xref: /openbmc/linux/fs/nilfs2/inode.c (revision e897be17)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * NILFS inode operations.
4  *
5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6  *
7  * Written by Ryusuke Konishi.
8  *
9  */
10 
11 #include <linux/buffer_head.h>
12 #include <linux/gfp.h>
13 #include <linux/mpage.h>
14 #include <linux/pagemap.h>
15 #include <linux/writeback.h>
16 #include <linux/uio.h>
17 #include <linux/fiemap.h>
18 #include "nilfs.h"
19 #include "btnode.h"
20 #include "segment.h"
21 #include "page.h"
22 #include "mdt.h"
23 #include "cpfile.h"
24 #include "ifile.h"
25 
26 /**
27  * struct nilfs_iget_args - arguments used during comparison between inodes
28  * @ino: inode number
29  * @cno: checkpoint number
30  * @root: pointer on NILFS root object (mounted checkpoint)
31  * @for_gc: inode for GC flag
32  * @for_btnc: inode for B-tree node cache flag
33  */
34 struct nilfs_iget_args {
35 	u64 ino;
36 	__u64 cno;
37 	struct nilfs_root *root;
38 	bool for_gc;
39 	bool for_btnc;
40 };
41 
42 static int nilfs_iget_test(struct inode *inode, void *opaque);
43 
44 void nilfs_inode_add_blocks(struct inode *inode, int n)
45 {
46 	struct nilfs_root *root = NILFS_I(inode)->i_root;
47 
48 	inode_add_bytes(inode, i_blocksize(inode) * n);
49 	if (root)
50 		atomic64_add(n, &root->blocks_count);
51 }
52 
53 void nilfs_inode_sub_blocks(struct inode *inode, int n)
54 {
55 	struct nilfs_root *root = NILFS_I(inode)->i_root;
56 
57 	inode_sub_bytes(inode, i_blocksize(inode) * n);
58 	if (root)
59 		atomic64_sub(n, &root->blocks_count);
60 }
61 
62 /**
63  * nilfs_get_block() - get a file block on the filesystem (callback function)
64  * @inode - inode struct of the target file
65  * @blkoff - file block number
66  * @bh_result - buffer head to be mapped on
67  * @create - indicate whether allocating the block or not when it has not
68  *      been allocated yet.
69  *
70  * This function does not issue actual read request of the specified data
71  * block. It is done by VFS.
72  */
73 int nilfs_get_block(struct inode *inode, sector_t blkoff,
74 		    struct buffer_head *bh_result, int create)
75 {
76 	struct nilfs_inode_info *ii = NILFS_I(inode);
77 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
78 	__u64 blknum = 0;
79 	int err = 0, ret;
80 	unsigned int maxblocks = bh_result->b_size >> inode->i_blkbits;
81 
82 	down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
83 	ret = nilfs_bmap_lookup_contig(ii->i_bmap, blkoff, &blknum, maxblocks);
84 	up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
85 	if (ret >= 0) {	/* found */
86 		map_bh(bh_result, inode->i_sb, blknum);
87 		if (ret > 0)
88 			bh_result->b_size = (ret << inode->i_blkbits);
89 		goto out;
90 	}
91 	/* data block was not found */
92 	if (ret == -ENOENT && create) {
93 		struct nilfs_transaction_info ti;
94 
95 		bh_result->b_blocknr = 0;
96 		err = nilfs_transaction_begin(inode->i_sb, &ti, 1);
97 		if (unlikely(err))
98 			goto out;
99 		err = nilfs_bmap_insert(ii->i_bmap, blkoff,
100 					(unsigned long)bh_result);
101 		if (unlikely(err != 0)) {
102 			if (err == -EEXIST) {
103 				/*
104 				 * The get_block() function could be called
105 				 * from multiple callers for an inode.
106 				 * However, the page having this block must
107 				 * be locked in this case.
108 				 */
109 				nilfs_warn(inode->i_sb,
110 					   "%s (ino=%lu): a race condition while inserting a data block at offset=%llu",
111 					   __func__, inode->i_ino,
112 					   (unsigned long long)blkoff);
113 				err = 0;
114 			}
115 			nilfs_transaction_abort(inode->i_sb);
116 			goto out;
117 		}
118 		nilfs_mark_inode_dirty_sync(inode);
119 		nilfs_transaction_commit(inode->i_sb); /* never fails */
120 		/* Error handling should be detailed */
121 		set_buffer_new(bh_result);
122 		set_buffer_delay(bh_result);
123 		map_bh(bh_result, inode->i_sb, 0);
124 		/* Disk block number must be changed to proper value */
125 
126 	} else if (ret == -ENOENT) {
127 		/*
128 		 * not found is not error (e.g. hole); must return without
129 		 * the mapped state flag.
130 		 */
131 		;
132 	} else {
133 		err = ret;
134 	}
135 
136  out:
137 	return err;
138 }
139 
140 /**
141  * nilfs_readpage() - implement readpage() method of nilfs_aops {}
142  * address_space_operations.
143  * @file - file struct of the file to be read
144  * @page - the page to be read
145  */
146 static int nilfs_readpage(struct file *file, struct page *page)
147 {
148 	return mpage_readpage(page, nilfs_get_block);
149 }
150 
151 static void nilfs_readahead(struct readahead_control *rac)
152 {
153 	mpage_readahead(rac, nilfs_get_block);
154 }
155 
156 static int nilfs_writepages(struct address_space *mapping,
157 			    struct writeback_control *wbc)
158 {
159 	struct inode *inode = mapping->host;
160 	int err = 0;
161 
162 	if (sb_rdonly(inode->i_sb)) {
163 		nilfs_clear_dirty_pages(mapping, false);
164 		return -EROFS;
165 	}
166 
167 	if (wbc->sync_mode == WB_SYNC_ALL)
168 		err = nilfs_construct_dsync_segment(inode->i_sb, inode,
169 						    wbc->range_start,
170 						    wbc->range_end);
171 	return err;
172 }
173 
174 static int nilfs_writepage(struct page *page, struct writeback_control *wbc)
175 {
176 	struct inode *inode = page->mapping->host;
177 	int err;
178 
179 	if (sb_rdonly(inode->i_sb)) {
180 		/*
181 		 * It means that filesystem was remounted in read-only
182 		 * mode because of error or metadata corruption. But we
183 		 * have dirty pages that try to be flushed in background.
184 		 * So, here we simply discard this dirty page.
185 		 */
186 		nilfs_clear_dirty_page(page, false);
187 		unlock_page(page);
188 		return -EROFS;
189 	}
190 
191 	redirty_page_for_writepage(wbc, page);
192 	unlock_page(page);
193 
194 	if (wbc->sync_mode == WB_SYNC_ALL) {
195 		err = nilfs_construct_segment(inode->i_sb);
196 		if (unlikely(err))
197 			return err;
198 	} else if (wbc->for_reclaim)
199 		nilfs_flush_segment(inode->i_sb, inode->i_ino);
200 
201 	return 0;
202 }
203 
204 static bool nilfs_dirty_folio(struct address_space *mapping,
205 		struct folio *folio)
206 {
207 	struct inode *inode = mapping->host;
208 	struct buffer_head *head;
209 	unsigned int nr_dirty = 0;
210 	bool ret = filemap_dirty_folio(mapping, folio);
211 
212 	/*
213 	 * The page may not be locked, eg if called from try_to_unmap_one()
214 	 */
215 	spin_lock(&mapping->private_lock);
216 	head = folio_buffers(folio);
217 	if (head) {
218 		struct buffer_head *bh = head;
219 
220 		do {
221 			/* Do not mark hole blocks dirty */
222 			if (buffer_dirty(bh) || !buffer_mapped(bh))
223 				continue;
224 
225 			set_buffer_dirty(bh);
226 			nr_dirty++;
227 		} while (bh = bh->b_this_page, bh != head);
228 	} else if (ret) {
229 		nr_dirty = 1 << (folio_shift(folio) - inode->i_blkbits);
230 	}
231 	spin_unlock(&mapping->private_lock);
232 
233 	if (nr_dirty)
234 		nilfs_set_file_dirty(inode, nr_dirty);
235 	return ret;
236 }
237 
238 void nilfs_write_failed(struct address_space *mapping, loff_t to)
239 {
240 	struct inode *inode = mapping->host;
241 
242 	if (to > inode->i_size) {
243 		truncate_pagecache(inode, inode->i_size);
244 		nilfs_truncate(inode);
245 	}
246 }
247 
248 static int nilfs_write_begin(struct file *file, struct address_space *mapping,
249 			     loff_t pos, unsigned len, unsigned flags,
250 			     struct page **pagep, void **fsdata)
251 
252 {
253 	struct inode *inode = mapping->host;
254 	int err = nilfs_transaction_begin(inode->i_sb, NULL, 1);
255 
256 	if (unlikely(err))
257 		return err;
258 
259 	err = block_write_begin(mapping, pos, len, flags, pagep,
260 				nilfs_get_block);
261 	if (unlikely(err)) {
262 		nilfs_write_failed(mapping, pos + len);
263 		nilfs_transaction_abort(inode->i_sb);
264 	}
265 	return err;
266 }
267 
268 static int nilfs_write_end(struct file *file, struct address_space *mapping,
269 			   loff_t pos, unsigned len, unsigned copied,
270 			   struct page *page, void *fsdata)
271 {
272 	struct inode *inode = mapping->host;
273 	unsigned int start = pos & (PAGE_SIZE - 1);
274 	unsigned int nr_dirty;
275 	int err;
276 
277 	nr_dirty = nilfs_page_count_clean_buffers(page, start,
278 						  start + copied);
279 	copied = generic_write_end(file, mapping, pos, len, copied, page,
280 				   fsdata);
281 	nilfs_set_file_dirty(inode, nr_dirty);
282 	err = nilfs_transaction_commit(inode->i_sb);
283 	return err ? : copied;
284 }
285 
286 static ssize_t
287 nilfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
288 {
289 	struct inode *inode = file_inode(iocb->ki_filp);
290 
291 	if (iov_iter_rw(iter) == WRITE)
292 		return 0;
293 
294 	/* Needs synchronization with the cleaner */
295 	return blockdev_direct_IO(iocb, inode, iter, nilfs_get_block);
296 }
297 
298 const struct address_space_operations nilfs_aops = {
299 	.writepage		= nilfs_writepage,
300 	.readpage		= nilfs_readpage,
301 	.writepages		= nilfs_writepages,
302 	.dirty_folio		= nilfs_dirty_folio,
303 	.readahead		= nilfs_readahead,
304 	.write_begin		= nilfs_write_begin,
305 	.write_end		= nilfs_write_end,
306 	/* .releasepage		= nilfs_releasepage, */
307 	.invalidate_folio	= block_invalidate_folio,
308 	.direct_IO		= nilfs_direct_IO,
309 	.is_partially_uptodate  = block_is_partially_uptodate,
310 };
311 
312 static int nilfs_insert_inode_locked(struct inode *inode,
313 				     struct nilfs_root *root,
314 				     unsigned long ino)
315 {
316 	struct nilfs_iget_args args = {
317 		.ino = ino, .root = root, .cno = 0, .for_gc = false,
318 		.for_btnc = false
319 	};
320 
321 	return insert_inode_locked4(inode, ino, nilfs_iget_test, &args);
322 }
323 
324 struct inode *nilfs_new_inode(struct inode *dir, umode_t mode)
325 {
326 	struct super_block *sb = dir->i_sb;
327 	struct the_nilfs *nilfs = sb->s_fs_info;
328 	struct inode *inode;
329 	struct nilfs_inode_info *ii;
330 	struct nilfs_root *root;
331 	int err = -ENOMEM;
332 	ino_t ino;
333 
334 	inode = new_inode(sb);
335 	if (unlikely(!inode))
336 		goto failed;
337 
338 	mapping_set_gfp_mask(inode->i_mapping,
339 			   mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS));
340 
341 	root = NILFS_I(dir)->i_root;
342 	ii = NILFS_I(inode);
343 	ii->i_state = BIT(NILFS_I_NEW);
344 	ii->i_root = root;
345 
346 	err = nilfs_ifile_create_inode(root->ifile, &ino, &ii->i_bh);
347 	if (unlikely(err))
348 		goto failed_ifile_create_inode;
349 	/* reference count of i_bh inherits from nilfs_mdt_read_block() */
350 
351 	atomic64_inc(&root->inodes_count);
352 	inode_init_owner(&init_user_ns, inode, dir, mode);
353 	inode->i_ino = ino;
354 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
355 
356 	if (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) {
357 		err = nilfs_bmap_read(ii->i_bmap, NULL);
358 		if (err < 0)
359 			goto failed_after_creation;
360 
361 		set_bit(NILFS_I_BMAP, &ii->i_state);
362 		/* No lock is needed; iget() ensures it. */
363 	}
364 
365 	ii->i_flags = nilfs_mask_flags(
366 		mode, NILFS_I(dir)->i_flags & NILFS_FL_INHERITED);
367 
368 	/* ii->i_file_acl = 0; */
369 	/* ii->i_dir_acl = 0; */
370 	ii->i_dir_start_lookup = 0;
371 	nilfs_set_inode_flags(inode);
372 	spin_lock(&nilfs->ns_next_gen_lock);
373 	inode->i_generation = nilfs->ns_next_generation++;
374 	spin_unlock(&nilfs->ns_next_gen_lock);
375 	if (nilfs_insert_inode_locked(inode, root, ino) < 0) {
376 		err = -EIO;
377 		goto failed_after_creation;
378 	}
379 
380 	err = nilfs_init_acl(inode, dir);
381 	if (unlikely(err))
382 		/*
383 		 * Never occur.  When supporting nilfs_init_acl(),
384 		 * proper cancellation of above jobs should be considered.
385 		 */
386 		goto failed_after_creation;
387 
388 	return inode;
389 
390  failed_after_creation:
391 	clear_nlink(inode);
392 	if (inode->i_state & I_NEW)
393 		unlock_new_inode(inode);
394 	iput(inode);  /*
395 		       * raw_inode will be deleted through
396 		       * nilfs_evict_inode().
397 		       */
398 	goto failed;
399 
400  failed_ifile_create_inode:
401 	make_bad_inode(inode);
402 	iput(inode);
403  failed:
404 	return ERR_PTR(err);
405 }
406 
407 void nilfs_set_inode_flags(struct inode *inode)
408 {
409 	unsigned int flags = NILFS_I(inode)->i_flags;
410 	unsigned int new_fl = 0;
411 
412 	if (flags & FS_SYNC_FL)
413 		new_fl |= S_SYNC;
414 	if (flags & FS_APPEND_FL)
415 		new_fl |= S_APPEND;
416 	if (flags & FS_IMMUTABLE_FL)
417 		new_fl |= S_IMMUTABLE;
418 	if (flags & FS_NOATIME_FL)
419 		new_fl |= S_NOATIME;
420 	if (flags & FS_DIRSYNC_FL)
421 		new_fl |= S_DIRSYNC;
422 	inode_set_flags(inode, new_fl, S_SYNC | S_APPEND | S_IMMUTABLE |
423 			S_NOATIME | S_DIRSYNC);
424 }
425 
426 int nilfs_read_inode_common(struct inode *inode,
427 			    struct nilfs_inode *raw_inode)
428 {
429 	struct nilfs_inode_info *ii = NILFS_I(inode);
430 	int err;
431 
432 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
433 	i_uid_write(inode, le32_to_cpu(raw_inode->i_uid));
434 	i_gid_write(inode, le32_to_cpu(raw_inode->i_gid));
435 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
436 	inode->i_size = le64_to_cpu(raw_inode->i_size);
437 	inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
438 	inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
439 	inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
440 	inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
441 	inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
442 	inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
443 	if (inode->i_nlink == 0)
444 		return -ESTALE; /* this inode is deleted */
445 
446 	inode->i_blocks = le64_to_cpu(raw_inode->i_blocks);
447 	ii->i_flags = le32_to_cpu(raw_inode->i_flags);
448 #if 0
449 	ii->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
450 	ii->i_dir_acl = S_ISREG(inode->i_mode) ?
451 		0 : le32_to_cpu(raw_inode->i_dir_acl);
452 #endif
453 	ii->i_dir_start_lookup = 0;
454 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
455 
456 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
457 	    S_ISLNK(inode->i_mode)) {
458 		err = nilfs_bmap_read(ii->i_bmap, raw_inode);
459 		if (err < 0)
460 			return err;
461 		set_bit(NILFS_I_BMAP, &ii->i_state);
462 		/* No lock is needed; iget() ensures it. */
463 	}
464 	return 0;
465 }
466 
467 static int __nilfs_read_inode(struct super_block *sb,
468 			      struct nilfs_root *root, unsigned long ino,
469 			      struct inode *inode)
470 {
471 	struct the_nilfs *nilfs = sb->s_fs_info;
472 	struct buffer_head *bh;
473 	struct nilfs_inode *raw_inode;
474 	int err;
475 
476 	down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
477 	err = nilfs_ifile_get_inode_block(root->ifile, ino, &bh);
478 	if (unlikely(err))
479 		goto bad_inode;
480 
481 	raw_inode = nilfs_ifile_map_inode(root->ifile, ino, bh);
482 
483 	err = nilfs_read_inode_common(inode, raw_inode);
484 	if (err)
485 		goto failed_unmap;
486 
487 	if (S_ISREG(inode->i_mode)) {
488 		inode->i_op = &nilfs_file_inode_operations;
489 		inode->i_fop = &nilfs_file_operations;
490 		inode->i_mapping->a_ops = &nilfs_aops;
491 	} else if (S_ISDIR(inode->i_mode)) {
492 		inode->i_op = &nilfs_dir_inode_operations;
493 		inode->i_fop = &nilfs_dir_operations;
494 		inode->i_mapping->a_ops = &nilfs_aops;
495 	} else if (S_ISLNK(inode->i_mode)) {
496 		inode->i_op = &nilfs_symlink_inode_operations;
497 		inode_nohighmem(inode);
498 		inode->i_mapping->a_ops = &nilfs_aops;
499 	} else {
500 		inode->i_op = &nilfs_special_inode_operations;
501 		init_special_inode(
502 			inode, inode->i_mode,
503 			huge_decode_dev(le64_to_cpu(raw_inode->i_device_code)));
504 	}
505 	nilfs_ifile_unmap_inode(root->ifile, ino, bh);
506 	brelse(bh);
507 	up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
508 	nilfs_set_inode_flags(inode);
509 	mapping_set_gfp_mask(inode->i_mapping,
510 			   mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS));
511 	return 0;
512 
513  failed_unmap:
514 	nilfs_ifile_unmap_inode(root->ifile, ino, bh);
515 	brelse(bh);
516 
517  bad_inode:
518 	up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
519 	return err;
520 }
521 
522 static int nilfs_iget_test(struct inode *inode, void *opaque)
523 {
524 	struct nilfs_iget_args *args = opaque;
525 	struct nilfs_inode_info *ii;
526 
527 	if (args->ino != inode->i_ino || args->root != NILFS_I(inode)->i_root)
528 		return 0;
529 
530 	ii = NILFS_I(inode);
531 	if (test_bit(NILFS_I_BTNC, &ii->i_state)) {
532 		if (!args->for_btnc)
533 			return 0;
534 	} else if (args->for_btnc) {
535 		return 0;
536 	}
537 
538 	if (!test_bit(NILFS_I_GCINODE, &ii->i_state))
539 		return !args->for_gc;
540 
541 	return args->for_gc && args->cno == ii->i_cno;
542 }
543 
544 static int nilfs_iget_set(struct inode *inode, void *opaque)
545 {
546 	struct nilfs_iget_args *args = opaque;
547 
548 	inode->i_ino = args->ino;
549 	NILFS_I(inode)->i_cno = args->cno;
550 	NILFS_I(inode)->i_root = args->root;
551 	if (args->root && args->ino == NILFS_ROOT_INO)
552 		nilfs_get_root(args->root);
553 
554 	if (args->for_gc)
555 		NILFS_I(inode)->i_state = BIT(NILFS_I_GCINODE);
556 	if (args->for_btnc)
557 		NILFS_I(inode)->i_state |= BIT(NILFS_I_BTNC);
558 	return 0;
559 }
560 
561 struct inode *nilfs_ilookup(struct super_block *sb, struct nilfs_root *root,
562 			    unsigned long ino)
563 {
564 	struct nilfs_iget_args args = {
565 		.ino = ino, .root = root, .cno = 0, .for_gc = false,
566 		.for_btnc = false
567 	};
568 
569 	return ilookup5(sb, ino, nilfs_iget_test, &args);
570 }
571 
572 struct inode *nilfs_iget_locked(struct super_block *sb, struct nilfs_root *root,
573 				unsigned long ino)
574 {
575 	struct nilfs_iget_args args = {
576 		.ino = ino, .root = root, .cno = 0, .for_gc = false,
577 		.for_btnc = false
578 	};
579 
580 	return iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args);
581 }
582 
583 struct inode *nilfs_iget(struct super_block *sb, struct nilfs_root *root,
584 			 unsigned long ino)
585 {
586 	struct inode *inode;
587 	int err;
588 
589 	inode = nilfs_iget_locked(sb, root, ino);
590 	if (unlikely(!inode))
591 		return ERR_PTR(-ENOMEM);
592 	if (!(inode->i_state & I_NEW))
593 		return inode;
594 
595 	err = __nilfs_read_inode(sb, root, ino, inode);
596 	if (unlikely(err)) {
597 		iget_failed(inode);
598 		return ERR_PTR(err);
599 	}
600 	unlock_new_inode(inode);
601 	return inode;
602 }
603 
604 struct inode *nilfs_iget_for_gc(struct super_block *sb, unsigned long ino,
605 				__u64 cno)
606 {
607 	struct nilfs_iget_args args = {
608 		.ino = ino, .root = NULL, .cno = cno, .for_gc = true,
609 		.for_btnc = false
610 	};
611 	struct inode *inode;
612 	int err;
613 
614 	inode = iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args);
615 	if (unlikely(!inode))
616 		return ERR_PTR(-ENOMEM);
617 	if (!(inode->i_state & I_NEW))
618 		return inode;
619 
620 	err = nilfs_init_gcinode(inode);
621 	if (unlikely(err)) {
622 		iget_failed(inode);
623 		return ERR_PTR(err);
624 	}
625 	unlock_new_inode(inode);
626 	return inode;
627 }
628 
629 /**
630  * nilfs_attach_btree_node_cache - attach a B-tree node cache to the inode
631  * @inode: inode object
632  *
633  * nilfs_attach_btree_node_cache() attaches a B-tree node cache to @inode,
634  * or does nothing if the inode already has it.  This function allocates
635  * an additional inode to maintain page cache of B-tree nodes one-on-one.
636  *
637  * Return Value: On success, 0 is returned. On errors, one of the following
638  * negative error code is returned.
639  *
640  * %-ENOMEM - Insufficient memory available.
641  */
642 int nilfs_attach_btree_node_cache(struct inode *inode)
643 {
644 	struct nilfs_inode_info *ii = NILFS_I(inode);
645 	struct inode *btnc_inode;
646 	struct nilfs_iget_args args;
647 
648 	if (ii->i_assoc_inode)
649 		return 0;
650 
651 	args.ino = inode->i_ino;
652 	args.root = ii->i_root;
653 	args.cno = ii->i_cno;
654 	args.for_gc = test_bit(NILFS_I_GCINODE, &ii->i_state) != 0;
655 	args.for_btnc = true;
656 
657 	btnc_inode = iget5_locked(inode->i_sb, inode->i_ino, nilfs_iget_test,
658 				  nilfs_iget_set, &args);
659 	if (unlikely(!btnc_inode))
660 		return -ENOMEM;
661 	if (btnc_inode->i_state & I_NEW) {
662 		nilfs_init_btnc_inode(btnc_inode);
663 		unlock_new_inode(btnc_inode);
664 	}
665 	NILFS_I(btnc_inode)->i_assoc_inode = inode;
666 	NILFS_I(btnc_inode)->i_bmap = ii->i_bmap;
667 	ii->i_assoc_inode = btnc_inode;
668 
669 	return 0;
670 }
671 
672 /**
673  * nilfs_detach_btree_node_cache - detach the B-tree node cache from the inode
674  * @inode: inode object
675  *
676  * nilfs_detach_btree_node_cache() detaches the B-tree node cache and its
677  * holder inode bound to @inode, or does nothing if @inode doesn't have it.
678  */
679 void nilfs_detach_btree_node_cache(struct inode *inode)
680 {
681 	struct nilfs_inode_info *ii = NILFS_I(inode);
682 	struct inode *btnc_inode = ii->i_assoc_inode;
683 
684 	if (btnc_inode) {
685 		NILFS_I(btnc_inode)->i_assoc_inode = NULL;
686 		ii->i_assoc_inode = NULL;
687 		iput(btnc_inode);
688 	}
689 }
690 
691 void nilfs_write_inode_common(struct inode *inode,
692 			      struct nilfs_inode *raw_inode, int has_bmap)
693 {
694 	struct nilfs_inode_info *ii = NILFS_I(inode);
695 
696 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
697 	raw_inode->i_uid = cpu_to_le32(i_uid_read(inode));
698 	raw_inode->i_gid = cpu_to_le32(i_gid_read(inode));
699 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
700 	raw_inode->i_size = cpu_to_le64(inode->i_size);
701 	raw_inode->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
702 	raw_inode->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
703 	raw_inode->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
704 	raw_inode->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
705 	raw_inode->i_blocks = cpu_to_le64(inode->i_blocks);
706 
707 	raw_inode->i_flags = cpu_to_le32(ii->i_flags);
708 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
709 
710 	if (NILFS_ROOT_METADATA_FILE(inode->i_ino)) {
711 		struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
712 
713 		/* zero-fill unused portion in the case of super root block */
714 		raw_inode->i_xattr = 0;
715 		raw_inode->i_pad = 0;
716 		memset((void *)raw_inode + sizeof(*raw_inode), 0,
717 		       nilfs->ns_inode_size - sizeof(*raw_inode));
718 	}
719 
720 	if (has_bmap)
721 		nilfs_bmap_write(ii->i_bmap, raw_inode);
722 	else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
723 		raw_inode->i_device_code =
724 			cpu_to_le64(huge_encode_dev(inode->i_rdev));
725 	/*
726 	 * When extending inode, nilfs->ns_inode_size should be checked
727 	 * for substitutions of appended fields.
728 	 */
729 }
730 
731 void nilfs_update_inode(struct inode *inode, struct buffer_head *ibh, int flags)
732 {
733 	ino_t ino = inode->i_ino;
734 	struct nilfs_inode_info *ii = NILFS_I(inode);
735 	struct inode *ifile = ii->i_root->ifile;
736 	struct nilfs_inode *raw_inode;
737 
738 	raw_inode = nilfs_ifile_map_inode(ifile, ino, ibh);
739 
740 	if (test_and_clear_bit(NILFS_I_NEW, &ii->i_state))
741 		memset(raw_inode, 0, NILFS_MDT(ifile)->mi_entry_size);
742 	if (flags & I_DIRTY_DATASYNC)
743 		set_bit(NILFS_I_INODE_SYNC, &ii->i_state);
744 
745 	nilfs_write_inode_common(inode, raw_inode, 0);
746 		/*
747 		 * XXX: call with has_bmap = 0 is a workaround to avoid
748 		 * deadlock of bmap.  This delays update of i_bmap to just
749 		 * before writing.
750 		 */
751 
752 	nilfs_ifile_unmap_inode(ifile, ino, ibh);
753 }
754 
755 #define NILFS_MAX_TRUNCATE_BLOCKS	16384  /* 64MB for 4KB block */
756 
757 static void nilfs_truncate_bmap(struct nilfs_inode_info *ii,
758 				unsigned long from)
759 {
760 	__u64 b;
761 	int ret;
762 
763 	if (!test_bit(NILFS_I_BMAP, &ii->i_state))
764 		return;
765 repeat:
766 	ret = nilfs_bmap_last_key(ii->i_bmap, &b);
767 	if (ret == -ENOENT)
768 		return;
769 	else if (ret < 0)
770 		goto failed;
771 
772 	if (b < from)
773 		return;
774 
775 	b -= min_t(__u64, NILFS_MAX_TRUNCATE_BLOCKS, b - from);
776 	ret = nilfs_bmap_truncate(ii->i_bmap, b);
777 	nilfs_relax_pressure_in_lock(ii->vfs_inode.i_sb);
778 	if (!ret || (ret == -ENOMEM &&
779 		     nilfs_bmap_truncate(ii->i_bmap, b) == 0))
780 		goto repeat;
781 
782 failed:
783 	nilfs_warn(ii->vfs_inode.i_sb, "error %d truncating bmap (ino=%lu)",
784 		   ret, ii->vfs_inode.i_ino);
785 }
786 
787 void nilfs_truncate(struct inode *inode)
788 {
789 	unsigned long blkoff;
790 	unsigned int blocksize;
791 	struct nilfs_transaction_info ti;
792 	struct super_block *sb = inode->i_sb;
793 	struct nilfs_inode_info *ii = NILFS_I(inode);
794 
795 	if (!test_bit(NILFS_I_BMAP, &ii->i_state))
796 		return;
797 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
798 		return;
799 
800 	blocksize = sb->s_blocksize;
801 	blkoff = (inode->i_size + blocksize - 1) >> sb->s_blocksize_bits;
802 	nilfs_transaction_begin(sb, &ti, 0); /* never fails */
803 
804 	block_truncate_page(inode->i_mapping, inode->i_size, nilfs_get_block);
805 
806 	nilfs_truncate_bmap(ii, blkoff);
807 
808 	inode->i_mtime = inode->i_ctime = current_time(inode);
809 	if (IS_SYNC(inode))
810 		nilfs_set_transaction_flag(NILFS_TI_SYNC);
811 
812 	nilfs_mark_inode_dirty(inode);
813 	nilfs_set_file_dirty(inode, 0);
814 	nilfs_transaction_commit(sb);
815 	/*
816 	 * May construct a logical segment and may fail in sync mode.
817 	 * But truncate has no return value.
818 	 */
819 }
820 
821 static void nilfs_clear_inode(struct inode *inode)
822 {
823 	struct nilfs_inode_info *ii = NILFS_I(inode);
824 
825 	/*
826 	 * Free resources allocated in nilfs_read_inode(), here.
827 	 */
828 	BUG_ON(!list_empty(&ii->i_dirty));
829 	brelse(ii->i_bh);
830 	ii->i_bh = NULL;
831 
832 	if (nilfs_is_metadata_file_inode(inode))
833 		nilfs_mdt_clear(inode);
834 
835 	if (test_bit(NILFS_I_BMAP, &ii->i_state))
836 		nilfs_bmap_clear(ii->i_bmap);
837 
838 	if (!test_bit(NILFS_I_BTNC, &ii->i_state))
839 		nilfs_detach_btree_node_cache(inode);
840 
841 	if (ii->i_root && inode->i_ino == NILFS_ROOT_INO)
842 		nilfs_put_root(ii->i_root);
843 }
844 
845 void nilfs_evict_inode(struct inode *inode)
846 {
847 	struct nilfs_transaction_info ti;
848 	struct super_block *sb = inode->i_sb;
849 	struct nilfs_inode_info *ii = NILFS_I(inode);
850 	int ret;
851 
852 	if (inode->i_nlink || !ii->i_root || unlikely(is_bad_inode(inode))) {
853 		truncate_inode_pages_final(&inode->i_data);
854 		clear_inode(inode);
855 		nilfs_clear_inode(inode);
856 		return;
857 	}
858 	nilfs_transaction_begin(sb, &ti, 0); /* never fails */
859 
860 	truncate_inode_pages_final(&inode->i_data);
861 
862 	/* TODO: some of the following operations may fail.  */
863 	nilfs_truncate_bmap(ii, 0);
864 	nilfs_mark_inode_dirty(inode);
865 	clear_inode(inode);
866 
867 	ret = nilfs_ifile_delete_inode(ii->i_root->ifile, inode->i_ino);
868 	if (!ret)
869 		atomic64_dec(&ii->i_root->inodes_count);
870 
871 	nilfs_clear_inode(inode);
872 
873 	if (IS_SYNC(inode))
874 		nilfs_set_transaction_flag(NILFS_TI_SYNC);
875 	nilfs_transaction_commit(sb);
876 	/*
877 	 * May construct a logical segment and may fail in sync mode.
878 	 * But delete_inode has no return value.
879 	 */
880 }
881 
882 int nilfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
883 		  struct iattr *iattr)
884 {
885 	struct nilfs_transaction_info ti;
886 	struct inode *inode = d_inode(dentry);
887 	struct super_block *sb = inode->i_sb;
888 	int err;
889 
890 	err = setattr_prepare(&init_user_ns, dentry, iattr);
891 	if (err)
892 		return err;
893 
894 	err = nilfs_transaction_begin(sb, &ti, 0);
895 	if (unlikely(err))
896 		return err;
897 
898 	if ((iattr->ia_valid & ATTR_SIZE) &&
899 	    iattr->ia_size != i_size_read(inode)) {
900 		inode_dio_wait(inode);
901 		truncate_setsize(inode, iattr->ia_size);
902 		nilfs_truncate(inode);
903 	}
904 
905 	setattr_copy(&init_user_ns, inode, iattr);
906 	mark_inode_dirty(inode);
907 
908 	if (iattr->ia_valid & ATTR_MODE) {
909 		err = nilfs_acl_chmod(inode);
910 		if (unlikely(err))
911 			goto out_err;
912 	}
913 
914 	return nilfs_transaction_commit(sb);
915 
916 out_err:
917 	nilfs_transaction_abort(sb);
918 	return err;
919 }
920 
921 int nilfs_permission(struct user_namespace *mnt_userns, struct inode *inode,
922 		     int mask)
923 {
924 	struct nilfs_root *root = NILFS_I(inode)->i_root;
925 
926 	if ((mask & MAY_WRITE) && root &&
927 	    root->cno != NILFS_CPTREE_CURRENT_CNO)
928 		return -EROFS; /* snapshot is not writable */
929 
930 	return generic_permission(&init_user_ns, inode, mask);
931 }
932 
933 int nilfs_load_inode_block(struct inode *inode, struct buffer_head **pbh)
934 {
935 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
936 	struct nilfs_inode_info *ii = NILFS_I(inode);
937 	int err;
938 
939 	spin_lock(&nilfs->ns_inode_lock);
940 	if (ii->i_bh == NULL) {
941 		spin_unlock(&nilfs->ns_inode_lock);
942 		err = nilfs_ifile_get_inode_block(ii->i_root->ifile,
943 						  inode->i_ino, pbh);
944 		if (unlikely(err))
945 			return err;
946 		spin_lock(&nilfs->ns_inode_lock);
947 		if (ii->i_bh == NULL)
948 			ii->i_bh = *pbh;
949 		else {
950 			brelse(*pbh);
951 			*pbh = ii->i_bh;
952 		}
953 	} else
954 		*pbh = ii->i_bh;
955 
956 	get_bh(*pbh);
957 	spin_unlock(&nilfs->ns_inode_lock);
958 	return 0;
959 }
960 
961 int nilfs_inode_dirty(struct inode *inode)
962 {
963 	struct nilfs_inode_info *ii = NILFS_I(inode);
964 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
965 	int ret = 0;
966 
967 	if (!list_empty(&ii->i_dirty)) {
968 		spin_lock(&nilfs->ns_inode_lock);
969 		ret = test_bit(NILFS_I_DIRTY, &ii->i_state) ||
970 			test_bit(NILFS_I_BUSY, &ii->i_state);
971 		spin_unlock(&nilfs->ns_inode_lock);
972 	}
973 	return ret;
974 }
975 
976 int nilfs_set_file_dirty(struct inode *inode, unsigned int nr_dirty)
977 {
978 	struct nilfs_inode_info *ii = NILFS_I(inode);
979 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
980 
981 	atomic_add(nr_dirty, &nilfs->ns_ndirtyblks);
982 
983 	if (test_and_set_bit(NILFS_I_DIRTY, &ii->i_state))
984 		return 0;
985 
986 	spin_lock(&nilfs->ns_inode_lock);
987 	if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
988 	    !test_bit(NILFS_I_BUSY, &ii->i_state)) {
989 		/*
990 		 * Because this routine may race with nilfs_dispose_list(),
991 		 * we have to check NILFS_I_QUEUED here, too.
992 		 */
993 		if (list_empty(&ii->i_dirty) && igrab(inode) == NULL) {
994 			/*
995 			 * This will happen when somebody is freeing
996 			 * this inode.
997 			 */
998 			nilfs_warn(inode->i_sb,
999 				   "cannot set file dirty (ino=%lu): the file is being freed",
1000 				   inode->i_ino);
1001 			spin_unlock(&nilfs->ns_inode_lock);
1002 			return -EINVAL; /*
1003 					 * NILFS_I_DIRTY may remain for
1004 					 * freeing inode.
1005 					 */
1006 		}
1007 		list_move_tail(&ii->i_dirty, &nilfs->ns_dirty_files);
1008 		set_bit(NILFS_I_QUEUED, &ii->i_state);
1009 	}
1010 	spin_unlock(&nilfs->ns_inode_lock);
1011 	return 0;
1012 }
1013 
1014 int __nilfs_mark_inode_dirty(struct inode *inode, int flags)
1015 {
1016 	struct buffer_head *ibh;
1017 	int err;
1018 
1019 	err = nilfs_load_inode_block(inode, &ibh);
1020 	if (unlikely(err)) {
1021 		nilfs_warn(inode->i_sb,
1022 			   "cannot mark inode dirty (ino=%lu): error %d loading inode block",
1023 			   inode->i_ino, err);
1024 		return err;
1025 	}
1026 	nilfs_update_inode(inode, ibh, flags);
1027 	mark_buffer_dirty(ibh);
1028 	nilfs_mdt_mark_dirty(NILFS_I(inode)->i_root->ifile);
1029 	brelse(ibh);
1030 	return 0;
1031 }
1032 
1033 /**
1034  * nilfs_dirty_inode - reflect changes on given inode to an inode block.
1035  * @inode: inode of the file to be registered.
1036  *
1037  * nilfs_dirty_inode() loads a inode block containing the specified
1038  * @inode and copies data from a nilfs_inode to a corresponding inode
1039  * entry in the inode block. This operation is excluded from the segment
1040  * construction. This function can be called both as a single operation
1041  * and as a part of indivisible file operations.
1042  */
1043 void nilfs_dirty_inode(struct inode *inode, int flags)
1044 {
1045 	struct nilfs_transaction_info ti;
1046 	struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
1047 
1048 	if (is_bad_inode(inode)) {
1049 		nilfs_warn(inode->i_sb,
1050 			   "tried to mark bad_inode dirty. ignored.");
1051 		dump_stack();
1052 		return;
1053 	}
1054 	if (mdi) {
1055 		nilfs_mdt_mark_dirty(inode);
1056 		return;
1057 	}
1058 	nilfs_transaction_begin(inode->i_sb, &ti, 0);
1059 	__nilfs_mark_inode_dirty(inode, flags);
1060 	nilfs_transaction_commit(inode->i_sb); /* never fails */
1061 }
1062 
1063 int nilfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1064 		 __u64 start, __u64 len)
1065 {
1066 	struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1067 	__u64 logical = 0, phys = 0, size = 0;
1068 	__u32 flags = 0;
1069 	loff_t isize;
1070 	sector_t blkoff, end_blkoff;
1071 	sector_t delalloc_blkoff;
1072 	unsigned long delalloc_blklen;
1073 	unsigned int blkbits = inode->i_blkbits;
1074 	int ret, n;
1075 
1076 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
1077 	if (ret)
1078 		return ret;
1079 
1080 	inode_lock(inode);
1081 
1082 	isize = i_size_read(inode);
1083 
1084 	blkoff = start >> blkbits;
1085 	end_blkoff = (start + len - 1) >> blkbits;
1086 
1087 	delalloc_blklen = nilfs_find_uncommitted_extent(inode, blkoff,
1088 							&delalloc_blkoff);
1089 
1090 	do {
1091 		__u64 blkphy;
1092 		unsigned int maxblocks;
1093 
1094 		if (delalloc_blklen && blkoff == delalloc_blkoff) {
1095 			if (size) {
1096 				/* End of the current extent */
1097 				ret = fiemap_fill_next_extent(
1098 					fieinfo, logical, phys, size, flags);
1099 				if (ret)
1100 					break;
1101 			}
1102 			if (blkoff > end_blkoff)
1103 				break;
1104 
1105 			flags = FIEMAP_EXTENT_MERGED | FIEMAP_EXTENT_DELALLOC;
1106 			logical = blkoff << blkbits;
1107 			phys = 0;
1108 			size = delalloc_blklen << blkbits;
1109 
1110 			blkoff = delalloc_blkoff + delalloc_blklen;
1111 			delalloc_blklen = nilfs_find_uncommitted_extent(
1112 				inode, blkoff, &delalloc_blkoff);
1113 			continue;
1114 		}
1115 
1116 		/*
1117 		 * Limit the number of blocks that we look up so as
1118 		 * not to get into the next delayed allocation extent.
1119 		 */
1120 		maxblocks = INT_MAX;
1121 		if (delalloc_blklen)
1122 			maxblocks = min_t(sector_t, delalloc_blkoff - blkoff,
1123 					  maxblocks);
1124 		blkphy = 0;
1125 
1126 		down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
1127 		n = nilfs_bmap_lookup_contig(
1128 			NILFS_I(inode)->i_bmap, blkoff, &blkphy, maxblocks);
1129 		up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
1130 
1131 		if (n < 0) {
1132 			int past_eof;
1133 
1134 			if (unlikely(n != -ENOENT))
1135 				break; /* error */
1136 
1137 			/* HOLE */
1138 			blkoff++;
1139 			past_eof = ((blkoff << blkbits) >= isize);
1140 
1141 			if (size) {
1142 				/* End of the current extent */
1143 
1144 				if (past_eof)
1145 					flags |= FIEMAP_EXTENT_LAST;
1146 
1147 				ret = fiemap_fill_next_extent(
1148 					fieinfo, logical, phys, size, flags);
1149 				if (ret)
1150 					break;
1151 				size = 0;
1152 			}
1153 			if (blkoff > end_blkoff || past_eof)
1154 				break;
1155 		} else {
1156 			if (size) {
1157 				if (phys && blkphy << blkbits == phys + size) {
1158 					/* The current extent goes on */
1159 					size += n << blkbits;
1160 				} else {
1161 					/* Terminate the current extent */
1162 					ret = fiemap_fill_next_extent(
1163 						fieinfo, logical, phys, size,
1164 						flags);
1165 					if (ret || blkoff > end_blkoff)
1166 						break;
1167 
1168 					/* Start another extent */
1169 					flags = FIEMAP_EXTENT_MERGED;
1170 					logical = blkoff << blkbits;
1171 					phys = blkphy << blkbits;
1172 					size = n << blkbits;
1173 				}
1174 			} else {
1175 				/* Start a new extent */
1176 				flags = FIEMAP_EXTENT_MERGED;
1177 				logical = blkoff << blkbits;
1178 				phys = blkphy << blkbits;
1179 				size = n << blkbits;
1180 			}
1181 			blkoff += n;
1182 		}
1183 		cond_resched();
1184 	} while (true);
1185 
1186 	/* If ret is 1 then we just hit the end of the extent array */
1187 	if (ret == 1)
1188 		ret = 0;
1189 
1190 	inode_unlock(inode);
1191 	return ret;
1192 }
1193