xref: /openbmc/linux/fs/nilfs2/page.c (revision 95e9fd10)
1 /*
2  * page.c - buffer/page management specific to NILFS
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>,
21  *            Seiji Kihara <kihara@osrg.net>.
22  */
23 
24 #include <linux/pagemap.h>
25 #include <linux/writeback.h>
26 #include <linux/swap.h>
27 #include <linux/bitops.h>
28 #include <linux/page-flags.h>
29 #include <linux/list.h>
30 #include <linux/highmem.h>
31 #include <linux/pagevec.h>
32 #include <linux/gfp.h>
33 #include "nilfs.h"
34 #include "page.h"
35 #include "mdt.h"
36 
37 
38 #define NILFS_BUFFER_INHERENT_BITS  \
39 	((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \
40 	 (1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Checked))
41 
42 static struct buffer_head *
43 __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
44 		       int blkbits, unsigned long b_state)
45 
46 {
47 	unsigned long first_block;
48 	struct buffer_head *bh;
49 
50 	if (!page_has_buffers(page))
51 		create_empty_buffers(page, 1 << blkbits, b_state);
52 
53 	first_block = (unsigned long)index << (PAGE_CACHE_SHIFT - blkbits);
54 	bh = nilfs_page_get_nth_block(page, block - first_block);
55 
56 	touch_buffer(bh);
57 	wait_on_buffer(bh);
58 	return bh;
59 }
60 
61 struct buffer_head *nilfs_grab_buffer(struct inode *inode,
62 				      struct address_space *mapping,
63 				      unsigned long blkoff,
64 				      unsigned long b_state)
65 {
66 	int blkbits = inode->i_blkbits;
67 	pgoff_t index = blkoff >> (PAGE_CACHE_SHIFT - blkbits);
68 	struct page *page;
69 	struct buffer_head *bh;
70 
71 	page = grab_cache_page(mapping, index);
72 	if (unlikely(!page))
73 		return NULL;
74 
75 	bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
76 	if (unlikely(!bh)) {
77 		unlock_page(page);
78 		page_cache_release(page);
79 		return NULL;
80 	}
81 	return bh;
82 }
83 
84 /**
85  * nilfs_forget_buffer - discard dirty state
86  * @inode: owner inode of the buffer
87  * @bh: buffer head of the buffer to be discarded
88  */
89 void nilfs_forget_buffer(struct buffer_head *bh)
90 {
91 	struct page *page = bh->b_page;
92 
93 	lock_buffer(bh);
94 	clear_buffer_nilfs_volatile(bh);
95 	clear_buffer_nilfs_checked(bh);
96 	clear_buffer_nilfs_redirected(bh);
97 	clear_buffer_dirty(bh);
98 	if (nilfs_page_buffers_clean(page))
99 		__nilfs_clear_page_dirty(page);
100 
101 	clear_buffer_uptodate(bh);
102 	clear_buffer_mapped(bh);
103 	bh->b_blocknr = -1;
104 	ClearPageUptodate(page);
105 	ClearPageMappedToDisk(page);
106 	unlock_buffer(bh);
107 	brelse(bh);
108 }
109 
110 /**
111  * nilfs_copy_buffer -- copy buffer data and flags
112  * @dbh: destination buffer
113  * @sbh: source buffer
114  */
115 void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
116 {
117 	void *kaddr0, *kaddr1;
118 	unsigned long bits;
119 	struct page *spage = sbh->b_page, *dpage = dbh->b_page;
120 	struct buffer_head *bh;
121 
122 	kaddr0 = kmap_atomic(spage);
123 	kaddr1 = kmap_atomic(dpage);
124 	memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
125 	kunmap_atomic(kaddr1);
126 	kunmap_atomic(kaddr0);
127 
128 	dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
129 	dbh->b_blocknr = sbh->b_blocknr;
130 	dbh->b_bdev = sbh->b_bdev;
131 
132 	bh = dbh;
133 	bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped));
134 	while ((bh = bh->b_this_page) != dbh) {
135 		lock_buffer(bh);
136 		bits &= bh->b_state;
137 		unlock_buffer(bh);
138 	}
139 	if (bits & (1UL << BH_Uptodate))
140 		SetPageUptodate(dpage);
141 	else
142 		ClearPageUptodate(dpage);
143 	if (bits & (1UL << BH_Mapped))
144 		SetPageMappedToDisk(dpage);
145 	else
146 		ClearPageMappedToDisk(dpage);
147 }
148 
149 /**
150  * nilfs_page_buffers_clean - check if a page has dirty buffers or not.
151  * @page: page to be checked
152  *
153  * nilfs_page_buffers_clean() returns zero if the page has dirty buffers.
154  * Otherwise, it returns non-zero value.
155  */
156 int nilfs_page_buffers_clean(struct page *page)
157 {
158 	struct buffer_head *bh, *head;
159 
160 	bh = head = page_buffers(page);
161 	do {
162 		if (buffer_dirty(bh))
163 			return 0;
164 		bh = bh->b_this_page;
165 	} while (bh != head);
166 	return 1;
167 }
168 
169 void nilfs_page_bug(struct page *page)
170 {
171 	struct address_space *m;
172 	unsigned long ino;
173 
174 	if (unlikely(!page)) {
175 		printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
176 		return;
177 	}
178 
179 	m = page->mapping;
180 	ino = m ? m->host->i_ino : 0;
181 
182 	printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
183 	       "mapping=%p ino=%lu\n",
184 	       page, atomic_read(&page->_count),
185 	       (unsigned long long)page->index, page->flags, m, ino);
186 
187 	if (page_has_buffers(page)) {
188 		struct buffer_head *bh, *head;
189 		int i = 0;
190 
191 		bh = head = page_buffers(page);
192 		do {
193 			printk(KERN_CRIT
194 			       " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
195 			       i++, bh, atomic_read(&bh->b_count),
196 			       (unsigned long long)bh->b_blocknr, bh->b_state);
197 			bh = bh->b_this_page;
198 		} while (bh != head);
199 	}
200 }
201 
202 /**
203  * nilfs_copy_page -- copy the page with buffers
204  * @dst: destination page
205  * @src: source page
206  * @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
207  *
208  * This function is for both data pages and btnode pages.  The dirty flag
209  * should be treated by caller.  The page must not be under i/o.
210  * Both src and dst page must be locked
211  */
212 static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
213 {
214 	struct buffer_head *dbh, *dbufs, *sbh, *sbufs;
215 	unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
216 
217 	BUG_ON(PageWriteback(dst));
218 
219 	sbh = sbufs = page_buffers(src);
220 	if (!page_has_buffers(dst))
221 		create_empty_buffers(dst, sbh->b_size, 0);
222 
223 	if (copy_dirty)
224 		mask |= (1UL << BH_Dirty);
225 
226 	dbh = dbufs = page_buffers(dst);
227 	do {
228 		lock_buffer(sbh);
229 		lock_buffer(dbh);
230 		dbh->b_state = sbh->b_state & mask;
231 		dbh->b_blocknr = sbh->b_blocknr;
232 		dbh->b_bdev = sbh->b_bdev;
233 		sbh = sbh->b_this_page;
234 		dbh = dbh->b_this_page;
235 	} while (dbh != dbufs);
236 
237 	copy_highpage(dst, src);
238 
239 	if (PageUptodate(src) && !PageUptodate(dst))
240 		SetPageUptodate(dst);
241 	else if (!PageUptodate(src) && PageUptodate(dst))
242 		ClearPageUptodate(dst);
243 	if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
244 		SetPageMappedToDisk(dst);
245 	else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
246 		ClearPageMappedToDisk(dst);
247 
248 	do {
249 		unlock_buffer(sbh);
250 		unlock_buffer(dbh);
251 		sbh = sbh->b_this_page;
252 		dbh = dbh->b_this_page;
253 	} while (dbh != dbufs);
254 }
255 
256 int nilfs_copy_dirty_pages(struct address_space *dmap,
257 			   struct address_space *smap)
258 {
259 	struct pagevec pvec;
260 	unsigned int i;
261 	pgoff_t index = 0;
262 	int err = 0;
263 
264 	pagevec_init(&pvec, 0);
265 repeat:
266 	if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY,
267 				PAGEVEC_SIZE))
268 		return 0;
269 
270 	for (i = 0; i < pagevec_count(&pvec); i++) {
271 		struct page *page = pvec.pages[i], *dpage;
272 
273 		lock_page(page);
274 		if (unlikely(!PageDirty(page)))
275 			NILFS_PAGE_BUG(page, "inconsistent dirty state");
276 
277 		dpage = grab_cache_page(dmap, page->index);
278 		if (unlikely(!dpage)) {
279 			/* No empty page is added to the page cache */
280 			err = -ENOMEM;
281 			unlock_page(page);
282 			break;
283 		}
284 		if (unlikely(!page_has_buffers(page)))
285 			NILFS_PAGE_BUG(page,
286 				       "found empty page in dat page cache");
287 
288 		nilfs_copy_page(dpage, page, 1);
289 		__set_page_dirty_nobuffers(dpage);
290 
291 		unlock_page(dpage);
292 		page_cache_release(dpage);
293 		unlock_page(page);
294 	}
295 	pagevec_release(&pvec);
296 	cond_resched();
297 
298 	if (likely(!err))
299 		goto repeat;
300 	return err;
301 }
302 
303 /**
304  * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache
305  * @dmap: destination page cache
306  * @smap: source page cache
307  *
308  * No pages must no be added to the cache during this process.
309  * This must be ensured by the caller.
310  */
311 void nilfs_copy_back_pages(struct address_space *dmap,
312 			   struct address_space *smap)
313 {
314 	struct pagevec pvec;
315 	unsigned int i, n;
316 	pgoff_t index = 0;
317 	int err;
318 
319 	pagevec_init(&pvec, 0);
320 repeat:
321 	n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE);
322 	if (!n)
323 		return;
324 	index = pvec.pages[n - 1]->index + 1;
325 
326 	for (i = 0; i < pagevec_count(&pvec); i++) {
327 		struct page *page = pvec.pages[i], *dpage;
328 		pgoff_t offset = page->index;
329 
330 		lock_page(page);
331 		dpage = find_lock_page(dmap, offset);
332 		if (dpage) {
333 			/* override existing page on the destination cache */
334 			WARN_ON(PageDirty(dpage));
335 			nilfs_copy_page(dpage, page, 0);
336 			unlock_page(dpage);
337 			page_cache_release(dpage);
338 		} else {
339 			struct page *page2;
340 
341 			/* move the page to the destination cache */
342 			spin_lock_irq(&smap->tree_lock);
343 			page2 = radix_tree_delete(&smap->page_tree, offset);
344 			WARN_ON(page2 != page);
345 
346 			smap->nrpages--;
347 			spin_unlock_irq(&smap->tree_lock);
348 
349 			spin_lock_irq(&dmap->tree_lock);
350 			err = radix_tree_insert(&dmap->page_tree, offset, page);
351 			if (unlikely(err < 0)) {
352 				WARN_ON(err == -EEXIST);
353 				page->mapping = NULL;
354 				page_cache_release(page); /* for cache */
355 			} else {
356 				page->mapping = dmap;
357 				dmap->nrpages++;
358 				if (PageDirty(page))
359 					radix_tree_tag_set(&dmap->page_tree,
360 							   offset,
361 							   PAGECACHE_TAG_DIRTY);
362 			}
363 			spin_unlock_irq(&dmap->tree_lock);
364 		}
365 		unlock_page(page);
366 	}
367 	pagevec_release(&pvec);
368 	cond_resched();
369 
370 	goto repeat;
371 }
372 
373 void nilfs_clear_dirty_pages(struct address_space *mapping)
374 {
375 	struct pagevec pvec;
376 	unsigned int i;
377 	pgoff_t index = 0;
378 
379 	pagevec_init(&pvec, 0);
380 
381 	while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
382 				  PAGEVEC_SIZE)) {
383 		for (i = 0; i < pagevec_count(&pvec); i++) {
384 			struct page *page = pvec.pages[i];
385 			struct buffer_head *bh, *head;
386 
387 			lock_page(page);
388 			ClearPageUptodate(page);
389 			ClearPageMappedToDisk(page);
390 			bh = head = page_buffers(page);
391 			do {
392 				lock_buffer(bh);
393 				clear_buffer_dirty(bh);
394 				clear_buffer_nilfs_volatile(bh);
395 				clear_buffer_nilfs_checked(bh);
396 				clear_buffer_nilfs_redirected(bh);
397 				clear_buffer_uptodate(bh);
398 				clear_buffer_mapped(bh);
399 				unlock_buffer(bh);
400 				bh = bh->b_this_page;
401 			} while (bh != head);
402 
403 			__nilfs_clear_page_dirty(page);
404 			unlock_page(page);
405 		}
406 		pagevec_release(&pvec);
407 		cond_resched();
408 	}
409 }
410 
411 unsigned nilfs_page_count_clean_buffers(struct page *page,
412 					unsigned from, unsigned to)
413 {
414 	unsigned block_start, block_end;
415 	struct buffer_head *bh, *head;
416 	unsigned nc = 0;
417 
418 	for (bh = head = page_buffers(page), block_start = 0;
419 	     bh != head || !block_start;
420 	     block_start = block_end, bh = bh->b_this_page) {
421 		block_end = block_start + bh->b_size;
422 		if (block_end > from && block_start < to && !buffer_dirty(bh))
423 			nc++;
424 	}
425 	return nc;
426 }
427 
428 void nilfs_mapping_init(struct address_space *mapping, struct inode *inode,
429 			struct backing_dev_info *bdi)
430 {
431 	mapping->host = inode;
432 	mapping->flags = 0;
433 	mapping_set_gfp_mask(mapping, GFP_NOFS);
434 	mapping->assoc_mapping = NULL;
435 	mapping->backing_dev_info = bdi;
436 	mapping->a_ops = &empty_aops;
437 }
438 
439 /*
440  * NILFS2 needs clear_page_dirty() in the following two cases:
441  *
442  * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
443  *    page dirty flags when it copies back pages from the shadow cache
444  *    (gcdat->{i_mapping,i_btnode_cache}) to its original cache
445  *    (dat->{i_mapping,i_btnode_cache}).
446  *
447  * 2) Some B-tree operations like insertion or deletion may dispose buffers
448  *    in dirty state, and this needs to cancel the dirty state of their pages.
449  */
450 int __nilfs_clear_page_dirty(struct page *page)
451 {
452 	struct address_space *mapping = page->mapping;
453 
454 	if (mapping) {
455 		spin_lock_irq(&mapping->tree_lock);
456 		if (test_bit(PG_dirty, &page->flags)) {
457 			radix_tree_tag_clear(&mapping->page_tree,
458 					     page_index(page),
459 					     PAGECACHE_TAG_DIRTY);
460 			spin_unlock_irq(&mapping->tree_lock);
461 			return clear_page_dirty_for_io(page);
462 		}
463 		spin_unlock_irq(&mapping->tree_lock);
464 		return 0;
465 	}
466 	return TestClearPageDirty(page);
467 }
468 
469 /**
470  * nilfs_find_uncommitted_extent - find extent of uncommitted data
471  * @inode: inode
472  * @start_blk: start block offset (in)
473  * @blkoff: start offset of the found extent (out)
474  *
475  * This function searches an extent of buffers marked "delayed" which
476  * starts from a block offset equal to or larger than @start_blk.  If
477  * such an extent was found, this will store the start offset in
478  * @blkoff and return its length in blocks.  Otherwise, zero is
479  * returned.
480  */
481 unsigned long nilfs_find_uncommitted_extent(struct inode *inode,
482 					    sector_t start_blk,
483 					    sector_t *blkoff)
484 {
485 	unsigned int i;
486 	pgoff_t index;
487 	unsigned int nblocks_in_page;
488 	unsigned long length = 0;
489 	sector_t b;
490 	struct pagevec pvec;
491 	struct page *page;
492 
493 	if (inode->i_mapping->nrpages == 0)
494 		return 0;
495 
496 	index = start_blk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
497 	nblocks_in_page = 1U << (PAGE_CACHE_SHIFT - inode->i_blkbits);
498 
499 	pagevec_init(&pvec, 0);
500 
501 repeat:
502 	pvec.nr = find_get_pages_contig(inode->i_mapping, index, PAGEVEC_SIZE,
503 					pvec.pages);
504 	if (pvec.nr == 0)
505 		return length;
506 
507 	if (length > 0 && pvec.pages[0]->index > index)
508 		goto out;
509 
510 	b = pvec.pages[0]->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
511 	i = 0;
512 	do {
513 		page = pvec.pages[i];
514 
515 		lock_page(page);
516 		if (page_has_buffers(page)) {
517 			struct buffer_head *bh, *head;
518 
519 			bh = head = page_buffers(page);
520 			do {
521 				if (b < start_blk)
522 					continue;
523 				if (buffer_delay(bh)) {
524 					if (length == 0)
525 						*blkoff = b;
526 					length++;
527 				} else if (length > 0) {
528 					goto out_locked;
529 				}
530 			} while (++b, bh = bh->b_this_page, bh != head);
531 		} else {
532 			if (length > 0)
533 				goto out_locked;
534 
535 			b += nblocks_in_page;
536 		}
537 		unlock_page(page);
538 
539 	} while (++i < pagevec_count(&pvec));
540 
541 	index = page->index + 1;
542 	pagevec_release(&pvec);
543 	cond_resched();
544 	goto repeat;
545 
546 out_locked:
547 	unlock_page(page);
548 out:
549 	pagevec_release(&pvec);
550 	return length;
551 }
552