr->sr_flags = 0; 993 994 nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr + 995 NILFS_SR_DAT_OFFSET(isz), 1); 996 nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr + 997 NILFS_SR_CPFILE_OFFSET(isz), 1); 998 nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr + 999 NILFS_SR_SUFILE_OFFSET(isz), 1); 1000 memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz); 1001 } 1002 1003 static void nilfs_redirty_inodes(struct list_head *head) 1004 { 1005 struct nilfs_inode_info *ii; 1006 1007 list_for_each_entry(ii, head, i_dirty) { 1008 if (test_bit(NILFS_I_COLLECTED, &ii->i_state)) 1009 clear_bit(NILFS_I_COLLECTED, &ii->i_state); 1010 } 1011 } 1012 1013 static void nilfs_drop_collected_inodes(struct list_head *head) 1014 { 1015 struct nilfs_inode_info *ii; 1016 1017 list_for_each_entry(ii, head, i_dirty) { 1018 if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state)) 1019 continue; 1020 1021 clear_bit(NILFS_I_INODE_SYNC, &ii->i_state); 1022 set_bit(NILFS_I_UPDATED, &ii->i_state); 1023 } 1024 } 1025 1026 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci, 1027 struct inode *inode, 1028 struct list_head *listp, 1029 int (*collect)(struct nilfs_sc_info *, 1030 struct buffer_head *, 1031 struct inode *)) 1032 { 1033 struct buffer_head *bh, *n; 1034 int err = 0; 1035 1036 if (collect) { 1037 list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) { 1038 list_del_init(&bh->b_assoc_buffers); 1039 err = collect(sci, bh, inode); 1040 brelse(bh); 1041 if (unlikely(err)) 1042 goto dispose_buffers; 1043 } 1044 return 0; 1045 } 1046 1047 dispose_buffers: 1048 while (!list_empty(listp)) { 1049 bh = list_first_entry(listp, struct buffer_head, 1050 b_assoc_buffers); 1051 list_del_init(&bh->b_assoc_buffers); 1052 brelse(bh); 1053 } 1054 return err; 1055 } 1056 1057 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci) 1058 { 1059 /* Remaining number of blocks within segment buffer */ 1060 return sci->sc_segbuf_nblocks - 1061 (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks); 1062 } 1063 1064 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci, 1065 struct inode *inode, 1066 const struct nilfs_sc_operations *sc_ops) 1067 { 1068 LIST_HEAD(data_buffers); 1069 LIST_HEAD(node_buffers); 1070 int err; 1071 1072 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { 1073 size_t n, rest = nilfs_segctor_buffer_rest(sci); 1074 1075 n = nilfs_lookup_dirty_data_buffers( 1076 inode, &data_buffers, rest + 1, 0, LLONG_MAX); 1077 if (n > rest) { 1078 err = nilfs_segctor_apply_buffers( 1079 sci, inode, &data_buffers, 1080 sc_ops->collect_data); 1081 BUG_ON(!err); /* always receive -E2BIG or true error */ 1082 goto break_or_fail; 1083 } 1084 } 1085 nilfs_lookup_dirty_node_buffers(inode, &node_buffers); 1086 1087 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { 1088 err = nilfs_segctor_apply_buffers( 1089 sci, inode, &data_buffers, sc_ops->collect_data); 1090 if (unlikely(err)) { 1091 /* dispose node list */ 1092 nilfs_segctor_apply_buffers( 1093 sci, inode, &node_buffers, NULL); 1094 goto break_or_fail; 1095 } 1096 sci->sc_stage.flags |= NILFS_CF_NODE; 1097 } 1098 /* Collect node */ 1099 err = nilfs_segctor_apply_buffers( 1100 sci, inode, &node_buffers, sc_ops->collect_node); 1101 if (unlikely(err)) 1102 goto break_or_fail; 1103 1104 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers); 1105 err = nilfs_segctor_apply_buffers( 1106 sci, inode, &node_buffers, sc_ops->collect_bmap); 1107 if (unlikely(err)) 1108 goto break_or_fail; 1109 1110 nilfs_segctor_end_finfo(sci, inode); 1111 sci->sc_stage.flags &= ~NILFS_CF_NODE; 1112 1113 break_or_fail: 1114 return err; 1115 } 1116 1117 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci, 1118 struct inode *inode) 1119 { 1120 LIST_HEAD(data_buffers); 1121 size_t n, rest = nilfs_segctor_buffer_rest(sci); 1122 int err; 1123 1124 n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1, 1125 sci->sc_dsync_start, 1126 sci->sc_dsync_end); 1127 1128 err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers, 1129 nilfs_collect_file_data); 1130 if (!err) { 1131 nilfs_segctor_end_finfo(sci, inode); 1132 BUG_ON(n > rest); 1133 /* always receive -E2BIG or true error if n > rest */ 1134 } 1135 return err; 1136 } 1137 1138 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode) 1139 { 1140 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 1141 struct list_head *head; 1142 struct nilfs_inode_info *ii; 1143 size_t ndone; 1144 int err = 0; 1145 1146 switch (nilfs_sc_cstage_get(sci)) { 1147 case NILFS_ST_INIT: 1148 /* Pre-processes */ 1149 sci->sc_stage.flags = 0; 1150 1151 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) { 1152 sci->sc_nblk_inc = 0; 1153 sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN; 1154 if (mode == SC_LSEG_DSYNC) { 1155 nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC); 1156 goto dsync_mode; 1157 } 1158 } 1159 1160 sci->sc_stage.dirty_file_ptr = NULL; 1161 sci->sc_stage.gc_inode_ptr = NULL; 1162 if (mode == SC_FLUSH_DAT) { 1163 nilfs_sc_cstage_set(sci, NILFS_ST_DAT); 1164 goto dat_stage; 1165 } 1166 nilfs_sc_cstage_inc(sci); 1167 fallthrough; 1168 case NILFS_ST_GC: 1169 if (nilfs_doing_gc()) { 1170 head = &sci->sc_gc_inodes; 1171 ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr, 1172 head, i_dirty); 1173 list_for_each_entry_continue(ii, head, i_dirty) { 1174 err = nilfs_segctor_scan_file( 1175 sci, &ii->vfs_inode, 1176 &nilfs_sc_file_ops); 1177 if (unlikely(err)) { 1178 sci->sc_stage.gc_inode_ptr = list_entry( 1179 ii->i_dirty.prev, 1180 struct nilfs_inode_info, 1181 i_dirty); 1182 goto break_or_fail; 1183 } 1184 set_bit(NILFS_I_COLLECTED, &ii->i_state); 1185 } 1186 sci->sc_stage.gc_inode_ptr = NULL; 1187 } 1188 nilfs_sc_cstage_inc(sci); 1189 fallthrough; 1190 case NILFS_ST_FILE: 1191 head = &sci->sc_dirty_files; 1192 ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head, 1193 i_dirty); 1194 list_for_each_entry_continue(ii, head, i_dirty) { 1195 clear_bit(NILFS_I_DIRTY, &ii->i_state); 1196 1197 err = nilfs_segctor_scan_file(sci, &ii->vfs_inode, 1198 &nilfs_sc_file_ops); 1199 if (unlikely(err)) { 1200 sci->sc_stage.dirty_file_ptr = 1201 list_entry(ii->i_dirty.prev, 1202 struct nilfs_inode_info, 1203 i_dirty); 1204 goto break_or_fail; 1205 } 1206 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */ 1207 /* XXX: required ? */ 1208 } 1209 sci->sc_stage.dirty_file_ptr = NULL; 1210 if (mode == SC_FLUSH_FILE) { 1211 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1212 return 0; 1213 } 1214 nilfs_sc_cstage_inc(sci); 1215 sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED; 1216 fallthrough; 1217 case NILFS_ST_IFILE: 1218 err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile, 1219 &nilfs_sc_file_ops); 1220 if (unlikely(err)) 1221 break; 1222 nilfs_sc_cstage_inc(sci); 1223 /* Creating a checkpoint */ 1224 err = nilfs_segctor_create_checkpoint(sci); 1225 if (unlikely(err)) 1226 break; 1227 fallthrough; 1228 case NILFS_ST_CPFILE: 1229 err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile, 1230 &nilfs_sc_file_ops); 1231 if (unlikely(err)) 1232 break; 1233 nilfs_sc_cstage_inc(sci); 1234 fallthrough; 1235 case NILFS_ST_SUFILE: 1236 err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs, 1237 sci->sc_nfreesegs, &ndone); 1238 if (unlikely(err)) { 1239 nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1240 sci->sc_freesegs, ndone, 1241 NULL); 1242 break; 1243 } 1244 sci->sc_stage.flags |= NILFS_CF_SUFREED; 1245 1246 err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile, 1247 &nilfs_sc_file_ops); 1248 if (unlikely(err)) 1249 break; 1250 nilfs_sc_cstage_inc(sci); 1251 fallthrough; 1252 case NILFS_ST_DAT: 1253 dat_stage: 1254 err = nilfs_segctor_scan_file(sci, nilfs->ns_dat, 1255 &nilfs_sc_dat_ops); 1256 if (unlikely(err)) 1257 break; 1258 if (mode == SC_FLUSH_DAT) { 1259 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1260 return 0; 1261 } 1262 nilfs_sc_cstage_inc(sci); 1263 fallthrough; 1264 case NILFS_ST_SR: 1265 if (mode == SC_LSEG_SR) { 1266 /* Appending a super root */ 1267 err = nilfs_segctor_add_super_root(sci); 1268 if (unlikely(err)) 1269 break; 1270 } 1271 /* End of a logical segment */ 1272 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; 1273 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1274 return 0; 1275 case NILFS_ST_DSYNC: 1276 dsync_mode: 1277 sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT; 1278 ii = sci->sc_dsync_inode; 1279 if (!test_bit(NILFS_I_BUSY, &ii->i_state)) 1280 break; 1281 1282 err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode); 1283 if (unlikely(err)) 1284 break; 1285 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; 1286 nilfs_sc_cstage_set(sci, NILFS_ST_DONE); 1287 return 0; 1288 case NILFS_ST_DONE: 1289 return 0; 1290 default: 1291 BUG(); 1292 } 1293 1294 break_or_fail: 1295 return err; 1296 } 1297 1298 /** 1299 * nilfs_segctor_begin_construction - setup segment buffer to make a new log 1300 * @sci: nilfs_sc_info 1301 * @nilfs: nilfs object 1302 */ 1303 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci, 1304 struct the_nilfs *nilfs) 1305 { 1306 struct nilfs_segment_buffer *segbuf, *prev; 1307 __u64 nextnum; 1308 int err, alloc = 0; 1309 1310 segbuf = nilfs_segbuf_new(sci->sc_super); 1311 if (unlikely(!segbuf)) 1312 return -ENOMEM; 1313 1314 if (list_empty(&sci->sc_write_logs)) { 1315 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 1316 nilfs->ns_pseg_offset, nilfs); 1317 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { 1318 nilfs_shift_to_next_segment(nilfs); 1319 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs); 1320 } 1321 1322 segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq; 1323 nextnum = nilfs->ns_nextnum; 1324 1325 if (nilfs->ns_segnum == nilfs->ns_nextnum) 1326 /* Start from the head of a new full segment */ 1327 alloc++; 1328 } else { 1329 /* Continue logs */ 1330 prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs); 1331 nilfs_segbuf_map_cont(segbuf, prev); 1332 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq; 1333 nextnum = prev->sb_nextnum; 1334 1335 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { 1336 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); 1337 segbuf->sb_sum.seg_seq++; 1338 alloc++; 1339 } 1340 } 1341 1342 err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum); 1343 if (err) 1344 goto failed; 1345 1346 if (alloc) { 1347 err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum); 1348 if (err) 1349 goto failed; 1350 } 1351 nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs); 1352 1353 BUG_ON(!list_empty(&sci->sc_segbufs)); 1354 list_add_tail(&segbuf->sb_list, &sci->sc_segbufs); 1355 sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks; 1356 return 0; 1357 1358 failed: 1359 nilfs_segbuf_free(segbuf); 1360 return err; 1361 } 1362 1363 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci, 1364 struct the_nilfs *nilfs, int nadd) 1365 { 1366 struct nilfs_segment_buffer *segbuf, *prev; 1367 struct inode *sufile = nilfs->ns_sufile; 1368 __u64 nextnextnum; 1369 LIST_HEAD(list); 1370 int err, ret, i; 1371 1372 prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs); 1373 /* 1374 * Since the segment specified with nextnum might be allocated during 1375 * the previous construction, the buffer including its segusage may 1376 * not be dirty. The following call ensures that the buffer is dirty 1377 * and will pin the buffer on memory until the sufile is written. 1378 */ 1379 err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum); 1380 if (unlikely(err)) 1381 return err; 1382 1383 for (i = 0; i < nadd; i++) { 1384 /* extend segment info */ 1385 err = -ENOMEM; 1386 segbuf = nilfs_segbuf_new(sci->sc_super); 1387 if (unlikely(!segbuf)) 1388 goto failed; 1389 1390 /* map this buffer to region of segment on-disk */ 1391 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); 1392 sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks; 1393 1394 /* allocate the next next full segment */ 1395 err = nilfs_sufile_alloc(sufile, &nextnextnum); 1396 if (unlikely(err)) 1397 goto failed_segbuf; 1398 1399 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1; 1400 nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs); 1401 1402 list_add_tail(&segbuf->sb_list, &list); 1403 prev = segbuf; 1404 } 1405 list_splice_tail(&list, &sci->sc_segbufs); 1406 return 0; 1407 1408 failed_segbuf: 1409 nilfs_segbuf_free(segbuf); 1410 failed: 1411 list_for_each_entry(segbuf, &list, sb_list) { 1412 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1413 WARN_ON(ret); /* never fails */ 1414 } 1415 nilfs_destroy_logs(&list); 1416 return err; 1417 } 1418 1419 static void nilfs_free_incomplete_logs(struct list_head *logs, 1420 struct the_nilfs *nilfs) 1421 { 1422 struct nilfs_segment_buffer *segbuf, *prev; 1423 struct inode *sufile = nilfs->ns_sufile; 1424 int ret; 1425 1426 segbuf = NILFS_FIRST_SEGBUF(logs); 1427 if (nilfs->ns_nextnum != segbuf->sb_nextnum) { 1428 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1429 WARN_ON(ret); /* never fails */ 1430 } 1431 if (atomic_read(&segbuf->sb_err)) { 1432 /* Case 1: The first segment failed */ 1433 if (segbuf->sb_pseg_start != segbuf->sb_fseg_start) 1434 /* 1435 * Case 1a: Partial segment appended into an existing 1436 * segment 1437 */ 1438 nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start, 1439 segbuf->sb_fseg_end); 1440 else /* Case 1b: New full segment */ 1441 set_nilfs_discontinued(nilfs); 1442 } 1443 1444 prev = segbuf; 1445 list_for_each_entry_continue(segbuf, logs, sb_list) { 1446 if (prev->sb_nextnum != segbuf->sb_nextnum) { 1447 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1448 WARN_ON(ret); /* never fails */ 1449 } 1450 if (atomic_read(&segbuf->sb_err) && 1451 segbuf->sb_segnum != nilfs->ns_nextnum) 1452 /* Case 2: extended segment (!= next) failed */ 1453 nilfs_sufile_set_error(sufile, segbuf->sb_segnum); 1454 prev = segbuf; 1455 } 1456 } 1457 1458 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci, 1459 struct inode *sufile) 1460 { 1461 struct nilfs_segment_buffer *segbuf; 1462 unsigned long live_blocks; 1463 int ret; 1464 1465 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1466 live_blocks = segbuf->sb_sum.nblocks + 1467 (segbuf->sb_pseg_start - segbuf->sb_fseg_start); 1468 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1469 live_blocks, 1470 sci->sc_seg_ctime); 1471 WARN_ON(ret); /* always succeed because the segusage is dirty */ 1472 } 1473 } 1474 1475 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile) 1476 { 1477 struct nilfs_segment_buffer *segbuf; 1478 int ret; 1479 1480 segbuf = NILFS_FIRST_SEGBUF(logs); 1481 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1482 segbuf->sb_pseg_start - 1483 segbuf->sb_fseg_start, 0); 1484 WARN_ON(ret); /* always succeed because the segusage is dirty */ 1485 1486 list_for_each_entry_continue(segbuf, logs, sb_list) { 1487 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, 1488 0, 0); 1489 WARN_ON(ret); /* always succeed */ 1490 } 1491 } 1492 1493 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci, 1494 struct nilfs_segment_buffer *last, 1495 struct inode *sufile) 1496 { 1497 struct nilfs_segment_buffer *segbuf = last; 1498 int ret; 1499 1500 list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) { 1501 sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks; 1502 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); 1503 WARN_ON(ret); 1504 } 1505 nilfs_truncate_logs(&sci->sc_segbufs, last); 1506 } 1507 1508 1509 static int nilfs_segctor_collect(struct nilfs_sc_info *sci, 1510 struct the_nilfs *nilfs, int mode) 1511 { 1512 struct nilfs_cstage prev_stage = sci->sc_stage; 1513 int err, nadd = 1; 1514 1515 /* Collection retry loop */ 1516 for (;;) { 1517 sci->sc_nblk_this_inc = 0; 1518 sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs); 1519 1520 err = nilfs_segctor_reset_segment_buffer(sci); 1521 if (unlikely(err)) 1522 goto failed; 1523 1524 err = nilfs_segctor_collect_blocks(sci, mode); 1525 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; 1526 if (!err) 1527 break; 1528 1529 if (unlikely(err != -E2BIG)) 1530 goto failed; 1531 1532 /* The current segment is filled up */ 1533 if (mode != SC_LSEG_SR || 1534 nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE) 1535 break; 1536 1537 nilfs_clear_logs(&sci->sc_segbufs); 1538 1539 if (sci->sc_stage.flags & NILFS_CF_SUFREED) { 1540 err = nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1541 sci->sc_freesegs, 1542 sci->sc_nfreesegs, 1543 NULL); 1544 WARN_ON(err); /* do not happen */ 1545 sci->sc_stage.flags &= ~NILFS_CF_SUFREED; 1546 } 1547 1548 err = nilfs_segctor_extend_segments(sci, nilfs, nadd); 1549 if (unlikely(err)) 1550 return err; 1551 1552 nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA); 1553 sci->sc_stage = prev_stage; 1554 } 1555 nilfs_segctor_zeropad_segsum(sci); 1556 nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile); 1557 return 0; 1558 1559 failed: 1560 return err; 1561 } 1562 1563 static void nilfs_list_replace_buffer(struct buffer_head *old_bh, 1564 struct buffer_head *new_bh) 1565 { 1566 BUG_ON(!list_empty(&new_bh->b_assoc_buffers)); 1567 1568 list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers); 1569 /* The caller must release old_bh */ 1570 } 1571 1572 static int 1573 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci, 1574 struct nilfs_segment_buffer *segbuf, 1575 int mode) 1576 { 1577 struct inode *inode = NULL; 1578 sector_t blocknr; 1579 unsigned long nfinfo = segbuf->sb_sum.nfinfo; 1580 unsigned long nblocks = 0, ndatablk = 0; 1581 const struct nilfs_sc_operations *sc_op = NULL; 1582 struct nilfs_segsum_pointer ssp; 1583 struct nilfs_finfo *finfo = NULL; 1584 union nilfs_binfo binfo; 1585 struct buffer_head *bh, *bh_org; 1586 ino_t ino = 0; 1587 int err = 0; 1588 1589 if (!nfinfo) 1590 goto out; 1591 1592 blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk; 1593 ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); 1594 ssp.offset = sizeof(struct nilfs_segment_summary); 1595 1596 list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) { 1597 if (bh == segbuf->sb_super_root) 1598 break; 1599 if (!finfo) { 1600 finfo = nilfs_segctor_map_segsum_entry( 1601 sci, &ssp, sizeof(*finfo)); 1602 ino = le64_to_cpu(finfo->fi_ino); 1603 nblocks = le32_to_cpu(finfo->fi_nblocks); 1604 ndatablk = le32_to_cpu(finfo->fi_ndatablk); 1605 1606 inode = bh->b_folio->mapping->host; 1607 1608 if (mode == SC_LSEG_DSYNC) 1609 sc_op = &nilfs_sc_dsync_ops; 1610 else if (ino == NILFS_DAT_INO) 1611 sc_op = &nilfs_sc_dat_ops; 1612 else /* file blocks */ 1613 sc_op = &nilfs_sc_file_ops; 1614 } 1615 bh_org = bh; 1616 get_bh(bh_org); 1617 err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr, 1618 &binfo); 1619 if (bh != bh_org) 1620 nilfs_list_replace_buffer(bh_org, bh); 1621 brelse(bh_org); 1622 if (unlikely(err)) 1623 goto failed_bmap; 1624 1625 if (ndatablk > 0) 1626 sc_op->write_data_binfo(sci, &ssp, &binfo); 1627 else 1628 sc_op->write_node_binfo(sci, &ssp, &binfo); 1629 1630 blocknr++; 1631 if (--nblocks == 0) { 1632 finfo = NULL; 1633 if (--nfinfo == 0) 1634 break; 1635 } else if (ndatablk > 0) 1636 ndatablk--; 1637 } 1638 out: 1639 return 0; 1640 1641 failed_bmap: 1642 return err; 1643 } 1644 1645 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode) 1646 { 1647 struct nilfs_segment_buffer *segbuf; 1648 int err; 1649 1650 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1651 err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode); 1652 if (unlikely(err)) 1653 return err; 1654 nilfs_segbuf_fill_in_segsum(segbuf); 1655 } 1656 return 0; 1657 } 1658 1659 static void nilfs_begin_page_io(struct page *page) 1660 { 1661 if (!page || PageWriteback(page)) 1662 /* 1663 * For split b-tree node pages, this function may be called 1664 * twice. We ignore the 2nd or later calls by this check. 1665 */ 1666 return; 1667 1668 lock_page(page); 1669 clear_page_dirty_for_io(page); 1670 set_page_writeback(page); 1671 unlock_page(page); 1672 } 1673 1674 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci) 1675 { 1676 struct nilfs_segment_buffer *segbuf; 1677 struct page *bd_page = NULL, *fs_page = NULL; 1678 1679 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { 1680 struct buffer_head *bh; 1681 1682 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1683 b_assoc_buffers) { 1684 if (bh->b_page != bd_page) { 1685 if (bd_page) { 1686 lock_page(bd_page); 1687 clear_page_dirty_for_io(bd_page); 1688 set_page_writeback(bd_page); 1689 unlock_page(bd_page); 1690 } 1691 bd_page = bh->b_page; 1692 } 1693 } 1694 1695 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1696 b_assoc_buffers) { 1697 set_buffer_async_write(bh); 1698 if (bh == segbuf->sb_super_root) { 1699 if (bh->b_page != bd_page) { 1700 lock_page(bd_page); 1701 clear_page_dirty_for_io(bd_page); 1702 set_page_writeback(bd_page); 1703 unlock_page(bd_page); 1704 bd_page = bh->b_page; 1705 } 1706 break; 1707 } 1708 if (bh->b_page != fs_page) { 1709 nilfs_begin_page_io(fs_page); 1710 fs_page = bh->b_page; 1711 } 1712 } 1713 } 1714 if (bd_page) { 1715 lock_page(bd_page); 1716 clear_page_dirty_for_io(bd_page); 1717 set_page_writeback(bd_page); 1718 unlock_page(bd_page); 1719 } 1720 nilfs_begin_page_io(fs_page); 1721 } 1722 1723 static int nilfs_segctor_write(struct nilfs_sc_info *sci, 1724 struct the_nilfs *nilfs) 1725 { 1726 int ret; 1727 1728 ret = nilfs_write_logs(&sci->sc_segbufs, nilfs); 1729 list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs); 1730 return ret; 1731 } 1732 1733 static void nilfs_end_page_io(struct page *page, int err) 1734 { 1735 if (!page) 1736 return; 1737 1738 if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) { 1739 /* 1740 * For b-tree node pages, this function may be called twice 1741 * or more because they might be split in a segment. 1742 */ 1743 if (PageDirty(page)) { 1744 /* 1745 * For pages holding split b-tree node buffers, dirty 1746 * flag on the buffers may be cleared discretely. 1747 * In that case, the page is once redirtied for 1748 * remaining buffers, and it must be cancelled if 1749 * all the buffers get cleaned later. 1750 */ 1751 lock_page(page); 1752 if (nilfs_page_buffers_clean(page)) 1753 __nilfs_clear_page_dirty(page); 1754 unlock_page(page); 1755 } 1756 return; 1757 } 1758 1759 if (!err) { 1760 if (!nilfs_page_buffers_clean(page)) 1761 __set_page_dirty_nobuffers(page); 1762 ClearPageError(page); 1763 } else { 1764 __set_page_dirty_nobuffers(page); 1765 SetPageError(page); 1766 } 1767 1768 end_page_writeback(page); 1769 } 1770 1771 static void nilfs_abort_logs(struct list_head *logs, int err) 1772 { 1773 struct nilfs_segment_buffer *segbuf; 1774 struct page *bd_page = NULL, *fs_page = NULL; 1775 struct buffer_head *bh; 1776 1777 if (list_empty(logs)) 1778 return; 1779 1780 list_for_each_entry(segbuf, logs, sb_list) { 1781 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1782 b_assoc_buffers) { 1783 if (bh->b_page != bd_page) { 1784 if (bd_page) 1785 end_page_writeback(bd_page); 1786 bd_page = bh->b_page; 1787 } 1788 } 1789 1790 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1791 b_assoc_buffers) { 1792 clear_buffer_async_write(bh); 1793 if (bh == segbuf->sb_super_root) { 1794 if (bh->b_page != bd_page) { 1795 end_page_writeback(bd_page); 1796 bd_page = bh->b_page; 1797 } 1798 break; 1799 } 1800 if (bh->b_page != fs_page) { 1801 nilfs_end_page_io(fs_page, err); 1802 fs_page = bh->b_page; 1803 } 1804 } 1805 } 1806 if (bd_page) 1807 end_page_writeback(bd_page); 1808 1809 nilfs_end_page_io(fs_page, err); 1810 } 1811 1812 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci, 1813 struct the_nilfs *nilfs, int err) 1814 { 1815 LIST_HEAD(logs); 1816 int ret; 1817 1818 list_splice_tail_init(&sci->sc_write_logs, &logs); 1819 ret = nilfs_wait_on_logs(&logs); 1820 nilfs_abort_logs(&logs, ret ? : err); 1821 1822 list_splice_tail_init(&sci->sc_segbufs, &logs); 1823 nilfs_cancel_segusage(&logs, nilfs->ns_sufile); 1824 nilfs_free_incomplete_logs(&logs, nilfs); 1825 1826 if (sci->sc_stage.flags & NILFS_CF_SUFREED) { 1827 ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile, 1828 sci->sc_freesegs, 1829 sci->sc_nfreesegs, 1830 NULL); 1831 WARN_ON(ret); /* do not happen */ 1832 } 1833 1834 nilfs_destroy_logs(&logs); 1835 } 1836 1837 static void nilfs_set_next_segment(struct the_nilfs *nilfs, 1838 struct nilfs_segment_buffer *segbuf) 1839 { 1840 nilfs->ns_segnum = segbuf->sb_segnum; 1841 nilfs->ns_nextnum = segbuf->sb_nextnum; 1842 nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start 1843 + segbuf->sb_sum.nblocks; 1844 nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq; 1845 nilfs->ns_ctime = segbuf->sb_sum.ctime; 1846 } 1847 1848 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci) 1849 { 1850 struct nilfs_segment_buffer *segbuf; 1851 struct page *bd_page = NULL, *fs_page = NULL; 1852 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 1853 int update_sr = false; 1854 1855 list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) { 1856 struct buffer_head *bh; 1857 1858 list_for_each_entry(bh, &segbuf->sb_segsum_buffers, 1859 b_assoc_buffers) { 1860 set_buffer_uptodate(bh); 1861 clear_buffer_dirty(bh); 1862 if (bh->b_page != bd_page) { 1863 if (bd_page) 1864 end_page_writeback(bd_page); 1865 bd_page = bh->b_page; 1866 } 1867 } 1868 /* 1869 * We assume that the buffers which belong to the same page 1870 * continue over the buffer list. 1871 * Under this assumption, the last BHs of pages is 1872 * identifiable by the discontinuity of bh->b_page 1873 * (page != fs_page). 1874 * 1875 * For B-tree node blocks, however, this assumption is not 1876 * guaranteed. The cleanup code of B-tree node pages needs 1877 * special care. 1878 */ 1879 list_for_each_entry(bh, &segbuf->sb_payload_buffers, 1880 b_assoc_buffers) { 1881 const unsigned long set_bits = BIT(BH_Uptodate); 1882 const unsigned long clear_bits = 1883 (BIT(BH_Dirty) | BIT(BH_Async_Write) | 1884 BIT(BH_Delay) | BIT(BH_NILFS_Volatile) | 1885 BIT(BH_NILFS_Redirected)); 1886 1887 set_mask_bits(&bh->b_state, clear_bits, set_bits); 1888 if (bh == segbuf->sb_super_root) { 1889 if (bh->b_page != bd_page) { 1890 end_page_writeback(bd_page); 1891 bd_page = bh->b_page; 1892 } 1893 update_sr = true; 1894 break; 1895 } 1896 if (bh->b_page != fs_page) { 1897 nilfs_end_page_io(fs_page, 0); 1898 fs_page = bh->b_page; 1899 } 1900 } 1901 1902 if (!nilfs_segbuf_simplex(segbuf)) { 1903 if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) { 1904 set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); 1905 sci->sc_lseg_stime = jiffies; 1906 } 1907 if (segbuf->sb_sum.flags & NILFS_SS_LOGEND) 1908 clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); 1909 } 1910 } 1911 /* 1912 * Since pages may continue over multiple segment buffers, 1913 * end of the last page must be checked outside of the loop. 1914 */ 1915 if (bd_page) 1916 end_page_writeback(bd_page); 1917 1918 nilfs_end_page_io(fs_page, 0); 1919 1920 nilfs_drop_collected_inodes(&sci->sc_dirty_files); 1921 1922 if (nilfs_doing_gc()) 1923 nilfs_drop_collected_inodes(&sci->sc_gc_inodes); 1924 else 1925 nilfs->ns_nongc_ctime = sci->sc_seg_ctime; 1926 1927 sci->sc_nblk_inc += sci->sc_nblk_this_inc; 1928 1929 segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs); 1930 nilfs_set_next_segment(nilfs, segbuf); 1931 1932 if (update_sr) { 1933 nilfs->ns_flushed_device = 0; 1934 nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start, 1935 segbuf->sb_sum.seg_seq, nilfs->ns_cno++); 1936 1937 clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); 1938 clear_bit(NILFS_SC_DIRTY, &sci->sc_flags); 1939 set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); 1940 nilfs_segctor_clear_metadata_dirty(sci); 1941 } else 1942 clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); 1943 } 1944 1945 static int nilfs_segctor_wait(struct nilfs_sc_info *sci) 1946 { 1947 int ret; 1948 1949 ret = nilfs_wait_on_logs(&sci->sc_write_logs); 1950 if (!ret) { 1951 nilfs_segctor_complete_write(sci); 1952 nilfs_destroy_logs(&sci->sc_write_logs); 1953 } 1954 return ret; 1955 } 1956 1957 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci, 1958 struct the_nilfs *nilfs) 1959 { 1960 struct nilfs_inode_info *ii, *n; 1961 struct inode *ifile = sci->sc_root->ifile; 1962 1963 spin_lock(&nilfs->ns_inode_lock); 1964 retry: 1965 list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) { 1966 if (!ii->i_bh) { 1967 struct buffer_head *ibh; 1968 int err; 1969 1970 spin_unlock(&nilfs->ns_inode_lock); 1971 err = nilfs_ifile_get_inode_block( 1972 ifile, ii->vfs_inode.i_ino, &ibh); 1973 if (unlikely(err)) { 1974 nilfs_warn(sci->sc_super, 1975 "log writer: error %d getting inode block (ino=%lu)", 1976 err, ii->vfs_inode.i_ino); 1977 return err; 1978 } 1979 spin_lock(&nilfs->ns_inode_lock); 1980 if (likely(!ii->i_bh)) 1981 ii->i_bh = ibh; 1982 else 1983 brelse(ibh); 1984 goto retry; 1985 } 1986 1987 // Always redirty the buffer to avoid race condition 1988 mark_buffer_dirty(ii->i_bh); 1989 nilfs_mdt_mark_dirty(ifile); 1990 1991 clear_bit(NILFS_I_QUEUED, &ii->i_state); 1992 set_bit(NILFS_I_BUSY, &ii->i_state); 1993 list_move_tail(&ii->i_dirty, &sci->sc_dirty_files); 1994 } 1995 spin_unlock(&nilfs->ns_inode_lock); 1996 1997 return 0; 1998 } 1999 2000 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci, 2001 struct the_nilfs *nilfs) 2002 { 2003 struct nilfs_inode_info *ii, *n; 2004 int during_mount = !(sci->sc_super->s_flags & SB_ACTIVE); 2005 int defer_iput = false; 2006 2007 spin_lock(&nilfs->ns_inode_lock); 2008 list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) { 2009 if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) || 2010 test_bit(NILFS_I_DIRTY, &ii->i_state)) 2011 continue; 2012 2013 clear_bit(NILFS_I_BUSY, &ii->i_state); 2014 brelse(ii->i_bh); 2015 ii->i_bh = NULL; 2016 list_del_init(&ii->i_dirty); 2017 if (!ii->vfs_inode.i_nlink || during_mount) { 2018 /* 2019 * Defer calling iput() to avoid deadlocks if 2020 * i_nlink == 0 or mount is not yet finished. 2021 */ 2022 list_add_tail(&ii->i_dirty, &sci->sc_iput_queue); 2023 defer_iput = true; 2024 } else { 2025 spin_unlock(&nilfs->ns_inode_lock); 2026 iput(&ii->vfs_inode); 2027 spin_lock(&nilfs->ns_inode_lock); 2028 } 2029 } 2030 spin_unlock(&nilfs->ns_inode_lock); 2031 2032 if (defer_iput) 2033 schedule_work(&sci->sc_iput_work); 2034 } 2035 2036 /* 2037 * Main procedure of segment constructor 2038 */ 2039 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode) 2040 { 2041 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2042 int err; 2043 2044 if (sb_rdonly(sci->sc_super)) 2045 return -EROFS; 2046 2047 nilfs_sc_cstage_set(sci, NILFS_ST_INIT); 2048 sci->sc_cno = nilfs->ns_cno; 2049 2050 err = nilfs_segctor_collect_dirty_files(sci, nilfs); 2051 if (unlikely(err)) 2052 goto out; 2053 2054 if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) 2055 set_bit(NILFS_SC_DIRTY, &sci->sc_flags); 2056 2057 if (nilfs_segctor_clean(sci)) 2058 goto out; 2059 2060 do { 2061 sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK; 2062 2063 err = nilfs_segctor_begin_construction(sci, nilfs); 2064 if (unlikely(err)) 2065 goto out; 2066 2067 /* Update time stamp */ 2068 sci->sc_seg_ctime = ktime_get_real_seconds(); 2069 2070 err = nilfs_segctor_collect(sci, nilfs, mode); 2071 if (unlikely(err)) 2072 goto failed; 2073 2074 /* Avoid empty segment */ 2075 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE && 2076 nilfs_segbuf_empty(sci->sc_curseg)) { 2077 nilfs_segctor_abort_construction(sci, nilfs, 1); 2078 goto out; 2079 } 2080 2081 err = nilfs_segctor_assign(sci, mode); 2082 if (unlikely(err)) 2083 goto failed; 2084 2085 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED) 2086 nilfs_segctor_fill_in_file_bmap(sci); 2087 2088 if (mode == SC_LSEG_SR && 2089 nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) { 2090 err = nilfs_segctor_fill_in_checkpoint(sci); 2091 if (unlikely(err)) 2092 goto failed_to_write; 2093 2094 nilfs_segctor_fill_in_super_root(sci, nilfs); 2095 } 2096 nilfs_segctor_update_segusage(sci, nilfs->ns_sufile); 2097 2098 /* Write partial segments */ 2099 nilfs_segctor_prepare_write(sci); 2100 2101 nilfs_add_checksums_on_logs(&sci->sc_segbufs, 2102 nilfs->ns_crc_seed); 2103 2104 err = nilfs_segctor_write(sci, nilfs); 2105 if (unlikely(err)) 2106 goto failed_to_write; 2107 2108 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE || 2109 nilfs->ns_blocksize_bits != PAGE_SHIFT) { 2110 /* 2111 * At this point, we avoid double buffering 2112 * for blocksize < pagesize because page dirty 2113 * flag is turned off during write and dirty 2114 * buffers are not properly collected for 2115 * pages crossing over segments. 2116 */ 2117 err = nilfs_segctor_wait(sci); 2118 if (err) 2119 goto failed_to_write; 2120 } 2121 } while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE); 2122 2123 out: 2124 nilfs_segctor_drop_written_files(sci, nilfs); 2125 return err; 2126 2127 failed_to_write: 2128 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED) 2129 nilfs_redirty_inodes(&sci->sc_dirty_files); 2130 2131 failed: 2132 if (nilfs_doing_gc()) 2133 nilfs_redirty_inodes(&sci->sc_gc_inodes); 2134 nilfs_segctor_abort_construction(sci, nilfs, err); 2135 goto out; 2136 } 2137 2138 /** 2139 * nilfs_segctor_start_timer - set timer of background write 2140 * @sci: nilfs_sc_info 2141 * 2142 * If the timer has already been set, it ignores the new request. 2143 * This function MUST be called within a section locking the segment 2144 * semaphore. 2145 */ 2146 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci) 2147 { 2148 spin_lock(&sci->sc_state_lock); 2149 if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) { 2150 sci->sc_timer.expires = jiffies + sci->sc_interval; 2151 add_timer(&sci->sc_timer); 2152 sci->sc_state |= NILFS_SEGCTOR_COMMIT; 2153 } 2154 spin_unlock(&sci->sc_state_lock); 2155 } 2156 2157 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn) 2158 { 2159 spin_lock(&sci->sc_state_lock); 2160 if (!(sci->sc_flush_request & BIT(bn))) { 2161 unsigned long prev_req = sci->sc_flush_request; 2162 2163 sci->sc_flush_request |= BIT(bn); 2164 if (!prev_req) 2165 wake_up(&sci->sc_wait_daemon); 2166 } 2167 spin_unlock(&sci->sc_state_lock); 2168 } 2169 2170 /** 2171 * nilfs_flush_segment - trigger a segment construction for resource control 2172 * @sb: super block 2173 * @ino: inode number of the file to be flushed out. 2174 */ 2175 void nilfs_flush_segment(struct super_block *sb, ino_t ino) 2176 { 2177 struct the_nilfs *nilfs = sb->s_fs_info; 2178 struct nilfs_sc_info *sci = nilfs->ns_writer; 2179 2180 if (!sci || nilfs_doing_construction()) 2181 return; 2182 nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0); 2183 /* assign bit 0 to data files */ 2184 } 2185 2186 struct nilfs_segctor_wait_request { 2187 wait_queue_entry_t wq; 2188 __u32 seq; 2189 int err; 2190 atomic_t done; 2191 }; 2192 2193 static int nilfs_segctor_sync(struct nilfs_sc_info *sci) 2194 { 2195 struct nilfs_segctor_wait_request wait_req; 2196 int err = 0; 2197 2198 spin_lock(&sci->sc_state_lock); 2199 init_wait(&wait_req.wq); 2200 wait_req.err = 0; 2201 atomic_set(&wait_req.done, 0); 2202 wait_req.seq = ++sci->sc_seq_request; 2203 spin_unlock(&sci->sc_state_lock); 2204 2205 init_waitqueue_entry(&wait_req.wq, current); 2206 add_wait_queue(&sci->sc_wait_request, &wait_req.wq); 2207 set_current_state(TASK_INTERRUPTIBLE); 2208 wake_up(&sci->sc_wait_daemon); 2209 2210 for (;;) { 2211 if (atomic_read(&wait_req.done)) { 2212 err = wait_req.err; 2213 break; 2214 } 2215 if (!signal_pending(current)) { 2216 schedule(); 2217 continue; 2218 } 2219 err = -ERESTARTSYS; 2220 break; 2221 } 2222 finish_wait(&sci->sc_wait_request, &wait_req.wq); 2223 return err; 2224 } 2225 2226 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err) 2227 { 2228 struct nilfs_segctor_wait_request *wrq, *n; 2229 unsigned long flags; 2230 2231 spin_lock_irqsave(&sci->sc_wait_request.lock, flags); 2232 list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.head, wq.entry) { 2233 if (!atomic_read(&wrq->done) && 2234 nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) { 2235 wrq->err = err; 2236 atomic_set(&wrq->done, 1); 2237 } 2238 if (atomic_read(&wrq->done)) { 2239 wrq->wq.func(&wrq->wq, 2240 TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 2241 0, NULL); 2242 } 2243 } 2244 spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags); 2245 } 2246 2247 /** 2248 * nilfs_construct_segment - construct a logical segment 2249 * @sb: super block 2250 * 2251 * Return Value: On success, 0 is returned. On errors, one of the following 2252 * negative error code is returned. 2253 * 2254 * %-EROFS - Read only filesystem. 2255 * 2256 * %-EIO - I/O error 2257 * 2258 * %-ENOSPC - No space left on device (only in a panic state). 2259 * 2260 * %-ERESTARTSYS - Interrupted. 2261 * 2262 * %-ENOMEM - Insufficient memory available. 2263 */ 2264 int nilfs_construct_segment(struct super_block *sb) 2265 { 2266 struct the_nilfs *nilfs = sb->s_fs_info; 2267 struct nilfs_sc_info *sci = nilfs->ns_writer; 2268 struct nilfs_transaction_info *ti; 2269 2270 if (sb_rdonly(sb) || unlikely(!sci)) 2271 return -EROFS; 2272 2273 /* A call inside transactions causes a deadlock. */ 2274 BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC); 2275 2276 return nilfs_segctor_sync(sci); 2277 } 2278 2279 /** 2280 * nilfs_construct_dsync_segment - construct a data-only logical segment 2281 * @sb: super block 2282 * @inode: inode whose data blocks should be written out 2283 * @start: start byte offset 2284 * @end: end byte offset (inclusive) 2285 * 2286 * Return Value: On success, 0 is returned. On errors, one of the following 2287 * negative error code is returned. 2288 * 2289 * %-EROFS - Read only filesystem. 2290 * 2291 * %-EIO - I/O error 2292 * 2293 * %-ENOSPC - No space left on device (only in a panic state). 2294 * 2295 * %-ERESTARTSYS - Interrupted. 2296 * 2297 * %-ENOMEM - Insufficient memory available. 2298 */ 2299 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode, 2300 loff_t start, loff_t end) 2301 { 2302 struct the_nilfs *nilfs = sb->s_fs_info; 2303 struct nilfs_sc_info *sci = nilfs->ns_writer; 2304 struct nilfs_inode_info *ii; 2305 struct nilfs_transaction_info ti; 2306 int err = 0; 2307 2308 if (sb_rdonly(sb) || unlikely(!sci)) 2309 return -EROFS; 2310 2311 nilfs_transaction_lock(sb, &ti, 0); 2312 2313 ii = NILFS_I(inode); 2314 if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) || 2315 nilfs_test_opt(nilfs, STRICT_ORDER) || 2316 test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || 2317 nilfs_discontinued(nilfs)) { 2318 nilfs_transaction_unlock(sb); 2319 err = nilfs_segctor_sync(sci); 2320 return err; 2321 } 2322 2323 spin_lock(&nilfs->ns_inode_lock); 2324 if (!test_bit(NILFS_I_QUEUED, &ii->i_state) && 2325 !test_bit(NILFS_I_BUSY, &ii->i_state)) { 2326 spin_unlock(&nilfs->ns_inode_lock); 2327 nilfs_transaction_unlock(sb); 2328 return 0; 2329 } 2330 spin_unlock(&nilfs->ns_inode_lock); 2331 sci->sc_dsync_inode = ii; 2332 sci->sc_dsync_start = start; 2333 sci->sc_dsync_end = end; 2334 2335 err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC); 2336 if (!err) 2337 nilfs->ns_flushed_device = 0; 2338 2339 nilfs_transaction_unlock(sb); 2340 return err; 2341 } 2342 2343 #define FLUSH_FILE_BIT (0x1) /* data file only */ 2344 #define FLUSH_DAT_BIT BIT(NILFS_DAT_INO) /* DAT only */ 2345 2346 /** 2347 * nilfs_segctor_accept - record accepted sequence count of log-write requests 2348 * @sci: segment constructor object 2349 */ 2350 static void nilfs_segctor_accept(struct nilfs_sc_info *sci) 2351 { 2352 spin_lock(&sci->sc_state_lock); 2353 sci->sc_seq_accepted = sci->sc_seq_request; 2354 spin_unlock(&sci->sc_state_lock); 2355 del_timer_sync(&sci->sc_timer); 2356 } 2357 2358 /** 2359 * nilfs_segctor_notify - notify the result of request to caller threads 2360 * @sci: segment constructor object 2361 * @mode: mode of log forming 2362 * @err: error code to be notified 2363 */ 2364 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err) 2365 { 2366 /* Clear requests (even when the construction failed) */ 2367 spin_lock(&sci->sc_state_lock); 2368 2369 if (mode == SC_LSEG_SR) { 2370 sci->sc_state &= ~NILFS_SEGCTOR_COMMIT; 2371 sci->sc_seq_done = sci->sc_seq_accepted; 2372 nilfs_segctor_wakeup(sci, err); 2373 sci->sc_flush_request = 0; 2374 } else { 2375 if (mode == SC_FLUSH_FILE) 2376 sci->sc_flush_request &= ~FLUSH_FILE_BIT; 2377 else if (mode == SC_FLUSH_DAT) 2378 sci->sc_flush_request &= ~FLUSH_DAT_BIT; 2379 2380 /* re-enable timer if checkpoint creation was not done */ 2381 if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && 2382 time_before(jiffies, sci->sc_timer.expires)) 2383 add_timer(&sci->sc_timer); 2384 } 2385 spin_unlock(&sci->sc_state_lock); 2386 } 2387 2388 /** 2389 * nilfs_segctor_construct - form logs and write them to disk 2390 * @sci: segment constructor object 2391 * @mode: mode of log forming 2392 */ 2393 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode) 2394 { 2395 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2396 struct nilfs_super_block **sbp; 2397 int err = 0; 2398 2399 nilfs_segctor_accept(sci); 2400 2401 if (nilfs_discontinued(nilfs)) 2402 mode = SC_LSEG_SR; 2403 if (!nilfs_segctor_confirm(sci)) 2404 err = nilfs_segctor_do_construct(sci, mode); 2405 2406 if (likely(!err)) { 2407 if (mode != SC_FLUSH_DAT) 2408 atomic_set(&nilfs->ns_ndirtyblks, 0); 2409 if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) && 2410 nilfs_discontinued(nilfs)) { 2411 down_write(&nilfs->ns_sem); 2412 err = -EIO; 2413 sbp = nilfs_prepare_super(sci->sc_super, 2414 nilfs_sb_will_flip(nilfs)); 2415 if (likely(sbp)) { 2416 nilfs_set_log_cursor(sbp[0], nilfs); 2417 err = nilfs_commit_super(sci->sc_super, 2418 NILFS_SB_COMMIT); 2419 } 2420 up_write(&nilfs->ns_sem); 2421 } 2422 } 2423 2424 nilfs_segctor_notify(sci, mode, err); 2425 return err; 2426 } 2427 2428 static void nilfs_construction_timeout(struct timer_list *t) 2429 { 2430 struct nilfs_sc_info *sci = from_timer(sci, t, sc_timer); 2431 2432 wake_up_process(sci->sc_timer_task); 2433 } 2434 2435 static void 2436 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head) 2437 { 2438 struct nilfs_inode_info *ii, *n; 2439 2440 list_for_each_entry_safe(ii, n, head, i_dirty) { 2441 if (!test_bit(NILFS_I_UPDATED, &ii->i_state)) 2442 continue; 2443 list_del_init(&ii->i_dirty); 2444 truncate_inode_pages(&ii->vfs_inode.i_data, 0); 2445 nilfs_btnode_cache_clear(ii->i_assoc_inode->i_mapping); 2446 iput(&ii->vfs_inode); 2447 } 2448 } 2449 2450 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv, 2451 void **kbufs) 2452 { 2453 struct the_nilfs *nilfs = sb->s_fs_info; 2454 struct nilfs_sc_info *sci = nilfs->ns_writer; 2455 struct nilfs_transaction_info ti; 2456 int err; 2457 2458 if (unlikely(!sci)) 2459 return -EROFS; 2460 2461 nilfs_transaction_lock(sb, &ti, 1); 2462 2463 err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat); 2464 if (unlikely(err)) 2465 goto out_unlock; 2466 2467 err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs); 2468 if (unlikely(err)) { 2469 nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat); 2470 goto out_unlock; 2471 } 2472 2473 sci->sc_freesegs = kbufs[4]; 2474 sci->sc_nfreesegs = argv[4].v_nmembs; 2475 list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes); 2476 2477 for (;;) { 2478 err = nilfs_segctor_construct(sci, SC_LSEG_SR); 2479 nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes); 2480 2481 if (likely(!err)) 2482 break; 2483 2484 nilfs_warn(sb, "error %d cleaning segments", err); 2485 set_current_state(TASK_INTERRUPTIBLE); 2486 schedule_timeout(sci->sc_interval); 2487 } 2488 if (nilfs_test_opt(nilfs, DISCARD)) { 2489 int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs, 2490 sci->sc_nfreesegs); 2491 if (ret) { 2492 nilfs_warn(sb, 2493 "error %d on discard request, turning discards off for the device", 2494 ret); 2495 nilfs_clear_opt(nilfs, DISCARD); 2496 } 2497 } 2498 2499 out_unlock: 2500 sci->sc_freesegs = NULL; 2501 sci->sc_nfreesegs = 0; 2502 nilfs_mdt_clear_shadow_map(nilfs->ns_dat); 2503 nilfs_transaction_unlock(sb); 2504 return err; 2505 } 2506 2507 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode) 2508 { 2509 struct nilfs_transaction_info ti; 2510 2511 nilfs_transaction_lock(sci->sc_super, &ti, 0); 2512 nilfs_segctor_construct(sci, mode); 2513 2514 /* 2515 * Unclosed segment should be retried. We do this using sc_timer. 2516 * Timeout of sc_timer will invoke complete construction which leads 2517 * to close the current logical segment. 2518 */ 2519 if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) 2520 nilfs_segctor_start_timer(sci); 2521 2522 nilfs_transaction_unlock(sci->sc_super); 2523 } 2524 2525 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci) 2526 { 2527 int mode = 0; 2528 2529 spin_lock(&sci->sc_state_lock); 2530 mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ? 2531 SC_FLUSH_DAT : SC_FLUSH_FILE; 2532 spin_unlock(&sci->sc_state_lock); 2533 2534 if (mode) { 2535 nilfs_segctor_do_construct(sci, mode); 2536 2537 spin_lock(&sci->sc_state_lock); 2538 sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ? 2539 ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT; 2540 spin_unlock(&sci->sc_state_lock); 2541 } 2542 clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); 2543 } 2544 2545 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci) 2546 { 2547 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || 2548 time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) { 2549 if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT)) 2550 return SC_FLUSH_FILE; 2551 else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT)) 2552 return SC_FLUSH_DAT; 2553 } 2554 return SC_LSEG_SR; 2555 } 2556 2557 /** 2558 * nilfs_segctor_thread - main loop of the segment constructor thread. 2559 * @arg: pointer to a struct nilfs_sc_info. 2560 * 2561 * nilfs_segctor_thread() initializes a timer and serves as a daemon 2562 * to execute segment constructions. 2563 */ 2564 static int nilfs_segctor_thread(void *arg) 2565 { 2566 struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg; 2567 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2568 int timeout = 0; 2569 2570 sci->sc_timer_task = current; 2571 2572 /* start sync. */ 2573 sci->sc_task = current; 2574 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */ 2575 nilfs_info(sci->sc_super, 2576 "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds", 2577 sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ); 2578 2579 spin_lock(&sci->sc_state_lock); 2580 loop: 2581 for (;;) { 2582 int mode; 2583 2584 if (sci->sc_state & NILFS_SEGCTOR_QUIT) 2585 goto end_thread; 2586 2587 if (timeout || sci->sc_seq_request != sci->sc_seq_done) 2588 mode = SC_LSEG_SR; 2589 else if (sci->sc_flush_request) 2590 mode = nilfs_segctor_flush_mode(sci); 2591 else 2592 break; 2593 2594 spin_unlock(&sci->sc_state_lock); 2595 nilfs_segctor_thread_construct(sci, mode); 2596 spin_lock(&sci->sc_state_lock); 2597 timeout = 0; 2598 } 2599 2600 2601 if (freezing(current)) { 2602 spin_unlock(&sci->sc_state_lock); 2603 try_to_freeze(); 2604 spin_lock(&sci->sc_state_lock); 2605 } else { 2606 DEFINE_WAIT(wait); 2607 int should_sleep = 1; 2608 2609 prepare_to_wait(&sci->sc_wait_daemon, &wait, 2610 TASK_INTERRUPTIBLE); 2611 2612 if (sci->sc_seq_request != sci->sc_seq_done) 2613 should_sleep = 0; 2614 else if (sci->sc_flush_request) 2615 should_sleep = 0; 2616 else if (sci->sc_state & NILFS_SEGCTOR_COMMIT) 2617 should_sleep = time_before(jiffies, 2618 sci->sc_timer.expires); 2619 2620 if (should_sleep) { 2621 spin_unlock(&sci->sc_state_lock); 2622 schedule(); 2623 spin_lock(&sci->sc_state_lock); 2624 } 2625 finish_wait(&sci->sc_wait_daemon, &wait); 2626 timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && 2627 time_after_eq(jiffies, sci->sc_timer.expires)); 2628 2629 if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs)) 2630 set_nilfs_discontinued(nilfs); 2631 } 2632 goto loop; 2633 2634 end_thread: 2635 /* end sync. */ 2636 sci->sc_task = NULL; 2637 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */ 2638 spin_unlock(&sci->sc_state_lock); 2639 return 0; 2640 } 2641 2642 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci) 2643 { 2644 struct task_struct *t; 2645 2646 t = kthread_run(nilfs_segctor_thread, sci, "segctord"); 2647 if (IS_ERR(t)) { 2648 int err = PTR_ERR(t); 2649 2650 nilfs_err(sci->sc_super, "error %d creating segctord thread", 2651 err); 2652 return err; 2653 } 2654 wait_event(sci->sc_wait_task, sci->sc_task != NULL); 2655 return 0; 2656 } 2657 2658 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci) 2659 __acquires(&sci->sc_state_lock) 2660 __releases(&sci->sc_state_lock) 2661 { 2662 sci->sc_state |= NILFS_SEGCTOR_QUIT; 2663 2664 while (sci->sc_task) { 2665 wake_up(&sci->sc_wait_daemon); 2666 spin_unlock(&sci->sc_state_lock); 2667 wait_event(sci->sc_wait_task, sci->sc_task == NULL); 2668 spin_lock(&sci->sc_state_lock); 2669 } 2670 } 2671 2672 /* 2673 * Setup & clean-up functions 2674 */ 2675 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb, 2676 struct nilfs_root *root) 2677 { 2678 struct the_nilfs *nilfs = sb->s_fs_info; 2679 struct nilfs_sc_info *sci; 2680 2681 sci = kzalloc(sizeof(*sci), GFP_KERNEL); 2682 if (!sci) 2683 return NULL; 2684 2685 sci->sc_super = sb; 2686 2687 nilfs_get_root(root); 2688 sci->sc_root = root; 2689 2690 init_waitqueue_head(&sci->sc_wait_request); 2691 init_waitqueue_head(&sci->sc_wait_daemon); 2692 init_waitqueue_head(&sci->sc_wait_task); 2693 spin_lock_init(&sci->sc_state_lock); 2694 INIT_LIST_HEAD(&sci->sc_dirty_files); 2695 INIT_LIST_HEAD(&sci->sc_segbufs); 2696 INIT_LIST_HEAD(&sci->sc_write_logs); 2697 INIT_LIST_HEAD(&sci->sc_gc_inodes); 2698 INIT_LIST_HEAD(&sci->sc_iput_queue); 2699 INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func); 2700 timer_setup(&sci->sc_timer, nilfs_construction_timeout, 0); 2701 2702 sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT; 2703 sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ; 2704 sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK; 2705 2706 if (nilfs->ns_interval) 2707 sci->sc_interval = HZ * nilfs->ns_interval; 2708 if (nilfs->ns_watermark) 2709 sci->sc_watermark = nilfs->ns_watermark; 2710 return sci; 2711 } 2712 2713 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci) 2714 { 2715 int ret, retrycount = NILFS_SC_CLEANUP_RETRY; 2716 2717 /* 2718 * The segctord thread was stopped and its timer was removed. 2719 * But some tasks remain. 2720 */ 2721 do { 2722 struct nilfs_transaction_info ti; 2723 2724 nilfs_transaction_lock(sci->sc_super, &ti, 0); 2725 ret = nilfs_segctor_construct(sci, SC_LSEG_SR); 2726 nilfs_transaction_unlock(sci->sc_super); 2727 2728 flush_work(&sci->sc_iput_work); 2729 2730 } while (ret && ret != -EROFS && retrycount-- > 0); 2731 } 2732 2733 /** 2734 * nilfs_segctor_destroy - destroy the segment constructor. 2735 * @sci: nilfs_sc_info 2736 * 2737 * nilfs_segctor_destroy() kills the segctord thread and frees 2738 * the nilfs_sc_info struct. 2739 * Caller must hold the segment semaphore. 2740 */ 2741 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci) 2742 { 2743 struct the_nilfs *nilfs = sci->sc_super->s_fs_info; 2744 int flag; 2745 2746 up_write(&nilfs->ns_segctor_sem); 2747 2748 spin_lock(&sci->sc_state_lock); 2749 nilfs_segctor_kill_thread(sci); 2750 flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request 2751 || sci->sc_seq_request != sci->sc_seq_done); 2752 spin_unlock(&sci->sc_state_lock); 2753 2754 if (flush_work(&sci->sc_iput_work)) 2755 flag = true; 2756 2757 if (flag || !nilfs_segctor_confirm(sci)) 2758 nilfs_segctor_write_out(sci); 2759 2760 if (!list_empty(&sci->sc_dirty_files)) { 2761 nilfs_warn(sci->sc_super, 2762 "disposed unprocessed dirty file(s) when stopping log writer"); 2763 nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1); 2764 } 2765 2766 if (!list_empty(&sci->sc_iput_queue)) { 2767 nilfs_warn(sci->sc_super, 2768 "disposed unprocessed inode(s) in iput queue when stopping log writer"); 2769 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1); 2770 } 2771 2772 WARN_ON(!list_empty(&sci->sc_segbufs)); 2773 WARN_ON(!list_empty(&sci->sc_write_logs)); 2774 2775 nilfs_put_root(sci->sc_root); 2776 2777 down_write(&nilfs->ns_segctor_sem); 2778 2779 timer_shutdown_sync(&sci->sc_timer); 2780 kfree(sci); 2781 } 2782 2783 /** 2784 * nilfs_attach_log_writer - attach log writer 2785 * @sb: super block instance 2786 * @root: root object of the current filesystem tree 2787 * 2788 * This allocates a log writer object, initializes it, and starts the 2789 * log writer. 2790 * 2791 * Return Value: On success, 0 is returned. On error, one of the following 2792 * negative error code is returned. 2793 * 2794 * %-ENOMEM - Insufficient memory available. 2795 */ 2796 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root) 2797 { 2798 struct the_nilfs *nilfs = sb->s_fs_info; 2799 int err; 2800 2801 if (nilfs->ns_writer) { 2802 /* 2803 * This happens if the filesystem is made read-only by 2804 * __nilfs_error or nilfs_remount and then remounted 2805 * read/write. In these cases, reuse the existing 2806 * writer. 2807 */ 2808 return 0; 2809 } 2810 2811 nilfs->ns_writer = nilfs_segctor_new(sb, root); 2812 if (!nilfs->ns_writer) 2813 return -ENOMEM; 2814 2815 inode_attach_wb(nilfs->ns_bdev->bd_inode, NULL); 2816 2817 err = nilfs_segctor_start_thread(nilfs->ns_writer); 2818 if (unlikely(err)) 2819 nilfs_detach_log_writer(sb); 2820 2821 return err; 2822 } 2823 2824 /** 2825 * nilfs_detach_log_writer - destroy log writer 2826 * @sb: super block instance 2827 * 2828 * This kills log writer daemon, frees the log writer object, and 2829 * destroys list of dirty files. 2830 */ 2831 void nilfs_detach_log_writer(struct super_block *sb) 2832 { 2833 struct the_nilfs *nilfs = sb->s_fs_info; 2834 LIST_HEAD(garbage_list); 2835 2836 down_write(&nilfs->ns_segctor_sem); 2837 if (nilfs->ns_writer) { 2838 nilfs_segctor_destroy(nilfs->ns_writer); 2839 nilfs->ns_writer = NULL; 2840 } 2841 2842 /* Force to free the list of dirty files */ 2843 spin_lock(&nilfs->ns_inode_lock); 2844 if (!list_empty(&nilfs->ns_dirty_files)) { 2845 list_splice_init(&nilfs->ns_dirty_files, &garbage_list); 2846 nilfs_warn(sb, 2847 "disposed unprocessed dirty file(s) when detaching log writer"); 2848 } 2849 spin_unlock(&nilfs->ns_inode_lock); 2850 up_write(&nilfs->ns_segctor_sem); 2851 2852 nilfs_dispose_list(nilfs, &garbage_list, 1); 2853 } 2854