1 /* 2 * page.c - buffer/page management specific to NILFS 3 * 4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 19 * 20 * Written by Ryusuke Konishi <ryusuke@osrg.net>, 21 * Seiji Kihara <kihara@osrg.net>. 22 */ 23 24 #include <linux/pagemap.h> 25 #include <linux/writeback.h> 26 #include <linux/swap.h> 27 #include <linux/bitops.h> 28 #include <linux/page-flags.h> 29 #include <linux/list.h> 30 #include <linux/highmem.h> 31 #include <linux/pagevec.h> 32 #include <linux/gfp.h> 33 #include "nilfs.h" 34 #include "page.h" 35 #include "mdt.h" 36 37 38 #define NILFS_BUFFER_INHERENT_BITS \ 39 ((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \ 40 (1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Checked)) 41 42 static struct buffer_head * 43 __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index, 44 int blkbits, unsigned long b_state) 45 46 { 47 unsigned long first_block; 48 struct buffer_head *bh; 49 50 if (!page_has_buffers(page)) 51 create_empty_buffers(page, 1 << blkbits, b_state); 52 53 first_block = (unsigned long)index << (PAGE_CACHE_SHIFT - blkbits); 54 bh = nilfs_page_get_nth_block(page, block - first_block); 55 56 touch_buffer(bh); 57 wait_on_buffer(bh); 58 return bh; 59 } 60 61 struct buffer_head *nilfs_grab_buffer(struct inode *inode, 62 struct address_space *mapping, 63 unsigned long blkoff, 64 unsigned long b_state) 65 { 66 int blkbits = inode->i_blkbits; 67 pgoff_t index = blkoff >> (PAGE_CACHE_SHIFT - blkbits); 68 struct page *page; 69 struct buffer_head *bh; 70 71 page = grab_cache_page(mapping, index); 72 if (unlikely(!page)) 73 return NULL; 74 75 bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state); 76 if (unlikely(!bh)) { 77 unlock_page(page); 78 page_cache_release(page); 79 return NULL; 80 } 81 return bh; 82 } 83 84 /** 85 * nilfs_forget_buffer - discard dirty state 86 * @inode: owner inode of the buffer 87 * @bh: buffer head of the buffer to be discarded 88 */ 89 void nilfs_forget_buffer(struct buffer_head *bh) 90 { 91 struct page *page = bh->b_page; 92 93 lock_buffer(bh); 94 clear_buffer_nilfs_volatile(bh); 95 clear_buffer_nilfs_checked(bh); 96 clear_buffer_nilfs_redirected(bh); 97 clear_buffer_async_write(bh); 98 clear_buffer_dirty(bh); 99 if (nilfs_page_buffers_clean(page)) 100 __nilfs_clear_page_dirty(page); 101 102 clear_buffer_uptodate(bh); 103 clear_buffer_mapped(bh); 104 bh->b_blocknr = -1; 105 ClearPageUptodate(page); 106 ClearPageMappedToDisk(page); 107 unlock_buffer(bh); 108 brelse(bh); 109 } 110 111 /** 112 * nilfs_copy_buffer -- copy buffer data and flags 113 * @dbh: destination buffer 114 * @sbh: source buffer 115 */ 116 void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh) 117 { 118 void *kaddr0, *kaddr1; 119 unsigned long bits; 120 struct page *spage = sbh->b_page, *dpage = dbh->b_page; 121 struct buffer_head *bh; 122 123 kaddr0 = kmap_atomic(spage); 124 kaddr1 = kmap_atomic(dpage); 125 memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size); 126 kunmap_atomic(kaddr1); 127 kunmap_atomic(kaddr0); 128 129 dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS; 130 dbh->b_blocknr = sbh->b_blocknr; 131 dbh->b_bdev = sbh->b_bdev; 132 133 bh = dbh; 134 bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped)); 135 while ((bh = bh->b_this_page) != dbh) { 136 lock_buffer(bh); 137 bits &= bh->b_state; 138 unlock_buffer(bh); 139 } 140 if (bits & (1UL << BH_Uptodate)) 141 SetPageUptodate(dpage); 142 else 143 ClearPageUptodate(dpage); 144 if (bits & (1UL << BH_Mapped)) 145 SetPageMappedToDisk(dpage); 146 else 147 ClearPageMappedToDisk(dpage); 148 } 149 150 /** 151 * nilfs_page_buffers_clean - check if a page has dirty buffers or not. 152 * @page: page to be checked 153 * 154 * nilfs_page_buffers_clean() returns zero if the page has dirty buffers. 155 * Otherwise, it returns non-zero value. 156 */ 157 int nilfs_page_buffers_clean(struct page *page) 158 { 159 struct buffer_head *bh, *head; 160 161 bh = head = page_buffers(page); 162 do { 163 if (buffer_dirty(bh)) 164 return 0; 165 bh = bh->b_this_page; 166 } while (bh != head); 167 return 1; 168 } 169 170 void nilfs_page_bug(struct page *page) 171 { 172 struct address_space *m; 173 unsigned long ino; 174 175 if (unlikely(!page)) { 176 printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n"); 177 return; 178 } 179 180 m = page->mapping; 181 ino = m ? m->host->i_ino : 0; 182 183 printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx " 184 "mapping=%p ino=%lu\n", 185 page, atomic_read(&page->_count), 186 (unsigned long long)page->index, page->flags, m, ino); 187 188 if (page_has_buffers(page)) { 189 struct buffer_head *bh, *head; 190 int i = 0; 191 192 bh = head = page_buffers(page); 193 do { 194 printk(KERN_CRIT 195 " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n", 196 i++, bh, atomic_read(&bh->b_count), 197 (unsigned long long)bh->b_blocknr, bh->b_state); 198 bh = bh->b_this_page; 199 } while (bh != head); 200 } 201 } 202 203 /** 204 * nilfs_copy_page -- copy the page with buffers 205 * @dst: destination page 206 * @src: source page 207 * @copy_dirty: flag whether to copy dirty states on the page's buffer heads. 208 * 209 * This function is for both data pages and btnode pages. The dirty flag 210 * should be treated by caller. The page must not be under i/o. 211 * Both src and dst page must be locked 212 */ 213 static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty) 214 { 215 struct buffer_head *dbh, *dbufs, *sbh, *sbufs; 216 unsigned long mask = NILFS_BUFFER_INHERENT_BITS; 217 218 BUG_ON(PageWriteback(dst)); 219 220 sbh = sbufs = page_buffers(src); 221 if (!page_has_buffers(dst)) 222 create_empty_buffers(dst, sbh->b_size, 0); 223 224 if (copy_dirty) 225 mask |= (1UL << BH_Dirty); 226 227 dbh = dbufs = page_buffers(dst); 228 do { 229 lock_buffer(sbh); 230 lock_buffer(dbh); 231 dbh->b_state = sbh->b_state & mask; 232 dbh->b_blocknr = sbh->b_blocknr; 233 dbh->b_bdev = sbh->b_bdev; 234 sbh = sbh->b_this_page; 235 dbh = dbh->b_this_page; 236 } while (dbh != dbufs); 237 238 copy_highpage(dst, src); 239 240 if (PageUptodate(src) && !PageUptodate(dst)) 241 SetPageUptodate(dst); 242 else if (!PageUptodate(src) && PageUptodate(dst)) 243 ClearPageUptodate(dst); 244 if (PageMappedToDisk(src) && !PageMappedToDisk(dst)) 245 SetPageMappedToDisk(dst); 246 else if (!PageMappedToDisk(src) && PageMappedToDisk(dst)) 247 ClearPageMappedToDisk(dst); 248 249 do { 250 unlock_buffer(sbh); 251 unlock_buffer(dbh); 252 sbh = sbh->b_this_page; 253 dbh = dbh->b_this_page; 254 } while (dbh != dbufs); 255 } 256 257 int nilfs_copy_dirty_pages(struct address_space *dmap, 258 struct address_space *smap) 259 { 260 struct pagevec pvec; 261 unsigned int i; 262 pgoff_t index = 0; 263 int err = 0; 264 265 pagevec_init(&pvec, 0); 266 repeat: 267 if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY, 268 PAGEVEC_SIZE)) 269 return 0; 270 271 for (i = 0; i < pagevec_count(&pvec); i++) { 272 struct page *page = pvec.pages[i], *dpage; 273 274 lock_page(page); 275 if (unlikely(!PageDirty(page))) 276 NILFS_PAGE_BUG(page, "inconsistent dirty state"); 277 278 dpage = grab_cache_page(dmap, page->index); 279 if (unlikely(!dpage)) { 280 /* No empty page is added to the page cache */ 281 err = -ENOMEM; 282 unlock_page(page); 283 break; 284 } 285 if (unlikely(!page_has_buffers(page))) 286 NILFS_PAGE_BUG(page, 287 "found empty page in dat page cache"); 288 289 nilfs_copy_page(dpage, page, 1); 290 __set_page_dirty_nobuffers(dpage); 291 292 unlock_page(dpage); 293 page_cache_release(dpage); 294 unlock_page(page); 295 } 296 pagevec_release(&pvec); 297 cond_resched(); 298 299 if (likely(!err)) 300 goto repeat; 301 return err; 302 } 303 304 /** 305 * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache 306 * @dmap: destination page cache 307 * @smap: source page cache 308 * 309 * No pages must no be added to the cache during this process. 310 * This must be ensured by the caller. 311 */ 312 void nilfs_copy_back_pages(struct address_space *dmap, 313 struct address_space *smap) 314 { 315 struct pagevec pvec; 316 unsigned int i, n; 317 pgoff_t index = 0; 318 int err; 319 320 pagevec_init(&pvec, 0); 321 repeat: 322 n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE); 323 if (!n) 324 return; 325 index = pvec.pages[n - 1]->index + 1; 326 327 for (i = 0; i < pagevec_count(&pvec); i++) { 328 struct page *page = pvec.pages[i], *dpage; 329 pgoff_t offset = page->index; 330 331 lock_page(page); 332 dpage = find_lock_page(dmap, offset); 333 if (dpage) { 334 /* override existing page on the destination cache */ 335 WARN_ON(PageDirty(dpage)); 336 nilfs_copy_page(dpage, page, 0); 337 unlock_page(dpage); 338 page_cache_release(dpage); 339 } else { 340 struct page *page2; 341 342 /* move the page to the destination cache */ 343 spin_lock_irq(&smap->tree_lock); 344 page2 = radix_tree_delete(&smap->page_tree, offset); 345 WARN_ON(page2 != page); 346 347 smap->nrpages--; 348 spin_unlock_irq(&smap->tree_lock); 349 350 spin_lock_irq(&dmap->tree_lock); 351 err = radix_tree_insert(&dmap->page_tree, offset, page); 352 if (unlikely(err < 0)) { 353 WARN_ON(err == -EEXIST); 354 page->mapping = NULL; 355 page_cache_release(page); /* for cache */ 356 } else { 357 page->mapping = dmap; 358 dmap->nrpages++; 359 if (PageDirty(page)) 360 radix_tree_tag_set(&dmap->page_tree, 361 offset, 362 PAGECACHE_TAG_DIRTY); 363 } 364 spin_unlock_irq(&dmap->tree_lock); 365 } 366 unlock_page(page); 367 } 368 pagevec_release(&pvec); 369 cond_resched(); 370 371 goto repeat; 372 } 373 374 /** 375 * nilfs_clear_dirty_pages - discard dirty pages in address space 376 * @mapping: address space with dirty pages for discarding 377 * @silent: suppress [true] or print [false] warning messages 378 */ 379 void nilfs_clear_dirty_pages(struct address_space *mapping, bool silent) 380 { 381 struct pagevec pvec; 382 unsigned int i; 383 pgoff_t index = 0; 384 385 pagevec_init(&pvec, 0); 386 387 while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY, 388 PAGEVEC_SIZE)) { 389 for (i = 0; i < pagevec_count(&pvec); i++) { 390 struct page *page = pvec.pages[i]; 391 392 lock_page(page); 393 nilfs_clear_dirty_page(page, silent); 394 unlock_page(page); 395 } 396 pagevec_release(&pvec); 397 cond_resched(); 398 } 399 } 400 401 /** 402 * nilfs_clear_dirty_page - discard dirty page 403 * @page: dirty page that will be discarded 404 * @silent: suppress [true] or print [false] warning messages 405 */ 406 void nilfs_clear_dirty_page(struct page *page, bool silent) 407 { 408 struct inode *inode = page->mapping->host; 409 struct super_block *sb = inode->i_sb; 410 411 BUG_ON(!PageLocked(page)); 412 413 if (!silent) { 414 nilfs_warning(sb, __func__, 415 "discard page: offset %lld, ino %lu", 416 page_offset(page), inode->i_ino); 417 } 418 419 ClearPageUptodate(page); 420 ClearPageMappedToDisk(page); 421 422 if (page_has_buffers(page)) { 423 struct buffer_head *bh, *head; 424 425 bh = head = page_buffers(page); 426 do { 427 lock_buffer(bh); 428 if (!silent) { 429 nilfs_warning(sb, __func__, 430 "discard block %llu, size %zu", 431 (u64)bh->b_blocknr, bh->b_size); 432 } 433 clear_buffer_async_write(bh); 434 clear_buffer_dirty(bh); 435 clear_buffer_nilfs_volatile(bh); 436 clear_buffer_nilfs_checked(bh); 437 clear_buffer_nilfs_redirected(bh); 438 clear_buffer_uptodate(bh); 439 clear_buffer_mapped(bh); 440 unlock_buffer(bh); 441 } while (bh = bh->b_this_page, bh != head); 442 } 443 444 __nilfs_clear_page_dirty(page); 445 } 446 447 unsigned nilfs_page_count_clean_buffers(struct page *page, 448 unsigned from, unsigned to) 449 { 450 unsigned block_start, block_end; 451 struct buffer_head *bh, *head; 452 unsigned nc = 0; 453 454 for (bh = head = page_buffers(page), block_start = 0; 455 bh != head || !block_start; 456 block_start = block_end, bh = bh->b_this_page) { 457 block_end = block_start + bh->b_size; 458 if (block_end > from && block_start < to && !buffer_dirty(bh)) 459 nc++; 460 } 461 return nc; 462 } 463 464 void nilfs_mapping_init(struct address_space *mapping, struct inode *inode, 465 struct backing_dev_info *bdi) 466 { 467 mapping->host = inode; 468 mapping->flags = 0; 469 mapping_set_gfp_mask(mapping, GFP_NOFS); 470 mapping->private_data = NULL; 471 mapping->backing_dev_info = bdi; 472 mapping->a_ops = &empty_aops; 473 } 474 475 /* 476 * NILFS2 needs clear_page_dirty() in the following two cases: 477 * 478 * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears 479 * page dirty flags when it copies back pages from the shadow cache 480 * (gcdat->{i_mapping,i_btnode_cache}) to its original cache 481 * (dat->{i_mapping,i_btnode_cache}). 482 * 483 * 2) Some B-tree operations like insertion or deletion may dispose buffers 484 * in dirty state, and this needs to cancel the dirty state of their pages. 485 */ 486 int __nilfs_clear_page_dirty(struct page *page) 487 { 488 struct address_space *mapping = page->mapping; 489 490 if (mapping) { 491 spin_lock_irq(&mapping->tree_lock); 492 if (test_bit(PG_dirty, &page->flags)) { 493 radix_tree_tag_clear(&mapping->page_tree, 494 page_index(page), 495 PAGECACHE_TAG_DIRTY); 496 spin_unlock_irq(&mapping->tree_lock); 497 return clear_page_dirty_for_io(page); 498 } 499 spin_unlock_irq(&mapping->tree_lock); 500 return 0; 501 } 502 return TestClearPageDirty(page); 503 } 504 505 /** 506 * nilfs_find_uncommitted_extent - find extent of uncommitted data 507 * @inode: inode 508 * @start_blk: start block offset (in) 509 * @blkoff: start offset of the found extent (out) 510 * 511 * This function searches an extent of buffers marked "delayed" which 512 * starts from a block offset equal to or larger than @start_blk. If 513 * such an extent was found, this will store the start offset in 514 * @blkoff and return its length in blocks. Otherwise, zero is 515 * returned. 516 */ 517 unsigned long nilfs_find_uncommitted_extent(struct inode *inode, 518 sector_t start_blk, 519 sector_t *blkoff) 520 { 521 unsigned int i; 522 pgoff_t index; 523 unsigned int nblocks_in_page; 524 unsigned long length = 0; 525 sector_t b; 526 struct pagevec pvec; 527 struct page *page; 528 529 if (inode->i_mapping->nrpages == 0) 530 return 0; 531 532 index = start_blk >> (PAGE_CACHE_SHIFT - inode->i_blkbits); 533 nblocks_in_page = 1U << (PAGE_CACHE_SHIFT - inode->i_blkbits); 534 535 pagevec_init(&pvec, 0); 536 537 repeat: 538 pvec.nr = find_get_pages_contig(inode->i_mapping, index, PAGEVEC_SIZE, 539 pvec.pages); 540 if (pvec.nr == 0) 541 return length; 542 543 if (length > 0 && pvec.pages[0]->index > index) 544 goto out; 545 546 b = pvec.pages[0]->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 547 i = 0; 548 do { 549 page = pvec.pages[i]; 550 551 lock_page(page); 552 if (page_has_buffers(page)) { 553 struct buffer_head *bh, *head; 554 555 bh = head = page_buffers(page); 556 do { 557 if (b < start_blk) 558 continue; 559 if (buffer_delay(bh)) { 560 if (length == 0) 561 *blkoff = b; 562 length++; 563 } else if (length > 0) { 564 goto out_locked; 565 } 566 } while (++b, bh = bh->b_this_page, bh != head); 567 } else { 568 if (length > 0) 569 goto out_locked; 570 571 b += nblocks_in_page; 572 } 573 unlock_page(page); 574 575 } while (++i < pagevec_count(&pvec)); 576 577 index = page->index + 1; 578 pagevec_release(&pvec); 579 cond_resched(); 580 goto repeat; 581 582 out_locked: 583 unlock_page(page); 584 out: 585 pagevec_release(&pvec); 586 return length; 587 } 588