xref: /openbmc/linux/fs/nilfs2/page.c (revision b6dcefde)
1 /*
2  * page.c - buffer/page management specific to NILFS
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>,
21  *            Seiji Kihara <kihara@osrg.net>.
22  */
23 
24 #include <linux/pagemap.h>
25 #include <linux/writeback.h>
26 #include <linux/swap.h>
27 #include <linux/bitops.h>
28 #include <linux/page-flags.h>
29 #include <linux/list.h>
30 #include <linux/highmem.h>
31 #include <linux/pagevec.h>
32 #include "nilfs.h"
33 #include "page.h"
34 #include "mdt.h"
35 
36 
37 #define NILFS_BUFFER_INHERENT_BITS  \
38 	((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \
39 	 (1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Allocated))
40 
41 static struct buffer_head *
42 __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
43 		       int blkbits, unsigned long b_state)
44 
45 {
46 	unsigned long first_block;
47 	struct buffer_head *bh;
48 
49 	if (!page_has_buffers(page))
50 		create_empty_buffers(page, 1 << blkbits, b_state);
51 
52 	first_block = (unsigned long)index << (PAGE_CACHE_SHIFT - blkbits);
53 	bh = nilfs_page_get_nth_block(page, block - first_block);
54 
55 	touch_buffer(bh);
56 	wait_on_buffer(bh);
57 	return bh;
58 }
59 
60 /*
61  * Since the page cache of B-tree node pages or data page cache of pseudo
62  * inodes does not have a valid mapping->host pointer, calling
63  * mark_buffer_dirty() for their buffers causes a NULL pointer dereference;
64  * it calls __mark_inode_dirty(NULL) through __set_page_dirty().
65  * To avoid this problem, the old style mark_buffer_dirty() is used instead.
66  */
67 void nilfs_mark_buffer_dirty(struct buffer_head *bh)
68 {
69 	if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
70 		__set_page_dirty_nobuffers(bh->b_page);
71 }
72 
73 struct buffer_head *nilfs_grab_buffer(struct inode *inode,
74 				      struct address_space *mapping,
75 				      unsigned long blkoff,
76 				      unsigned long b_state)
77 {
78 	int blkbits = inode->i_blkbits;
79 	pgoff_t index = blkoff >> (PAGE_CACHE_SHIFT - blkbits);
80 	struct page *page, *opage;
81 	struct buffer_head *bh, *obh;
82 
83 	page = grab_cache_page(mapping, index);
84 	if (unlikely(!page))
85 		return NULL;
86 
87 	bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
88 	if (unlikely(!bh)) {
89 		unlock_page(page);
90 		page_cache_release(page);
91 		return NULL;
92 	}
93 	if (!buffer_uptodate(bh) && mapping->assoc_mapping != NULL) {
94 		/*
95 		 * Shadow page cache uses assoc_mapping to point its original
96 		 * page cache.  The following code tries the original cache
97 		 * if the given cache is a shadow and it didn't hit.
98 		 */
99 		opage = find_lock_page(mapping->assoc_mapping, index);
100 		if (!opage)
101 			return bh;
102 
103 		obh = __nilfs_get_page_block(opage, blkoff, index, blkbits,
104 					     b_state);
105 		if (buffer_uptodate(obh)) {
106 			nilfs_copy_buffer(bh, obh);
107 			if (buffer_dirty(obh)) {
108 				nilfs_mark_buffer_dirty(bh);
109 				if (!buffer_nilfs_node(bh) && NILFS_MDT(inode))
110 					nilfs_mdt_mark_dirty(inode);
111 			}
112 		}
113 		brelse(obh);
114 		unlock_page(opage);
115 		page_cache_release(opage);
116 	}
117 	return bh;
118 }
119 
120 /**
121  * nilfs_forget_buffer - discard dirty state
122  * @inode: owner inode of the buffer
123  * @bh: buffer head of the buffer to be discarded
124  */
125 void nilfs_forget_buffer(struct buffer_head *bh)
126 {
127 	struct page *page = bh->b_page;
128 
129 	lock_buffer(bh);
130 	clear_buffer_nilfs_volatile(bh);
131 	clear_buffer_dirty(bh);
132 	if (nilfs_page_buffers_clean(page))
133 		__nilfs_clear_page_dirty(page);
134 
135 	clear_buffer_uptodate(bh);
136 	clear_buffer_mapped(bh);
137 	bh->b_blocknr = -1;
138 	ClearPageUptodate(page);
139 	ClearPageMappedToDisk(page);
140 	unlock_buffer(bh);
141 	brelse(bh);
142 }
143 
144 /**
145  * nilfs_copy_buffer -- copy buffer data and flags
146  * @dbh: destination buffer
147  * @sbh: source buffer
148  */
149 void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
150 {
151 	void *kaddr0, *kaddr1;
152 	unsigned long bits;
153 	struct page *spage = sbh->b_page, *dpage = dbh->b_page;
154 	struct buffer_head *bh;
155 
156 	kaddr0 = kmap_atomic(spage, KM_USER0);
157 	kaddr1 = kmap_atomic(dpage, KM_USER1);
158 	memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
159 	kunmap_atomic(kaddr1, KM_USER1);
160 	kunmap_atomic(kaddr0, KM_USER0);
161 
162 	dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
163 	dbh->b_blocknr = sbh->b_blocknr;
164 	dbh->b_bdev = sbh->b_bdev;
165 
166 	bh = dbh;
167 	bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped));
168 	while ((bh = bh->b_this_page) != dbh) {
169 		lock_buffer(bh);
170 		bits &= bh->b_state;
171 		unlock_buffer(bh);
172 	}
173 	if (bits & (1UL << BH_Uptodate))
174 		SetPageUptodate(dpage);
175 	else
176 		ClearPageUptodate(dpage);
177 	if (bits & (1UL << BH_Mapped))
178 		SetPageMappedToDisk(dpage);
179 	else
180 		ClearPageMappedToDisk(dpage);
181 }
182 
183 /**
184  * nilfs_page_buffers_clean - check if a page has dirty buffers or not.
185  * @page: page to be checked
186  *
187  * nilfs_page_buffers_clean() returns zero if the page has dirty buffers.
188  * Otherwise, it returns non-zero value.
189  */
190 int nilfs_page_buffers_clean(struct page *page)
191 {
192 	struct buffer_head *bh, *head;
193 
194 	bh = head = page_buffers(page);
195 	do {
196 		if (buffer_dirty(bh))
197 			return 0;
198 		bh = bh->b_this_page;
199 	} while (bh != head);
200 	return 1;
201 }
202 
203 void nilfs_page_bug(struct page *page)
204 {
205 	struct address_space *m;
206 	unsigned long ino = 0;
207 
208 	if (unlikely(!page)) {
209 		printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
210 		return;
211 	}
212 
213 	m = page->mapping;
214 	if (m) {
215 		struct inode *inode = NILFS_AS_I(m);
216 		if (inode != NULL)
217 			ino = inode->i_ino;
218 	}
219 	printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
220 	       "mapping=%p ino=%lu\n",
221 	       page, atomic_read(&page->_count),
222 	       (unsigned long long)page->index, page->flags, m, ino);
223 
224 	if (page_has_buffers(page)) {
225 		struct buffer_head *bh, *head;
226 		int i = 0;
227 
228 		bh = head = page_buffers(page);
229 		do {
230 			printk(KERN_CRIT
231 			       " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
232 			       i++, bh, atomic_read(&bh->b_count),
233 			       (unsigned long long)bh->b_blocknr, bh->b_state);
234 			bh = bh->b_this_page;
235 		} while (bh != head);
236 	}
237 }
238 
239 /**
240  * nilfs_alloc_private_page - allocate a private page with buffer heads
241  *
242  * Return Value: On success, a pointer to the allocated page is returned.
243  * On error, NULL is returned.
244  */
245 struct page *nilfs_alloc_private_page(struct block_device *bdev, int size,
246 				      unsigned long state)
247 {
248 	struct buffer_head *bh, *head, *tail;
249 	struct page *page;
250 
251 	page = alloc_page(GFP_NOFS); /* page_count of the returned page is 1 */
252 	if (unlikely(!page))
253 		return NULL;
254 
255 	lock_page(page);
256 	head = alloc_page_buffers(page, size, 0);
257 	if (unlikely(!head)) {
258 		unlock_page(page);
259 		__free_page(page);
260 		return NULL;
261 	}
262 
263 	bh = head;
264 	do {
265 		bh->b_state = (1UL << BH_NILFS_Allocated) | state;
266 		tail = bh;
267 		bh->b_bdev = bdev;
268 		bh = bh->b_this_page;
269 	} while (bh);
270 
271 	tail->b_this_page = head;
272 	attach_page_buffers(page, head);
273 
274 	return page;
275 }
276 
277 void nilfs_free_private_page(struct page *page)
278 {
279 	BUG_ON(!PageLocked(page));
280 	BUG_ON(page->mapping);
281 
282 	if (page_has_buffers(page) && !try_to_free_buffers(page))
283 		NILFS_PAGE_BUG(page, "failed to free page");
284 
285 	unlock_page(page);
286 	__free_page(page);
287 }
288 
289 /**
290  * nilfs_copy_page -- copy the page with buffers
291  * @dst: destination page
292  * @src: source page
293  * @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
294  *
295  * This fuction is for both data pages and btnode pages.  The dirty flag
296  * should be treated by caller.  The page must not be under i/o.
297  * Both src and dst page must be locked
298  */
299 static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
300 {
301 	struct buffer_head *dbh, *dbufs, *sbh, *sbufs;
302 	unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
303 
304 	BUG_ON(PageWriteback(dst));
305 
306 	sbh = sbufs = page_buffers(src);
307 	if (!page_has_buffers(dst))
308 		create_empty_buffers(dst, sbh->b_size, 0);
309 
310 	if (copy_dirty)
311 		mask |= (1UL << BH_Dirty);
312 
313 	dbh = dbufs = page_buffers(dst);
314 	do {
315 		lock_buffer(sbh);
316 		lock_buffer(dbh);
317 		dbh->b_state = sbh->b_state & mask;
318 		dbh->b_blocknr = sbh->b_blocknr;
319 		dbh->b_bdev = sbh->b_bdev;
320 		sbh = sbh->b_this_page;
321 		dbh = dbh->b_this_page;
322 	} while (dbh != dbufs);
323 
324 	copy_highpage(dst, src);
325 
326 	if (PageUptodate(src) && !PageUptodate(dst))
327 		SetPageUptodate(dst);
328 	else if (!PageUptodate(src) && PageUptodate(dst))
329 		ClearPageUptodate(dst);
330 	if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
331 		SetPageMappedToDisk(dst);
332 	else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
333 		ClearPageMappedToDisk(dst);
334 
335 	do {
336 		unlock_buffer(sbh);
337 		unlock_buffer(dbh);
338 		sbh = sbh->b_this_page;
339 		dbh = dbh->b_this_page;
340 	} while (dbh != dbufs);
341 }
342 
343 int nilfs_copy_dirty_pages(struct address_space *dmap,
344 			   struct address_space *smap)
345 {
346 	struct pagevec pvec;
347 	unsigned int i;
348 	pgoff_t index = 0;
349 	int err = 0;
350 
351 	pagevec_init(&pvec, 0);
352 repeat:
353 	if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY,
354 				PAGEVEC_SIZE))
355 		return 0;
356 
357 	for (i = 0; i < pagevec_count(&pvec); i++) {
358 		struct page *page = pvec.pages[i], *dpage;
359 
360 		lock_page(page);
361 		if (unlikely(!PageDirty(page)))
362 			NILFS_PAGE_BUG(page, "inconsistent dirty state");
363 
364 		dpage = grab_cache_page(dmap, page->index);
365 		if (unlikely(!dpage)) {
366 			/* No empty page is added to the page cache */
367 			err = -ENOMEM;
368 			unlock_page(page);
369 			break;
370 		}
371 		if (unlikely(!page_has_buffers(page)))
372 			NILFS_PAGE_BUG(page,
373 				       "found empty page in dat page cache");
374 
375 		nilfs_copy_page(dpage, page, 1);
376 		__set_page_dirty_nobuffers(dpage);
377 
378 		unlock_page(dpage);
379 		page_cache_release(dpage);
380 		unlock_page(page);
381 	}
382 	pagevec_release(&pvec);
383 	cond_resched();
384 
385 	if (likely(!err))
386 		goto repeat;
387 	return err;
388 }
389 
390 /**
391  * nilfs_copy_back_pages -- copy back pages to orignal cache from shadow cache
392  * @dmap: destination page cache
393  * @smap: source page cache
394  *
395  * No pages must no be added to the cache during this process.
396  * This must be ensured by the caller.
397  */
398 void nilfs_copy_back_pages(struct address_space *dmap,
399 			   struct address_space *smap)
400 {
401 	struct pagevec pvec;
402 	unsigned int i, n;
403 	pgoff_t index = 0;
404 	int err;
405 
406 	pagevec_init(&pvec, 0);
407 repeat:
408 	n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE);
409 	if (!n)
410 		return;
411 	index = pvec.pages[n - 1]->index + 1;
412 
413 	for (i = 0; i < pagevec_count(&pvec); i++) {
414 		struct page *page = pvec.pages[i], *dpage;
415 		pgoff_t offset = page->index;
416 
417 		lock_page(page);
418 		dpage = find_lock_page(dmap, offset);
419 		if (dpage) {
420 			/* override existing page on the destination cache */
421 			WARN_ON(PageDirty(dpage));
422 			nilfs_copy_page(dpage, page, 0);
423 			unlock_page(dpage);
424 			page_cache_release(dpage);
425 		} else {
426 			struct page *page2;
427 
428 			/* move the page to the destination cache */
429 			spin_lock_irq(&smap->tree_lock);
430 			page2 = radix_tree_delete(&smap->page_tree, offset);
431 			WARN_ON(page2 != page);
432 
433 			smap->nrpages--;
434 			spin_unlock_irq(&smap->tree_lock);
435 
436 			spin_lock_irq(&dmap->tree_lock);
437 			err = radix_tree_insert(&dmap->page_tree, offset, page);
438 			if (unlikely(err < 0)) {
439 				WARN_ON(err == -EEXIST);
440 				page->mapping = NULL;
441 				page_cache_release(page); /* for cache */
442 			} else {
443 				page->mapping = dmap;
444 				dmap->nrpages++;
445 				if (PageDirty(page))
446 					radix_tree_tag_set(&dmap->page_tree,
447 							   offset,
448 							   PAGECACHE_TAG_DIRTY);
449 			}
450 			spin_unlock_irq(&dmap->tree_lock);
451 		}
452 		unlock_page(page);
453 	}
454 	pagevec_release(&pvec);
455 	cond_resched();
456 
457 	goto repeat;
458 }
459 
460 void nilfs_clear_dirty_pages(struct address_space *mapping)
461 {
462 	struct pagevec pvec;
463 	unsigned int i;
464 	pgoff_t index = 0;
465 
466 	pagevec_init(&pvec, 0);
467 
468 	while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
469 				  PAGEVEC_SIZE)) {
470 		for (i = 0; i < pagevec_count(&pvec); i++) {
471 			struct page *page = pvec.pages[i];
472 			struct buffer_head *bh, *head;
473 
474 			lock_page(page);
475 			ClearPageUptodate(page);
476 			ClearPageMappedToDisk(page);
477 			bh = head = page_buffers(page);
478 			do {
479 				lock_buffer(bh);
480 				clear_buffer_dirty(bh);
481 				clear_buffer_nilfs_volatile(bh);
482 				clear_buffer_uptodate(bh);
483 				clear_buffer_mapped(bh);
484 				unlock_buffer(bh);
485 				bh = bh->b_this_page;
486 			} while (bh != head);
487 
488 			__nilfs_clear_page_dirty(page);
489 			unlock_page(page);
490 		}
491 		pagevec_release(&pvec);
492 		cond_resched();
493 	}
494 }
495 
496 unsigned nilfs_page_count_clean_buffers(struct page *page,
497 					unsigned from, unsigned to)
498 {
499 	unsigned block_start, block_end;
500 	struct buffer_head *bh, *head;
501 	unsigned nc = 0;
502 
503 	for (bh = head = page_buffers(page), block_start = 0;
504 	     bh != head || !block_start;
505 	     block_start = block_end, bh = bh->b_this_page) {
506 		block_end = block_start + bh->b_size;
507 		if (block_end > from && block_start < to && !buffer_dirty(bh))
508 			nc++;
509 	}
510 	return nc;
511 }
512 
513 /*
514  * NILFS2 needs clear_page_dirty() in the following two cases:
515  *
516  * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
517  *    page dirty flags when it copies back pages from the shadow cache
518  *    (gcdat->{i_mapping,i_btnode_cache}) to its original cache
519  *    (dat->{i_mapping,i_btnode_cache}).
520  *
521  * 2) Some B-tree operations like insertion or deletion may dispose buffers
522  *    in dirty state, and this needs to cancel the dirty state of their pages.
523  */
524 int __nilfs_clear_page_dirty(struct page *page)
525 {
526 	struct address_space *mapping = page->mapping;
527 
528 	if (mapping) {
529 		spin_lock_irq(&mapping->tree_lock);
530 		if (test_bit(PG_dirty, &page->flags)) {
531 			radix_tree_tag_clear(&mapping->page_tree,
532 					     page_index(page),
533 					     PAGECACHE_TAG_DIRTY);
534 			spin_unlock_irq(&mapping->tree_lock);
535 			return clear_page_dirty_for_io(page);
536 		}
537 		spin_unlock_irq(&mapping->tree_lock);
538 		return 0;
539 	}
540 	return TestClearPageDirty(page);
541 }
542