1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Buffer/page management specific to NILFS 4 * 5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 6 * 7 * Written by Ryusuke Konishi and Seiji Kihara. 8 */ 9 10 #include <linux/pagemap.h> 11 #include <linux/writeback.h> 12 #include <linux/swap.h> 13 #include <linux/bitops.h> 14 #include <linux/page-flags.h> 15 #include <linux/list.h> 16 #include <linux/highmem.h> 17 #include <linux/pagevec.h> 18 #include <linux/gfp.h> 19 #include "nilfs.h" 20 #include "page.h" 21 #include "mdt.h" 22 23 24 #define NILFS_BUFFER_INHERENT_BITS \ 25 (BIT(BH_Uptodate) | BIT(BH_Mapped) | BIT(BH_NILFS_Node) | \ 26 BIT(BH_NILFS_Volatile) | BIT(BH_NILFS_Checked)) 27 28 static struct buffer_head * 29 __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index, 30 int blkbits, unsigned long b_state) 31 32 { 33 unsigned long first_block; 34 struct buffer_head *bh; 35 36 if (!page_has_buffers(page)) 37 create_empty_buffers(page, 1 << blkbits, b_state); 38 39 first_block = (unsigned long)index << (PAGE_SHIFT - blkbits); 40 bh = nilfs_page_get_nth_block(page, block - first_block); 41 42 touch_buffer(bh); 43 wait_on_buffer(bh); 44 return bh; 45 } 46 47 struct buffer_head *nilfs_grab_buffer(struct inode *inode, 48 struct address_space *mapping, 49 unsigned long blkoff, 50 unsigned long b_state) 51 { 52 int blkbits = inode->i_blkbits; 53 pgoff_t index = blkoff >> (PAGE_SHIFT - blkbits); 54 struct page *page; 55 struct buffer_head *bh; 56 57 page = grab_cache_page(mapping, index); 58 if (unlikely(!page)) 59 return NULL; 60 61 bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state); 62 if (unlikely(!bh)) { 63 unlock_page(page); 64 put_page(page); 65 return NULL; 66 } 67 return bh; 68 } 69 70 /** 71 * nilfs_forget_buffer - discard dirty state 72 * @bh: buffer head of the buffer to be discarded 73 */ 74 void nilfs_forget_buffer(struct buffer_head *bh) 75 { 76 struct page *page = bh->b_page; 77 const unsigned long clear_bits = 78 (BIT(BH_Uptodate) | BIT(BH_Dirty) | BIT(BH_Mapped) | 79 BIT(BH_Async_Write) | BIT(BH_NILFS_Volatile) | 80 BIT(BH_NILFS_Checked) | BIT(BH_NILFS_Redirected) | 81 BIT(BH_Delay)); 82 83 lock_buffer(bh); 84 set_mask_bits(&bh->b_state, clear_bits, 0); 85 if (nilfs_page_buffers_clean(page)) 86 __nilfs_clear_page_dirty(page); 87 88 bh->b_blocknr = -1; 89 ClearPageUptodate(page); 90 ClearPageMappedToDisk(page); 91 unlock_buffer(bh); 92 brelse(bh); 93 } 94 95 /** 96 * nilfs_copy_buffer -- copy buffer data and flags 97 * @dbh: destination buffer 98 * @sbh: source buffer 99 */ 100 void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh) 101 { 102 void *kaddr0, *kaddr1; 103 unsigned long bits; 104 struct page *spage = sbh->b_page, *dpage = dbh->b_page; 105 struct buffer_head *bh; 106 107 kaddr0 = kmap_atomic(spage); 108 kaddr1 = kmap_atomic(dpage); 109 memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size); 110 kunmap_atomic(kaddr1); 111 kunmap_atomic(kaddr0); 112 113 dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS; 114 dbh->b_blocknr = sbh->b_blocknr; 115 dbh->b_bdev = sbh->b_bdev; 116 117 bh = dbh; 118 bits = sbh->b_state & (BIT(BH_Uptodate) | BIT(BH_Mapped)); 119 while ((bh = bh->b_this_page) != dbh) { 120 lock_buffer(bh); 121 bits &= bh->b_state; 122 unlock_buffer(bh); 123 } 124 if (bits & BIT(BH_Uptodate)) 125 SetPageUptodate(dpage); 126 else 127 ClearPageUptodate(dpage); 128 if (bits & BIT(BH_Mapped)) 129 SetPageMappedToDisk(dpage); 130 else 131 ClearPageMappedToDisk(dpage); 132 } 133 134 /** 135 * nilfs_page_buffers_clean - check if a page has dirty buffers or not. 136 * @page: page to be checked 137 * 138 * nilfs_page_buffers_clean() returns zero if the page has dirty buffers. 139 * Otherwise, it returns non-zero value. 140 */ 141 int nilfs_page_buffers_clean(struct page *page) 142 { 143 struct buffer_head *bh, *head; 144 145 bh = head = page_buffers(page); 146 do { 147 if (buffer_dirty(bh)) 148 return 0; 149 bh = bh->b_this_page; 150 } while (bh != head); 151 return 1; 152 } 153 154 void nilfs_page_bug(struct page *page) 155 { 156 struct address_space *m; 157 unsigned long ino; 158 159 if (unlikely(!page)) { 160 printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n"); 161 return; 162 } 163 164 m = page->mapping; 165 ino = m ? m->host->i_ino : 0; 166 167 printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx " 168 "mapping=%p ino=%lu\n", 169 page, page_ref_count(page), 170 (unsigned long long)page->index, page->flags, m, ino); 171 172 if (page_has_buffers(page)) { 173 struct buffer_head *bh, *head; 174 int i = 0; 175 176 bh = head = page_buffers(page); 177 do { 178 printk(KERN_CRIT 179 " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n", 180 i++, bh, atomic_read(&bh->b_count), 181 (unsigned long long)bh->b_blocknr, bh->b_state); 182 bh = bh->b_this_page; 183 } while (bh != head); 184 } 185 } 186 187 /** 188 * nilfs_copy_page -- copy the page with buffers 189 * @dst: destination page 190 * @src: source page 191 * @copy_dirty: flag whether to copy dirty states on the page's buffer heads. 192 * 193 * This function is for both data pages and btnode pages. The dirty flag 194 * should be treated by caller. The page must not be under i/o. 195 * Both src and dst page must be locked 196 */ 197 static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty) 198 { 199 struct buffer_head *dbh, *dbufs, *sbh; 200 unsigned long mask = NILFS_BUFFER_INHERENT_BITS; 201 202 BUG_ON(PageWriteback(dst)); 203 204 sbh = page_buffers(src); 205 if (!page_has_buffers(dst)) 206 create_empty_buffers(dst, sbh->b_size, 0); 207 208 if (copy_dirty) 209 mask |= BIT(BH_Dirty); 210 211 dbh = dbufs = page_buffers(dst); 212 do { 213 lock_buffer(sbh); 214 lock_buffer(dbh); 215 dbh->b_state = sbh->b_state & mask; 216 dbh->b_blocknr = sbh->b_blocknr; 217 dbh->b_bdev = sbh->b_bdev; 218 sbh = sbh->b_this_page; 219 dbh = dbh->b_this_page; 220 } while (dbh != dbufs); 221 222 copy_highpage(dst, src); 223 224 if (PageUptodate(src) && !PageUptodate(dst)) 225 SetPageUptodate(dst); 226 else if (!PageUptodate(src) && PageUptodate(dst)) 227 ClearPageUptodate(dst); 228 if (PageMappedToDisk(src) && !PageMappedToDisk(dst)) 229 SetPageMappedToDisk(dst); 230 else if (!PageMappedToDisk(src) && PageMappedToDisk(dst)) 231 ClearPageMappedToDisk(dst); 232 233 do { 234 unlock_buffer(sbh); 235 unlock_buffer(dbh); 236 sbh = sbh->b_this_page; 237 dbh = dbh->b_this_page; 238 } while (dbh != dbufs); 239 } 240 241 int nilfs_copy_dirty_pages(struct address_space *dmap, 242 struct address_space *smap) 243 { 244 struct folio_batch fbatch; 245 unsigned int i; 246 pgoff_t index = 0; 247 int err = 0; 248 249 folio_batch_init(&fbatch); 250 repeat: 251 if (!filemap_get_folios_tag(smap, &index, (pgoff_t)-1, 252 PAGECACHE_TAG_DIRTY, &fbatch)) 253 return 0; 254 255 for (i = 0; i < folio_batch_count(&fbatch); i++) { 256 struct folio *folio = fbatch.folios[i], *dfolio; 257 258 folio_lock(folio); 259 if (unlikely(!folio_test_dirty(folio))) 260 NILFS_PAGE_BUG(&folio->page, "inconsistent dirty state"); 261 262 dfolio = filemap_grab_folio(dmap, folio->index); 263 if (unlikely(IS_ERR(dfolio))) { 264 /* No empty page is added to the page cache */ 265 folio_unlock(folio); 266 err = PTR_ERR(dfolio); 267 break; 268 } 269 if (unlikely(!folio_buffers(folio))) 270 NILFS_PAGE_BUG(&folio->page, 271 "found empty page in dat page cache"); 272 273 nilfs_copy_page(&dfolio->page, &folio->page, 1); 274 filemap_dirty_folio(folio_mapping(dfolio), dfolio); 275 276 folio_unlock(dfolio); 277 folio_put(dfolio); 278 folio_unlock(folio); 279 } 280 folio_batch_release(&fbatch); 281 cond_resched(); 282 283 if (likely(!err)) 284 goto repeat; 285 return err; 286 } 287 288 /** 289 * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache 290 * @dmap: destination page cache 291 * @smap: source page cache 292 * 293 * No pages must be added to the cache during this process. 294 * This must be ensured by the caller. 295 */ 296 void nilfs_copy_back_pages(struct address_space *dmap, 297 struct address_space *smap) 298 { 299 struct folio_batch fbatch; 300 unsigned int i, n; 301 pgoff_t start = 0; 302 303 folio_batch_init(&fbatch); 304 repeat: 305 n = filemap_get_folios(smap, &start, ~0UL, &fbatch); 306 if (!n) 307 return; 308 309 for (i = 0; i < folio_batch_count(&fbatch); i++) { 310 struct folio *folio = fbatch.folios[i], *dfolio; 311 pgoff_t index = folio->index; 312 313 folio_lock(folio); 314 dfolio = filemap_lock_folio(dmap, index); 315 if (!IS_ERR(dfolio)) { 316 /* overwrite existing folio in the destination cache */ 317 WARN_ON(folio_test_dirty(dfolio)); 318 nilfs_copy_page(&dfolio->page, &folio->page, 0); 319 folio_unlock(dfolio); 320 folio_put(dfolio); 321 /* Do we not need to remove folio from smap here? */ 322 } else { 323 struct folio *f; 324 325 /* move the folio to the destination cache */ 326 xa_lock_irq(&smap->i_pages); 327 f = __xa_erase(&smap->i_pages, index); 328 WARN_ON(folio != f); 329 smap->nrpages--; 330 xa_unlock_irq(&smap->i_pages); 331 332 xa_lock_irq(&dmap->i_pages); 333 f = __xa_store(&dmap->i_pages, index, folio, GFP_NOFS); 334 if (unlikely(f)) { 335 /* Probably -ENOMEM */ 336 folio->mapping = NULL; 337 folio_put(folio); 338 } else { 339 folio->mapping = dmap; 340 dmap->nrpages++; 341 if (folio_test_dirty(folio)) 342 __xa_set_mark(&dmap->i_pages, index, 343 PAGECACHE_TAG_DIRTY); 344 } 345 xa_unlock_irq(&dmap->i_pages); 346 } 347 folio_unlock(folio); 348 } 349 folio_batch_release(&fbatch); 350 cond_resched(); 351 352 goto repeat; 353 } 354 355 /** 356 * nilfs_clear_dirty_pages - discard dirty pages in address space 357 * @mapping: address space with dirty pages for discarding 358 * @silent: suppress [true] or print [false] warning messages 359 */ 360 void nilfs_clear_dirty_pages(struct address_space *mapping, bool silent) 361 { 362 struct folio_batch fbatch; 363 unsigned int i; 364 pgoff_t index = 0; 365 366 folio_batch_init(&fbatch); 367 368 while (filemap_get_folios_tag(mapping, &index, (pgoff_t)-1, 369 PAGECACHE_TAG_DIRTY, &fbatch)) { 370 for (i = 0; i < folio_batch_count(&fbatch); i++) { 371 struct folio *folio = fbatch.folios[i]; 372 373 folio_lock(folio); 374 375 /* 376 * This folio may have been removed from the address 377 * space by truncation or invalidation when the lock 378 * was acquired. Skip processing in that case. 379 */ 380 if (likely(folio->mapping == mapping)) 381 nilfs_clear_dirty_page(&folio->page, silent); 382 383 folio_unlock(folio); 384 } 385 folio_batch_release(&fbatch); 386 cond_resched(); 387 } 388 } 389 390 /** 391 * nilfs_clear_dirty_page - discard dirty page 392 * @page: dirty page that will be discarded 393 * @silent: suppress [true] or print [false] warning messages 394 */ 395 void nilfs_clear_dirty_page(struct page *page, bool silent) 396 { 397 struct inode *inode = page->mapping->host; 398 struct super_block *sb = inode->i_sb; 399 400 BUG_ON(!PageLocked(page)); 401 402 if (!silent) 403 nilfs_warn(sb, "discard dirty page: offset=%lld, ino=%lu", 404 page_offset(page), inode->i_ino); 405 406 ClearPageUptodate(page); 407 ClearPageMappedToDisk(page); 408 ClearPageChecked(page); 409 410 if (page_has_buffers(page)) { 411 struct buffer_head *bh, *head; 412 const unsigned long clear_bits = 413 (BIT(BH_Uptodate) | BIT(BH_Dirty) | BIT(BH_Mapped) | 414 BIT(BH_Async_Write) | BIT(BH_NILFS_Volatile) | 415 BIT(BH_NILFS_Checked) | BIT(BH_NILFS_Redirected) | 416 BIT(BH_Delay)); 417 418 bh = head = page_buffers(page); 419 do { 420 lock_buffer(bh); 421 if (!silent) 422 nilfs_warn(sb, 423 "discard dirty block: blocknr=%llu, size=%zu", 424 (u64)bh->b_blocknr, bh->b_size); 425 426 set_mask_bits(&bh->b_state, clear_bits, 0); 427 unlock_buffer(bh); 428 } while (bh = bh->b_this_page, bh != head); 429 } 430 431 __nilfs_clear_page_dirty(page); 432 } 433 434 unsigned int nilfs_page_count_clean_buffers(struct page *page, 435 unsigned int from, unsigned int to) 436 { 437 unsigned int block_start, block_end; 438 struct buffer_head *bh, *head; 439 unsigned int nc = 0; 440 441 for (bh = head = page_buffers(page), block_start = 0; 442 bh != head || !block_start; 443 block_start = block_end, bh = bh->b_this_page) { 444 block_end = block_start + bh->b_size; 445 if (block_end > from && block_start < to && !buffer_dirty(bh)) 446 nc++; 447 } 448 return nc; 449 } 450 451 /* 452 * NILFS2 needs clear_page_dirty() in the following two cases: 453 * 454 * 1) For B-tree node pages and data pages of DAT file, NILFS2 clears dirty 455 * flag of pages when it copies back pages from shadow cache to the 456 * original cache. 457 * 458 * 2) Some B-tree operations like insertion or deletion may dispose buffers 459 * in dirty state, and this needs to cancel the dirty state of their pages. 460 */ 461 int __nilfs_clear_page_dirty(struct page *page) 462 { 463 struct address_space *mapping = page->mapping; 464 465 if (mapping) { 466 xa_lock_irq(&mapping->i_pages); 467 if (test_bit(PG_dirty, &page->flags)) { 468 __xa_clear_mark(&mapping->i_pages, page_index(page), 469 PAGECACHE_TAG_DIRTY); 470 xa_unlock_irq(&mapping->i_pages); 471 return clear_page_dirty_for_io(page); 472 } 473 xa_unlock_irq(&mapping->i_pages); 474 return 0; 475 } 476 return TestClearPageDirty(page); 477 } 478 479 /** 480 * nilfs_find_uncommitted_extent - find extent of uncommitted data 481 * @inode: inode 482 * @start_blk: start block offset (in) 483 * @blkoff: start offset of the found extent (out) 484 * 485 * This function searches an extent of buffers marked "delayed" which 486 * starts from a block offset equal to or larger than @start_blk. If 487 * such an extent was found, this will store the start offset in 488 * @blkoff and return its length in blocks. Otherwise, zero is 489 * returned. 490 */ 491 unsigned long nilfs_find_uncommitted_extent(struct inode *inode, 492 sector_t start_blk, 493 sector_t *blkoff) 494 { 495 unsigned int i, nr_folios; 496 pgoff_t index; 497 unsigned long length = 0; 498 struct folio_batch fbatch; 499 struct folio *folio; 500 501 if (inode->i_mapping->nrpages == 0) 502 return 0; 503 504 index = start_blk >> (PAGE_SHIFT - inode->i_blkbits); 505 506 folio_batch_init(&fbatch); 507 508 repeat: 509 nr_folios = filemap_get_folios_contig(inode->i_mapping, &index, ULONG_MAX, 510 &fbatch); 511 if (nr_folios == 0) 512 return length; 513 514 i = 0; 515 do { 516 folio = fbatch.folios[i]; 517 518 folio_lock(folio); 519 if (folio_buffers(folio)) { 520 struct buffer_head *bh, *head; 521 sector_t b; 522 523 b = folio->index << (PAGE_SHIFT - inode->i_blkbits); 524 bh = head = folio_buffers(folio); 525 do { 526 if (b < start_blk) 527 continue; 528 if (buffer_delay(bh)) { 529 if (length == 0) 530 *blkoff = b; 531 length++; 532 } else if (length > 0) { 533 goto out_locked; 534 } 535 } while (++b, bh = bh->b_this_page, bh != head); 536 } else { 537 if (length > 0) 538 goto out_locked; 539 } 540 folio_unlock(folio); 541 542 } while (++i < nr_folios); 543 544 folio_batch_release(&fbatch); 545 cond_resched(); 546 goto repeat; 547 548 out_locked: 549 folio_unlock(folio); 550 folio_batch_release(&fbatch); 551 return length; 552 } 553