1 /* 2 * page.c - buffer/page management specific to NILFS 3 * 4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * Written by Ryusuke Konishi and Seiji Kihara. 17 */ 18 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/swap.h> 22 #include <linux/bitops.h> 23 #include <linux/page-flags.h> 24 #include <linux/list.h> 25 #include <linux/highmem.h> 26 #include <linux/pagevec.h> 27 #include <linux/gfp.h> 28 #include "nilfs.h" 29 #include "page.h" 30 #include "mdt.h" 31 32 33 #define NILFS_BUFFER_INHERENT_BITS \ 34 ((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \ 35 (1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Checked)) 36 37 static struct buffer_head * 38 __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index, 39 int blkbits, unsigned long b_state) 40 41 { 42 unsigned long first_block; 43 struct buffer_head *bh; 44 45 if (!page_has_buffers(page)) 46 create_empty_buffers(page, 1 << blkbits, b_state); 47 48 first_block = (unsigned long)index << (PAGE_SHIFT - blkbits); 49 bh = nilfs_page_get_nth_block(page, block - first_block); 50 51 touch_buffer(bh); 52 wait_on_buffer(bh); 53 return bh; 54 } 55 56 struct buffer_head *nilfs_grab_buffer(struct inode *inode, 57 struct address_space *mapping, 58 unsigned long blkoff, 59 unsigned long b_state) 60 { 61 int blkbits = inode->i_blkbits; 62 pgoff_t index = blkoff >> (PAGE_SHIFT - blkbits); 63 struct page *page; 64 struct buffer_head *bh; 65 66 page = grab_cache_page(mapping, index); 67 if (unlikely(!page)) 68 return NULL; 69 70 bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state); 71 if (unlikely(!bh)) { 72 unlock_page(page); 73 put_page(page); 74 return NULL; 75 } 76 return bh; 77 } 78 79 /** 80 * nilfs_forget_buffer - discard dirty state 81 * @inode: owner inode of the buffer 82 * @bh: buffer head of the buffer to be discarded 83 */ 84 void nilfs_forget_buffer(struct buffer_head *bh) 85 { 86 struct page *page = bh->b_page; 87 const unsigned long clear_bits = 88 (1 << BH_Uptodate | 1 << BH_Dirty | 1 << BH_Mapped | 89 1 << BH_Async_Write | 1 << BH_NILFS_Volatile | 90 1 << BH_NILFS_Checked | 1 << BH_NILFS_Redirected); 91 92 lock_buffer(bh); 93 set_mask_bits(&bh->b_state, clear_bits, 0); 94 if (nilfs_page_buffers_clean(page)) 95 __nilfs_clear_page_dirty(page); 96 97 bh->b_blocknr = -1; 98 ClearPageUptodate(page); 99 ClearPageMappedToDisk(page); 100 unlock_buffer(bh); 101 brelse(bh); 102 } 103 104 /** 105 * nilfs_copy_buffer -- copy buffer data and flags 106 * @dbh: destination buffer 107 * @sbh: source buffer 108 */ 109 void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh) 110 { 111 void *kaddr0, *kaddr1; 112 unsigned long bits; 113 struct page *spage = sbh->b_page, *dpage = dbh->b_page; 114 struct buffer_head *bh; 115 116 kaddr0 = kmap_atomic(spage); 117 kaddr1 = kmap_atomic(dpage); 118 memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size); 119 kunmap_atomic(kaddr1); 120 kunmap_atomic(kaddr0); 121 122 dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS; 123 dbh->b_blocknr = sbh->b_blocknr; 124 dbh->b_bdev = sbh->b_bdev; 125 126 bh = dbh; 127 bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped)); 128 while ((bh = bh->b_this_page) != dbh) { 129 lock_buffer(bh); 130 bits &= bh->b_state; 131 unlock_buffer(bh); 132 } 133 if (bits & (1UL << BH_Uptodate)) 134 SetPageUptodate(dpage); 135 else 136 ClearPageUptodate(dpage); 137 if (bits & (1UL << BH_Mapped)) 138 SetPageMappedToDisk(dpage); 139 else 140 ClearPageMappedToDisk(dpage); 141 } 142 143 /** 144 * nilfs_page_buffers_clean - check if a page has dirty buffers or not. 145 * @page: page to be checked 146 * 147 * nilfs_page_buffers_clean() returns zero if the page has dirty buffers. 148 * Otherwise, it returns non-zero value. 149 */ 150 int nilfs_page_buffers_clean(struct page *page) 151 { 152 struct buffer_head *bh, *head; 153 154 bh = head = page_buffers(page); 155 do { 156 if (buffer_dirty(bh)) 157 return 0; 158 bh = bh->b_this_page; 159 } while (bh != head); 160 return 1; 161 } 162 163 void nilfs_page_bug(struct page *page) 164 { 165 struct address_space *m; 166 unsigned long ino; 167 168 if (unlikely(!page)) { 169 printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n"); 170 return; 171 } 172 173 m = page->mapping; 174 ino = m ? m->host->i_ino : 0; 175 176 printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx " 177 "mapping=%p ino=%lu\n", 178 page, page_ref_count(page), 179 (unsigned long long)page->index, page->flags, m, ino); 180 181 if (page_has_buffers(page)) { 182 struct buffer_head *bh, *head; 183 int i = 0; 184 185 bh = head = page_buffers(page); 186 do { 187 printk(KERN_CRIT 188 " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n", 189 i++, bh, atomic_read(&bh->b_count), 190 (unsigned long long)bh->b_blocknr, bh->b_state); 191 bh = bh->b_this_page; 192 } while (bh != head); 193 } 194 } 195 196 /** 197 * nilfs_copy_page -- copy the page with buffers 198 * @dst: destination page 199 * @src: source page 200 * @copy_dirty: flag whether to copy dirty states on the page's buffer heads. 201 * 202 * This function is for both data pages and btnode pages. The dirty flag 203 * should be treated by caller. The page must not be under i/o. 204 * Both src and dst page must be locked 205 */ 206 static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty) 207 { 208 struct buffer_head *dbh, *dbufs, *sbh, *sbufs; 209 unsigned long mask = NILFS_BUFFER_INHERENT_BITS; 210 211 BUG_ON(PageWriteback(dst)); 212 213 sbh = sbufs = page_buffers(src); 214 if (!page_has_buffers(dst)) 215 create_empty_buffers(dst, sbh->b_size, 0); 216 217 if (copy_dirty) 218 mask |= (1UL << BH_Dirty); 219 220 dbh = dbufs = page_buffers(dst); 221 do { 222 lock_buffer(sbh); 223 lock_buffer(dbh); 224 dbh->b_state = sbh->b_state & mask; 225 dbh->b_blocknr = sbh->b_blocknr; 226 dbh->b_bdev = sbh->b_bdev; 227 sbh = sbh->b_this_page; 228 dbh = dbh->b_this_page; 229 } while (dbh != dbufs); 230 231 copy_highpage(dst, src); 232 233 if (PageUptodate(src) && !PageUptodate(dst)) 234 SetPageUptodate(dst); 235 else if (!PageUptodate(src) && PageUptodate(dst)) 236 ClearPageUptodate(dst); 237 if (PageMappedToDisk(src) && !PageMappedToDisk(dst)) 238 SetPageMappedToDisk(dst); 239 else if (!PageMappedToDisk(src) && PageMappedToDisk(dst)) 240 ClearPageMappedToDisk(dst); 241 242 do { 243 unlock_buffer(sbh); 244 unlock_buffer(dbh); 245 sbh = sbh->b_this_page; 246 dbh = dbh->b_this_page; 247 } while (dbh != dbufs); 248 } 249 250 int nilfs_copy_dirty_pages(struct address_space *dmap, 251 struct address_space *smap) 252 { 253 struct pagevec pvec; 254 unsigned int i; 255 pgoff_t index = 0; 256 int err = 0; 257 258 pagevec_init(&pvec, 0); 259 repeat: 260 if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY, 261 PAGEVEC_SIZE)) 262 return 0; 263 264 for (i = 0; i < pagevec_count(&pvec); i++) { 265 struct page *page = pvec.pages[i], *dpage; 266 267 lock_page(page); 268 if (unlikely(!PageDirty(page))) 269 NILFS_PAGE_BUG(page, "inconsistent dirty state"); 270 271 dpage = grab_cache_page(dmap, page->index); 272 if (unlikely(!dpage)) { 273 /* No empty page is added to the page cache */ 274 err = -ENOMEM; 275 unlock_page(page); 276 break; 277 } 278 if (unlikely(!page_has_buffers(page))) 279 NILFS_PAGE_BUG(page, 280 "found empty page in dat page cache"); 281 282 nilfs_copy_page(dpage, page, 1); 283 __set_page_dirty_nobuffers(dpage); 284 285 unlock_page(dpage); 286 put_page(dpage); 287 unlock_page(page); 288 } 289 pagevec_release(&pvec); 290 cond_resched(); 291 292 if (likely(!err)) 293 goto repeat; 294 return err; 295 } 296 297 /** 298 * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache 299 * @dmap: destination page cache 300 * @smap: source page cache 301 * 302 * No pages must no be added to the cache during this process. 303 * This must be ensured by the caller. 304 */ 305 void nilfs_copy_back_pages(struct address_space *dmap, 306 struct address_space *smap) 307 { 308 struct pagevec pvec; 309 unsigned int i, n; 310 pgoff_t index = 0; 311 int err; 312 313 pagevec_init(&pvec, 0); 314 repeat: 315 n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE); 316 if (!n) 317 return; 318 index = pvec.pages[n - 1]->index + 1; 319 320 for (i = 0; i < pagevec_count(&pvec); i++) { 321 struct page *page = pvec.pages[i], *dpage; 322 pgoff_t offset = page->index; 323 324 lock_page(page); 325 dpage = find_lock_page(dmap, offset); 326 if (dpage) { 327 /* override existing page on the destination cache */ 328 WARN_ON(PageDirty(dpage)); 329 nilfs_copy_page(dpage, page, 0); 330 unlock_page(dpage); 331 put_page(dpage); 332 } else { 333 struct page *page2; 334 335 /* move the page to the destination cache */ 336 spin_lock_irq(&smap->tree_lock); 337 page2 = radix_tree_delete(&smap->page_tree, offset); 338 WARN_ON(page2 != page); 339 340 smap->nrpages--; 341 spin_unlock_irq(&smap->tree_lock); 342 343 spin_lock_irq(&dmap->tree_lock); 344 err = radix_tree_insert(&dmap->page_tree, offset, page); 345 if (unlikely(err < 0)) { 346 WARN_ON(err == -EEXIST); 347 page->mapping = NULL; 348 put_page(page); /* for cache */ 349 } else { 350 page->mapping = dmap; 351 dmap->nrpages++; 352 if (PageDirty(page)) 353 radix_tree_tag_set(&dmap->page_tree, 354 offset, 355 PAGECACHE_TAG_DIRTY); 356 } 357 spin_unlock_irq(&dmap->tree_lock); 358 } 359 unlock_page(page); 360 } 361 pagevec_release(&pvec); 362 cond_resched(); 363 364 goto repeat; 365 } 366 367 /** 368 * nilfs_clear_dirty_pages - discard dirty pages in address space 369 * @mapping: address space with dirty pages for discarding 370 * @silent: suppress [true] or print [false] warning messages 371 */ 372 void nilfs_clear_dirty_pages(struct address_space *mapping, bool silent) 373 { 374 struct pagevec pvec; 375 unsigned int i; 376 pgoff_t index = 0; 377 378 pagevec_init(&pvec, 0); 379 380 while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY, 381 PAGEVEC_SIZE)) { 382 for (i = 0; i < pagevec_count(&pvec); i++) { 383 struct page *page = pvec.pages[i]; 384 385 lock_page(page); 386 nilfs_clear_dirty_page(page, silent); 387 unlock_page(page); 388 } 389 pagevec_release(&pvec); 390 cond_resched(); 391 } 392 } 393 394 /** 395 * nilfs_clear_dirty_page - discard dirty page 396 * @page: dirty page that will be discarded 397 * @silent: suppress [true] or print [false] warning messages 398 */ 399 void nilfs_clear_dirty_page(struct page *page, bool silent) 400 { 401 struct inode *inode = page->mapping->host; 402 struct super_block *sb = inode->i_sb; 403 404 BUG_ON(!PageLocked(page)); 405 406 if (!silent) { 407 nilfs_warning(sb, __func__, 408 "discard page: offset %lld, ino %lu", 409 page_offset(page), inode->i_ino); 410 } 411 412 ClearPageUptodate(page); 413 ClearPageMappedToDisk(page); 414 415 if (page_has_buffers(page)) { 416 struct buffer_head *bh, *head; 417 const unsigned long clear_bits = 418 (1 << BH_Uptodate | 1 << BH_Dirty | 1 << BH_Mapped | 419 1 << BH_Async_Write | 1 << BH_NILFS_Volatile | 420 1 << BH_NILFS_Checked | 1 << BH_NILFS_Redirected); 421 422 bh = head = page_buffers(page); 423 do { 424 lock_buffer(bh); 425 if (!silent) { 426 nilfs_warning(sb, __func__, 427 "discard block %llu, size %zu", 428 (u64)bh->b_blocknr, bh->b_size); 429 } 430 set_mask_bits(&bh->b_state, clear_bits, 0); 431 unlock_buffer(bh); 432 } while (bh = bh->b_this_page, bh != head); 433 } 434 435 __nilfs_clear_page_dirty(page); 436 } 437 438 unsigned int nilfs_page_count_clean_buffers(struct page *page, 439 unsigned int from, unsigned int to) 440 { 441 unsigned int block_start, block_end; 442 struct buffer_head *bh, *head; 443 unsigned int nc = 0; 444 445 for (bh = head = page_buffers(page), block_start = 0; 446 bh != head || !block_start; 447 block_start = block_end, bh = bh->b_this_page) { 448 block_end = block_start + bh->b_size; 449 if (block_end > from && block_start < to && !buffer_dirty(bh)) 450 nc++; 451 } 452 return nc; 453 } 454 455 void nilfs_mapping_init(struct address_space *mapping, struct inode *inode) 456 { 457 mapping->host = inode; 458 mapping->flags = 0; 459 mapping_set_gfp_mask(mapping, GFP_NOFS); 460 mapping->private_data = NULL; 461 mapping->a_ops = &empty_aops; 462 } 463 464 /* 465 * NILFS2 needs clear_page_dirty() in the following two cases: 466 * 467 * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears 468 * page dirty flags when it copies back pages from the shadow cache 469 * (gcdat->{i_mapping,i_btnode_cache}) to its original cache 470 * (dat->{i_mapping,i_btnode_cache}). 471 * 472 * 2) Some B-tree operations like insertion or deletion may dispose buffers 473 * in dirty state, and this needs to cancel the dirty state of their pages. 474 */ 475 int __nilfs_clear_page_dirty(struct page *page) 476 { 477 struct address_space *mapping = page->mapping; 478 479 if (mapping) { 480 spin_lock_irq(&mapping->tree_lock); 481 if (test_bit(PG_dirty, &page->flags)) { 482 radix_tree_tag_clear(&mapping->page_tree, 483 page_index(page), 484 PAGECACHE_TAG_DIRTY); 485 spin_unlock_irq(&mapping->tree_lock); 486 return clear_page_dirty_for_io(page); 487 } 488 spin_unlock_irq(&mapping->tree_lock); 489 return 0; 490 } 491 return TestClearPageDirty(page); 492 } 493 494 /** 495 * nilfs_find_uncommitted_extent - find extent of uncommitted data 496 * @inode: inode 497 * @start_blk: start block offset (in) 498 * @blkoff: start offset of the found extent (out) 499 * 500 * This function searches an extent of buffers marked "delayed" which 501 * starts from a block offset equal to or larger than @start_blk. If 502 * such an extent was found, this will store the start offset in 503 * @blkoff and return its length in blocks. Otherwise, zero is 504 * returned. 505 */ 506 unsigned long nilfs_find_uncommitted_extent(struct inode *inode, 507 sector_t start_blk, 508 sector_t *blkoff) 509 { 510 unsigned int i; 511 pgoff_t index; 512 unsigned int nblocks_in_page; 513 unsigned long length = 0; 514 sector_t b; 515 struct pagevec pvec; 516 struct page *page; 517 518 if (inode->i_mapping->nrpages == 0) 519 return 0; 520 521 index = start_blk >> (PAGE_SHIFT - inode->i_blkbits); 522 nblocks_in_page = 1U << (PAGE_SHIFT - inode->i_blkbits); 523 524 pagevec_init(&pvec, 0); 525 526 repeat: 527 pvec.nr = find_get_pages_contig(inode->i_mapping, index, PAGEVEC_SIZE, 528 pvec.pages); 529 if (pvec.nr == 0) 530 return length; 531 532 if (length > 0 && pvec.pages[0]->index > index) 533 goto out; 534 535 b = pvec.pages[0]->index << (PAGE_SHIFT - inode->i_blkbits); 536 i = 0; 537 do { 538 page = pvec.pages[i]; 539 540 lock_page(page); 541 if (page_has_buffers(page)) { 542 struct buffer_head *bh, *head; 543 544 bh = head = page_buffers(page); 545 do { 546 if (b < start_blk) 547 continue; 548 if (buffer_delay(bh)) { 549 if (length == 0) 550 *blkoff = b; 551 length++; 552 } else if (length > 0) { 553 goto out_locked; 554 } 555 } while (++b, bh = bh->b_this_page, bh != head); 556 } else { 557 if (length > 0) 558 goto out_locked; 559 560 b += nblocks_in_page; 561 } 562 unlock_page(page); 563 564 } while (++i < pagevec_count(&pvec)); 565 566 index = page->index + 1; 567 pagevec_release(&pvec); 568 cond_resched(); 569 goto repeat; 570 571 out_locked: 572 unlock_page(page); 573 out: 574 pagevec_release(&pvec); 575 return length; 576 } 577