1 /* 2 * page.c - buffer/page management specific to NILFS 3 * 4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 19 * 20 * Written by Ryusuke Konishi <ryusuke@osrg.net>, 21 * Seiji Kihara <kihara@osrg.net>. 22 */ 23 24 #include <linux/pagemap.h> 25 #include <linux/writeback.h> 26 #include <linux/swap.h> 27 #include <linux/bitops.h> 28 #include <linux/page-flags.h> 29 #include <linux/list.h> 30 #include <linux/highmem.h> 31 #include <linux/pagevec.h> 32 #include <linux/gfp.h> 33 #include "nilfs.h" 34 #include "page.h" 35 #include "mdt.h" 36 37 38 #define NILFS_BUFFER_INHERENT_BITS \ 39 ((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \ 40 (1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Checked)) 41 42 static struct buffer_head * 43 __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index, 44 int blkbits, unsigned long b_state) 45 46 { 47 unsigned long first_block; 48 struct buffer_head *bh; 49 50 if (!page_has_buffers(page)) 51 create_empty_buffers(page, 1 << blkbits, b_state); 52 53 first_block = (unsigned long)index << (PAGE_CACHE_SHIFT - blkbits); 54 bh = nilfs_page_get_nth_block(page, block - first_block); 55 56 touch_buffer(bh); 57 wait_on_buffer(bh); 58 return bh; 59 } 60 61 struct buffer_head *nilfs_grab_buffer(struct inode *inode, 62 struct address_space *mapping, 63 unsigned long blkoff, 64 unsigned long b_state) 65 { 66 int blkbits = inode->i_blkbits; 67 pgoff_t index = blkoff >> (PAGE_CACHE_SHIFT - blkbits); 68 struct page *page; 69 struct buffer_head *bh; 70 71 page = grab_cache_page(mapping, index); 72 if (unlikely(!page)) 73 return NULL; 74 75 bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state); 76 if (unlikely(!bh)) { 77 unlock_page(page); 78 page_cache_release(page); 79 return NULL; 80 } 81 return bh; 82 } 83 84 /** 85 * nilfs_forget_buffer - discard dirty state 86 * @inode: owner inode of the buffer 87 * @bh: buffer head of the buffer to be discarded 88 */ 89 void nilfs_forget_buffer(struct buffer_head *bh) 90 { 91 struct page *page = bh->b_page; 92 93 lock_buffer(bh); 94 clear_buffer_nilfs_volatile(bh); 95 clear_buffer_nilfs_checked(bh); 96 clear_buffer_nilfs_redirected(bh); 97 clear_buffer_dirty(bh); 98 if (nilfs_page_buffers_clean(page)) 99 __nilfs_clear_page_dirty(page); 100 101 clear_buffer_uptodate(bh); 102 clear_buffer_mapped(bh); 103 bh->b_blocknr = -1; 104 ClearPageUptodate(page); 105 ClearPageMappedToDisk(page); 106 unlock_buffer(bh); 107 brelse(bh); 108 } 109 110 /** 111 * nilfs_copy_buffer -- copy buffer data and flags 112 * @dbh: destination buffer 113 * @sbh: source buffer 114 */ 115 void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh) 116 { 117 void *kaddr0, *kaddr1; 118 unsigned long bits; 119 struct page *spage = sbh->b_page, *dpage = dbh->b_page; 120 struct buffer_head *bh; 121 122 kaddr0 = kmap_atomic(spage); 123 kaddr1 = kmap_atomic(dpage); 124 memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size); 125 kunmap_atomic(kaddr1); 126 kunmap_atomic(kaddr0); 127 128 dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS; 129 dbh->b_blocknr = sbh->b_blocknr; 130 dbh->b_bdev = sbh->b_bdev; 131 132 bh = dbh; 133 bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped)); 134 while ((bh = bh->b_this_page) != dbh) { 135 lock_buffer(bh); 136 bits &= bh->b_state; 137 unlock_buffer(bh); 138 } 139 if (bits & (1UL << BH_Uptodate)) 140 SetPageUptodate(dpage); 141 else 142 ClearPageUptodate(dpage); 143 if (bits & (1UL << BH_Mapped)) 144 SetPageMappedToDisk(dpage); 145 else 146 ClearPageMappedToDisk(dpage); 147 } 148 149 /** 150 * nilfs_page_buffers_clean - check if a page has dirty buffers or not. 151 * @page: page to be checked 152 * 153 * nilfs_page_buffers_clean() returns zero if the page has dirty buffers. 154 * Otherwise, it returns non-zero value. 155 */ 156 int nilfs_page_buffers_clean(struct page *page) 157 { 158 struct buffer_head *bh, *head; 159 160 bh = head = page_buffers(page); 161 do { 162 if (buffer_dirty(bh)) 163 return 0; 164 bh = bh->b_this_page; 165 } while (bh != head); 166 return 1; 167 } 168 169 void nilfs_page_bug(struct page *page) 170 { 171 struct address_space *m; 172 unsigned long ino; 173 174 if (unlikely(!page)) { 175 printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n"); 176 return; 177 } 178 179 m = page->mapping; 180 ino = m ? m->host->i_ino : 0; 181 182 printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx " 183 "mapping=%p ino=%lu\n", 184 page, atomic_read(&page->_count), 185 (unsigned long long)page->index, page->flags, m, ino); 186 187 if (page_has_buffers(page)) { 188 struct buffer_head *bh, *head; 189 int i = 0; 190 191 bh = head = page_buffers(page); 192 do { 193 printk(KERN_CRIT 194 " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n", 195 i++, bh, atomic_read(&bh->b_count), 196 (unsigned long long)bh->b_blocknr, bh->b_state); 197 bh = bh->b_this_page; 198 } while (bh != head); 199 } 200 } 201 202 /** 203 * nilfs_copy_page -- copy the page with buffers 204 * @dst: destination page 205 * @src: source page 206 * @copy_dirty: flag whether to copy dirty states on the page's buffer heads. 207 * 208 * This function is for both data pages and btnode pages. The dirty flag 209 * should be treated by caller. The page must not be under i/o. 210 * Both src and dst page must be locked 211 */ 212 static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty) 213 { 214 struct buffer_head *dbh, *dbufs, *sbh, *sbufs; 215 unsigned long mask = NILFS_BUFFER_INHERENT_BITS; 216 217 BUG_ON(PageWriteback(dst)); 218 219 sbh = sbufs = page_buffers(src); 220 if (!page_has_buffers(dst)) 221 create_empty_buffers(dst, sbh->b_size, 0); 222 223 if (copy_dirty) 224 mask |= (1UL << BH_Dirty); 225 226 dbh = dbufs = page_buffers(dst); 227 do { 228 lock_buffer(sbh); 229 lock_buffer(dbh); 230 dbh->b_state = sbh->b_state & mask; 231 dbh->b_blocknr = sbh->b_blocknr; 232 dbh->b_bdev = sbh->b_bdev; 233 sbh = sbh->b_this_page; 234 dbh = dbh->b_this_page; 235 } while (dbh != dbufs); 236 237 copy_highpage(dst, src); 238 239 if (PageUptodate(src) && !PageUptodate(dst)) 240 SetPageUptodate(dst); 241 else if (!PageUptodate(src) && PageUptodate(dst)) 242 ClearPageUptodate(dst); 243 if (PageMappedToDisk(src) && !PageMappedToDisk(dst)) 244 SetPageMappedToDisk(dst); 245 else if (!PageMappedToDisk(src) && PageMappedToDisk(dst)) 246 ClearPageMappedToDisk(dst); 247 248 do { 249 unlock_buffer(sbh); 250 unlock_buffer(dbh); 251 sbh = sbh->b_this_page; 252 dbh = dbh->b_this_page; 253 } while (dbh != dbufs); 254 } 255 256 int nilfs_copy_dirty_pages(struct address_space *dmap, 257 struct address_space *smap) 258 { 259 struct pagevec pvec; 260 unsigned int i; 261 pgoff_t index = 0; 262 int err = 0; 263 264 pagevec_init(&pvec, 0); 265 repeat: 266 if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY, 267 PAGEVEC_SIZE)) 268 return 0; 269 270 for (i = 0; i < pagevec_count(&pvec); i++) { 271 struct page *page = pvec.pages[i], *dpage; 272 273 lock_page(page); 274 if (unlikely(!PageDirty(page))) 275 NILFS_PAGE_BUG(page, "inconsistent dirty state"); 276 277 dpage = grab_cache_page(dmap, page->index); 278 if (unlikely(!dpage)) { 279 /* No empty page is added to the page cache */ 280 err = -ENOMEM; 281 unlock_page(page); 282 break; 283 } 284 if (unlikely(!page_has_buffers(page))) 285 NILFS_PAGE_BUG(page, 286 "found empty page in dat page cache"); 287 288 nilfs_copy_page(dpage, page, 1); 289 __set_page_dirty_nobuffers(dpage); 290 291 unlock_page(dpage); 292 page_cache_release(dpage); 293 unlock_page(page); 294 } 295 pagevec_release(&pvec); 296 cond_resched(); 297 298 if (likely(!err)) 299 goto repeat; 300 return err; 301 } 302 303 /** 304 * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache 305 * @dmap: destination page cache 306 * @smap: source page cache 307 * 308 * No pages must no be added to the cache during this process. 309 * This must be ensured by the caller. 310 */ 311 void nilfs_copy_back_pages(struct address_space *dmap, 312 struct address_space *smap) 313 { 314 struct pagevec pvec; 315 unsigned int i, n; 316 pgoff_t index = 0; 317 int err; 318 319 pagevec_init(&pvec, 0); 320 repeat: 321 n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE); 322 if (!n) 323 return; 324 index = pvec.pages[n - 1]->index + 1; 325 326 for (i = 0; i < pagevec_count(&pvec); i++) { 327 struct page *page = pvec.pages[i], *dpage; 328 pgoff_t offset = page->index; 329 330 lock_page(page); 331 dpage = find_lock_page(dmap, offset); 332 if (dpage) { 333 /* override existing page on the destination cache */ 334 WARN_ON(PageDirty(dpage)); 335 nilfs_copy_page(dpage, page, 0); 336 unlock_page(dpage); 337 page_cache_release(dpage); 338 } else { 339 struct page *page2; 340 341 /* move the page to the destination cache */ 342 spin_lock_irq(&smap->tree_lock); 343 page2 = radix_tree_delete(&smap->page_tree, offset); 344 WARN_ON(page2 != page); 345 346 smap->nrpages--; 347 spin_unlock_irq(&smap->tree_lock); 348 349 spin_lock_irq(&dmap->tree_lock); 350 err = radix_tree_insert(&dmap->page_tree, offset, page); 351 if (unlikely(err < 0)) { 352 WARN_ON(err == -EEXIST); 353 page->mapping = NULL; 354 page_cache_release(page); /* for cache */ 355 } else { 356 page->mapping = dmap; 357 dmap->nrpages++; 358 if (PageDirty(page)) 359 radix_tree_tag_set(&dmap->page_tree, 360 offset, 361 PAGECACHE_TAG_DIRTY); 362 } 363 spin_unlock_irq(&dmap->tree_lock); 364 } 365 unlock_page(page); 366 } 367 pagevec_release(&pvec); 368 cond_resched(); 369 370 goto repeat; 371 } 372 373 void nilfs_clear_dirty_pages(struct address_space *mapping) 374 { 375 struct pagevec pvec; 376 unsigned int i; 377 pgoff_t index = 0; 378 379 pagevec_init(&pvec, 0); 380 381 while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY, 382 PAGEVEC_SIZE)) { 383 for (i = 0; i < pagevec_count(&pvec); i++) { 384 struct page *page = pvec.pages[i]; 385 struct buffer_head *bh, *head; 386 387 lock_page(page); 388 ClearPageUptodate(page); 389 ClearPageMappedToDisk(page); 390 bh = head = page_buffers(page); 391 do { 392 lock_buffer(bh); 393 clear_buffer_dirty(bh); 394 clear_buffer_nilfs_volatile(bh); 395 clear_buffer_nilfs_checked(bh); 396 clear_buffer_nilfs_redirected(bh); 397 clear_buffer_uptodate(bh); 398 clear_buffer_mapped(bh); 399 unlock_buffer(bh); 400 bh = bh->b_this_page; 401 } while (bh != head); 402 403 __nilfs_clear_page_dirty(page); 404 unlock_page(page); 405 } 406 pagevec_release(&pvec); 407 cond_resched(); 408 } 409 } 410 411 unsigned nilfs_page_count_clean_buffers(struct page *page, 412 unsigned from, unsigned to) 413 { 414 unsigned block_start, block_end; 415 struct buffer_head *bh, *head; 416 unsigned nc = 0; 417 418 for (bh = head = page_buffers(page), block_start = 0; 419 bh != head || !block_start; 420 block_start = block_end, bh = bh->b_this_page) { 421 block_end = block_start + bh->b_size; 422 if (block_end > from && block_start < to && !buffer_dirty(bh)) 423 nc++; 424 } 425 return nc; 426 } 427 428 void nilfs_mapping_init(struct address_space *mapping, struct inode *inode, 429 struct backing_dev_info *bdi) 430 { 431 mapping->host = inode; 432 mapping->flags = 0; 433 mapping_set_gfp_mask(mapping, GFP_NOFS); 434 mapping->assoc_mapping = NULL; 435 mapping->backing_dev_info = bdi; 436 mapping->a_ops = &empty_aops; 437 } 438 439 /* 440 * NILFS2 needs clear_page_dirty() in the following two cases: 441 * 442 * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears 443 * page dirty flags when it copies back pages from the shadow cache 444 * (gcdat->{i_mapping,i_btnode_cache}) to its original cache 445 * (dat->{i_mapping,i_btnode_cache}). 446 * 447 * 2) Some B-tree operations like insertion or deletion may dispose buffers 448 * in dirty state, and this needs to cancel the dirty state of their pages. 449 */ 450 int __nilfs_clear_page_dirty(struct page *page) 451 { 452 struct address_space *mapping = page->mapping; 453 454 if (mapping) { 455 spin_lock_irq(&mapping->tree_lock); 456 if (test_bit(PG_dirty, &page->flags)) { 457 radix_tree_tag_clear(&mapping->page_tree, 458 page_index(page), 459 PAGECACHE_TAG_DIRTY); 460 spin_unlock_irq(&mapping->tree_lock); 461 return clear_page_dirty_for_io(page); 462 } 463 spin_unlock_irq(&mapping->tree_lock); 464 return 0; 465 } 466 return TestClearPageDirty(page); 467 } 468 469 /** 470 * nilfs_find_uncommitted_extent - find extent of uncommitted data 471 * @inode: inode 472 * @start_blk: start block offset (in) 473 * @blkoff: start offset of the found extent (out) 474 * 475 * This function searches an extent of buffers marked "delayed" which 476 * starts from a block offset equal to or larger than @start_blk. If 477 * such an extent was found, this will store the start offset in 478 * @blkoff and return its length in blocks. Otherwise, zero is 479 * returned. 480 */ 481 unsigned long nilfs_find_uncommitted_extent(struct inode *inode, 482 sector_t start_blk, 483 sector_t *blkoff) 484 { 485 unsigned int i; 486 pgoff_t index; 487 unsigned int nblocks_in_page; 488 unsigned long length = 0; 489 sector_t b; 490 struct pagevec pvec; 491 struct page *page; 492 493 if (inode->i_mapping->nrpages == 0) 494 return 0; 495 496 index = start_blk >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 497 nblocks_in_page = 1U << (PAGE_CACHE_SHIFT - inode->i_blkbits); 498 499 pagevec_init(&pvec, 0); 500 501 repeat: 502 pvec.nr = find_get_pages_contig(inode->i_mapping, index, PAGEVEC_SIZE, 503 pvec.pages); 504 if (pvec.nr == 0) 505 return length; 506 507 if (length > 0 && pvec.pages[0]->index > index) 508 goto out; 509 510 b = pvec.pages[0]->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 511 i = 0; 512 do { 513 page = pvec.pages[i]; 514 515 lock_page(page); 516 if (page_has_buffers(page)) { 517 struct buffer_head *bh, *head; 518 519 bh = head = page_buffers(page); 520 do { 521 if (b < start_blk) 522 continue; 523 if (buffer_delay(bh)) { 524 if (length == 0) 525 *blkoff = b; 526 length++; 527 } else if (length > 0) { 528 goto out_locked; 529 } 530 } while (++b, bh = bh->b_this_page, bh != head); 531 } else { 532 if (length > 0) 533 goto out_locked; 534 535 b += nblocks_in_page; 536 } 537 unlock_page(page); 538 539 } while (++i < pagevec_count(&pvec)); 540 541 index = page->index + 1; 542 pagevec_release(&pvec); 543 cond_resched(); 544 goto repeat; 545 546 out_locked: 547 unlock_page(page); 548 out: 549 pagevec_release(&pvec); 550 return length; 551 } 552